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Abstract
In recent years, the integration of artificial intelligence in education has become key to enhancing the quality of teaching. This 
study addresses the real-time detection of student behavior in classroom environments by proposing the Classroom Student 
Behavior YOLO (CSB-YOLO) model. We enhance the model’s multi-scale feature fusion capability using the Bidirectional 
Feature Pyramid Network (BiFPN). Additionally, we have designed a novel Efficient Re-parameterized Detection Head (ERD 
Head) to accelerate the model’s inference speed and introduced Self-Calibrated Convolutions (SCConv) to compensate for 
any potential accuracy loss resulting from lightweight design. To further optimize performance, model pruning and knowl-
edge distillation are utilized to reduce the model size and computational demands while maintaining accuracy. This makes 
CSB-YOLO suitable for deployment on low-performance classroom devices while maintaining robust detection capabilities. 
Tested on the classroom student behavior dataset SCB-DATASET3, the distilled and pruned CSB-YOLO, with only 0.72M 
parameters and 4.3 Giga Floating-point Operations Per Second (GFLOPs), maintains high accuracy and exhibits excellent 
real-time performance, making it particularly suitable for educational environments.

Keywords  Real-time detection · Dense object detection · Student behavior recognition · Feature fusion · Network pruning · 
Knowledge distillation

1  Introduction

Student behavior to a certain extent reflects the volume of 
knowledge acquired during class sessions [1]. Therefore, 
in traditional education, teachers need to constantly moni-
tor student behavior while teaching, to adjust the pace and 
methods of instruction. However, in actual classroom envi-
ronments, a single teacher often faces dozens or even more 
students, and the large number of students can lead to a situ-
ation where the teacher lacks sufficient energy to observe 
student behavior while teaching. Thus, if an accurate and 

real-time method of detecting student behavior could be 
utilized to replace the teacher’s observation tasks, it would 
allow teachers to focus more on the teaching itself.

In the current era of educational informatization and intel-
ligence, classroom student behavior detection, as an emerg-
ing instructional aid, is increasingly gaining widespread 
attention from the academic community and educational 
practitioners. Traditional classroom behavior analysis pri-
marily relies on manual observation, with a common prac-
tice being the analysis of student behavior through classroom 
video recordings [2]. Due to the large volume of videos, 
manual processing can lead to fatigue and low efficiency, 
consuming a significant amount of human resources [3]. 
Moreover, it cannot provide real-time feedback to teachers, 
which limits its impact on improving teaching effectiveness.

With the rapid development of deep learning technology, 
real-time and accurate detection of student behavior in the 
classroom has become feasible. Compared to traditional 
methods, target detection methods based on deep learning 
can automatically learn feature data from a large volume of 
video data, overcoming the limitations of manual feature 
extraction [4]. Deep learning-based target detection methods 
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offer deeper insights into student learning situations in the 
classroom, while also reducing the pressure on teachers in 
classroom supervision, thus better enhancing the quality of 
courses.

Deep learning-based object detection methods are mainly 
categorized into two types: The first type includes two-stage 
detection algorithms, where models first generate proposal 
boxes and then classify them using deep convolutional net-
works. Common models include R-CNN [5], Fast R-CNN 
[6], and Faster R-CNN [7]. Although two-stage algorithms 
are more accurate, they are slower, less capable of real-time 
processing, and their large model sizes make deployment 
challenging. The second type includes one-stage target 
detection algorithms based on regression, which calculate 
category probabilities and location information simultane-
ously. These models offer a balance between accuracy and 
computational speed, with smaller sizes facilitating deploy-
ment in practical applications. Common algorithms include 
YOLO [8], RetinaNet [9], and SSD [10], with the YOLO 
series being the most widely applied one-stage detection 
algorithm [11], where YOLOv8 represents the best balance 
between network lightweighting and detection accuracy in 
the YOLO series.

While the YOLO algorithm has found applications in 
various areas, its deployment for student behavior detection 
in classrooms still faces significant challenges. Addition-
ally, due to camera resolution limitations, the pixel count 
representing each student’s body in the image is typically 
very low. Moreover, the significant size discrepancy between 
students sitting at the front and those at the back in the class-
room scenes leads to the presence of multi-scale targets [12]. 
Addressing these issues necessitates a larger, more precise 
model. Yet, most schools lack the necessary equipment to 
run such complex models, necessitating a model that is both 
lightweight and capable.

This paper designs and proposes a model based on an 
improved version of YOLOv8n, CSB-YOLO, specifically 
tailored for real-time detection of student behaviors in class-
room settings. CSB-YOLO boasts minimal parameters and 
computational requirements, making it highly deployable 
on low-performance devices in schools due to its low device 
demands and satisfactory accuracy. The main contributions 
of this paper are as follows: 

1.	 This paper introduces the BiFPN structure [13] into the 
YOLOv8 model, with the aim of enhancing its capability 
to detect densely distributed small targets while reducing 
both computational requirements and parameter count.

2.	 We have devised a novel Efficient Re-parameterized 
Detection Head for YOLOv8, replacing the original 
detection head structure. This modification significantly 
reduces model complexity, accelerates inference speed, 
thereby enhancing real-time performance. Additionally, 

we have enhanced the C2f module by incorporating 
SCConv [14] to compensate for any potential accuracy 
loss resulting from the lightweight design of the detec-
tion head.

3.	 The paper employs LAMP pruning [15] to optimize the 
model’s structure, significantly reducing both parameter 
count and computational load, making it more suitable 
for deployment on low-performance devices. Moreover, 
to prevent a reduction in model accuracy due to pruning, 
the pruned model undergoes BCKD knowledge distilla-
tion [16]. This combination of pruning with knowledge 
distillation achieves nearly lossless lightweighting of the 
model.

2 � Related works

Behavior detection of human targets remains a hot topic 
in the field of object detection, but behavior detection in 
classroom settings poses many challenges, such as detect-
ing multi-scale dense targets and the need for lightweight 
models in practical applications. This section will explore 
and analyze solutions to these challenges.

Zhang et al. [17] established a dataset for the behavior of 
students raising hands in classroom environments and dis-
covered that information loss occurred due to the reduction 
of channel numbers during the construction of the feature 
pyramid [18]. By applying Spatial Context Augmentation 
(SCA) and multi-branch feature fusion modules, the preci-
sion of hand-raising detection was enhanced. However, the 
complexity of the network structure may compromise real-
time performance.

Wang et al. [19] introduced a method to detect yawning 
in classroom environments, integrating the feature pyra-
mid within R-FCN [20] to tackle issues such as occlusions 
and low-resolution facial recognition, and employed chan-
nel pruning to diminish both the model’s parameter count 
and computational overhead. While pruning drastically 
decreases the number of parameters, it inevitably leads to a 
decline in precision as the pruning ratio escalates, thereby 
raising a pivotal challenge concerning how to maintain or 
improve precision amidst the pruning process.

Cheng et al. [21] introduced the concept of a cross-stage 
local network at the end of the YOLO-v4 [22] network, 
embedding the Embedding Connection (EC) component 
to develop an improved YOLO-v4 network for detecting 
teacher and student behaviors. Bao et al. [23] improved the 
model based on YOLOv5 by adding a feature fusion layer 
and incorporating the ghost module [24] to replace stand-
ard convolutions, thus enhancing the model’s capability to 
detect behaviors in the classroom. Wang et al. [25] intro-
duced the CBAM [26] attention mechanism to the YOLOv7 
[27] foundation, effectively capturing contextual features 
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and enhancing the network’s feature detection capability, 
allowing accurate detection of multiple students’ learning 
behaviors. Cheng et al. [28] improved the C2f structure with 
Res2Net [29] on the YOLOv8 base, enhancing the network’s 
ability to extract multi-scale features. They also introduced 
the EMA [30] attention mechanism in the backbone to 
address occlusion issues in classroom settings. While the 
introduction of attention mechanisms significantly enhances 
the model’s feature learning capability and accuracy, it also 
significantly increases computational overhead, adversely 
affecting network lightweighting.

Recent studies, such as Liu et al. [31], have enhanced 
YOLOv8 by adding a small object detection layer equipped 
with a dedicated detection head specifically for small 
objects. Although this dedicated detection head does indeed 
improve the network’s ability to detect small objects, it inev-
itably complicates the network and the additional detection 
head can limit the network’s inference speed. Meanwhile, 
Xiao et al. [32] have improved network accuracy by incor-
porating the IMPDIoU loss function into YOLOv8, but this 
method does not enhance the network’s inference speed.

Analysis of the above research reveals that enhancing 
the network’s learning capability for multi-scale targets 
is crucial for addressing the difficulty of detecting multi-
scale dense targets. Feature fusion is an important method 
to enhance multi-scale feature learning capabilities [33], 
and adding attention mechanisms can significantly improve 
detection accuracy. However, the increased computational 
overhead caused by complex network structures remains a 
problem to be solved. Network pruning is an effective light-
weighting method that significantly reduces the network’s 
parameter count and computational load, but it requires a 
careful balance between pruning rate and accuracy.

3 � CSB‑YOLO detection model

3.1 � YOLOv8

YOLOv8, an evolution from YOLOv5 by Ultralytics, is a 
single-stage object detection algorithm. It employs the CSP 
gradient bifurcation concept and the SPPF module in both 
backbone and neck parts. Notably, it adopts a more gradient-
rich C2f structure over the C3 structure from its predeces-
sor. In the head section, it utilizes a decoupled structure, 
separating classification and detection heads. YOLOv8 also 
shifts from the traditional Anchor-Based approach to an 
Anchor-Free concept, enhancing its lightweight design for 
deployment on low-performance devices in real-world class-
room settings. To further optimize its lightweight nature, this 
paper builds upon the smallest variant, YOLOv8n.

3.2 � Overview of CSB‑YOLO

To address the challenge of real-time student behavior 
detection in classroom scenarios, we devised the CSB-
YOLO model, as illustrated in Fig. 1. Initially, to address 
the challenge of detecting densely distributed student tar-
gets in classroom scenarios, we modified the Neck section 
of YOLOv8 to incorporate the BiFPN structure. Addition-
ally, we engineered an Efficient Re-parameterized Detec-
tion Head for the network, replacing the original detec-
tion head structure of YOLOv8. This adjustment not only 
reduces network complexity but also accelerates the infer-
ence process, enhancing real-time performance. Further-
more, we devised a C2f_SCConv structure to precisely 
locate student targets in classrooms, thereby compensating 
for any potential accuracy loss resulting from lightweight 
detection heads. To further streamline the network, we 
applied the LAMP pruning technique, significantly reduc-
ing the network’s parameter count and computational 
load, thereby lowering complexity and facilitating easier 
deployment. Lastly, for the pruned model, we implemented 
the BCKD distillation strategy to ensure the model main-
tains high detection accuracy while remaining lightweight.

3.3 � BiFPN

In the Neck section, YOLOv8 utilizes the PANet [34] 
structure for feature fusion. While PANet, compared to the 
traditional FPN structure, facilitates bidirectional feature 
fusion while retaining multi-scale feature information, this 
fusion mechanism depends on numerous nodes, leading to 
increased computational and parameter requirements of 
the network. To reduce the computational and parameter 
demands without compromising accuracy, we have incor-
porated the BiFPN [13] structure into YOLOv8.

BiFPN represents an advanced version of the FPN 
architecture, establishing cross-scale connections through 
bidirectional channels, where each layer receives features 
from both higher and lower levels. In contrast to PANet, 
BiFPN eliminates nodes with only one input and employs 
weighted feature fusion. Additionally, to combine more 
features, an extra pathway is introduced, linking input and 
output nodes of the same level. This design allows the 
network to better balance semantic and spatial information 
across different layers, preserving shallow semantic details 
without sacrificing significant deep semantic information. 
Thanks to the reduction in nodes, BiFPN significantly 
decreases both computational and parameter require-
ments of the network, while its efficient multi-scale feature 
fusion capability maintains accuracy. Figure 2 illustrates 
three distinct Neck structures.
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3.4 � Efficient re‑parameterized detection head

YOLOv8 features three detection heads, each with two paths 
containing two 3x3 convolutions for feature extraction, 
resulting in a total of twelve 3x3 convolutions within the 
detection head section of the network. Although this config-
uration improves accuracy to some extent, the extensive use 
of convolutional kernels increases the network’s parameter 
count and slows down inference speed.

Drawing inspiration from the parameter-sharing approach 
employed in the detection heads of RetinaNet [9], we rede-
signed the detection head of YOLOv8. The redesign consoli-
dates the four 3 × 3 convolutions used for feature extraction 
along the two paths within the original detection head into 
two, allowing both classification and box regression to share 
these two 3x3 convolutions. This modification reduces the 
complexity of the head section and increases the network’s 

inference speed, inevitably resulting in a slight reduction in 
accuracy. To minimize the loss in accuracy while simplify-
ing the network, we introduced the Diverse Branch Block 
(DBB) [35], replacing the original convolutions.

DBB is a cost-free universal module that utilizes repa-
rameterization techniques, building upon the foundations of 
ACNet [36] and RepVGG [37] by exploring more equivalent 
transformations. DBB takes cues from the Inception [38–41] 
structure, enriching the feature space of the convolutional 
block with a multi-branch architecture. During the infer-
ence phase, the multiple branches are reparameterized and 
merged into a single main branch, optimizing the network’s 
performance while maintaining precision.

Transform I - Convolution with Batch Normalization 
(Conv-BN): A convolution layer is often equipped with a 
BN layer which performs channel-wise normalization and 
scaling.

where ∗ denotes convolution, I is the input, F is the filter 
�j , �j are the mean and standard deviation for batch nor-
malization, and �j , �j are the scale and shift parameters. This 
transformation fuses batch normalization parameters into the 
convolution filters for inference.

Transform II - Addition of Branch Outputs: The addi-
tivity property of convolution allows the merging of outputs 

(1)Oj =
(I ∗ F)j − �j

�j
�j + �j

Fig. 1   The architecture of the CSB-YOLO

Fig. 2   The structures of three different Necks
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from multiple convolution layers with the same configuration 
by simply adding their weights and biases:

F(i) and b(i) represent the convolution kernels and biases of 
the ith branch, respectively. F′ and b′ are the combined ker-
nel and bias.

Transform III - Sequential Convolutions: A sequence of 
convolutions, typically involving small kernel sizes like 1x1 
followed by larger kernels like KxK, can be merged into one 
effective convolution. The transformation rearranges and com-
bines the weights from sequential layers to form a single layer 
that encapsulates the collective effect:

This is especially useful for reducing depth and computa-
tional complexity in the network.

Transform IV - Depth Concatenation: Depth concate-
nated outputs from different branches are merged into a single 
convolution layer:

Concat denotes the concatenation operation along the chan-
nel dimension, allowing multiple branches to combine into 
a single convolution operation.

Transform V - Convolution for Average Pooling: An 
average pooling operation is modeled as a convolution with 
a uniform kernel:

(2)F� =
∑

i

F(i), b� =
∑

i

b(i)

(3)F� = F(1) ∗ F(2), b� = F(1) ∗ b(2) + b(1)

(4)F� = Concat
(
F(1),F(2)

)
, b� = Concat

(
b(1), b(2)

)

(5)F�

d,c,,∶
=

{ 1

K2
if d = c

0 otherwise

d and c are indices for the output and input channels, respec-
tively; K is the size of the pooling (or convolution) win-
dow; F�

d,c,,∶
 defines each element of the convolution kernel 

to implement pooling.
Transform VI - Handling Multi-Scale Convolutions: 

Convolutions with different kernel sizes are unified into a 
larger convolution operation through appropriate padding:

F small represents a smaller kernel, which is padded with 
zeros to match the size of the largest kernel in the transfor-
mation, referred to here as F′

padded
.

A complete DBB block, as depicted in Fig. 3, consists 
of four branches. Using the aforementioned six parameter 
transformation methods, it is possible to convert complex 
multi-branch structures into standard convolutions and reuse 
the weights obtained during training. DBB facilitates the 
separation of training and inference phases: it employs a 
more complex network structure during training to improve 
network accuracy and undergoes equivalent transformations 
during inference to accelerate the inference process.

The detection head designed in this paper, as illustrated 
in Fig. 4, replaces the original four convolutions of the 
detection head with two DBB modules. During the infer-
ence phase, these two DBB modules are equivalently trans-
formed into two standard convolution modules. Thanks to 
the reduction in the number of convolutions, both the net-
work’s parameter count and computational load significantly 
decrease. This will be validated in the experimental section.

3.5 � C2f_SCConv

In classroom environments, student positions are often 
densely distributed, leading to frequent occurrences of 

(6)F�

padded
= Zero-Padding

(
F small

)

Fig. 3   The basic structure of 
DBB
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overlap and occlusion. The lightweight detection head inevi-
tably reduces the network’s ability to detect complex human 
targets. To address this issue, we redesigned the C2f mod-
ule in the YOLOv8 structure using SCConv [14], increasing 
the receptive field of the C2f module to compensate for the 
accuracy loss caused by the lightweight detection head.

The core idea of SCConv is to enhance the fundamental 
convolutional feature transformation process of CNNs with-
out modifying the model architecture. It essentially employs 
grouped convolutions for multi-scale feature extraction, 
dividing them into two groups along the channel dimension. 
One pathway conducts regular convolutional feature extrac-
tion, while the other pathway utilizes downsampling opera-
tions to enlarge the network’s receptive field. This enables 
each spatial location to conduct self-calibrated operations 
by integrating information from two different spatial scales.

The workflow, as depicted in Fig. 5, involves input and 
output channels both of size C, with a given set of filters K 
shaped as 

(
C,C, kh, kw

)
 , where kh and kw represent the spatial 

height and width, respectively. Initially, the process involves 
segmentation, resulting in four groups of filters 

{
Ki

}4

i=1
 , each 

with a shape of 
(

C

2
,
C

2
, kh, kw

)
 . Subsequently, the input X is 

evenly divided into two parts 
{
X1,X2

}
 . The self-calibration 

operation is performed on X1 using filters 
{
K1,K2,K3

}
 , 

yielding Y1 . In the second pathway, a simple convolution 
operation is executed: Y2 = F1

(
X2

)
= X2 ∗ K1 , aiming to 

preserve the original spatial context information. Finally, {
Y1, Y2

}
 are concatenated to form the final output Y.

In detail, the Self-Calibrated operation starts with apply-
ing average pooling to the given input X1 , using a kernel size 
of r × r and a stride of r, denoted as:

Fig. 4   A structural comparison 
between ERD Head and the 
detection head of YOLOv8

Fig. 5   A schematic illustration of self-calibrated convolutions
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Next, T1 undergoes a feature transformation using filter K2:

Here, Up(⋅) represents the operation of linear interpolation, 
mapping the intermediate quantity from a smaller scale 
space back to the original feature space. The self-calibration 
operation can then be represented as:

where F3

(
X1

)
= X1 ∗ K3, � denotes the sigmoid function, 

and the symbol "." indicates element-wise multiplication. X′
1
 

serves as a residual term to establish weights for self-calibra-
tion. The final output after self-calibration can be written as:

In this study, the C2f structure, improved by SCConv, 
is illustrated in Fig. 6. We enhanced the BottleNeck by 
replacing the convolution of the second CBS with SCConv, 
resulting in a structure we denote as BottleNeck_SCC. Sub-
sequently, stacking n groups of BottleNeck_SCC forms the 
C2f_SCConv structure. Owing to SCConv’s larger receptive 
field, C2f_SCConv facilitates more precise localization of 
student targets within the classroom environment.

3.6 � LAMP pruning

Although the enhancements previously implemented 
have provided the network with a certain level of real-
time capability, it is still necessary to further lighten the 
network, especially considering the device performance 
within classroom scenarios. Complex neural network 
models often contain redundancies after training. These 
redundancies, which are relatively less important, do not 

(7)T1 = AvgPoolr
(
X1

)

(8)X�

1
= Up

(
F2

(
T1
))

= Up
(
T1 ∗ K2

)

(9)Y �

1
= F3

(
X1

)
⋅ �

(
X1 + X�

1

)

(10)Y1 = F4

(
Y �

1

)
= Y �

1
∗ K4

substantially improve network accuracy but increase the 
network’s parameter size, thus slowing down inference 
time.

We adopted a pruning method based on LAMP (Layer-
Adaptive Magnitude-based Pruning) scores [15]. LAMP is 
designed to automatically select the optimal level of spar-
sity among layers in a neural network to achieve the best 
balance between model performance and sparsity. Using 
LAMP scores, an adaptive, global pruning strategy can be 
implemented, eliminating the need for manual adjustment 
of hyperparameters.

The LAMP process is as follows: For a feedforward 
neural network with depth d, where each fully con-
nected/convolutional layer is associated with a weight 
tensor w(1),… ,w(d) . For fully connected layers, the cor-
responding weight tensor is a two-dimensional matrix; 
for 2D convolutional layers, the corresponding tensor is 
four-dimensional.

To unify the definition of LAMP scores for both fully 
connected and convolutional layers, weight tensors are 
flattened into one-dimensional vectors. According to 
a given index mapping, weights are sorted in ascend-
ing order, meaning that for u < v , it always holds that 
|W[u]| ≤ |W[v]| , where W[n] denotes the element in W 
mapped from index u. The LAMP score for the u-th weight 
index W is:

The LAMP score evaluates the relative importance of a tar-
get connection amongst all the surviving connections within 
the same layer. After calculating the LAMP scores, the con-
nections with the lowest scores are globally pruned until the 
required global sparsity constraint is achieved. It is impor-
tant to note that within each layer, there is a single connec-
tion with a LAMP score of 1, which is the maximum pos-
sible LAMP score. This ensures that at least one connection 

(11)score(u;W) ∶=
(W[u])2

∑
v≥u(W[v])2

Fig. 6   The structure diagram of 
the C2f_SCConv module
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is preserved in every layer. This process essentially consti-
tutes minimum magnitude pruning with layer-wise sparsity 
levels chosen automatically, obviating the need for intricate 
parameter settings.

3.7 � BCKD knowledge distillation

BCKD [16] is a new knowledge distillation method tailored 
for dense object detection tasks, designed to address the inef-
ficiency of traditional classification distillation in such con-
texts. In dense object detection, the pronounced imbalance 
among foreground categories leads to traditional softmax-
based knowledge distillation methods overlooking the abso-
lute classification scores of each category. This oversight can 
result in the optimal solution for the distillation loss function 
not necessarily ensuring the best classification performance 
in the student model. The fundamental principle of BCKD is 
to reframe the multi-class classification challenge into mul-
tiple binary classification tasks, applying knowledge distil-
lation to each binary classification task individually.

The distillation process of BCKD is illustrated in Fig. 7. It 
incorporates two novel distillation loss functions specifically 
designed for object detection tasks: (i) Binary classification 
distillation loss, Ldis

cls
 , which represents the classification 

logits as multiple binary maps and extracts classification 
knowledge through a distillation loss resembling binary 
cross-entropy; (ii) IoU-based localization distillation loss, 
Ldis
loc

 , which transfers localization knowledge from the teacher 
model to the student model by calculating the IoU values 
between the bounding boxes predicted by the two models 
and employing IoU loss.

The Binary Classification Distillation Loss aims to 
address the severe imbalance between foreground and 

background categories in dense object detection. This 
approach tackles the challenge by transforming the multi-
class problem into multiple binary classification tasks.

Classification Scores: For each location i and category 
j the classification logits lij are transformed into classifica-
tion scores pij using the Sigmoid function:

Binary Cross-Entropy Loss: For each sample x, the clas-
sification loss Lcls(x) is computed as:

where LCE
(
pij, yij

)
 is the binary cross-entropy loss, yij is the 

true label, n is the number of samples, and K is the number 
of categories.

Distillation Loss Weighting: Given the classification 
scores pt

ij
 from the teacher model and pS

ij
 from the student 

model, the binary classification distillation loss Ldis
cls
(x) is:

where wij are weights determined based on the score differ-
ences, intended to focus the learning on important samples.

The IoU-based Localization Distillation Loss is 
designed to enhance localization performance by calcu-
lating the IoU between bounding boxes predicted by the 
teacher and student models.

(12)pij =
1

1 + e−lij

(13)Lcls(x) =

n∑

i=1

K∑

j=1

LCE
(
pij, yij

)

(14)Ldis
cls
(x) =

n∑

i=1

K∑

j=1

wij ⋅ LBCE

(
ps
ij
, pt

ij

)

Fig. 7   The workflow of BCKD knowledge distillation
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IoU Calculation: Given the bounding boxes bt
i
 and bs

i
 

predicted by the teacher and student models, respectively, 
their IoU u′

i
 is computed as:

Localization Distillation Loss: The IoU-based localization 
distillation loss Ldis

loc
(x) is formulated as:

where max
(
�j

)
 represents the maximum weight among cat-

egories, emphasizing crucial localization information.
Total Distillation Loss: The total distillation loss is a 

linear combination of the binary classification distillation 
loss and the IoU-based localization distillation loss, aiming 
to optimize both classification and localization tasks concur-
rently. The total distillation loss Ldis

total
(x) is defined as:

where �1 and �2 are hyperparameters that adjust the relative 
importance of classification and localization losses in the 
total loss.

The design of these loss functions takes into account the 
foreground-background class imbalance inherent in dense 
object detection tasks, as well as the significance of locali-
zation accuracy. Through these meticulously crafted loss 
functions, effective training and optimization of the student 
model are achieved.

4 � Experimental results and analysis

4.1 � Experimental dataset

Leveraging deep learning for the automatic detection of stu-
dent behavior is a critical strategy for enhancing teaching 
effectiveness. Nonetheless, the lack of publicly available 
datasets on student behavior presents a significant challenge 
to researchers in this domain. The dataset employed in this 
study is the SCB-Dataset3 (Student Classroom Behavior 
dataset) [42], which reflects real classroom scenarios. SCB-
Dataset3 includes two subsets: SCB-Dataset3-S, consisting 
of classroom behavior data from elementary and middle 
schools, and SCB-Dataset3-U, comprising university class-
room behavior data.

Our primary focus is on SCB-Dataset3-S, which is uti-
lized as the training and validation dataset. The SCB-Data-
set3-S dataset consists of 5015 images and 25,810 annota-
tions, categorized into three types: hand raising, reading, 
and writing. Figure 8 displays the number of instances for 
each category, while Fig. 9 presents example images from 
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the dataset. Furthermore, relying solely on a single dataset 
may not provide a comprehensive evaluation of a model’s 
performance. Therefore, we also conduct transfer training 
on the relatively smaller SCB-Dataset3-U dataset to test the 
model’s generalization ability and robustness.

4.2 � Evaluation metrics

In the classroom scenarios covered by this study, targets of 
various scales coexist, necessitating a comprehensive evalu-
ation of an object detection model’s effectiveness. Conse-
quently, the precision metrics employed in this paper include 
F1, mAP0.5, and mAP0.5:0.95. In parallel with testing the 
model’s performance, it’s also essential to evaluate the mod-
el’s number of parameters, model file size, FLOPs, and FPS 
to thoroughly analyze the model’s capabilities. 

(1)	 F1: Represents the harmonic mean of Precision and 
Recall, allowing for a combined assessment of accu-
racy and recall rates, with higher results being prefer-
able. The calculation formula is as follows: 

(2)	 mAP: Measures the average precision (AP) across all 
categories. AP for each category is determined by first 
plotting the precision-recall curve, then calculating the 
area under this curve, which represents the AP for that 
category. mAP is the mean of the AP values across all 
categories. The formula can be expressed as: 

(18)Precision =
TP

TP + FP

(19)Recall =
TP

TP + FN

(20)F1 = 2 ×
Precision × Recall

Precision + Recall

(21)mAP =
1

N

N∑

i=1

APi

Fig. 8   Number of labels for each category in the SCB-Dataset3-S 
dataset



	 Journal of Real-Time Image Processing (2024) 21:140140  Page 10 of 17

(3)	 Number of Parameters: Used to evaluate the model’s 
size and complexity, it is obtained by summing the 
number of weight parameters for each layer. For light-
weight models, a lower number of parameters is pre-
ferred.

(4)	 FLOPs: Indicates the total number of floating-point 
operations required to perform a forward pass of the 
model, serving as an indicator of the model’s compu-
tational complexity and efficiency.

(5)	 Onnx file size: Represents the size of the model file 
in Onnx format, which directly impacts the model’s 
deployability on various devices. The smaller the 
weight file, the lower the storage space requirement on 
devices.

(6)	 FPS (Frames Per Second): Denotes the number of 
images the model can process per second. A higher FPS 
indicates better real-time performance of the model.

4.3 � Experimental environment and parameter 
settings

In this study, the Pytorch 1.13.1 deep learning framework 
was used to train each model for 300 epochs on the SCB-
Dataset3-S dataset and conduct transfer training for 100 
epochs on the SCB-Dataset3-U dataset. The momentum was 
set to 0.937, weight decay to 0.0005, initial learning rate 
(lr0) to 0.01, image input size to 640×640, and batch size 
to 8. The experimental platform operated on Ubuntu 20.04, 
with an Intel(R) Xeon(R) Platinum 8255C CPU at 2.5GHz, 
32 GB RAM, and an NVIDIA RTX 3080 GPU. Addition-
ally, inference speed tests were performed on a pure CPU 
device without a GPU, specifically an Intel(R) I5 12400. 
The model pruning rate is set at 25%. In the knowledge 

distillation section, we use the unpruned CSB-YOLO as the 
teacher model and the pruned CSB-YOLO as the student 
model. The distillation training runs for 300 epochs with a 
loss rate of 1.2.

4.4 � Choice of Pruning Rate

We conducted tests on the SCB-Dataset3-S dataset to assess 
the impact of pruning rate on accuracy. Table 1 shows the 
effects of different LAMP pruning rates on the performance 
of CSB-YOLO, ranging from 10% to 80%. It was found 
that with the increase in pruning rate, the model’s number 
of parameters, computational load, and model file size all 
gradually decreased, and the FPS significantly improved. 
However, the accuracy also gradually declined with the 
increase in pruning rate. After exceeding a 30% pruning 
rate, the accuracy began to sharply decrease, and at an 80% 
pruning rate, the model became unusable. An important 
observation is that when the pruning rate was below 25%, 
the fine-tuned model even surpassed the unpruned model 
in mAP0.5. This is because the original model contained a 
substantial amount of redundancy, which not only slowed 
down the model’s computational speed but also increased 
the difficulty of training. Therefore, removing this redun-
dancy could improve the model’s training accuracy.

The primary objective of the pruning phase in this study 
is to maximize model lightweighting without compromising 
accuracy. At a pruning rate of 25%, the FPS saw a significant 
increase compared to a 20% pruning rate, while the accuracy 
was higher than at a 30% pruning rate and very close to that 
of the original model, making 25% a more cost-effective 
choice. Subsequent experiments in this paper all employed 
a 25% pruning rate.

Fig. 9   Sample display of the 
SCB-Dataset3-S Dataset

(a) shooting angles (b) different classes (c) different stages
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Since the detection head is responsible for output-
ting the detection results, its structure should remain 
unchanged; thus, it was not involved in the pruning 
process. We conducted a comparison of the number of 
channels in layers other than the model’s detection head, 
where layers 0 to 9 constitute the backbone of the model, 
and layers 10 to 27 form the Neck part. Figure 10 illus-
trates a significant reduction in the number of channels, 
with the total channels decreasing from 4176 to 2587.

4.5 � Selection of Distillation Loss Rate

To achieve enhanced precision while ensuring model light-
ness, it is imperative to perform BCKD distillation on the 
model post-pruning. The importance of each layer’s weights 
is discernible through a comparison of channel counts before 
and after pruning. As observed in Fig. 10, a significant por-
tion of pruning occurs within the model’s backbone, indicat-
ing the presence of considerable redundancy in this section, 
which minimally impacts the overall network accuracy. Con-
sequently, we focused on distilling layers 15, 18, 21, 24, and 
27, where the change in channel numbers before and after 

Table 1   The impact of 
different pruning rates on the 
performance of CSB-YOLO

Method mAP0.5 Params(M) GFLOPs Onnx file 
size(MB)

FPS(CPU)

CSB-YOLO(0%) 0.703 1.86 6.2 7.33 31.46
10%-Pruned 0.719 1.08 5.4 4.35 32.35
20%-Pruned 0.705 0.81 4.7 3.33 34.53
25%-Pruned 0.704 0.72 4.3 2.95 37.17
30%-Pruned 0.696 0.62 3.9 2.59 38.25
40%-Pruned 0.66 0.49 3.1 2.11 39.34
50%-Pruned 0.608 0.37 2.4 1.64 44.32
60%-Pruned 0.53 0.25 1.7 1.18 61.95
70%-Pruned 0.333 0.15 0.9 0.813 92.09
80%-Pruned 0.076 0.13 0.7 0.707 116.16

Fig. 10   Comparison of the number of network channels before and after pruning
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pruning was minor, signifying their crucial role in maintain-
ing network accuracy.

Additionally, we selected the unpruned CSB-YOLO as the 
teacher model because the structures of layers 15, 18, 21, 24, 
and 27 remained almost unchanged before and after pruning, 
making the teacher and student models structurally similar. 
This similarity in structure can reduce the complexity of the 
distillation training process. In addition, experiments were 
conducted on the SCB-Dataset3-S dataset to evaluate the 
impact of varying the loss ratio coefficient during the distil-
lation process, with the distillation training spanning 300 
epochs. As depicted in Fig. 11, the optimal performance 
across all accuracy metrics was observed when the loss ratio 
was set to 1.2. Consequently, a consistent loss ratio of 1.2 
was employed in the subsequent experiments of this study.

4.6 � Comparison of different distillation methods

To validate the effectiveness of BCKD distillation, we intro-
duced three feature distillation methods: cwd, mgd, and 
mimic, along with two logical distillation methods: L1 and 
L2. Tests were conducted on the SCB-Dataset3-S dataset, 
with the main parameters consistent with those described 
in section 4.5. The experimental results, as presented in 
Table 2, reveal that BCKD distillation achieved the best 
performance among all comparison methods, fully demon-
strating the effectiveness of the BCKD distillation approach 
in classroom environments with densely populated targets.

4.7 � Experiments and comparisons

To verify the effectiveness of the proposed CSB-YOLO, 
comparative experiments were conducted with commonly 
used object detection models on the SCB-Dataset3-S 
dataset. All models underwent 300 training epochs, with 
YOLOv8n as the baseline model. The results, as shown in 
Table 3, indicate that after model pruning and knowledge 
distillation, the CSB-YOLO model exhibited the lowest 
parameter count among all the models compared, at merely 

23.9% of the baseline model’s parameters. Its GFLOPs were 
also reduced to 53% of the baseline. Furthermore, its accu-
racy surpassed all other smaller models tested; specifically, 
it achieved an mAP0.5 of 0.711, which is an increase of 
0.8% over the baseline, and its mAP0.5:0.95 also improved 
by 0.3%. Although it is slightly less accurate than larger-
scale models such as YOLOv7, YOLOv9-c, and YOLOv3, 
it significantly outperforms these models in terms of both 
parameter size and computational efficiency, key metrics for 
lightweight models.

Table 4 displays the accuracy across various categories, 
revealing that after pruning and distillation, CSB-YOLO out-
performs the baseline in detecting behaviors such as raising 
hands and writing.

To observe the detection performance of the models more 
intuitively, we randomly selected image samples and visu-
alized the detection results of YOLOv8n and CSB-YOLO. 
The results are shown in Fig. 12. It can be observed that 
from a rear perspective, the performance of both models is 
relatively similar. However, from a frontal perspective, CSB-
YOLO exhibits superior detection effectiveness in areas 
where student targets are densely packed and also demon-
strates commendable detection capabilities for smaller tar-
gets in the back rows of the classroom.

To assess the model’s generalization capabilities across 
similar scenes, we employed models trained on the SCB-
Dataset3-S dataset as pretrained weights for transfer learning 
on the SCB-Dataset3-U dataset, with all models undergoing 

Fig. 11   Accuracy changes 
under different loss ratios

Table 2   Comparing different knowledge distillation methods

Method F1 mAP0.5 mAP0.5:0.95

CSB-YOLO(prune) 0.661 0.704 0.518
+cwd [43] 0.656 0.695 0.508
+mgd [44] 0.486 0.456 0.290
+mimic [45] 0.656 0.695 0.508
+L1 [46] 0.661 0.701 0.515
+L2 [46] 0.659 0.705 0.519
+BCKD [16] 0.666 0.711 0.523
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100 training cycles. The results, as detailed in the Table 5, 
show that the CSB-YOLO model introduced in this paper is 
slightly lower in the mAP0.5 accuracy metric compared to 
the baseline. However, it achieves a significant 5.4% increase 
in the F1 score, while its parameter count and computational 
load remain considerably less than those of the baseline. 
Integrating three accuracy metrics, CSB-YOLO still outper-
forms all other small models involved in the comparison, 
thoroughly demonstrating its generalization capability in 
classroom settings.

In addition to the accuracy testing mentioned above, we 
also conducted lightweight testing on low-performance 
CPU devices and Raspberry Pi 5 to evaluate the deployment 

feasibility of CSB-YOLO on low-performance devices. As 
shown in Table 6, the experiments demonstrate that CSB-
YOLO, following pruning and distillation, has the small-
est model file size among all comparison models, at just 
2.95MB. Moreover, when running inference on a CPU, it 
achieves an FPS of 37.17, slightly lower than YOLOv5n 
but higher than all other comparison models. It’s important 
to note that CSB-YOLO’s accuracy significantly surpasses 
that of YOLOv5n. Furthermore, an FPS of 37.17 is more 
than sufficient for real-time detection needs. Therefore, CSB-
YOLO offers a higher cost-effectiveness, making it highly 
suitable for deployment on low-performance devices in 
classroom settings.

Table 3   Performance 
comparisons of different models 
were conducted on the SCB-
Dataset3-S dataset

Method F1 mAP0.5 mAP0.5:0.95 Params(M) GFLOPs

YOLOv8n [47] 0.665 0.703 0.52 3.01 8.1
YOLOv8s [47] 0.693 0.733 0.556 11.13 28.4
YOLOv3-tiny [48] 0.605 0.603 0.354 8.67 12.9
YOLOv3 [48] 0.711 0.739 0.552 61.51 154.6
YOLOv5n [49] 0.645 0.673 0.448 1.76 4.1
YOLOv5s [49] 0.683 0.705 0.496 7.02 15.8
YOLOv6n [50] 0.655 0.692 0.511 4.23 11.8
YOLOv7-tiny [27] 0.663 0.701 0.477 6.01 13.0
YOLOv7 [27] 0.726 0.769 0.572 36.49 103.2
YOLOv9-c [51] 0.734 0.787 0.625 50.7 236.6
rtdetr-l [52] 0.692 0.689 0.508 31.99 103.4
CSB-YOLO 0.658 0.703 0.516 1.86 6.2
CSB-YOLO (prune+distill) 0.666 0.711 0.523 0.72 4.3

Table 4   Comparisons of 
the accuracy across various 
categories for different models 
on the SCB-Dataset3-S dataset

mAP0.5 mAP0.5:0.95

Method raising reading writing raising reading writing

YOLOv8n 0.796 0.737 0.577 0.57 0.56 0.431
YOLOv8s 0.831 0.758 0.611 0.611 0.589 0.468
YOLOv3-tiny 0.671 0.632 0.505 0.362 0.392 0.308
YOLOv3 0.837 0.739 0.641 0.598 0.568 0.49
YOLOv5n 0.78 0.712 0.526 0.496 0.488 0.36
YOLOv5s 0.81 0.728 0.577 0.547 0.534 0.407
YOLOv6n 0.804 0.71 0.562 0.574 0.538 0.421
YOLOv7-tiny 0.795 0.732 0.577 0.509 0.516 0.404
YOLOv7 0.842 0.778 0.688 0.599 0.595 0.521
YOLOv9-c 0.873 0.795 0.692 0.673 0.645 0.558
rtdetr-l 0.814 0.702 0.552 0.566 0.529 0.428
CSB-YOLO 0.803 0.727 0.578 0.568 0.547 0.433
CSB-

YOLO(prune+distill)
0.803 0.736 0.593 0.574 0.554 0.441
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4.8 � Experimental comparison of different detection 
heads

We compared various detection head structures based 
on YOLOv8n, and the results are shown in Table 7. Our 
designed detection head structure exhibits the smallest 

parameter count, computational load, model file size, and 
the best real-time performance among the compared detec-
tion heads. The experiments provide ample evidence that 
our designed ERD Head achieves excellent lightweight 
performance.

Fig. 12   Visualization of detec-
tion results for YOLOv8n and 
CSB-YOLO

Image samples

YOLOv8n

CSB-YOLO

Table 5   Performance comparisons of different models were con-
ducted on the SCB-Dataset3-U dataset

Method F1 mAP0.5 mAP0.5:0.95 Params(M) GFLOPs

YOLOv8n 0.707 0.75 0.576 3.01 8.1
YOLOv8s 0.801 0.935 0.723 11.13 28.4
YOLOv3-

tiny
0.585 0.535 0.335 8.68 12.9

YOLOv3 0.75 0.699 0.553 61.53 154.6
YOLOv5n 0.519 0.434 0.312 1.77 4.2
YOLOv5s 0.639 0.612 0.46 7.03 15.8
YOLOv6n 0.695 0.741 0.57 4.23 11.8
YOLOv7-

tiny
0.729 0.688 0.502 6.02 13.1

YOLOv7 0.807 0.765 0.605 36.51 103.2
YOLOv9-c 0.827 0.944 0.771 50.7 236.7
rtdetr-l 0.747 0.695 0.528 31.99 103.5
CSB-YOLO 0.761 0.747 0.576 1.86 6.2

Table 6   Comparison of lightweight metrics among different models

Method Onnx file 
size(MB)

FPS(CPU) FPS(Raspberry 
Pi5)

YOLOv8n 11.6 24.84 5.09
YOLOv8s 42.6 9.42 1.95
YOLOv3-tiny 33.1 18.24 4.23
YOLOv3 235.0 2.14 0.37
YOLOv5n 7.15 44.2 8.08
YOLOv5s 27.1 15.53 3.22
YOLOv6n 16.3 23.39 5.98
YOLOv7-tiny 22.9 21.8 4.76
YOLOv7 139.0 2.4 0.5
YOLOv9-c 193.0 1.15 0.22
rtdetr-l 122.0 2.38 0.5
CSB-YOLO 7.33 31.46 6.08
CSB-

YOLO(prune+distill)
2.95 37.17 7.15
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4.9 � Ablation experiment

To validate the effectiveness of each enhancement module 
in terms of both lightweight design and accuracy improve-
ment, we conducted ablation experiments on the baseline 
model YOLOv8n, incorporating various improvement 
modules. All experiments were conducted on the SCB-
Dataset3-S dataset, with each training session spanning 
300 epochs. The results, as presented in Table 8, show that 
after the integration of BiFPN, there was a slight decrease 
in mAP0.5 by 0.2%. However, there was a substantial 

reduction in parameter count, computational load, and 
model file size, along with a 4.08 increase in FPS. This 
indicates that the BiFPN structure significantly contrib-
utes to the model’s lightweight design without compromis-
ing accuracy. Building upon BiFPN with the addition of 
ERD Head led to a further decrease in accuracy, but also 
resulted in additional reductions in parameter count, com-
putational load, and model file size, while FPS increased 
to 31.43. This effectively demonstrates the ERD Head’s 
capability to reduce model complexity and enhance com-
putational speed.

To counteract the precision loss caused by the ERD 
Head, we introduced the C2f_SCConv module, which suc-
cessfully raised the mAP0.5 to the level of the baseline. As 
observed in Fig. 13, replacing C2f with C2f_SCConv allows 
the network to accurately concentrate attention on the stu-
dents within the scene. This improvement is due to the larger 
receptive field of C2f_SCConv, which significantly bolsters 
the network’s ability to represent features of irregular human 
targets that occlude each other, enhancing detection accu-
racy in complex classroom environments.

Table 7   The comparative 
experiments of different 
detection heads on the SCB-
Dataset3-S dataset

Head mAP0.5 Params(M) GFLOPs Onnx(MB) FPS(CPU)

Original detection head [47] 0.703 3.01 8.1 11.6 24.84
Detect Aux [27] 0.697 3.01 8.1 11.6 25.61
Dynamic Head [53] 0.722 3.49 9.6 13.5 19.52
RTDETR Decoder [52] 0.646 9.48 16.7 36.5 5.61
P2 Head [47] [31] 0.7 2.92 12.2 11.8 13.7
ERD Head (ours) 0.695 2.64 6.6 10.2 31.6

Table 8   Module ablation experiment

BiFPN C2f_SCConv ERD Head Prune Distill mAP0.5 Params(M) GFLOPs Onnx(MB) FPS(CPU)

- - - - - 0.703 3.01 8.1 11.6 24.84
+ - - - - 0.701 1.99 7.1 7.81 28.92
- + - - - 0.703 3.47 8.6 13.4 25.11
- - + - - 0.695 2.64 6.6 10.2 31.6
+ - - - - 0.703 2.08 7.4 8.18 26.18
+ - + - - 0.692 1.77 5.9 6.96 31.43
- + + - - 0.701 3.1 7.1 12.0 25.59
+ + + - - 0.703 1.86 6.2 7.33 31.46
+ + + + - 0.704 0.72 4.3 2.95 37.05
+ + + + + 0.711 0.72 4.3 2.95 37.17
+ + + - + 0.714 1.86 6.2 7.33 31.19
+ + - + + 0.709 1.1 5.5 4.43 31.42
+ - + + + 0.709 0.78 4.4 3.17 37.21
- + + + + 0.712 2.18 6.4 8.51 31.56

(a) C2f SCConv (b) C2f

Fig. 13   Heatmap comparison between C2f_SCConv and C2f
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After further applying LAMP pruning to the model, the 
parameter count was reduced to 0.72M, merely 23.9% of 
the baseline, without compromising accuracy. Concurrently, 
the FPS increased to 37.17. Ultimately, BCKD knowledge 
distillation was performed on the pruned model, boosting 
the mAP0.5 to 71.1%, which is a 0.8% increase from the 
baseline.

5 � Conclusion

This paper proposes a detection model named CSB-YOLO, 
which is specifically tailored for the detection of student behav-
iors in classroom settings. Designed to operate efficiently even 
in crowded classroom scenarios, this model has been optimized 
for lightweight deployment, allowing it to be easily and cost-
effectively implemented on devices with limited computa-
tional capabilities typically found in classrooms. CSB-YOLO 
employs a BiFPN structure, replacing YOLOv8’s Neck struc-
ture, to reduce parameter size while enhancing feature fusion 
capabilities. This optimization enables the model to achieve 
accuracy levels comparable to YOLOv8n with fewer param-
eters. Additionally, we have designed a novel ERD Head, which 
significantly reduces the model’s parameter count and compu-
tational requirements while accelerating the model’s inference 
speed. To further address accuracy concerns stemming from 
lightweight design, we integrate SCConv into the C2f module, 
creating the C2f_SCConv structure, thus enhancing the model’s 
ability to represent human features. Employing LAMP pruning 
drastically reduces parameter size and computational require-
ments, resulting in an Onnx file size of only 2.95MB and an 
improved inference speed with an FPS of 37.17. Knowledge 
distillation further enhances the pruned model’s performance. 
Comparative testing on the SCB-Dataset3-S dataset demon-
strates that CSB-YOLO achieves an mAP0.5 of 71.1%, mark-
ing a 0.8% increase over YOLOv8n, with parameter count and 
computational load only 23.9% and 53% of the latter, respec-
tively. The lightweight design of CSB-YOLO ensures ease 
of deployment in real-world settings while maintaining high 
accuracy, meeting the demands for real-time student behavior 
detection in educational environments.
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