
Vol.:(0123456789)

Journal of Real-Time Image Processing (2024) 21:140
https://doi.org/10.1007/s11554-024-01515-8

RESEARCH

Csb‑yolo: a rapid and efficient real‑time algorithm for classroom
student behavior detection

Wenqi Zhu1 · Zhijun Yang2,3

Received: 29 April 2024 / Accepted: 8 July 2024 / Published online: 27 July 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
In recent years, the integration of artificial intelligence in education has become key to enhancing the quality of teaching. This
study addresses the real-time detection of student behavior in classroom environments by proposing the Classroom Student
Behavior YOLO (CSB-YOLO) model. We enhance the model’s multi-scale feature fusion capability using the Bidirectional
Feature Pyramid Network (BiFPN). Additionally, we have designed a novel Efficient Re-parameterized Detection Head (ERD
Head) to accelerate the model’s inference speed and introduced Self-Calibrated Convolutions (SCConv) to compensate for
any potential accuracy loss resulting from lightweight design. To further optimize performance, model pruning and knowl-
edge distillation are utilized to reduce the model size and computational demands while maintaining accuracy. This makes
CSB-YOLO suitable for deployment on low-performance classroom devices while maintaining robust detection capabilities.
Tested on the classroom student behavior dataset SCB-DATASET3, the distilled and pruned CSB-YOLO, with only 0.72M
parameters and 4.3 Giga Floating-point Operations Per Second (GFLOPs), maintains high accuracy and exhibits excellent
real-time performance, making it particularly suitable for educational environments.

Keywords  Real-time detection · Dense object detection · Student behavior recognition · Feature fusion · Network pruning ·
Knowledge distillation

1  Introduction

Student behavior to a certain extent reflects the volume of
knowledge acquired during class sessions [1]. Therefore,
in traditional education, teachers need to constantly moni-
tor student behavior while teaching, to adjust the pace and
methods of instruction. However, in actual classroom envi-
ronments, a single teacher often faces dozens or even more
students, and the large number of students can lead to a situ-
ation where the teacher lacks sufficient energy to observe
student behavior while teaching. Thus, if an accurate and

real-time method of detecting student behavior could be
utilized to replace the teacher’s observation tasks, it would
allow teachers to focus more on the teaching itself.

In the current era of educational informatization and intel-
ligence, classroom student behavior detection, as an emerg-
ing instructional aid, is increasingly gaining widespread
attention from the academic community and educational
practitioners. Traditional classroom behavior analysis pri-
marily relies on manual observation, with a common prac-
tice being the analysis of student behavior through classroom
video recordings [2]. Due to the large volume of videos,
manual processing can lead to fatigue and low efficiency,
consuming a significant amount of human resources [3].
Moreover, it cannot provide real-time feedback to teachers,
which limits its impact on improving teaching effectiveness.

With the rapid development of deep learning technology,
real-time and accurate detection of student behavior in the
classroom has become feasible. Compared to traditional
methods, target detection methods based on deep learning
can automatically learn feature data from a large volume of
video data, overcoming the limitations of manual feature
extraction [4]. Deep learning-based target detection methods

 *	 Zhijun Yang
	 yangzhijun@ynnu.edu.cn

1	 School of Information Science and Technology, Yunnan
Normal University, Kunming 650500, Yunnan, China

2	 Educational Instruments and Facilities Service
Center, Educational Department of Yunnan Province,
Kunming 650223, Yunnan, China

3	 Key Laboratory of Education Informatization
for Nationalities of Ministry of Education, Yunnan Normal
University, Kunming 650500, Yunnan, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-024-01515-8&domain=pdf

	 Journal of Real-Time Image Processing (2024) 21:140140  Page 2 of 17

offer deeper insights into student learning situations in the
classroom, while also reducing the pressure on teachers in
classroom supervision, thus better enhancing the quality of
courses.

Deep learning-based object detection methods are mainly
categorized into two types: The first type includes two-stage
detection algorithms, where models first generate proposal
boxes and then classify them using deep convolutional net-
works. Common models include R-CNN [5], Fast R-CNN
[6], and Faster R-CNN [7]. Although two-stage algorithms
are more accurate, they are slower, less capable of real-time
processing, and their large model sizes make deployment
challenging. The second type includes one-stage target
detection algorithms based on regression, which calculate
category probabilities and location information simultane-
ously. These models offer a balance between accuracy and
computational speed, with smaller sizes facilitating deploy-
ment in practical applications. Common algorithms include
YOLO [8], RetinaNet [9], and SSD [10], with the YOLO
series being the most widely applied one-stage detection
algorithm [11], where YOLOv8 represents the best balance
between network lightweighting and detection accuracy in
the YOLO series.

While the YOLO algorithm has found applications in
various areas, its deployment for student behavior detection
in classrooms still faces significant challenges. Addition-
ally, due to camera resolution limitations, the pixel count
representing each student’s body in the image is typically
very low. Moreover, the significant size discrepancy between
students sitting at the front and those at the back in the class-
room scenes leads to the presence of multi-scale targets [12].
Addressing these issues necessitates a larger, more precise
model. Yet, most schools lack the necessary equipment to
run such complex models, necessitating a model that is both
lightweight and capable.

This paper designs and proposes a model based on an
improved version of YOLOv8n, CSB-YOLO, specifically
tailored for real-time detection of student behaviors in class-
room settings. CSB-YOLO boasts minimal parameters and
computational requirements, making it highly deployable
on low-performance devices in schools due to its low device
demands and satisfactory accuracy. The main contributions
of this paper are as follows:

1.	 This paper introduces the BiFPN structure [13] into the
YOLOv8 model, with the aim of enhancing its capability
to detect densely distributed small targets while reducing
both computational requirements and parameter count.

2.	 We have devised a novel Efficient Re-parameterized
Detection Head for YOLOv8, replacing the original
detection head structure. This modification significantly
reduces model complexity, accelerates inference speed,
thereby enhancing real-time performance. Additionally,

we have enhanced the C2f module by incorporating
SCConv [14] to compensate for any potential accuracy
loss resulting from the lightweight design of the detec-
tion head.

3.	 The paper employs LAMP pruning [15] to optimize the
model’s structure, significantly reducing both parameter
count and computational load, making it more suitable
for deployment on low-performance devices. Moreover,
to prevent a reduction in model accuracy due to pruning,
the pruned model undergoes BCKD knowledge distilla-
tion [16]. This combination of pruning with knowledge
distillation achieves nearly lossless lightweighting of the
model.

2 � Related works

Behavior detection of human targets remains a hot topic
in the field of object detection, but behavior detection in
classroom settings poses many challenges, such as detect-
ing multi-scale dense targets and the need for lightweight
models in practical applications. This section will explore
and analyze solutions to these challenges.

Zhang et al. [17] established a dataset for the behavior of
students raising hands in classroom environments and dis-
covered that information loss occurred due to the reduction
of channel numbers during the construction of the feature
pyramid [18]. By applying Spatial Context Augmentation
(SCA) and multi-branch feature fusion modules, the preci-
sion of hand-raising detection was enhanced. However, the
complexity of the network structure may compromise real-
time performance.

Wang et al. [19] introduced a method to detect yawning
in classroom environments, integrating the feature pyra-
mid within R-FCN [20] to tackle issues such as occlusions
and low-resolution facial recognition, and employed chan-
nel pruning to diminish both the model’s parameter count
and computational overhead. While pruning drastically
decreases the number of parameters, it inevitably leads to a
decline in precision as the pruning ratio escalates, thereby
raising a pivotal challenge concerning how to maintain or
improve precision amidst the pruning process.

Cheng et al. [21] introduced the concept of a cross-stage
local network at the end of the YOLO-v4 [22] network,
embedding the Embedding Connection (EC) component
to develop an improved YOLO-v4 network for detecting
teacher and student behaviors. Bao et al. [23] improved the
model based on YOLOv5 by adding a feature fusion layer
and incorporating the ghost module [24] to replace stand-
ard convolutions, thus enhancing the model’s capability to
detect behaviors in the classroom. Wang et al. [25] intro-
duced the CBAM [26] attention mechanism to the YOLOv7
[27] foundation, effectively capturing contextual features

Journal of Real-Time Image Processing (2024) 21:140	 Page 3 of 17  140

and enhancing the network’s feature detection capability,
allowing accurate detection of multiple students’ learning
behaviors. Cheng et al. [28] improved the C2f structure with
Res2Net [29] on the YOLOv8 base, enhancing the network’s
ability to extract multi-scale features. They also introduced
the EMA [30] attention mechanism in the backbone to
address occlusion issues in classroom settings. While the
introduction of attention mechanisms significantly enhances
the model’s feature learning capability and accuracy, it also
significantly increases computational overhead, adversely
affecting network lightweighting.

Recent studies, such as Liu et al. [31], have enhanced
YOLOv8 by adding a small object detection layer equipped
with a dedicated detection head specifically for small
objects. Although this dedicated detection head does indeed
improve the network’s ability to detect small objects, it inev-
itably complicates the network and the additional detection
head can limit the network’s inference speed. Meanwhile,
Xiao et al. [32] have improved network accuracy by incor-
porating the IMPDIoU loss function into YOLOv8, but this
method does not enhance the network’s inference speed.

Analysis of the above research reveals that enhancing
the network’s learning capability for multi-scale targets
is crucial for addressing the difficulty of detecting multi-
scale dense targets. Feature fusion is an important method
to enhance multi-scale feature learning capabilities [33],
and adding attention mechanisms can significantly improve
detection accuracy. However, the increased computational
overhead caused by complex network structures remains a
problem to be solved. Network pruning is an effective light-
weighting method that significantly reduces the network’s
parameter count and computational load, but it requires a
careful balance between pruning rate and accuracy.

3 � CSB‑YOLO detection model

3.1 � YOLOv8

YOLOv8, an evolution from YOLOv5 by Ultralytics, is a
single-stage object detection algorithm. It employs the CSP
gradient bifurcation concept and the SPPF module in both
backbone and neck parts. Notably, it adopts a more gradient-
rich C2f structure over the C3 structure from its predeces-
sor. In the head section, it utilizes a decoupled structure,
separating classification and detection heads. YOLOv8 also
shifts from the traditional Anchor-Based approach to an
Anchor-Free concept, enhancing its lightweight design for
deployment on low-performance devices in real-world class-
room settings. To further optimize its lightweight nature, this
paper builds upon the smallest variant, YOLOv8n.

3.2 � Overview of CSB‑YOLO

To address the challenge of real-time student behavior
detection in classroom scenarios, we devised the CSB-
YOLO model, as illustrated in Fig. 1. Initially, to address
the challenge of detecting densely distributed student tar-
gets in classroom scenarios, we modified the Neck section
of YOLOv8 to incorporate the BiFPN structure. Addition-
ally, we engineered an Efficient Re-parameterized Detec-
tion Head for the network, replacing the original detec-
tion head structure of YOLOv8. This adjustment not only
reduces network complexity but also accelerates the infer-
ence process, enhancing real-time performance. Further-
more, we devised a C2f_SCConv structure to precisely
locate student targets in classrooms, thereby compensating
for any potential accuracy loss resulting from lightweight
detection heads. To further streamline the network, we
applied the LAMP pruning technique, significantly reduc-
ing the network’s parameter count and computational
load, thereby lowering complexity and facilitating easier
deployment. Lastly, for the pruned model, we implemented
the BCKD distillation strategy to ensure the model main-
tains high detection accuracy while remaining lightweight.

3.3 � BiFPN

In the Neck section, YOLOv8 utilizes the PANet [34]
structure for feature fusion. While PANet, compared to the
traditional FPN structure, facilitates bidirectional feature
fusion while retaining multi-scale feature information, this
fusion mechanism depends on numerous nodes, leading to
increased computational and parameter requirements of
the network. To reduce the computational and parameter
demands without compromising accuracy, we have incor-
porated the BiFPN [13] structure into YOLOv8.

BiFPN represents an advanced version of the FPN
architecture, establishing cross-scale connections through
bidirectional channels, where each layer receives features
from both higher and lower levels. In contrast to PANet,
BiFPN eliminates nodes with only one input and employs
weighted feature fusion. Additionally, to combine more
features, an extra pathway is introduced, linking input and
output nodes of the same level. This design allows the
network to better balance semantic and spatial information
across different layers, preserving shallow semantic details
without sacrificing significant deep semantic information.
Thanks to the reduction in nodes, BiFPN significantly
decreases both computational and parameter require-
ments of the network, while its efficient multi-scale feature
fusion capability maintains accuracy. Figure 2 illustrates
three distinct Neck structures.

	 Journal of Real-Time Image Processing (2024) 21:140140  Page 4 of 17

3.4 � Efficient re‑parameterized detection head

YOLOv8 features three detection heads, each with two paths
containing two 3x3 convolutions for feature extraction,
resulting in a total of twelve 3x3 convolutions within the
detection head section of the network. Although this config-
uration improves accuracy to some extent, the extensive use
of convolutional kernels increases the network’s parameter
count and slows down inference speed.

Drawing inspiration from the parameter-sharing approach
employed in the detection heads of RetinaNet [9], we rede-
signed the detection head of YOLOv8. The redesign consoli-
dates the four 3 × 3 convolutions used for feature extraction
along the two paths within the original detection head into
two, allowing both classification and box regression to share
these two 3x3 convolutions. This modification reduces the
complexity of the head section and increases the network’s

inference speed, inevitably resulting in a slight reduction in
accuracy. To minimize the loss in accuracy while simplify-
ing the network, we introduced the Diverse Branch Block
(DBB) [35], replacing the original convolutions.

DBB is a cost-free universal module that utilizes repa-
rameterization techniques, building upon the foundations of
ACNet [36] and RepVGG [37] by exploring more equivalent
transformations. DBB takes cues from the Inception [38–41]
structure, enriching the feature space of the convolutional
block with a multi-branch architecture. During the infer-
ence phase, the multiple branches are reparameterized and
merged into a single main branch, optimizing the network’s
performance while maintaining precision.

Transform I - Convolution with Batch Normalization
(Conv-BN): A convolution layer is often equipped with a
BN layer which performs channel-wise normalization and
scaling.

where ∗ denotes convolution, I is the input, F is the filter
�j , �j are the mean and standard deviation for batch nor-
malization, and �j , �j are the scale and shift parameters. This
transformation fuses batch normalization parameters into the
convolution filters for inference.

Transform II - Addition of Branch Outputs: The addi-
tivity property of convolution allows the merging of outputs

(1)Oj =
(I ∗ F)j − �j

�j
�j + �j

Fig. 1   The architecture of the CSB-YOLO

Fig. 2   The structures of three different Necks

Journal of Real-Time Image Processing (2024) 21:140	 Page 5 of 17  140

from multiple convolution layers with the same configuration
by simply adding their weights and biases:

F(i) and b(i) represent the convolution kernels and biases of
the ith branch, respectively. F′ and b′ are the combined ker-
nel and bias.

Transform III - Sequential Convolutions: A sequence of
convolutions, typically involving small kernel sizes like 1x1
followed by larger kernels like KxK, can be merged into one
effective convolution. The transformation rearranges and com-
bines the weights from sequential layers to form a single layer
that encapsulates the collective effect:

This is especially useful for reducing depth and computa-
tional complexity in the network.

Transform IV - Depth Concatenation: Depth concate-
nated outputs from different branches are merged into a single
convolution layer:

Concat denotes the concatenation operation along the chan-
nel dimension, allowing multiple branches to combine into
a single convolution operation.

Transform V - Convolution for Average Pooling: An
average pooling operation is modeled as a convolution with
a uniform kernel:

(2)F� =
∑

i

F(i), b� =
∑

i

b(i)

(3)F� = F(1) ∗ F(2), b� = F(1) ∗ b(2) + b(1)

(4)F� = Concat
(
F(1),F(2)

)
, b� = Concat

(
b(1), b(2)

)

(5)F�

d,c,,∶
=

{ 1

K2
if d = c

0 otherwise

d and c are indices for the output and input channels, respec-
tively; K is the size of the pooling (or convolution) win-
dow; F�

d,c,,∶
 defines each element of the convolution kernel

to implement pooling.
Transform VI - Handling Multi-Scale Convolutions:

Convolutions with different kernel sizes are unified into a
larger convolution operation through appropriate padding:

F small represents a smaller kernel, which is padded with
zeros to match the size of the largest kernel in the transfor-
mation, referred to here as F′

padded
.

A complete DBB block, as depicted in Fig. 3, consists
of four branches. Using the aforementioned six parameter
transformation methods, it is possible to convert complex
multi-branch structures into standard convolutions and reuse
the weights obtained during training. DBB facilitates the
separation of training and inference phases: it employs a
more complex network structure during training to improve
network accuracy and undergoes equivalent transformations
during inference to accelerate the inference process.

The detection head designed in this paper, as illustrated
in Fig. 4, replaces the original four convolutions of the
detection head with two DBB modules. During the infer-
ence phase, these two DBB modules are equivalently trans-
formed into two standard convolution modules. Thanks to
the reduction in the number of convolutions, both the net-
work’s parameter count and computational load significantly
decrease. This will be validated in the experimental section.

3.5 � C2f_SCConv

In classroom environments, student positions are often
densely distributed, leading to frequent occurrences of

(6)F�

padded
= Zero-Padding

(
F small

)

Fig. 3   The basic structure of
DBB

	 Journal of Real-Time Image Processing (2024) 21:140140  Page 6 of 17

overlap and occlusion. The lightweight detection head inevi-
tably reduces the network’s ability to detect complex human
targets. To address this issue, we redesigned the C2f mod-
ule in the YOLOv8 structure using SCConv [14], increasing
the receptive field of the C2f module to compensate for the
accuracy loss caused by the lightweight detection head.

The core idea of SCConv is to enhance the fundamental
convolutional feature transformation process of CNNs with-
out modifying the model architecture. It essentially employs
grouped convolutions for multi-scale feature extraction,
dividing them into two groups along the channel dimension.
One pathway conducts regular convolutional feature extrac-
tion, while the other pathway utilizes downsampling opera-
tions to enlarge the network’s receptive field. This enables
each spatial location to conduct self-calibrated operations
by integrating information from two different spatial scales.

The workflow, as depicted in Fig. 5, involves input and
output channels both of size C, with a given set of filters K
shaped as

(
C,C, kh, kw

)
 , where kh and kw represent the spatial

height and width, respectively. Initially, the process involves
segmentation, resulting in four groups of filters

{
Ki

}4

i=1
 , each

with a shape of
(

C

2
,
C

2
, kh, kw

)
 . Subsequently, the input X is

evenly divided into two parts
{
X1,X2

}
 . The self-calibration

operation is performed on X1 using filters
{
K1,K2,K3

}
 ,

yielding Y1 . In the second pathway, a simple convolution
operation is executed: Y2 = F1

(
X2

)
= X2 ∗ K1 , aiming to

preserve the original spatial context information. Finally, {
Y1, Y2

}
 are concatenated to form the final output Y.

In detail, the Self-Calibrated operation starts with apply-
ing average pooling to the given input X1 , using a kernel size
of r × r and a stride of r, denoted as:

Fig. 4   A structural comparison
between ERD Head and the
detection head of YOLOv8

Fig. 5   A schematic illustration of self-calibrated convolutions

Journal of Real-Time Image Processing (2024) 21:140	 Page 7 of 17  140

Next, T1 undergoes a feature transformation using filter K2:

Here, Up(⋅) represents the operation of linear interpolation,
mapping the intermediate quantity from a smaller scale
space back to the original feature space. The self-calibration
operation can then be represented as:

where F3

(
X1

)
= X1 ∗ K3, � denotes the sigmoid function,

and the symbol "." indicates element-wise multiplication. X′
1

serves as a residual term to establish weights for self-calibra-
tion. The final output after self-calibration can be written as:

In this study, the C2f structure, improved by SCConv,
is illustrated in Fig. 6. We enhanced the BottleNeck by
replacing the convolution of the second CBS with SCConv,
resulting in a structure we denote as BottleNeck_SCC. Sub-
sequently, stacking n groups of BottleNeck_SCC forms the
C2f_SCConv structure. Owing to SCConv’s larger receptive
field, C2f_SCConv facilitates more precise localization of
student targets within the classroom environment.

3.6 � LAMP pruning

Although the enhancements previously implemented
have provided the network with a certain level of real-
time capability, it is still necessary to further lighten the
network, especially considering the device performance
within classroom scenarios. Complex neural network
models often contain redundancies after training. These
redundancies, which are relatively less important, do not

(7)T1 = AvgPoolr
(
X1

)

(8)X�

1
= Up

(
F2

(
T1
))

= Up
(
T1 ∗ K2

)

(9)Y �

1
= F3

(
X1

)
⋅ �

(
X1 + X�

1

)

(10)Y1 = F4

(
Y �

1

)
= Y �

1
∗ K4

substantially improve network accuracy but increase the
network’s parameter size, thus slowing down inference
time.

We adopted a pruning method based on LAMP (Layer-
Adaptive Magnitude-based Pruning) scores [15]. LAMP is
designed to automatically select the optimal level of spar-
sity among layers in a neural network to achieve the best
balance between model performance and sparsity. Using
LAMP scores, an adaptive, global pruning strategy can be
implemented, eliminating the need for manual adjustment
of hyperparameters.

The LAMP process is as follows: For a feedforward
neural network with depth d, where each fully con-
nected/convolutional layer is associated with a weight
tensor w(1),… ,w(d) . For fully connected layers, the cor-
responding weight tensor is a two-dimensional matrix;
for 2D convolutional layers, the corresponding tensor is
four-dimensional.

To unify the definition of LAMP scores for both fully
connected and convolutional layers, weight tensors are
flattened into one-dimensional vectors. According to
a given index mapping, weights are sorted in ascend-
ing order, meaning that for u < v , it always holds that
|W[u]| ≤ |W[v]| , where W[n] denotes the element in W
mapped from index u. The LAMP score for the u-th weight
index W is:

The LAMP score evaluates the relative importance of a tar-
get connection amongst all the surviving connections within
the same layer. After calculating the LAMP scores, the con-
nections with the lowest scores are globally pruned until the
required global sparsity constraint is achieved. It is impor-
tant to note that within each layer, there is a single connec-
tion with a LAMP score of 1, which is the maximum pos-
sible LAMP score. This ensures that at least one connection

(11)score(u;W) ∶=
(W[u])2

∑
v≥u(W[v])2

Fig. 6   The structure diagram of
the C2f_SCConv module

	 Journal of Real-Time Image Processing (2024) 21:140140  Page 8 of 17

is preserved in every layer. This process essentially consti-
tutes minimum magnitude pruning with layer-wise sparsity
levels chosen automatically, obviating the need for intricate
parameter settings.

3.7 � BCKD knowledge distillation

BCKD [16] is a new knowledge distillation method tailored
for dense object detection tasks, designed to address the inef-
ficiency of traditional classification distillation in such con-
texts. In dense object detection, the pronounced imbalance
among foreground categories leads to traditional softmax-
based knowledge distillation methods overlooking the abso-
lute classification scores of each category. This oversight can
result in the optimal solution for the distillation loss function
not necessarily ensuring the best classification performance
in the student model. The fundamental principle of BCKD is
to reframe the multi-class classification challenge into mul-
tiple binary classification tasks, applying knowledge distil-
lation to each binary classification task individually.

The distillation process of BCKD is illustrated in Fig. 7. It
incorporates two novel distillation loss functions specifically
designed for object detection tasks: (i) Binary classification
distillation loss, Ldis

cls
 , which represents the classification

logits as multiple binary maps and extracts classification
knowledge through a distillation loss resembling binary
cross-entropy; (ii) IoU-based localization distillation loss,
Ldis
loc

 , which transfers localization knowledge from the teacher
model to the student model by calculating the IoU values
between the bounding boxes predicted by the two models
and employing IoU loss.

The Binary Classification Distillation Loss aims to
address the severe imbalance between foreground and

background categories in dense object detection. This
approach tackles the challenge by transforming the multi-
class problem into multiple binary classification tasks.

Classification Scores: For each location i and category
j the classification logits lij are transformed into classifica-
tion scores pij using the Sigmoid function:

Binary Cross-Entropy Loss: For each sample x, the clas-
sification loss Lcls(x) is computed as:

where LCE
(
pij, yij

)
 is the binary cross-entropy loss, yij is the

true label, n is the number of samples, and K is the number
of categories.

Distillation Loss Weighting: Given the classification
scores pt

ij
 from the teacher model and pS

ij
 from the student

model, the binary classification distillation loss Ldis
cls
(x) is:

where wij are weights determined based on the score differ-
ences, intended to focus the learning on important samples.

The IoU-based Localization Distillation Loss is
designed to enhance localization performance by calcu-
lating the IoU between bounding boxes predicted by the
teacher and student models.

(12)pij =
1

1 + e−lij

(13)Lcls(x) =

n∑

i=1

K∑

j=1

LCE
(
pij, yij

)

(14)Ldis
cls
(x) =

n∑

i=1

K∑

j=1

wij ⋅ LBCE

(
ps
ij
, pt

ij

)

Fig. 7   The workflow of BCKD knowledge distillation

Journal of Real-Time Image Processing (2024) 21:140	 Page 9 of 17  140

IoU Calculation: Given the bounding boxes bt
i
 and bs

i

predicted by the teacher and student models, respectively,
their IoU u′

i
 is computed as:

Localization Distillation Loss: The IoU-based localization
distillation loss Ldis

loc
(x) is formulated as:

where max
(
�j

)
 represents the maximum weight among cat-

egories, emphasizing crucial localization information.
Total Distillation Loss: The total distillation loss is a

linear combination of the binary classification distillation
loss and the IoU-based localization distillation loss, aiming
to optimize both classification and localization tasks concur-
rently. The total distillation loss Ldis

total
(x) is defined as:

where �1 and �2 are hyperparameters that adjust the relative
importance of classification and localization losses in the
total loss.

The design of these loss functions takes into account the
foreground-background class imbalance inherent in dense
object detection tasks, as well as the significance of locali-
zation accuracy. Through these meticulously crafted loss
functions, effective training and optimization of the student
model are achieved.

4 � Experimental results and analysis

4.1 � Experimental dataset

Leveraging deep learning for the automatic detection of stu-
dent behavior is a critical strategy for enhancing teaching
effectiveness. Nonetheless, the lack of publicly available
datasets on student behavior presents a significant challenge
to researchers in this domain. The dataset employed in this
study is the SCB-Dataset3 (Student Classroom Behavior
dataset) [42], which reflects real classroom scenarios. SCB-
Dataset3 includes two subsets: SCB-Dataset3-S, consisting
of classroom behavior data from elementary and middle
schools, and SCB-Dataset3-U, comprising university class-
room behavior data.

Our primary focus is on SCB-Dataset3-S, which is uti-
lized as the training and validation dataset. The SCB-Data-
set3-S dataset consists of 5015 images and 25,810 annota-
tions, categorized into three types: hand raising, reading,
and writing. Figure 8 displays the number of instances for
each category, while Fig. 9 presents example images from

(15)u�
i
= IoU

(
bt
i
, bS

i

)

(16)Ldis
loc
(x) =

n∑

i=1

max
(
�.j

)
⋅

(
1 − u�

i

)

(17)Ldis
total

(x) = �1 ⋅ L
dis
cls
(x) + �2 ⋅ L

dis
loc
(x)

the dataset. Furthermore, relying solely on a single dataset
may not provide a comprehensive evaluation of a model’s
performance. Therefore, we also conduct transfer training
on the relatively smaller SCB-Dataset3-U dataset to test the
model’s generalization ability and robustness.

4.2 � Evaluation metrics

In the classroom scenarios covered by this study, targets of
various scales coexist, necessitating a comprehensive evalu-
ation of an object detection model’s effectiveness. Conse-
quently, the precision metrics employed in this paper include
F1, mAP0.5, and mAP0.5:0.95. In parallel with testing the
model’s performance, it’s also essential to evaluate the mod-
el’s number of parameters, model file size, FLOPs, and FPS
to thoroughly analyze the model’s capabilities.

(1)	 F1: Represents the harmonic mean of Precision and
Recall, allowing for a combined assessment of accu-
racy and recall rates, with higher results being prefer-
able. The calculation formula is as follows:

(2)	 mAP: Measures the average precision (AP) across all
categories. AP for each category is determined by first
plotting the precision-recall curve, then calculating the
area under this curve, which represents the AP for that
category. mAP is the mean of the AP values across all
categories. The formula can be expressed as:

(18)Precision =
TP

TP + FP

(19)Recall =
TP

TP + FN

(20)F1 = 2 ×
Precision × Recall

Precision + Recall

(21)mAP =
1

N

N∑

i=1

APi

Fig. 8   Number of labels for each category in the SCB-Dataset3-S
dataset

	 Journal of Real-Time Image Processing (2024) 21:140140  Page 10 of 17

(3)	 Number of Parameters: Used to evaluate the model’s
size and complexity, it is obtained by summing the
number of weight parameters for each layer. For light-
weight models, a lower number of parameters is pre-
ferred.

(4)	 FLOPs: Indicates the total number of floating-point
operations required to perform a forward pass of the
model, serving as an indicator of the model’s compu-
tational complexity and efficiency.

(5)	 Onnx file size: Represents the size of the model file
in Onnx format, which directly impacts the model’s
deployability on various devices. The smaller the
weight file, the lower the storage space requirement on
devices.

(6)	 FPS (Frames Per Second): Denotes the number of
images the model can process per second. A higher FPS
indicates better real-time performance of the model.

4.3 � Experimental environment and parameter
settings

In this study, the Pytorch 1.13.1 deep learning framework
was used to train each model for 300 epochs on the SCB-
Dataset3-S dataset and conduct transfer training for 100
epochs on the SCB-Dataset3-U dataset. The momentum was
set to 0.937, weight decay to 0.0005, initial learning rate
(lr0) to 0.01, image input size to 640×640, and batch size
to 8. The experimental platform operated on Ubuntu 20.04,
with an Intel(R) Xeon(R) Platinum 8255C CPU at 2.5GHz,
32 GB RAM, and an NVIDIA RTX 3080 GPU. Addition-
ally, inference speed tests were performed on a pure CPU
device without a GPU, specifically an Intel(R) I5 12400.
The model pruning rate is set at 25%. In the knowledge

distillation section, we use the unpruned CSB-YOLO as the
teacher model and the pruned CSB-YOLO as the student
model. The distillation training runs for 300 epochs with a
loss rate of 1.2.

4.4 � Choice of Pruning Rate

We conducted tests on the SCB-Dataset3-S dataset to assess
the impact of pruning rate on accuracy. Table 1 shows the
effects of different LAMP pruning rates on the performance
of CSB-YOLO, ranging from 10% to 80%. It was found
that with the increase in pruning rate, the model’s number
of parameters, computational load, and model file size all
gradually decreased, and the FPS significantly improved.
However, the accuracy also gradually declined with the
increase in pruning rate. After exceeding a 30% pruning
rate, the accuracy began to sharply decrease, and at an 80%
pruning rate, the model became unusable. An important
observation is that when the pruning rate was below 25%,
the fine-tuned model even surpassed the unpruned model
in mAP0.5. This is because the original model contained a
substantial amount of redundancy, which not only slowed
down the model’s computational speed but also increased
the difficulty of training. Therefore, removing this redun-
dancy could improve the model’s training accuracy.

The primary objective of the pruning phase in this study
is to maximize model lightweighting without compromising
accuracy. At a pruning rate of 25%, the FPS saw a significant
increase compared to a 20% pruning rate, while the accuracy
was higher than at a 30% pruning rate and very close to that
of the original model, making 25% a more cost-effective
choice. Subsequent experiments in this paper all employed
a 25% pruning rate.

Fig. 9   Sample display of the
SCB-Dataset3-S Dataset

(a) shooting angles (b) different classes (c) different stages

Journal of Real-Time Image Processing (2024) 21:140	 Page 11 of 17  140

Since the detection head is responsible for output-
ting the detection results, its structure should remain
unchanged; thus, it was not involved in the pruning
process. We conducted a comparison of the number of
channels in layers other than the model’s detection head,
where layers 0 to 9 constitute the backbone of the model,
and layers 10 to 27 form the Neck part. Figure 10 illus-
trates a significant reduction in the number of channels,
with the total channels decreasing from 4176 to 2587.

4.5 � Selection of Distillation Loss Rate

To achieve enhanced precision while ensuring model light-
ness, it is imperative to perform BCKD distillation on the
model post-pruning. The importance of each layer’s weights
is discernible through a comparison of channel counts before
and after pruning. As observed in Fig. 10, a significant por-
tion of pruning occurs within the model’s backbone, indicat-
ing the presence of considerable redundancy in this section,
which minimally impacts the overall network accuracy. Con-
sequently, we focused on distilling layers 15, 18, 21, 24, and
27, where the change in channel numbers before and after

Table 1   The impact of
different pruning rates on the
performance of CSB-YOLO

Method mAP0.5 Params(M) GFLOPs Onnx file
size(MB)

FPS(CPU)

CSB-YOLO(0%) 0.703 1.86 6.2 7.33 31.46
10%-Pruned 0.719 1.08 5.4 4.35 32.35
20%-Pruned 0.705 0.81 4.7 3.33 34.53
25%-Pruned 0.704 0.72 4.3 2.95 37.17
30%-Pruned 0.696 0.62 3.9 2.59 38.25
40%-Pruned 0.66 0.49 3.1 2.11 39.34
50%-Pruned 0.608 0.37 2.4 1.64 44.32
60%-Pruned 0.53 0.25 1.7 1.18 61.95
70%-Pruned 0.333 0.15 0.9 0.813 92.09
80%-Pruned 0.076 0.13 0.7 0.707 116.16

Fig. 10   Comparison of the number of network channels before and after pruning

	 Journal of Real-Time Image Processing (2024) 21:140140  Page 12 of 17

pruning was minor, signifying their crucial role in maintain-
ing network accuracy.

Additionally, we selected the unpruned CSB-YOLO as the
teacher model because the structures of layers 15, 18, 21, 24,
and 27 remained almost unchanged before and after pruning,
making the teacher and student models structurally similar.
This similarity in structure can reduce the complexity of the
distillation training process. In addition, experiments were
conducted on the SCB-Dataset3-S dataset to evaluate the
impact of varying the loss ratio coefficient during the distil-
lation process, with the distillation training spanning 300
epochs. As depicted in Fig. 11, the optimal performance
across all accuracy metrics was observed when the loss ratio
was set to 1.2. Consequently, a consistent loss ratio of 1.2
was employed in the subsequent experiments of this study.

4.6 � Comparison of different distillation methods

To validate the effectiveness of BCKD distillation, we intro-
duced three feature distillation methods: cwd, mgd, and
mimic, along with two logical distillation methods: L1 and
L2. Tests were conducted on the SCB-Dataset3-S dataset,
with the main parameters consistent with those described
in section 4.5. The experimental results, as presented in
Table 2, reveal that BCKD distillation achieved the best
performance among all comparison methods, fully demon-
strating the effectiveness of the BCKD distillation approach
in classroom environments with densely populated targets.

4.7 � Experiments and comparisons

To verify the effectiveness of the proposed CSB-YOLO,
comparative experiments were conducted with commonly
used object detection models on the SCB-Dataset3-S
dataset. All models underwent 300 training epochs, with
YOLOv8n as the baseline model. The results, as shown in
Table 3, indicate that after model pruning and knowledge
distillation, the CSB-YOLO model exhibited the lowest
parameter count among all the models compared, at merely

23.9% of the baseline model’s parameters. Its GFLOPs were
also reduced to 53% of the baseline. Furthermore, its accu-
racy surpassed all other smaller models tested; specifically,
it achieved an mAP0.5 of 0.711, which is an increase of
0.8% over the baseline, and its mAP0.5:0.95 also improved
by 0.3%. Although it is slightly less accurate than larger-
scale models such as YOLOv7, YOLOv9-c, and YOLOv3,
it significantly outperforms these models in terms of both
parameter size and computational efficiency, key metrics for
lightweight models.

Table 4 displays the accuracy across various categories,
revealing that after pruning and distillation, CSB-YOLO out-
performs the baseline in detecting behaviors such as raising
hands and writing.

To observe the detection performance of the models more
intuitively, we randomly selected image samples and visu-
alized the detection results of YOLOv8n and CSB-YOLO.
The results are shown in Fig. 12. It can be observed that
from a rear perspective, the performance of both models is
relatively similar. However, from a frontal perspective, CSB-
YOLO exhibits superior detection effectiveness in areas
where student targets are densely packed and also demon-
strates commendable detection capabilities for smaller tar-
gets in the back rows of the classroom.

To assess the model’s generalization capabilities across
similar scenes, we employed models trained on the SCB-
Dataset3-S dataset as pretrained weights for transfer learning
on the SCB-Dataset3-U dataset, with all models undergoing

Fig. 11   Accuracy changes
under different loss ratios

Table 2   Comparing different knowledge distillation methods

Method F1 mAP0.5 mAP0.5:0.95

CSB-YOLO(prune) 0.661 0.704 0.518
+cwd [43] 0.656 0.695 0.508
+mgd [44] 0.486 0.456 0.290
+mimic [45] 0.656 0.695 0.508
+L1 [46] 0.661 0.701 0.515
+L2 [46] 0.659 0.705 0.519
+BCKD [16] 0.666 0.711 0.523

Journal of Real-Time Image Processing (2024) 21:140	 Page 13 of 17  140

100 training cycles. The results, as detailed in the Table 5,
show that the CSB-YOLO model introduced in this paper is
slightly lower in the mAP0.5 accuracy metric compared to
the baseline. However, it achieves a significant 5.4% increase
in the F1 score, while its parameter count and computational
load remain considerably less than those of the baseline.
Integrating three accuracy metrics, CSB-YOLO still outper-
forms all other small models involved in the comparison,
thoroughly demonstrating its generalization capability in
classroom settings.

In addition to the accuracy testing mentioned above, we
also conducted lightweight testing on low-performance
CPU devices and Raspberry Pi 5 to evaluate the deployment

feasibility of CSB-YOLO on low-performance devices. As
shown in Table 6, the experiments demonstrate that CSB-
YOLO, following pruning and distillation, has the small-
est model file size among all comparison models, at just
2.95MB. Moreover, when running inference on a CPU, it
achieves an FPS of 37.17, slightly lower than YOLOv5n
but higher than all other comparison models. It’s important
to note that CSB-YOLO’s accuracy significantly surpasses
that of YOLOv5n. Furthermore, an FPS of 37.17 is more
than sufficient for real-time detection needs. Therefore, CSB-
YOLO offers a higher cost-effectiveness, making it highly
suitable for deployment on low-performance devices in
classroom settings.

Table 3   Performance
comparisons of different models
were conducted on the SCB-
Dataset3-S dataset

Method F1 mAP0.5 mAP0.5:0.95 Params(M) GFLOPs

YOLOv8n [47] 0.665 0.703 0.52 3.01 8.1
YOLOv8s [47] 0.693 0.733 0.556 11.13 28.4
YOLOv3-tiny [48] 0.605 0.603 0.354 8.67 12.9
YOLOv3 [48] 0.711 0.739 0.552 61.51 154.6
YOLOv5n [49] 0.645 0.673 0.448 1.76 4.1
YOLOv5s [49] 0.683 0.705 0.496 7.02 15.8
YOLOv6n [50] 0.655 0.692 0.511 4.23 11.8
YOLOv7-tiny [27] 0.663 0.701 0.477 6.01 13.0
YOLOv7 [27] 0.726 0.769 0.572 36.49 103.2
YOLOv9-c [51] 0.734 0.787 0.625 50.7 236.6
rtdetr-l [52] 0.692 0.689 0.508 31.99 103.4
CSB-YOLO 0.658 0.703 0.516 1.86 6.2
CSB-YOLO (prune+distill) 0.666 0.711 0.523 0.72 4.3

Table 4   Comparisons of
the accuracy across various
categories for different models
on the SCB-Dataset3-S dataset

mAP0.5 mAP0.5:0.95

Method raising reading writing raising reading writing

YOLOv8n 0.796 0.737 0.577 0.57 0.56 0.431
YOLOv8s 0.831 0.758 0.611 0.611 0.589 0.468
YOLOv3-tiny 0.671 0.632 0.505 0.362 0.392 0.308
YOLOv3 0.837 0.739 0.641 0.598 0.568 0.49
YOLOv5n 0.78 0.712 0.526 0.496 0.488 0.36
YOLOv5s 0.81 0.728 0.577 0.547 0.534 0.407
YOLOv6n 0.804 0.71 0.562 0.574 0.538 0.421
YOLOv7-tiny 0.795 0.732 0.577 0.509 0.516 0.404
YOLOv7 0.842 0.778 0.688 0.599 0.595 0.521
YOLOv9-c 0.873 0.795 0.692 0.673 0.645 0.558
rtdetr-l 0.814 0.702 0.552 0.566 0.529 0.428
CSB-YOLO 0.803 0.727 0.578 0.568 0.547 0.433
CSB-

YOLO(prune+distill)
0.803 0.736 0.593 0.574 0.554 0.441

	 Journal of Real-Time Image Processing (2024) 21:140140  Page 14 of 17

4.8 � Experimental comparison of different detection
heads

We compared various detection head structures based
on YOLOv8n, and the results are shown in Table 7. Our
designed detection head structure exhibits the smallest

parameter count, computational load, model file size, and
the best real-time performance among the compared detec-
tion heads. The experiments provide ample evidence that
our designed ERD Head achieves excellent lightweight
performance.

Fig. 12   Visualization of detec-
tion results for YOLOv8n and
CSB-YOLO

Image samples

YOLOv8n

CSB-YOLO

Table 5   Performance comparisons of different models were con-
ducted on the SCB-Dataset3-U dataset

Method F1 mAP0.5 mAP0.5:0.95 Params(M) GFLOPs

YOLOv8n 0.707 0.75 0.576 3.01 8.1
YOLOv8s 0.801 0.935 0.723 11.13 28.4
YOLOv3-

tiny
0.585 0.535 0.335 8.68 12.9

YOLOv3 0.75 0.699 0.553 61.53 154.6
YOLOv5n 0.519 0.434 0.312 1.77 4.2
YOLOv5s 0.639 0.612 0.46 7.03 15.8
YOLOv6n 0.695 0.741 0.57 4.23 11.8
YOLOv7-

tiny
0.729 0.688 0.502 6.02 13.1

YOLOv7 0.807 0.765 0.605 36.51 103.2
YOLOv9-c 0.827 0.944 0.771 50.7 236.7
rtdetr-l 0.747 0.695 0.528 31.99 103.5
CSB-YOLO 0.761 0.747 0.576 1.86 6.2

Table 6   Comparison of lightweight metrics among different models

Method Onnx file
size(MB)

FPS(CPU) FPS(Raspberry
Pi5)

YOLOv8n 11.6 24.84 5.09
YOLOv8s 42.6 9.42 1.95
YOLOv3-tiny 33.1 18.24 4.23
YOLOv3 235.0 2.14 0.37
YOLOv5n 7.15 44.2 8.08
YOLOv5s 27.1 15.53 3.22
YOLOv6n 16.3 23.39 5.98
YOLOv7-tiny 22.9 21.8 4.76
YOLOv7 139.0 2.4 0.5
YOLOv9-c 193.0 1.15 0.22
rtdetr-l 122.0 2.38 0.5
CSB-YOLO 7.33 31.46 6.08
CSB-

YOLO(prune+distill)
2.95 37.17 7.15

Journal of Real-Time Image Processing (2024) 21:140	 Page 15 of 17  140

4.9 � Ablation experiment

To validate the effectiveness of each enhancement module
in terms of both lightweight design and accuracy improve-
ment, we conducted ablation experiments on the baseline
model YOLOv8n, incorporating various improvement
modules. All experiments were conducted on the SCB-
Dataset3-S dataset, with each training session spanning
300 epochs. The results, as presented in Table 8, show that
after the integration of BiFPN, there was a slight decrease
in mAP0.5 by 0.2%. However, there was a substantial

reduction in parameter count, computational load, and
model file size, along with a 4.08 increase in FPS. This
indicates that the BiFPN structure significantly contrib-
utes to the model’s lightweight design without compromis-
ing accuracy. Building upon BiFPN with the addition of
ERD Head led to a further decrease in accuracy, but also
resulted in additional reductions in parameter count, com-
putational load, and model file size, while FPS increased
to 31.43. This effectively demonstrates the ERD Head’s
capability to reduce model complexity and enhance com-
putational speed.

To counteract the precision loss caused by the ERD
Head, we introduced the C2f_SCConv module, which suc-
cessfully raised the mAP0.5 to the level of the baseline. As
observed in Fig. 13, replacing C2f with C2f_SCConv allows
the network to accurately concentrate attention on the stu-
dents within the scene. This improvement is due to the larger
receptive field of C2f_SCConv, which significantly bolsters
the network’s ability to represent features of irregular human
targets that occlude each other, enhancing detection accu-
racy in complex classroom environments.

Table 7   The comparative
experiments of different
detection heads on the SCB-
Dataset3-S dataset

Head mAP0.5 Params(M) GFLOPs Onnx(MB) FPS(CPU)

Original detection head [47] 0.703 3.01 8.1 11.6 24.84
Detect Aux [27] 0.697 3.01 8.1 11.6 25.61
Dynamic Head [53] 0.722 3.49 9.6 13.5 19.52
RTDETR Decoder [52] 0.646 9.48 16.7 36.5 5.61
P2 Head [47] [31] 0.7 2.92 12.2 11.8 13.7
ERD Head (ours) 0.695 2.64 6.6 10.2 31.6

Table 8   Module ablation experiment

BiFPN C2f_SCConv ERD Head Prune Distill mAP0.5 Params(M) GFLOPs Onnx(MB) FPS(CPU)

- - - - - 0.703 3.01 8.1 11.6 24.84
+ - - - - 0.701 1.99 7.1 7.81 28.92
- + - - - 0.703 3.47 8.6 13.4 25.11
- - + - - 0.695 2.64 6.6 10.2 31.6
+ - - - - 0.703 2.08 7.4 8.18 26.18
+ - + - - 0.692 1.77 5.9 6.96 31.43
- + + - - 0.701 3.1 7.1 12.0 25.59
+ + + - - 0.703 1.86 6.2 7.33 31.46
+ + + + - 0.704 0.72 4.3 2.95 37.05
+ + + + + 0.711 0.72 4.3 2.95 37.17
+ + + - + 0.714 1.86 6.2 7.33 31.19
+ + - + + 0.709 1.1 5.5 4.43 31.42
+ - + + + 0.709 0.78 4.4 3.17 37.21
- + + + + 0.712 2.18 6.4 8.51 31.56

(a) C2f SCConv (b) C2f

Fig. 13   Heatmap comparison between C2f_SCConv and C2f

	 Journal of Real-Time Image Processing (2024) 21:140140  Page 16 of 17

After further applying LAMP pruning to the model, the
parameter count was reduced to 0.72M, merely 23.9% of
the baseline, without compromising accuracy. Concurrently,
the FPS increased to 37.17. Ultimately, BCKD knowledge
distillation was performed on the pruned model, boosting
the mAP0.5 to 71.1%, which is a 0.8% increase from the
baseline.

5 � Conclusion

This paper proposes a detection model named CSB-YOLO,
which is specifically tailored for the detection of student behav-
iors in classroom settings. Designed to operate efficiently even
in crowded classroom scenarios, this model has been optimized
for lightweight deployment, allowing it to be easily and cost-
effectively implemented on devices with limited computa-
tional capabilities typically found in classrooms. CSB-YOLO
employs a BiFPN structure, replacing YOLOv8’s Neck struc-
ture, to reduce parameter size while enhancing feature fusion
capabilities. This optimization enables the model to achieve
accuracy levels comparable to YOLOv8n with fewer param-
eters. Additionally, we have designed a novel ERD Head, which
significantly reduces the model’s parameter count and compu-
tational requirements while accelerating the model’s inference
speed. To further address accuracy concerns stemming from
lightweight design, we integrate SCConv into the C2f module,
creating the C2f_SCConv structure, thus enhancing the model’s
ability to represent human features. Employing LAMP pruning
drastically reduces parameter size and computational require-
ments, resulting in an Onnx file size of only 2.95MB and an
improved inference speed with an FPS of 37.17. Knowledge
distillation further enhances the pruned model’s performance.
Comparative testing on the SCB-Dataset3-S dataset demon-
strates that CSB-YOLO achieves an mAP0.5 of 71.1%, mark-
ing a 0.8% increase over YOLOv8n, with parameter count and
computational load only 23.9% and 53% of the latter, respec-
tively. The lightweight design of CSB-YOLO ensures ease
of deployment in real-world settings while maintaining high
accuracy, meeting the demands for real-time student behavior
detection in educational environments.

Acknowledgements  This paper was supported by the Yunnan Province
Wu Zhonghai Expert Workstation Project (No. 202305AF150045) and
Yang Zhijun’s Industry Innovation Talents Project of Yunnan Xingdian
Talents Support Plan (Certificate No.: YNWR-CYJS-2020-017).

Data availability  The data used in this study are publicly available.

Declarations 

Conflict of interest  The authors declare that they have no known com-
peting financial interests or personal relationships that could have ap-
peared to influence the work reported in this paper.

References

	 1.	 Yang, B., Yao, Z., Lu, H., Zhou, Y., Xu, J.: In-classroom learning
analytics based on student behavior, topic and teaching character-
istic mining. Pattern Recogn. Lett. 129, 224–231 (2020)

	 2.	 D’Mello, S.K., Lehman, B., Person, N.: Monitoring affect states
during effortful problem solving activities. Int. J. Artif. Intell.
Educ. 20(4), 361–389 (2010)

	 3.	 Su, X., Wang, W.: Recognition and identification of college stu-
dents∖classroom behaviors through deep learning. IEIE Transac-
tions on Smart Processing & Computing 12(5), 398–403 (2023)

	 4.	 Liu, S., Zhang, J., Su, W.: An improved method of identifying
learner’s behaviors based on deep learning. J. Supercomput.
78(10), 12861–12872 (2022)

	 5.	 Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature
hierarchies for accurate object detection and semantic segmen-
tation, in: Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 580–587 (2014)

	 6.	 Girshick, R.: Fast r-cnn, in: Proceedings of the IEEE interna-
tional conference on computer vision, pp. 1440–1448 (2015)

	 7.	 Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-
time object detection with region proposal networks, Advances
in neural information processing systems 28 (2015)

	 8.	 Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only
look once: Unified, real-time object detection, in: Proceedings
of the IEEE conference on computer vision and pattern recogni-
tion, pp. 779–788 (2016)

	 9.	 Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss
for dense object detection, in: Proceedings of the IEEE interna-
tional conference on computer vision, pp. 2980–2988 (2017)

	10.	 Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu,
C.-Y., Berg, A.C.: Ssd: Single shot multibox detector, in: Com-
puter Vision–ECCV 2016: 14th European Conference, Amster-
dam, The Netherlands, October 11–14, Proceedings, Part I 14,
Springer, 2016, pp. 21–37 (2016)

	11.	 Sultana, F., Sufian, A., Dutta, P.: A review of object detection
models based on convolutional neural network, Intelligent com-
puting: image processing based applications 1–16 (2020)

	12.	 Zhao, J., Zhu, H.: Cbph-net: A small object detector for behav-
ior recognition in classroom scenarios, IEEE Transactions on
Instrumentation and Measurement (2023)

	13.	 Tan, M., Pang, R., Le, Q.V.: Efficientdet: Scalable and efficient
object detection, in: Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 10781–10790
(2020)

	14.	 Liu, J.-J., Hou, Q., Cheng, M.-M., Wang, C., Feng, J.: Improv-
ing convolutional networks with self-calibrated convolutions, in:
Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 10096–10105 (2020)

	15.	 Lee, J., Park, S., Mo, S., Ahn, S., Shin, J.: Layer-adaptive sparsity
for the magnitude-based pruning, arXiv preprint (2020) arXiv:​
2010.​07611

	16.	 Yang, L., Zhou, X., Li, X., Qiao, L., Li, Z., Yang, Z., Wang, G., Li,
X.: Bridging cross-task protocol inconsistency for distillation in
dense object detection, in: Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 17175–17184 (2023)

	17.	 Zhang, G., Wang, L., Wang, L., Chen, Z.: Hand-raising gesture
detection in classroom with spatial context augmentation and
dilated convolution. Computers & Graphics 110, 151–161 (2023)

	18.	 Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B.,
Belongie, S.: Feature pyramid networks for object detection, in:
Proceedings of the IEEE conference on computer vision and pat-
tern recognition, pp. 2117–2125 (2017)

http://arxiv.org/abs/2010.07611
http://arxiv.org/abs/2010.07611

Journal of Real-Time Image Processing (2024) 21:140	 Page 17 of 17  140

	19.	 Wang, Z., Jiang, F., Shen, R.: An effective yawn behavior detec-
tion method in classroom, in: International conference on neural
information processing, Springer, pp. 430–441 (2019)

	20.	 Dai, J., Li, Y., He, K., Sun, J.: R-fcn: Object detection via region-
based fully convolutional networks, Advances in neural informa-
tion processing systems 29 (2016)

	21.	 Chen, H., Guan, J.: Teacher-student behavior recognition in class-
room teaching based on improved yolo-v4 and internet of things
technology. Electronics 11(23), 3998 (2022)

	22.	 Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y.M.: Yolov4: Optimal
speed and accuracy of object detection, arXiv preprint (2020)
arXiv:​2004.​10934

	23.	 Bao, D., Su, W.: Research on the detection and analysis of stu-
dents’ classroom behavioral features based on deep cnns, ACM
Transactions on Asian and Low-Resource Language Information
Processing (2023)

	24.	 Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., Xu, C.: Ghostnet:
More features from cheap operations, in: Proceedings of the IEEE/
CVF conference on computer vision and pattern recognition, pp.
1580–1589 (2020)

	25.	 Wang, Z., Li, L., Zeng, C., Yao, J.: Student learning behavior
recognition incorporating data augmentation with learning feature
representation in smart classrooms. Sensors 23(19), 8190 (2023)

	26.	 Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: Cbam: Convolutional
block attention module, in: Proceedings of the European confer-
ence on computer vision (ECCV), pp. 3–19 (2018)

	27.	 Wang, C.-Y., Bochkovskiy, A., Liao, H.-Y.M.: Yolov7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detec-
tors, in: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 7464–7475 (2023)

	28.	 Chen, H., Zhou, G., Jiang, H.: Student behavior detection in
the classroom based on improved yolov8. Sensors 23(20), 8385
(2023)

	29.	 Gao, S.-H., Cheng, M.-M., Zhao, K., Zhang, X.-Y., Yang, M.-H.,
Torr, P.: Res2net: A new multi-scale backbone architecture. IEEE
Trans. Pattern Anal. Mach. Intell. 43(2), 652–662 (2019)

	30.	 Ouyang, D., He, S., Zhang, G., Luo, M., Guo, H., Zhan, J., Huang,
Z.: Efficient multi-scale attention module with cross-spatial learn-
ing, in: ICASSP 2023-2023 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), IEEE, pp.
1–5 (2023)

	31.	 Liu, Q., Jiang, R., Xu, Q., Wang, D., Sang, Z., Jiang, X., Wu, L.:
Yolov8n_bt: Research on classroom learning behavior recognition
algorithm based on improved yolov8n, IEEE Access (2024)

	32.	 Xiao, G., Xu, Q., Wei, Y., Yao, H., Liu, Q.: Occlusion robust
cognitive engagement detection in real-world classroom. Sensors
24(11), 3609 (2024)

	33.	 Jiang, Y., Zhu, X., Wang, X., Yang, S., Li, W., Wang, H., Fu, P.,
Luo, Z.: R2cnn: Rotational region cnn for orientation robust scene
text detection, arXiv preprint (2017) arXiv:​1706.​09579

	34.	 Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network
for instance segmentation, in: Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 8759–8768 (2018)

	35.	 Ding, X., Zhang, X., Han, J., Ding, G.: Diverse branch block:
Building a convolution as an inception-like unit, in: Proceedings
of the IEEE/CVF conference on computer vision and pattern rec-
ognition, pp. 10886–10895 (2021)

	36.	 Ding, X., Guo, Y., Ding, G., Han, J.: Acnet: Strengthening the
kernel skeletons for powerful cnn via asymmetric convolution
blocks, in: Proceedings of the IEEE/CVF international conference
on computer vision, pp. 1911–1920 (2019)

	37.	 Ding, X., Zhang, X., Ma, N., Han, J., Ding, G., Sun, J.: Repvgg:
Making vgg-style convnets great again, in: Proceedings of the
IEEE/CVF conference on computer vision and pattern recogni-
tion, pp. 13733–13742 (2021)

	38.	 Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep
network training by reducing internal covariate shift, in: Interna-
tional conference on machine learning, pmlr, pp. 448–456 (2015)

	39.	 Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov,
D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with
convolutions, in: Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 1–9 (2015)

	40.	 Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.:
Rethinking the inception architecture for computer vision, in:
Proceedings of the IEEE conference on computer vision and pat-
tern recognition, pp. 2818–2826 (2016)

	41.	 Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4,
inception-resnet and the impact of residual connections on learn-
ing, in: Proceedings of the AAAI conference on artificial intel-
ligence, Vol. 31, (2017)

	42.	 Yang, F., Wang, T.: Scb-dataset3: A benchmark for detecting stu-
dent classroom behavior, arXiv preprint (2023) arXiv:​2310.​02522

	43.	 Zhou, Z., Zhuge, C., Guan, X., Liu, W.: Channel distillation:
Channel-wise attention for knowledge distillation, arXiv preprint
(2020) arXiv:​2006.​01683

	44.	 Yang, Z., Li, Z., Shao, M., Shi, D., Yuan, Z., Yuan, C.: Masked
generative distillation, in: European Conference on Computer
Vision, Springer, pp. 53–69 (2022)

	45.	 Li, Q., Jin, S., Yan, J.: Mimicking very efficient network for object
detection, in: Proceedings of the ieee conference on computer
vision and pattern recognition, pp. 6356–6364 (2017)

	46.	 Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a
neural network, arXiv preprint (2015) arXiv:​1503.​02531

	47.	 Jocher, G., Chaurasia, A., Qiu, J.: YOLOv8, (2023) https://​github.​
com/​ultra​lytics/​ultra​lytics

	48.	 Redmon, J., Farhadi, A.: Yolov3: An incremental improvement,
arXiv preprint (2018) arXiv:​1804.​02767

	49.	 Jocher, G.: YOLOv5, (2020) https://​github.​com/​ultra​lytics/​yolov5
	50.	 Li, C., Li, L., Jiang, H., Weng, K., Geng, Y., Li, L., Ke, Z., Li, Q.,

Cheng, M., Nie, W., et al.: Yolov6: A single-stage object detec-
tion framework for industrial applications, arXiv preprint (2022)
arXiv:​2209.​02976

	51.	 Wang, C.-Y., Yeh, I.-H., Liao, H.-Y.M.: Yolov9: Learning what
you want to learn using programmable gradient information,
arXiv preprint (2024) arXiv:​2402.​13616

	52.	 Zhao, Y., Lv, W., Xu, S., Wei, J., Wang, G., Dang, Q., Liu, Y.,
Chen, J.: Detrs beat yolos on real-time object detection, arXiv
preprint (2023) arXiv:​2304.​08069

	53.	 Dai, X., Chen, Y., Xiao, B., Chen, D., Liu, M., Yuan, L., Zhang,
L.: Dynamic head: Unifying object detection heads with atten-
tions, in: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 7373–7382 (2021)

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

http://arxiv.org/abs/2004.10934
http://arxiv.org/abs/1706.09579
http://arxiv.org/abs/2310.02522
http://arxiv.org/abs/2006.01683
http://arxiv.org/abs/1503.02531
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
http://arxiv.org/abs/1804.02767
https://github.com/ultralytics/yolov5
http://arxiv.org/abs/2209.02976
http://arxiv.org/abs/2402.13616
http://arxiv.org/abs/2304.08069

	Csb-yolo: a rapid and efficient real-time algorithm for classroom student behavior detection
	Abstract
	1 Introduction
	2 Related works
	3 CSB-YOLO detection model
	3.1 YOLOv8
	3.2 Overview of CSB-YOLO
	3.3 BiFPN
	3.4 Efficient re-parameterized detection head
	3.5 C2f_SCConv
	3.6 LAMP pruning
	3.7 BCKD knowledge distillation

	4 Experimental results and analysis
	4.1 Experimental dataset
	4.2 Evaluation metrics
	4.3 Experimental environment and parameter settings
	4.4 Choice of Pruning Rate
	4.5 Selection of Distillation Loss Rate
	4.6 Comparison of different distillation methods
	4.7 Experiments and comparisons
	4.8 Experimental comparison of different detection heads
	4.9 Ablation experiment

	5 Conclusion
	Acknowledgements
	References

