
Vol.:(0123456789)

Journal of Real-Time Image Processing (2024) 21:118 
https://doi.org/10.1007/s11554-024-01498-6

RESEARCH

A novel pipelined architecture of entropy filter

Dat Ngo1 · Bongsoon Kang2

Received: 5 March 2024 / Accepted: 13 June 2024 / Published online: 23 June 2024 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
In computer vision, entropy is a measure adopted to characterize the texture information of a grayscale image, and an entropy 
filter is a fundamental operation used to calculate local entropy. However, this filter is computationally intensive and demands 
an efficient means of implementation. Additionally, with the foreseeable end of Moore’s law, there is a growing trend towards 
hardware offloading to increase computing power. In line with this trend, we propose a novel method for the calculation of 
local entropy and introduce a corresponding pipelined architecture. Under the proposed method, a sliding window of pixels 
undergoes three steps: sorting, adjacent difference calculation, and pipelined entropy calculation. Compared with a conven-
tional design, implementation results on a Zynq UltraScale+ XCZU7EV-2FFVC1156 MPSoC device demonstrate that our 
pipelined architecture can reach a maximum throughput of handling 764.526 megapixels per second while achieving 2.4× 
and 2.9× reductions in resource utilization and 1.1× reduction in power consumption.

Keywords Computer vision · Entropy filter · Hardware offloading · Pipelining · FPGA

1 Introduction

Chip density has begun to lose its fast-growing pace and has 
no longer doubled every two years. Accordingly, the growth 
in processing power of general purpose central processing 
units (CPUs) cannot cope with the continuously increasing 
demand for high-performance computing. Also, wire delay 
lengthens as more transistors are integrated into a process-
ing core, consequently prolonging memory latency and 
further reducing CPU performance [3]. Several strategies 
have been proposed to address that issue, such as adding 
more processor cores or developing heterogeneous comput-
ing architectures (HeCAs). Among these two examples, the 
latter appears to be more promising because it encompasses 
an innovative idea of utilizing different kinds of processing 
elements.

Figure 1 illustrates a conventional homogeneous com-
puting architecture (HoCA) and a simple HeCA. It can be 
observed that the HeCA comprises CPUs, graphics pro-
cessing units (GPUs), and field-programmable gate arrays 
(FPGAs), while the HoCA only consists of CPUs. Therefore, 
the HeCA can offload complex functions, such as deep neu-
ral network inference and image filtering, onto GPUs and 
FPGAs, respectively, saving its CPUs for critical tasks. The 
smart network interface card (SmartNIC) [15] is an excel-
lent example of how HeCAs can be utilized in practice. This 
device is a successor to the traditional NIC and is equipped 
with FPGA accelerators to support hardware offloading. As 
a result, it can free up the system’s resources allocated for 
complex tasks such as match-action, tunneling, and load bal-
ancing, thereby assisting the CPU in handling heavy network 
traffic up to 40 Gbps per NIC port. Additionally, SmartNICs 
often come with high-level programming abstractions for 
their FPGA engines to provide users with great flexibility. 
Instead of offloading only a fixed set of functions, users can 
now customize SmartNIC’s engines to handle their own 
functions, such as pattern matching operations.

To accelerate the pace of development in HeCAs and 
hardware offloading, the emerging demand for software-
to-hardware conversion has attracted growing interest. The 
conversion has become more challenging for 2-D spatial 
image filters, which require repeating a particular operation 
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throughout the entire image in a raster-scan order. For exam-
ple, the median filter, a robust means to suppress impulse 
noise, is computationally intensive and has resulted in 
a series of recent studies [4, 14, 17, 20] on its hardware 
implementation.

In this sense, it is also necessary to facilitate the hardware 
offloading of the entropy filter, a fundamental operation in 
computer vision that imposes a heavy computational bur-
den on the system’s CPU. Hence, we propose a new method 
for local entropy calculation and present a corresponding 
hardware accelerator. In the remainder of this paper, we 
first introduce the related work on hardware offloading of 
entropy calculation. After that, we present the entropy con-
cept widely adopted in computer vision and discuss a few 
of its applications. We then describe the proposed method 
and the hardware architecture. Finally, we provide and ana-
lyze implementation results, concluding the paper with our 
findings.

2  Related work

The adoption of hardware offloading techniques is prevalent 
in computer vision and network traffic monitoring, two areas 
demanding high-performance computing capabilities. Modern 
imaging systems capture high-resolution images (up to 4K or 
8K), creating a challenge to process large volumes of data in a 
limited time frame. Similarly, network systems handle millions 
of packets per second, requiring real-time processing to avoid 
bottlenecks. Moreover, real-time applications in computer 

vision, such as autonomous driving and robotic-assisted sur-
gery, necessitate immediate feedback due to their life-critical 
nature. Likewise, many network applications, including VoIP, 
video streaming, and online gaming, are latency-sensitive, 
as delays can significantly degrade user experience. Conse-
quently, high-performance computing platforms like FPGAs 
are well-suited for these research areas.

In network traffic monitoring field, entropy is commonly 
used to analyze the traffic. By computing the entropy of a 
packet sequence over a specific time interval, traffic anomalies 
such as DDoS attacks can be detected. Hardware accelerators 
are typically employed for entropy calculation due to the high 
throughput requirements of high-speed links. For example, 
FlexSkethMon [21], a framework for traffic monitoring based 
on estimated network flow entropy, was implemented on a 
NetFPGA-SUME board, achieving a processing speed of 96 
Gbps. Another entropy estimation algorithm, implemented 
on a NetFPGA-10 G board, processed network traffic at 30 
Gbps [13]. Recently, a hardware accelerator for entropy esti-
mation using the top-k most frequent elements demonstrated a 
processing speed of 181 Gbps on a Zynq UltraScale+ ZCU102 
FPGA board [19]. These studies underscore the extensive use 
of FPGAs for the computationally intensive task of entropy 
estimation.

Conversely, in computer vision, there is less research on 
hardware accelerators for entropy calculation, partly due to 
the complexity of spatial relationships between image pixels. 
In [12], an FPGA accelerator for a small binarized neural net-
work was presented, utilizing frame entropy to devise an adap-
tive filter. This filter controls the number of frames the network 
processes in inference mode to enhance the processing rate. 
The entire system was synthesized using a high-level synthesis 
(HLS) tool, which mapped the entropy calculation and filtering 
operations to the processing system (PS) rather than the high-
performance programmable logic (PL). While HLS tools can 
synthesize FPGA accelerators from high-level programming 
languages (such as C/C++ and Python), the resulting accel-
erators are not always optimal. This trend was also observed 
in many algorithms for entropy calculation presented in [5].

In this paper, we leverage pipeline parallelism to design 
an efficient architecture for an entropy filter and implement 
it using Verilog HDL [1] (IEEE Standard 1364-2005). This 
approach fully exploits the FPGA’s high-performance com-
puting hardware available on the PL. Detailed implementa-
tion is presented in Sect. 5.

3  Preliminaries

3.1  Overview of entropy filter

Entropy is a concept adopted in diverse fields, and it 
is generally associated with a state of randomness or 
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Fig. 1  Illustration of two common computing architectures. a Homo-
geneous computing architecture (HoCA). b Heterogeneous comput-
ing architecture (HeCA). In HoCAs, the system’s processing cores are 
responsible for handling every task. Conversely, HeCAs enable off-
loading potentially complex functions onto specialized accelerators, 
thereby conserving the computing power of processing cores



Journal of Real-Time Image Processing (2024) 21:118 Page 3 of 10 118

uncertainty. In computer vision, entropy is often consid-
ered in the context of information theory and is defined 
as follows:

where h denotes the entropy value, X a discrete random 
variable accepting values in the set {x1, x2,… , xn} , and p 
the probability density function (PDF) of X. Depending on 
whether log(⋅) refers to a binary or natural logarithm, h can 
be measured in the unit of bits or nats (natural unit of infor-
mation) [9]. Hereinafter, we only focus on the former case of 
the binary logarithm. Also, in the context of image filtering, 
(1) is restricted to a sliding window of pixels; therein lies the 
name local entropy.

Moreover, entropy is usually interpreted as a measure-
ment of information. Thus, the larger the entropy, the more 
informative the image content. Figure 2 demonstrates a gray-
scale image and its corresponding entropy profile, calcu-
lated using a 25 × 25 sliding window. It can be observed that 
image patches with rich texture information are associated 
with high entropy values. On the contrary, those with fewer 
details possess low entropy values. As a result, entropy can 
be used to characterize the texture information of a grayscale 
image. This amazing feature renders entropy highly relevant 
in many computer vision applications, as discussed in the 
following.

3.2  Applications in computer vision

Image sharpening (or, equivalently, sharpness enhance-
ment) is a fundamental low-level operation in digital image 
processing, in which an image and its scaled Laplacian are 
fused to accentuate the sharpness. As digital images are rep-
resented by a finite discrete set of intensities, the fusion is 
prone to out-of-range and edge ringing problems. Accord-
ingly, image entropy was adopted as an attention map to con-
trol the fusion, lest the original image was over-enhanced, 

(1)h(X) = −

n∑

i=1

p(xi)logp(xi),

as demonstrated in an automatic sharpening algorithm [7] 
(owned by Apple Inc.).

Entropy also finds applications in the fast-expanding 
field of pattern recognition. For example, an image separa-
tion algorithm (owned by Qualcomm) [2] utilizes entropy 
to identify and remove unwanted regions (such as those 
associated with trees or sky) from the image, facilitating 
object recognition algorithms. In [6], entropy serves as one 
of twelve image features to form a feature space, in which 
Mahalanobis distance is adopted to predict the image’s per-
ceptual visibility. Similarly, in [10], entropy is one of four 
image features fed to a Bayes classifier for detecting salient 
objects.

Given the diverse applications of entropy in computer 
vision, it is surprising that the literature has been silent on 
a computationally efficient implementation of the entropy 
filter. We, therefore, devise a novel method for calculating 
local entropy and present a corresponding pipelined archi-
tecture in the upcoming sections.

4  Proposed method

4.1  Overview

Given a grayscale image I ∈ ℝ
M×N  of size M × N  , an 

entropy filter with a square window of size S × S traverses 
the image in a raster-scan order to create a corresponding 
entropy profile H ∈ ℝ

M×N . Under the filtering mechanism, 
the filter calculates the entropy value of pixel neighborhoods 
covered underneath the window at every pixel location. It 
then assigns that value to the corresponding pixel location 
in the profile. In the case of boundary padding adopted, the 
profile is the same size as the input; otherwise, the height 
and width are reduced by ⌊S∕2⌋ . An illustrative description 
of this mechanism can be found in Fig. 3.

Let u =

[
u0, u1,… , uS2−1

]
 be a vector containing all pixels 

covered by the window. Each pixel can take on an intensity 
value in the discrete set {x0, x1,… , xn−1} , with n depend-
ing on the number of bits used to represent the image. For 

Fig. 2  An example image and 
its corresponding entropy pro-
file (calculated using a 25 × 25 
sliding window). An upper 
patch with low texture informa-
tion has an entropy value of 
3.342, whereas a lower patch 
with high texture information 
has an entropy value of 6.665

Entropy = 3.342

Entropy = 6.665
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example, n = 256 and x0 = 0, x1 = 1,… , xn−1 = 255 in 
a common 8-bit representation. The problem herein is to 
design an efficient means to calculate the local entropy while 
ensuring the compactness and efficacy of the corresponding 
hardware accelerator. In the following subsections, we first 
introduce a conventional method and discuss its limitations. 
Thereafter, we present our solution to remold the conven-
tional way of calculating local entropy.

4.2  Conventional method

Given u , its entropy value h can be calculated by (i) con-
structing a histogram to obtain the PDF and then (ii) apply-
ing (1), as shown in Algorithm 1. Let p = [p0, p1,… , pn−1] 
denote the histogram of u . We first initialize p with zeros 
and then iterate through all pixels in u . At each iteration, 
we utilize the pixel intensity ui as an index ( j ← ui ) to 
increment the corresponding bin pj . When the for loop ter-
minates, we obtain the histogram p , which represents the 
number of occurrences of each pixel intensity. Therefore, 
in the second loop, we divide pj by S2 (the total number 
of pixels in u ) to get the density. To calculate the entropy 
value h, we also initialize it with zero and iterate through 
all bins in p.

The above-mentioned algorithm is deceptively sim-
ple, but arriving at an efficient hardware implementation 
is not straightforward. Firstly, constructing the histogram 
for each vector u returned by the filter as it traverses the 
image is highly inefficient. Secondly, the histogram size 
increases exponentially with the pixel’s word length (the 
number of bits utilized to represent pixel intensities), 

leading to a significant consumption of hardware resources. 
For example, an 8-bit representation requires 256 registers 
(or memory locations) to hold the histogram bins, and this 
number doubles on the increment of the word length. Con-
sequently, in this case, the cost for filtering an image equals 
O(M ⋅ N ⋅ S2) (histogram construction) plus O(M ⋅ N ⋅ n) 
(entropy calculation).

Regarding these two issues, we can resolve the former by 
exploiting the sliding mechanism. More specifically, we can 
update the histogram by simply decrementing/incrementing 
bins corresponding to pixel intensities that leave/enter the 
kernel. As a result, the cost of histogram construction can 
be reduced to O(M ⋅ N ⋅ 2 S) . The sole hardware accelera-
tor [18] we found in the literature was designed using this 
approach.

However, resolving the latter issue without remolding the 
entropy calculation to eliminate the histogram construction 
remains challenging. We will present our efforts in address-
ing this in the following subsection.

Algorithm 1 Conventional entropy calculation

4.3  Our proposed solution

We observe that it is possible to obtain the number of 
occurrences of pixel intensities without constructing a 
histogram. By sorting the pixels and then taking adja-
cent differences, we can determine how many pixel 
intensities there are and how many times each of them 
occurs. Let us consider a 3 × 3 window, and assume that 
u = [0, 51, 62, 33, 100, 0, 51, 100, 51] is the vector of pixels 
covered underneath. The result obtained after sorting and 

With boundary padding

Without boundary padding

Fig. 3  Illustration of the filtering mechanism
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taking adjacent differences is d = [0, 33, 18, 0, 0, 11, 38, 0] . 
We can then easily determine the number of pixel intensi-
ties by counting the total transitions from “zero → non-
zero” and “non-zero → non-zero.” In our example, there 
are four of those transitions ( 0 → 33 , 33 → 18 , 0 → 11 , and 
11 → 38 ), signifying that there are five different pixel inten-
sities (0, 32, 51, 62, and 100).

Also, the first zero in d means that a particular pixel 
intensity occurs twice. The following non-zero (33) signi-
fies the occurrence of a different intensity which appears 
once because of the next non-zero (18). This non-zero is 
followed by two zeros, signifying a three-time occurrence 
of another intensity. Similarly, the remaining patterns of d 
( 11 → 38 → 0 ) signify a sole occurrence followed by a two-
time occurrence of two different intensities, respectively. 
Hence, we obtain the histogram p = [2, 1, 3, 1, 2] without 
explicitly constructing it. With this information, we can eas-
ily calculate the entropy value.

In Algorithm 2, we present a new method for entropy 
calculation that facilitates the implementation of a pipe-
lined hardware accelerator, which will be discussed later 
in Sect. 5. For ease of description, we adopt two auxiliary 
functions: Sort(u) , which sorts the elements of u in ascend-
ing order, and the Kronecker delta �(a, b) , which returns one 
if a = b and zero otherwise.

In the first step, we declare a vector v to hold the sorted 
elements of u . After that, we apply the Kronecker delta func-
tion to every adjacent pair in v and store the (S2 − 1)-element 
result in d . It is noteworthy that each element of this vector 
is either zero or one and thus only requires a single bit for 
representation. Consequently, the vector d can be expressed 
compactly using (S2 − 1) bits, which is highly beneficial for 
the hardware implementation phase.

In the last step of pipelined entropy calculation, we 
first prepare a look-up table (LUT) holding the value of 
each term of the summation in (1). Theoretically, an S2
-entry LUT is sufficient for an S × S entropy filter. How-
ever, we utilize an (S2 + 1)-entry LUT with a zero-indexed 
entry equal to zero to retain the simplicity of our method. 
As shown in Algorithm 2, we use a variable called addr 
to retrieve values from the LUT. Since the logarithm of 
zero is undefined, special handling is required when addr 
becomes zero. To address this, instead of using multiplex-
ers to resolve the case where addr = 0 when calculating the 
entropy, we add an entry laddr = 0 for addr = 0 in the LUT. 
This approach simplifies the design and saves hardware 
resources (Table 1).

Algorithm 2 Our proposed entropy calculation

After initializing the LUT, we iterate through d to calcu-
late the entropy. We adopt two variables: addr to access the 
LUT’s entries and cnt to track the number of pixels that have 
been processed. In the first iteration ( i = 0 ), d0 is used to ini-
tialize three variables: h, addr , and cnt . The case of d0 being 
zero means that a particular pixel intensity occurs twice; 
thus, addr ← 2 and cnt ← 2 , whereas h remains zero. Oth-
erwise, that pixel intensity only occurs once, and addr ← 1 , 
cnt ← 1 , and h ← l1 correspondingly. In subsequent itera-
tions ( 1 ≤ i ≤ S2 − 2 ), if di is zero, h remains unchanged, 
and addr is updated to track the number of occurrences 
of the previous pixel intensity. If di is one, it means a new 
pixel intensity occurs (hence, the term l1 ), and addr currently 
points to an LUT entry corresponding to the density value of 
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the last pixel intensity ( laddr ). Therefore, the term ( laddr + l1 ) 
is added to h to update the entropy value. During that course 
of calculation, cnt is also updated correspondingly. Finally, 
in the last iteration ( i = S2 − 1 ), cnt is used to compensate 
for the entropy value.

To facilitate the understanding of our proposed method, 
we present a step-by-step procedure for calculating entropy 
using Algorithm 2 in Table 1. The normal case corresponds 
to the example discussed at the beginning of this subsec-
tion, while the extreme case addresses the scenario where 
all input values are equal.

As our proposed method is hardware-design-oriented, it 
is not easy to compare with the conventional method from 
the software perspective. For example, if we utilize Batcher’s 
parallel sorting algorithm [11] as the Sort(⋅) function, the 
total cost will be O

(
M ⋅ N ⋅

(
logS2

)2) plus O(M ⋅ N ⋅ S2) . 
Compared with the conventional method, ours does not 
depend on n; however, it is still challenging to determine 
which one possesses a lower cost. Therefore, we present a 
pipelined hardware architecture in the next section and com-
pare it with a conventional design [18] whose details are 
available in Appendix 8.

5  Pipelined architecture

Figure 4 illustrates the overall block diagram of the pro-
posed hardware accelerator, in which the first two blocks 
(line memories and register banks) are common in 2-D 
spatial image filters. They help handle the input stream to 
obtain pixels covered underneath the window. Hence, an 
S × S window requires (S − 1) line memories (each can store 
an image line, i.e., N pixels) and (S − 1) register banks (each 
consists of S registers).

The following three blocks (sorting network, adjacent dif-
ference calculation, and pipelined entropy calculation) real-
ize our proposed method. Concerning the first, we adopt 
the optimized merging-sorting network [16] for a fast and 
compact implementation. After that, we can easily compare 
each consecutive pair of v utilizing an exclusive OR gate fol-
lowed by a reduction OR gate. The one-bit result is identical 
to that of the Kronecker delta function. Given the vector d , 
we can calculate the entropy with the pipelined architecture 
in Fig. 5.

This architecture implements the for loop in section 
(iii.b) of Algorithm 2, where results after each iteration 
are stored in pipelined registers. For example, in the first 
iteration, we utilize the first bit d0 of d to initialize three 
variables addr , cnt , and h. Accordingly, in the first stage of 
the pipelined architecture, d0 controls three multiplexers 
to initialize the three corresponding registers addr

0
 , cnt

0
 , 

and ht
0
 . Meanwhile, we use another register ( dS

2
−2

1
 ) to store 

the remaining bits of d , i.e., dS
2
−2

1
=

[
d1, d2,… , dS2−2

]
 . In 

the following stages, which correspond to iterations from 
the second to the (S2 − 1)-th, we extract every bit of d to 
update the intermediate results stored in addr

i
 , cnt

i
 , and ht

i
 

registers, with 1 ≤ i ≤ S2 − 2 . Finally, we carry out the cal-
culation in the last iteration to obtain the entropy value in 
the h register.

As mentioned earlier in Sect. 2, we do not utilize the HLS 
tool due to its suboptimal performance. Instead, we design 
the proposed hardware accelerator using Verilog HDL [1] 
(IEEE Standard 1364-2005) and use Xilinx Vivado v2019.1 
to obtain the implementation results, which are presented in 
the next section. We also perform a quantitative compari-
son with a conventional design in [18]. The target device 
for both designs is an XCZU7EV-2FFVC1156 MPSoC [22] 
on a Zynq UltraScale+ MPSoC ZCU106 Evaluation Kit, 

Table 1  Step-by-step procedure for calculating entropy using the proposed method
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equipped with 460,800 registers, 230,400 LUTs, and 312 
block RAMs.

6  Implementation results

Table  2 summarizes the implementation results of two 
hardware accelerators (the conventional in [18] and ours) 
of a 5 × 5 entropy filter. Concerning memory usage, the two 
designs consume the same amount of block RAMs because 
they both need the first two blocks (line memories and reg-
ister banks) to obtain S2 = 25 image pixels. However, it can 
be observed that our design is significantly smaller than the 

conventional. It only requires 7849 registers and 5748 LUTs, 
which occupy about 1.70% and 2.49% of the related hard-
ware resources. Compared with those of the conventional 
design, we achieve approximately 2.4× and 2.9× reductions 
in register and LUT consumption. This reduction in resource 
utilization consequently leads to a corresponding drop ( 1.1× ) 
in power consumption.

Finally, considering the maximum frequency, our design 
is slightly faster than the conventional. It is noteworthy that 
the capability of handling 764.526 megapixels per second 
is far beyond the requirement of computer vision edge 
devices.

Line memoriesLine memories Register banksRegister banks Sorting networkSorting network Adjacent difference

calculation

Adjacent difference

calculation

Pipelined entropy

calculation

Pipelined entropy

calculation

Input image Entropy profile

R

Line memory

Register bank

Compare-and-swap circuit

Exclusive OR gate

R Reduction OR gate
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Fig. 4  Block diagram of the proposed hardware architecture
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7  Conclusions

In this paper, we introduced a growing trend toward hard-
ware offloading to increase computing power and then 
pointed out that the literature lacked an efficient imple-
mentation of the entropy filter. We also argued that the 
conventional entropy calculation is not hardware-friendly 
and hereby proposed a hardware-oriented alternative. We 
remolded the conventional into a novel three-step method 
of sorting, adjacent difference calculation, and pipelined 
entropy calculation. After that, we presented a correspond-
ing hardware accelerator and demonstrated its superiority 
over the conventional design. Implementation results on a 
Zynq UltraScale+ XCZU7EV-2FFVC1156 MPSoC device 
showed 2.4× and 2.9× reductions in resource utilization and 
1.1× reduction in power consumption. With this astonishing 
compactness and efficacy, our proposed architecture can still 
provide a high throughput of handling 764.526 megapix-
els per second, rendering it highly beneficial for computer 
vision edge devices.

Appendix: conventional hardware architecture
Figure 6 illustrates the block diagram of the conventional 
hardware architecture for the entropy filter. The design is 
based on the sliding mechanism (described in Sect. 4.2) and 
the cumulative histogram [8].

Given n, representing a set of discrete intensities assigned 
to a pixel, this conventional design requires n registers, cor-
responding to Bin 0, Bin 1, … , Bin (n − 1) in Fig. 6, to 
store the number of occurrences of each pixel intensity. Each 
bin can increase or decrease by a specific amount based on 
whether the associated pixel intensity is about to enter or 
leave the sliding window. As shown in Fig. 6, when the win-
dow moves to an adjacent location, it will exclude pixels in 
the red column from its coverage while including pixels in 
the blue column. To handle these two groups of pixels, the 
conventional design utilizes register banks, as shown Fig. 6.

The next block determines the quantity to increase or 
decrease each histogram bin according to input pixel inten-
sities. To implement this block, [18] proposed using bar-
rel shifters, which were more memory-efficient than ROMs 
in [8]. Specifically, a barrel shifter decodes a ⌈logn⌉-bit input 

Table 2  Implementation results 
of the entropy filter’s hardware 
accelerators

Vivado 2019.1

Device XCZU7EV-2FFVC1156

Design Conventional [18] Ours Gain

Slice logic utilization Available Used Utilization Used Utilization

Slice registers (#) 460,800 18,869 4.09% 7849 1.70% × 2.4
Slice LUTs (#) 230,400 16,512 7.17% 5748 2.49% × 2.9
Block RAMs (#) 312 4 1.28% 4 1.28% –
Power consumption 1.808 W 1.686 W × 1.1
Minimum period 1.332 ns 1.308 ns –
Maximum frequency 750.751 MHz 764.526 MHz –

Line memoriesLine memories Register banksRegister banks Sliding-window-based

update amount calculation

Sliding-window-based

update amount calculation

Input image Entropy profile

Histogram binsHistogram bins

Bin 0

Bin 1

Bin (n 1)

Entropy calculationEntropy calculation

LUT

LUT

LUT

LUT

Image pixels

Image pixels covered by a 3-by-3

sliding window

Image pixels going to leave the

covered area

Image pixels going to enter the

covered area

Sliding window movement direction

Barrel

shifters

Barrel

shifters

Adder

trees

Fig. 6  Block diagram of the conventional hardware architecture. We illustrate the sliding mechanism using a 3 × 3 window
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into an n-bit signal, with each bit indicating an increment or 
decrement of a bin associated with the input intensity. For 
example, an 8-bit input of 111111102 ( = 25410 ) causes the 
barrel shifter to produce a 256-bit output of 4000… 0016 , 
signifying an increment or decrement of Bin 254 . Table 3 
demonstrates the input–output relationship of the barrel 
shifter.

Given an S × S window, S pixels are about to leave, and 
another S pixels are about to enter the window’s cover-
age every time the window slides. Accordingly, the con-
ventional design requires 2S barrel shifters (details of the 
barrel shifter are available in Fig. 7). Half of these shifters 
signify bin decrease events (BDEs), and the other half sig-
nifies bin increase events (BIEs). The conventional design 
then converts every bit of BDE outputs to two’s comple-
ment representation and performs negation. Meanwhile, it 
solely converts every bit of BIE outputs to two’s comple-
ment representation. Afterward, it adds these negative and 
positive two’s complement numbers together using n adder 
trees to determine the quantity for increasing or decreasing 
each histogram bin.

After updating histogram bins, the final block is to cal-
culate the summation in (1). In this block, [18] utilized n 
LUTs to calculate summation terms corresponding to n 
bins. The content of each LUT is identical to that of the 
LUT described in Sect. 4.3. The outputs of these LUTs 
then undergo a large adder tree to compute the entropy 
value.

From the above description, it becomes evident that 
the conventional design is resource-consuming because 
it requires n registers for histogram bins and substan-
tial quantities of resources for the resultant adder trees. 
Moreover, its space complexity is dependent on n and 
thus increases exponentially with n. Hence, it is inefficient 
compared to our proposed hardware architecture.
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