
Vol.:(0123456789)

Journal of Real-Time Image Processing (2024) 21:118
https://doi.org/10.1007/s11554-024-01498-6

RESEARCH

A novel pipelined architecture of entropy filter

Dat Ngo1 · Bongsoon Kang2

Received: 5 March 2024 / Accepted: 13 June 2024 / Published online: 23 June 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
In computer vision, entropy is a measure adopted to characterize the texture information of a grayscale image, and an entropy
filter is a fundamental operation used to calculate local entropy. However, this filter is computationally intensive and demands
an efficient means of implementation. Additionally, with the foreseeable end of Moore’s law, there is a growing trend towards
hardware offloading to increase computing power. In line with this trend, we propose a novel method for the calculation of
local entropy and introduce a corresponding pipelined architecture. Under the proposed method, a sliding window of pixels
undergoes three steps: sorting, adjacent difference calculation, and pipelined entropy calculation. Compared with a conven-
tional design, implementation results on a Zynq UltraScale+ XCZU7EV-2FFVC1156 MPSoC device demonstrate that our
pipelined architecture can reach a maximum throughput of handling 764.526 megapixels per second while achieving 2.4×
and 2.9× reductions in resource utilization and 1.1× reduction in power consumption.

Keywords Computer vision · Entropy filter · Hardware offloading · Pipelining · FPGA

1 Introduction

Chip density has begun to lose its fast-growing pace and has
no longer doubled every two years. Accordingly, the growth
in processing power of general purpose central processing
units (CPUs) cannot cope with the continuously increasing
demand for high-performance computing. Also, wire delay
lengthens as more transistors are integrated into a process-
ing core, consequently prolonging memory latency and
further reducing CPU performance [3]. Several strategies
have been proposed to address that issue, such as adding
more processor cores or developing heterogeneous comput-
ing architectures (HeCAs). Among these two examples, the
latter appears to be more promising because it encompasses
an innovative idea of utilizing different kinds of processing
elements.

Figure 1 illustrates a conventional homogeneous com-
puting architecture (HoCA) and a simple HeCA. It can be
observed that the HeCA comprises CPUs, graphics pro-
cessing units (GPUs), and field-programmable gate arrays
(FPGAs), while the HoCA only consists of CPUs. Therefore,
the HeCA can offload complex functions, such as deep neu-
ral network inference and image filtering, onto GPUs and
FPGAs, respectively, saving its CPUs for critical tasks. The
smart network interface card (SmartNIC) [15] is an excel-
lent example of how HeCAs can be utilized in practice. This
device is a successor to the traditional NIC and is equipped
with FPGA accelerators to support hardware offloading. As
a result, it can free up the system’s resources allocated for
complex tasks such as match-action, tunneling, and load bal-
ancing, thereby assisting the CPU in handling heavy network
traffic up to 40 Gbps per NIC port. Additionally, SmartNICs
often come with high-level programming abstractions for
their FPGA engines to provide users with great flexibility.
Instead of offloading only a fixed set of functions, users can
now customize SmartNIC’s engines to handle their own
functions, such as pattern matching operations.

To accelerate the pace of development in HeCAs and
hardware offloading, the emerging demand for software-
to-hardware conversion has attracted growing interest. The
conversion has become more challenging for 2-D spatial
image filters, which require repeating a particular operation

 * Bongsoon Kang
 bongsoon@dau.ac.kr

 Dat Ngo
 datngo@ut.ac.kr

1 Department of Computer Engineering, Korea National
University of Transportation, Chungju 27469, South Korea

2 Department of Electronic Engineering, Dong-A University,
Busan 49315, South Korea

http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-024-01498-6&domain=pdf

 Journal of Real-Time Image Processing (2024) 21:118118 Page 2 of 10

throughout the entire image in a raster-scan order. For exam-
ple, the median filter, a robust means to suppress impulse
noise, is computationally intensive and has resulted in
a series of recent studies [4, 14, 17, 20] on its hardware
implementation.

In this sense, it is also necessary to facilitate the hardware
offloading of the entropy filter, a fundamental operation in
computer vision that imposes a heavy computational bur-
den on the system’s CPU. Hence, we propose a new method
for local entropy calculation and present a corresponding
hardware accelerator. In the remainder of this paper, we
first introduce the related work on hardware offloading of
entropy calculation. After that, we present the entropy con-
cept widely adopted in computer vision and discuss a few
of its applications. We then describe the proposed method
and the hardware architecture. Finally, we provide and ana-
lyze implementation results, concluding the paper with our
findings.

2 Related work

The adoption of hardware offloading techniques is prevalent
in computer vision and network traffic monitoring, two areas
demanding high-performance computing capabilities. Modern
imaging systems capture high-resolution images (up to 4K or
8K), creating a challenge to process large volumes of data in a
limited time frame. Similarly, network systems handle millions
of packets per second, requiring real-time processing to avoid
bottlenecks. Moreover, real-time applications in computer

vision, such as autonomous driving and robotic-assisted sur-
gery, necessitate immediate feedback due to their life-critical
nature. Likewise, many network applications, including VoIP,
video streaming, and online gaming, are latency-sensitive,
as delays can significantly degrade user experience. Conse-
quently, high-performance computing platforms like FPGAs
are well-suited for these research areas.

In network traffic monitoring field, entropy is commonly
used to analyze the traffic. By computing the entropy of a
packet sequence over a specific time interval, traffic anomalies
such as DDoS attacks can be detected. Hardware accelerators
are typically employed for entropy calculation due to the high
throughput requirements of high-speed links. For example,
FlexSkethMon [21], a framework for traffic monitoring based
on estimated network flow entropy, was implemented on a
NetFPGA-SUME board, achieving a processing speed of 96
Gbps. Another entropy estimation algorithm, implemented
on a NetFPGA-10 G board, processed network traffic at 30
Gbps [13]. Recently, a hardware accelerator for entropy esti-
mation using the top-k most frequent elements demonstrated a
processing speed of 181 Gbps on a Zynq UltraScale+ ZCU102
FPGA board [19]. These studies underscore the extensive use
of FPGAs for the computationally intensive task of entropy
estimation.

Conversely, in computer vision, there is less research on
hardware accelerators for entropy calculation, partly due to
the complexity of spatial relationships between image pixels.
In [12], an FPGA accelerator for a small binarized neural net-
work was presented, utilizing frame entropy to devise an adap-
tive filter. This filter controls the number of frames the network
processes in inference mode to enhance the processing rate.
The entire system was synthesized using a high-level synthesis
(HLS) tool, which mapped the entropy calculation and filtering
operations to the processing system (PS) rather than the high-
performance programmable logic (PL). While HLS tools can
synthesize FPGA accelerators from high-level programming
languages (such as C/C++ and Python), the resulting accel-
erators are not always optimal. This trend was also observed
in many algorithms for entropy calculation presented in [5].

In this paper, we leverage pipeline parallelism to design
an efficient architecture for an entropy filter and implement
it using Verilog HDL [1] (IEEE Standard 1364-2005). This
approach fully exploits the FPGA’s high-performance com-
puting hardware available on the PL. Detailed implementa-
tion is presented in Sect. 5.

3 Preliminaries

3.1 Overview of entropy filter

Entropy is a concept adopted in diverse fields, and it
is generally associated with a state of randomness or

CPU CPU

CPU CPU

Complex

functions

Complex

functions

(a)

CPU CPU CPU CPU

GPU GPU GPU GPU

FPGA FPGA

Complex

functions

Complex

functions

(b)

Fig. 1 Illustration of two common computing architectures. a Homo-
geneous computing architecture (HoCA). b Heterogeneous comput-
ing architecture (HeCA). In HoCAs, the system’s processing cores are
responsible for handling every task. Conversely, HeCAs enable off-
loading potentially complex functions onto specialized accelerators,
thereby conserving the computing power of processing cores

Journal of Real-Time Image Processing (2024) 21:118 Page 3 of 10 118

uncertainty. In computer vision, entropy is often consid-
ered in the context of information theory and is defined
as follows:

where h denotes the entropy value, X a discrete random
variable accepting values in the set {x1, x2,… , xn} , and p
the probability density function (PDF) of X. Depending on
whether log(⋅) refers to a binary or natural logarithm, h can
be measured in the unit of bits or nats (natural unit of infor-
mation) [9]. Hereinafter, we only focus on the former case of
the binary logarithm. Also, in the context of image filtering,
(1) is restricted to a sliding window of pixels; therein lies the
name local entropy.

Moreover, entropy is usually interpreted as a measure-
ment of information. Thus, the larger the entropy, the more
informative the image content. Figure 2 demonstrates a gray-
scale image and its corresponding entropy profile, calcu-
lated using a 25 × 25 sliding window. It can be observed that
image patches with rich texture information are associated
with high entropy values. On the contrary, those with fewer
details possess low entropy values. As a result, entropy can
be used to characterize the texture information of a grayscale
image. This amazing feature renders entropy highly relevant
in many computer vision applications, as discussed in the
following.

3.2 Applications in computer vision

Image sharpening (or, equivalently, sharpness enhance-
ment) is a fundamental low-level operation in digital image
processing, in which an image and its scaled Laplacian are
fused to accentuate the sharpness. As digital images are rep-
resented by a finite discrete set of intensities, the fusion is
prone to out-of-range and edge ringing problems. Accord-
ingly, image entropy was adopted as an attention map to con-
trol the fusion, lest the original image was over-enhanced,

(1)h(X) = −

n∑

i=1

p(xi)logp(xi),

as demonstrated in an automatic sharpening algorithm [7]
(owned by Apple Inc.).

Entropy also finds applications in the fast-expanding
field of pattern recognition. For example, an image separa-
tion algorithm (owned by Qualcomm) [2] utilizes entropy
to identify and remove unwanted regions (such as those
associated with trees or sky) from the image, facilitating
object recognition algorithms. In [6], entropy serves as one
of twelve image features to form a feature space, in which
Mahalanobis distance is adopted to predict the image’s per-
ceptual visibility. Similarly, in [10], entropy is one of four
image features fed to a Bayes classifier for detecting salient
objects.

Given the diverse applications of entropy in computer
vision, it is surprising that the literature has been silent on
a computationally efficient implementation of the entropy
filter. We, therefore, devise a novel method for calculating
local entropy and present a corresponding pipelined archi-
tecture in the upcoming sections.

4 Proposed method

4.1 Overview

Given a grayscale image I ∈ ℝ
M×N of size M × N , an

entropy filter with a square window of size S × S traverses
the image in a raster-scan order to create a corresponding
entropy profile H ∈ ℝ

M×N . Under the filtering mechanism,
the filter calculates the entropy value of pixel neighborhoods
covered underneath the window at every pixel location. It
then assigns that value to the corresponding pixel location
in the profile. In the case of boundary padding adopted, the
profile is the same size as the input; otherwise, the height
and width are reduced by ⌊S∕2⌋ . An illustrative description
of this mechanism can be found in Fig. 3.

Let u =

[
u0, u1,… , uS2−1

]
 be a vector containing all pixels

covered by the window. Each pixel can take on an intensity
value in the discrete set {x0, x1,… , xn−1} , with n depend-
ing on the number of bits used to represent the image. For

Fig. 2 An example image and
its corresponding entropy pro-
file (calculated using a 25 × 25
sliding window). An upper
patch with low texture informa-
tion has an entropy value of
3.342, whereas a lower patch
with high texture information
has an entropy value of 6.665

Entropy = 3.342

Entropy = 6.665

 Journal of Real-Time Image Processing (2024) 21:118118 Page 4 of 10

example, n = 256 and x0 = 0, x1 = 1,… , xn−1 = 255 in
a common 8-bit representation. The problem herein is to
design an efficient means to calculate the local entropy while
ensuring the compactness and efficacy of the corresponding
hardware accelerator. In the following subsections, we first
introduce a conventional method and discuss its limitations.
Thereafter, we present our solution to remold the conven-
tional way of calculating local entropy.

4.2 Conventional method

Given u , its entropy value h can be calculated by (i) con-
structing a histogram to obtain the PDF and then (ii) apply-
ing (1), as shown in Algorithm 1. Let p = [p0, p1,… , pn−1]
denote the histogram of u . We first initialize p with zeros
and then iterate through all pixels in u . At each iteration,
we utilize the pixel intensity ui as an index (j ← ui) to
increment the corresponding bin pj . When the for loop ter-
minates, we obtain the histogram p , which represents the
number of occurrences of each pixel intensity. Therefore,
in the second loop, we divide pj by S2 (the total number
of pixels in u) to get the density. To calculate the entropy
value h, we also initialize it with zero and iterate through
all bins in p.

The above-mentioned algorithm is deceptively sim-
ple, but arriving at an efficient hardware implementation
is not straightforward. Firstly, constructing the histogram
for each vector u returned by the filter as it traverses the
image is highly inefficient. Secondly, the histogram size
increases exponentially with the pixel’s word length (the
number of bits utilized to represent pixel intensities),

leading to a significant consumption of hardware resources.
For example, an 8-bit representation requires 256 registers
(or memory locations) to hold the histogram bins, and this
number doubles on the increment of the word length. Con-
sequently, in this case, the cost for filtering an image equals
O(M ⋅ N ⋅ S2) (histogram construction) plus O(M ⋅ N ⋅ n)
(entropy calculation).

Regarding these two issues, we can resolve the former by
exploiting the sliding mechanism. More specifically, we can
update the histogram by simply decrementing/incrementing
bins corresponding to pixel intensities that leave/enter the
kernel. As a result, the cost of histogram construction can
be reduced to O(M ⋅ N ⋅ 2 S) . The sole hardware accelera-
tor [18] we found in the literature was designed using this
approach.

However, resolving the latter issue without remolding the
entropy calculation to eliminate the histogram construction
remains challenging. We will present our efforts in address-
ing this in the following subsection.

Algorithm 1 Conventional entropy calculation

4.3 Our proposed solution

We observe that it is possible to obtain the number of
occurrences of pixel intensities without constructing a
histogram. By sorting the pixels and then taking adja-
cent differences, we can determine how many pixel
intensities there are and how many times each of them
occurs. Let us consider a 3 × 3 window, and assume that
u = [0, 51, 62, 33, 100, 0, 51, 100, 51] is the vector of pixels
covered underneath. The result obtained after sorting and

With boundary padding

Without boundary padding

Fig. 3 Illustration of the filtering mechanism

Journal of Real-Time Image Processing (2024) 21:118 Page 5 of 10 118

taking adjacent differences is d = [0, 33, 18, 0, 0, 11, 38, 0] .
We can then easily determine the number of pixel intensi-
ties by counting the total transitions from “zero → non-
zero” and “non-zero → non-zero.” In our example, there
are four of those transitions (0 → 33 , 33 → 18 , 0 → 11 , and
11 → 38), signifying that there are five different pixel inten-
sities (0, 32, 51, 62, and 100).

Also, the first zero in d means that a particular pixel
intensity occurs twice. The following non-zero (33) signi-
fies the occurrence of a different intensity which appears
once because of the next non-zero (18). This non-zero is
followed by two zeros, signifying a three-time occurrence
of another intensity. Similarly, the remaining patterns of d
(11 → 38 → 0) signify a sole occurrence followed by a two-
time occurrence of two different intensities, respectively.
Hence, we obtain the histogram p = [2, 1, 3, 1, 2] without
explicitly constructing it. With this information, we can eas-
ily calculate the entropy value.

In Algorithm 2, we present a new method for entropy
calculation that facilitates the implementation of a pipe-
lined hardware accelerator, which will be discussed later
in Sect. 5. For ease of description, we adopt two auxiliary
functions: Sort(u) , which sorts the elements of u in ascend-
ing order, and the Kronecker delta �(a, b) , which returns one
if a = b and zero otherwise.

In the first step, we declare a vector v to hold the sorted
elements of u . After that, we apply the Kronecker delta func-
tion to every adjacent pair in v and store the (S2 − 1)-element
result in d . It is noteworthy that each element of this vector
is either zero or one and thus only requires a single bit for
representation. Consequently, the vector d can be expressed
compactly using (S2 − 1) bits, which is highly beneficial for
the hardware implementation phase.

In the last step of pipelined entropy calculation, we
first prepare a look-up table (LUT) holding the value of
each term of the summation in (1). Theoretically, an S2
-entry LUT is sufficient for an S × S entropy filter. How-
ever, we utilize an (S2 + 1)-entry LUT with a zero-indexed
entry equal to zero to retain the simplicity of our method.
As shown in Algorithm 2, we use a variable called addr
to retrieve values from the LUT. Since the logarithm of
zero is undefined, special handling is required when addr
becomes zero. To address this, instead of using multiplex-
ers to resolve the case where addr = 0 when calculating the
entropy, we add an entry laddr = 0 for addr = 0 in the LUT.
This approach simplifies the design and saves hardware
resources (Table 1).

Algorithm 2 Our proposed entropy calculation

After initializing the LUT, we iterate through d to calcu-
late the entropy. We adopt two variables: addr to access the
LUT’s entries and cnt to track the number of pixels that have
been processed. In the first iteration (i = 0), d0 is used to ini-
tialize three variables: h, addr , and cnt . The case of d0 being
zero means that a particular pixel intensity occurs twice;
thus, addr ← 2 and cnt ← 2 , whereas h remains zero. Oth-
erwise, that pixel intensity only occurs once, and addr ← 1 ,
cnt ← 1 , and h ← l1 correspondingly. In subsequent itera-
tions (1 ≤ i ≤ S2 − 2), if di is zero, h remains unchanged,
and addr is updated to track the number of occurrences
of the previous pixel intensity. If di is one, it means a new
pixel intensity occurs (hence, the term l1), and addr currently
points to an LUT entry corresponding to the density value of

 Journal of Real-Time Image Processing (2024) 21:118118 Page 6 of 10

the last pixel intensity (laddr). Therefore, the term (laddr + l1)
is added to h to update the entropy value. During that course
of calculation, cnt is also updated correspondingly. Finally,
in the last iteration (i = S2 − 1), cnt is used to compensate
for the entropy value.

To facilitate the understanding of our proposed method,
we present a step-by-step procedure for calculating entropy
using Algorithm 2 in Table 1. The normal case corresponds
to the example discussed at the beginning of this subsec-
tion, while the extreme case addresses the scenario where
all input values are equal.

As our proposed method is hardware-design-oriented, it
is not easy to compare with the conventional method from
the software perspective. For example, if we utilize Batcher’s
parallel sorting algorithm [11] as the Sort(⋅) function, the
total cost will be O

(
M ⋅ N ⋅

(
logS2

)2) plus O(M ⋅ N ⋅ S2) .
Compared with the conventional method, ours does not
depend on n; however, it is still challenging to determine
which one possesses a lower cost. Therefore, we present a
pipelined hardware architecture in the next section and com-
pare it with a conventional design [18] whose details are
available in Appendix 8.

5 Pipelined architecture

Figure 4 illustrates the overall block diagram of the pro-
posed hardware accelerator, in which the first two blocks
(line memories and register banks) are common in 2-D
spatial image filters. They help handle the input stream to
obtain pixels covered underneath the window. Hence, an
S × S window requires (S − 1) line memories (each can store
an image line, i.e., N pixels) and (S − 1) register banks (each
consists of S registers).

The following three blocks (sorting network, adjacent dif-
ference calculation, and pipelined entropy calculation) real-
ize our proposed method. Concerning the first, we adopt
the optimized merging-sorting network [16] for a fast and
compact implementation. After that, we can easily compare
each consecutive pair of v utilizing an exclusive OR gate fol-
lowed by a reduction OR gate. The one-bit result is identical
to that of the Kronecker delta function. Given the vector d ,
we can calculate the entropy with the pipelined architecture
in Fig. 5.

This architecture implements the for loop in section
(iii.b) of Algorithm 2, where results after each iteration
are stored in pipelined registers. For example, in the first
iteration, we utilize the first bit d0 of d to initialize three
variables addr , cnt , and h. Accordingly, in the first stage of
the pipelined architecture, d0 controls three multiplexers
to initialize the three corresponding registers addr

0
 , cnt

0
 ,

and ht
0
 . Meanwhile, we use another register (dS

2
−2

1
) to store

the remaining bits of d , i.e., dS
2
−2

1
=

[
d1, d2,… , dS2−2

]
 . In

the following stages, which correspond to iterations from
the second to the (S2 − 1)-th, we extract every bit of d to
update the intermediate results stored in addr

i
 , cnt

i
 , and ht

i

registers, with 1 ≤ i ≤ S2 − 2 . Finally, we carry out the cal-
culation in the last iteration to obtain the entropy value in
the h register.

As mentioned earlier in Sect. 2, we do not utilize the HLS
tool due to its suboptimal performance. Instead, we design
the proposed hardware accelerator using Verilog HDL [1]
(IEEE Standard 1364-2005) and use Xilinx Vivado v2019.1
to obtain the implementation results, which are presented in
the next section. We also perform a quantitative compari-
son with a conventional design in [18]. The target device
for both designs is an XCZU7EV-2FFVC1156 MPSoC [22]
on a Zynq UltraScale+ MPSoC ZCU106 Evaluation Kit,

Table 1 Step-by-step procedure for calculating entropy using the proposed method

Journal of Real-Time Image Processing (2024) 21:118 Page 7 of 10 118

equipped with 460,800 registers, 230,400 LUTs, and 312
block RAMs.

6 Implementation results

Table 2 summarizes the implementation results of two
hardware accelerators (the conventional in [18] and ours)
of a 5 × 5 entropy filter. Concerning memory usage, the two
designs consume the same amount of block RAMs because
they both need the first two blocks (line memories and reg-
ister banks) to obtain S2 = 25 image pixels. However, it can
be observed that our design is significantly smaller than the

conventional. It only requires 7849 registers and 5748 LUTs,
which occupy about 1.70% and 2.49% of the related hard-
ware resources. Compared with those of the conventional
design, we achieve approximately 2.4× and 2.9× reductions
in register and LUT consumption. This reduction in resource
utilization consequently leads to a corresponding drop (1.1×)
in power consumption.

Finally, considering the maximum frequency, our design
is slightly faster than the conventional. It is noteworthy that
the capability of handling 764.526 megapixels per second
is far beyond the requirement of computer vision edge
devices.

Line memoriesLine memories Register banksRegister banks Sorting networkSorting network Adjacent difference

calculation

Adjacent difference

calculation

Pipelined entropy

calculation

Pipelined entropy

calculation

Input image Entropy profile

R

Line memory

Register bank

Compare-and-swap circuit

Exclusive OR gate

R Reduction OR gate

Combinational circuit

Fig. 4 Block diagram of the proposed hardware architecture

0

1

2

0

0

1

2

1

0

1

0

0

1

1

2
0

1

0

0

1

2

1

0

1

0

1

0

1

1

2
0

1

0

0

1

2

1

0

1

0

1

R R

first iteration others last iteration

Fig. 5 Block diagram of the pipelined entropy calculation

 Journal of Real-Time Image Processing (2024) 21:118118 Page 8 of 10

7 Conclusions

In this paper, we introduced a growing trend toward hard-
ware offloading to increase computing power and then
pointed out that the literature lacked an efficient imple-
mentation of the entropy filter. We also argued that the
conventional entropy calculation is not hardware-friendly
and hereby proposed a hardware-oriented alternative. We
remolded the conventional into a novel three-step method
of sorting, adjacent difference calculation, and pipelined
entropy calculation. After that, we presented a correspond-
ing hardware accelerator and demonstrated its superiority
over the conventional design. Implementation results on a
Zynq UltraScale+ XCZU7EV-2FFVC1156 MPSoC device
showed 2.4× and 2.9× reductions in resource utilization and
1.1× reduction in power consumption. With this astonishing
compactness and efficacy, our proposed architecture can still
provide a high throughput of handling 764.526 megapix-
els per second, rendering it highly beneficial for computer
vision edge devices.

Appendix: conventional hardware architecture
Figure 6 illustrates the block diagram of the conventional
hardware architecture for the entropy filter. The design is
based on the sliding mechanism (described in Sect. 4.2) and
the cumulative histogram [8].

Given n, representing a set of discrete intensities assigned
to a pixel, this conventional design requires n registers, cor-
responding to Bin 0, Bin 1, … , Bin (n − 1) in Fig. 6, to
store the number of occurrences of each pixel intensity. Each
bin can increase or decrease by a specific amount based on
whether the associated pixel intensity is about to enter or
leave the sliding window. As shown in Fig. 6, when the win-
dow moves to an adjacent location, it will exclude pixels in
the red column from its coverage while including pixels in
the blue column. To handle these two groups of pixels, the
conventional design utilizes register banks, as shown Fig. 6.

The next block determines the quantity to increase or
decrease each histogram bin according to input pixel inten-
sities. To implement this block, [18] proposed using bar-
rel shifters, which were more memory-efficient than ROMs
in [8]. Specifically, a barrel shifter decodes a ⌈logn⌉-bit input

Table 2 Implementation results
of the entropy filter’s hardware
accelerators

Vivado 2019.1

Device XCZU7EV-2FFVC1156

Design Conventional [18] Ours Gain

Slice logic utilization Available Used Utilization Used Utilization

Slice registers (#) 460,800 18,869 4.09% 7849 1.70% × 2.4
Slice LUTs (#) 230,400 16,512 7.17% 5748 2.49% × 2.9
Block RAMs (#) 312 4 1.28% 4 1.28% –
Power consumption 1.808 W 1.686 W × 1.1
Minimum period 1.332 ns 1.308 ns –
Maximum frequency 750.751 MHz 764.526 MHz –

Line memoriesLine memories Register banksRegister banks Sliding-window-based

update amount calculation

Sliding-window-based

update amount calculation

Input image Entropy profile

Histogram binsHistogram bins

Bin 0

Bin 1

Bin (n 1)

Entropy calculationEntropy calculation

LUT

LUT

LUT

LUT

Image pixels

Image pixels covered by a 3-by-3

sliding window

Image pixels going to leave the

covered area

Image pixels going to enter the

covered area

Sliding window movement direction

Barrel

shifters

Barrel

shifters

Adder

trees

Fig. 6 Block diagram of the conventional hardware architecture. We illustrate the sliding mechanism using a 3 × 3 window

Journal of Real-Time Image Processing (2024) 21:118 Page 9 of 10 118

into an n-bit signal, with each bit indicating an increment or
decrement of a bin associated with the input intensity. For
example, an 8-bit input of 111111102 (= 25410) causes the
barrel shifter to produce a 256-bit output of 4000… 0016 ,
signifying an increment or decrement of Bin 254 . Table 3
demonstrates the input–output relationship of the barrel
shifter.

Given an S × S window, S pixels are about to leave, and
another S pixels are about to enter the window’s cover-
age every time the window slides. Accordingly, the con-
ventional design requires 2S barrel shifters (details of the
barrel shifter are available in Fig. 7). Half of these shifters
signify bin decrease events (BDEs), and the other half sig-
nifies bin increase events (BIEs). The conventional design
then converts every bit of BDE outputs to two’s comple-
ment representation and performs negation. Meanwhile, it
solely converts every bit of BIE outputs to two’s comple-
ment representation. Afterward, it adds these negative and
positive two’s complement numbers together using n adder
trees to determine the quantity for increasing or decreasing
each histogram bin.

After updating histogram bins, the final block is to cal-
culate the summation in (1). In this block, [18] utilized n
LUTs to calculate summation terms corresponding to n
bins. The content of each LUT is identical to that of the
LUT described in Sect. 4.3. The outputs of these LUTs
then undergo a large adder tree to compute the entropy
value.

From the above description, it becomes evident that
the conventional design is resource-consuming because
it requires n registers for histogram bins and substan-
tial quantities of resources for the resultant adder trees.
Moreover, its space complexity is dependent on n and
thus increases exponentially with n. Hence, it is inefficient
compared to our proposed hardware architecture.

Acknowledgements This work was supported by the National
Research Foundation of Korea (NRF) grant funded by the Korea gov-
ernment (MSIT) (NRF-2023R1A2C1004592).

Author Contributions BK conceptualized and supervised this study.
DN wrote the software and the original manuscript. All authors
reviewed the manuscript.

Data Availability No datasets were generated or analysed during the
current study.

Declarations

Conflict of interest The authors declare that they have no Conflict of
interest.

References

 1. (2006) IEEE standard for verilog hardware description language.
IEEE Std 1364-2005 (Revision of IEEE Std 1374-2001), pp.
1–590. https:// doi. org/ 10. 1109/ IEEES TD. 2006. 99495

0

1

0

1

Input[0]

C

C

A

Input[1]

0

1

C

C

B
C

Input[2]

{Q, (n
0

1

C

C
{(n

(n

(n

Q
{P, (n

0

1

C

C
{(n

(n

(n

P

Input[logn 2] Input[logn 1]

Output

Replicating the x bit N times to create an N-bit number

C Concatenation

A is appended by B. If A and B are N-bit and M-bit numbers, then {A, B} is an (M + N)-bit number.{A, B}

Fig. 7 Block diagram of the barrel shifter. Input and output are ⌈logn⌉-bit and n-bit data, respectively. We adopt the square bracket to access indi-
vidual bits of the input

Table 3 Input–output relationship of the barrel shifter

Input (⌈logn⌉ bits) Output (n bits)
(in decimal) (in hexadecimal)

0 000… 01

1 000… 02

2 000… 04

… …

n − 2 400… 00

n − 1 800… 00

https://doi.org/10.1109/IEEESTD.2006.99495

 Journal of Real-Time Image Processing (2024) 21:118118 Page 10 of 10

 2. Ahuja, D., Fang, I.T., Jiang, B., Sharma, A.: Inventors; Qual-
comm Inc, assignee. Entropy based image separation. US patent
US20120075440A1 (2012)

 3. Beckmann, B.M., Wood, D.A. Managing Wire Delay in Large
Chip-Multiprocessor Caches. In: Proceedings of the 37th Inter-
national Symposium on Microarchitecture (MICRO-37’04), pp.
319–330 (2004). https:// doi. org/ 10. 1109/ MICRO. 2004. 21

 4. Chen, W.T., Chen, P.Y., Hsiao, Y.C., Lin, S.H.: A low-cost design
of 2D median filter. IEEE Access 7, 150623–150629 (2019).
https:// doi. org/ 10. 1109/ ACCESS. 2019. 29480 20

 5. Chen, C., da Silva, B., Chen, R., Li, S., Li, J., Liu, C.: Evaluation
of fast sample entropy algorithms on fpgas: from performance
to energy efficiency. Entropy 24, 1177 (2022). https:// doi. org/ 10.
3390/ e2409 1177

 6. Choi, L.K., You, J., Bovik, A.C.: Referenceless prediction of per-
ceptual fog density and perceptual image defogging. IEEE Trans.
Image Process. 24(11), 3888–3901 (2015). https:// doi. org/ 10.
1109/ TIP. 2015. 24565 02

 7. Crandall, R.E., Klivington, J.A., Merwe, R.vd. inventors;
Apple Inc, assignee. Automatic Image Sharpening. US patent
US20130084019A1 (2013)

 8. Fahmy, S.A., Cheung, P.Y.K., Luk, W.: Novel FPGA-based
implementation of median and weighted median filters for image
processing. In: Proceedings of the International Conference on
Field Programmable Logic and Applications, pp. 142–147 (2005).
https:// doi. org/ 10. 1109/ FPL. 2005. 15157 13

 9. ISO (2008) Quantities and units—Part 13: Information science
and technology (IEC 80000-13:2008). https:// www. iso. org/ stand
ard/ 31898. html. Accessed 31 July 2023

 10. Kang, U.J., Kang, B.: Salient Object Detection (SOD) Algorithm
based on Bayes Classifier. J. Korean Inst. Inf. Technol. 20(8),
91–97 (2022). https:// doi. org/ 10. 14801/ jkiit. 2022. 20.8. 91

 11. Knuth, D.E.: Networks for sorting. In: The Art of Computer Pro-
gramming, pp. 219–247. Addison-Wesley, Boston (1998)

 12. Kwan, E., Nunez-Yanez, J.: Entropy-driven adaptive filtering for
high-accuracy and resource-efficient fpga-based neural network
systems. Electronics 9, 1765 (2020). https:// doi. org/ 10. 3390/ elect
ronic s9111 765

 13. Lai, Y.K., Wellem, T., You, H.P.: Hardware-assisted estimation
of entropy norm for high-speed network traffic. Electron. Lett.
50(24), 1845–1847 (2014). https:// doi. org/ 10. 1049/ el. 2014. 2377

 14. Lakshmi, K.R., Padmaja, M.: Efficient and enhanced high through-
put image denoising using chronical fuzzy set. In: Proceedings of

the 4th International Conference on Electronics, Communication
and Aerospace Technology (ICECA), pp. 924–930 (2020). https://
doi. org/ 10. 1109/ ICECA 49313. 2020. 92974 29

 15. Netronome: Agilio CX 2x40Gbe (2017). https:// www. netro nome.
com/ produ cts/ agilio- cx/. Accessed 31 July 2023

 16. Ngo, D., Lee, S., Lee, G., Kang, B.: Single-image visibility resto-
ration: a machine learning approach and its 4k-capable hardware
accelerator. Sensors 20, 5795 (2020). https:// doi. org/ 10. 3390/
s2020 5795

 17. Pooya, S.A., Farhad, R.: A novel median based image impulse
noise suppression system using spiking neurons on FPGA. Com-
put. Methods Biomech. Biomed. Eng. Imaging Vis. 8(6), 631–640
(2020). https:// doi. org/ 10. 1080/ 21681 163. 2020. 17774 64

 18. Sim, H., Kang, B.: Hardware architecture for entropy filter imple-
mentation. J. IKEEE 26(2), 226–231 (2022). https:// doi. org/ 10.
7471/ ikeee. 2022. 26.2. 226

 19. Soto, J.E., Ubisse, P., Hernández, C., Figueroa, M.: A hardware
accelerator for entropy estimation using the top-k most frequent
elements. In: Proceedings of the 2020 23rd Euromicro Conference
on Digital System Design (DSD), pp. 141–148 (2020). https:// doi.
org/ 10. 1109/ DSD51 259. 2020. 00032

 20. Subramaniam, J., Kannan, R.J., Ebenezer, D.: Parallel and pipe-
lined 2-D median filter architecture. IEEE Embed. Syst. Lett.
10(3), 69–72 (2018). https:// doi. org/ 10. 1109/ LES. 2017. 27714 53

 21. Wellem, T., Lai, Y.K., Huang, C.Y., Chung, W.Y.: A flexible
sketch-based network traffic monitoring infrastructure. IEEE
Access 7, 92476–92498 (2019). https:// doi. org/ 10. 1109/ ACCESS.
2019. 29278 63

 22. Xilinx: Zynq UltraScale+ MPSoC data sheet: overview (2022).
https:// docs. xilinx. com/v/ u/ en- US/ ds891- zynq- ultra scale- plus-
overv iew. Accessed 1 Aug 2023

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://doi.org/10.1109/MICRO.2004.21
https://doi.org/10.1109/ACCESS.2019.2948020
https://doi.org/10.3390/e24091177
https://doi.org/10.3390/e24091177
https://doi.org/10.1109/TIP.2015.2456502
https://doi.org/10.1109/TIP.2015.2456502
https://doi.org/10.1109/FPL.2005.1515713
https://www.iso.org/standard/31898.html
https://www.iso.org/standard/31898.html
https://doi.org/10.14801/jkiit.2022.20.8.91
https://doi.org/10.3390/electronics9111765
https://doi.org/10.3390/electronics9111765
https://doi.org/10.1049/el.2014.2377
https://doi.org/10.1109/ICECA49313.2020.9297429
https://doi.org/10.1109/ICECA49313.2020.9297429
https://www.netronome.com/products/agilio-cx/
https://www.netronome.com/products/agilio-cx/
https://doi.org/10.3390/s20205795
https://doi.org/10.3390/s20205795
https://doi.org/10.1080/21681163.2020.1777464
https://doi.org/10.7471/ikeee.2022.26.2.226
https://doi.org/10.7471/ikeee.2022.26.2.226
https://doi.org/10.1109/DSD51259.2020.00032
https://doi.org/10.1109/DSD51259.2020.00032
https://doi.org/10.1109/LES.2017.2771453
https://doi.org/10.1109/ACCESS.2019.2927863
https://doi.org/10.1109/ACCESS.2019.2927863
https://docs.xilinx.com/v/u/en-US/ds891-zynq-ultrascale-plus-overview
https://docs.xilinx.com/v/u/en-US/ds891-zynq-ultrascale-plus-overview

	A novel pipelined architecture of entropy filter
	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Overview of entropy filter
	3.2 Applications in computer vision

	4 Proposed method
	4.1 Overview
	4.2 Conventional method
	4.3 Our proposed solution

	5 Pipelined architecture
	6 Implementation results
	7 Conclusions
	Appendix: conventional hardware architecture
	Acknowledgements
	References

