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Abstract
The current apple detection algorithms fail to accurately differentiate obscured apples from pickable ones, thus leading to 
low accuracy in apple harvesting and a high rate of instances where apples are either mispicked or missed altogether. To 
address the issues associated with the existing algorithms, this study proposes an improved YOLOv5s-based method, named 
YOLOv5s-BC, for real-time apple detection, in which a series of modifications have been introduced. First, a coordinate 
attention block has been incorporated into the backbone module to construct a new backbone network. Second, the original 
concatenation operation has been replaced with a bi-directional feature pyramid network in the neck network. Finally, a new 
detection head has been added to the head module, enabling the detection of smaller and more distant targets within the field 
of view of the robot. The proposed YOLOv5s-BC model was compared to several target detection algorithms, including 
YOLOv5s, YOLOv4, YOLOv3, SSD, Faster R-CNN (ResNet50), and Faster R-CNN (VGG), with significant improvements 
of 4.6%, 3.6%, 20.48%, 23.22%, 15.27%, and 15.59% in mAP, respectively. The detection accuracy of the proposed model is 
also greatly enhanced over the original YOLOv5s model. The model boasts an average detection speed of 0.018 s per image, 
and the weight size is only 16.7 Mb with 4.7 Mb smaller than that of YOLOv8s, meeting the real-time requirements for 
the picking robot. Furthermore, according to the heat map, our proposed model can focus more on and learn the high-level 
features of the target apples, and recognize the smaller target apples better than the original YOLOv5s model. Then, in other 
apple orchard tests, the model can detect the pickable apples in real time and correctly, illustrating a decent generalization 
ability. It is noted that our model can provide technical support for the apple harvesting robot in terms of real-time target 
detection and harvesting sequence planning.
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1 Introduction

Apple, as one of the top four fruits in the world, is rich in 
many vitamins and minerals and has been popular with con-
sumers around the world. According to the statistics of the 
Food and Agriculture Organization of the United Nations, 
apples rank second after grapes in global fruit production 
[7]. However, most apple fruits are hand-picked, and such 
production methods are very inefficient. In addition, with 
an aging population and a large influx of rural labor into the 
cities, labor costs in the fruit cultivation industry have risen 

accordingly. All these factors significantly impact the market 
competitiveness of fruit products. Therefore, it is impera-
tive to harvest apple and other fruits efficiently in real time 
and reduce harvesting costs. Fruit harvesting robot based on 
machine vision can use its information perception to identify 
and pick fruits. Thus, it can improve efficiency and increase 
economic benefits, which has become a research hotspot for 
intelligent agricultural equipment [12]. However, there are 
still few products of fruit-harvesting robots applied in agri-
culture, and most of them are relatively low in intelligence 
and even less in large-scale applications [3, 30]). In view 
of the above situation, it is of great practical significance 
to study the technology related to fruit-harvesting robots.

Within the laboratories, different fruit-harvesting robots 
are studied. Although these fruit-harvesting robots have 
unique features suitable for specific application scenarios, 
they all rely on the same core technologies, such as stable 
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mobile platforms, multi-sensor collaboration, advanced 
machine vision technology, and flexible motion control. 
Among them, machine vision has been drawing great atten-
tion due to the rapid development of artificial intelligence. 
Over the years, researchers have combined vision technol-
ogy to recognize and locate fruits to provide technical sup-
port for fruit-harvesting robots. A comprehensive survey 
revealed that in the field of machine vision, target detection 
algorithms have tremendous potential for growth by virtue 
of their high detection accuracy and easy deployment [28]. 
Note that the mainstream two-stage target detection algo-
rithms include Faster R-CNN [17] and Mask R-CNN [5], 
while one-stage target detection algorithms are SSD [10] and 
YOLO (You Only Look Once) series including YOLOv3 
[15], YOLOv4 [2], YOLOv5 [20], etc.. Noticeably, the 
two-stage target detection algorithms generally have higher 
detection accuracy, but the trained model is large, leading to 
slow detection speed during practical detection. In contrast, 
the one-stage target detection algorithm is increasingly used 
as the preferred solution due to the advantages of the small 
number of model parameters and rapid detection speed.

The following section will focus on discussion of YOLO, 
applied to agriculture in the last three years. The YOLO 
series was pioneered by Redmon and his colleagues and 
developed on the darknet in versions YOLOv1, YOLOv2, 
and YOLOv3 [14–16]. Numerous iterations have emerged 
since then, and Bochkovskiy et al. [2] have continued to 
build on the darknet and come up with YOLOv4. Unlike 
previous versions, Ultralytics developed YOLOv5 with 
the Pytorch framework. YOLOv5 is favored by research-
ers for its ease of deployment and well detection perfor-
mance. YOLOv5 has four basic network models: YOLOv5s, 
YOLOv5m, YOLOv5l, and YOLOv5x. Their feature map 
depths are progressively deeper, and the model parameters 

are increased sequentially. Table 1 summarizes the per-
formance of the improved YOLOv5 model in the agricul-
tural domain. In terms of apple detection, Yan et al. [25] 
proposed a light target detection method for apple-picking 
robots based on an improved YOLOv5s algorithm. The 
bottleneck Cross Stage Partial (CSP) module is redesigned 
as a bottleneck CSP-2 module. In addition, the squeeze 
and excitation module in the visual attention mechanism 
network is inserted into the improved backbone network. 
The average detection accuracy is 86.75%. Lv et al. [12] 
proposed a visual recognition method for detecting apple 
growth patterns in orchards using the YOLOv5s algorithm. 
The authors replaced the SiLU activation function in the 
network with the ACON-C activation function, which 
improved the accuracy of the algorithm without sacrificing 
real-time performance. Sun et al. [18] proposed an improved 
lightweight apple detection method YOLOv5-PRE for fast 
apple yield detection in an orchard environment, and intro-
duced ShuffleNet and GhostNet lightweight structures in the 
YOLOv5-PRE model to reduce the size of the model. Xu 
et al. [23] proposed an improved YOLOv5 apple grading 
method. The Mish activation function replaced the origi-
nal YOLOv5 activation function, and the squeeze excita-
tion module was added to the YOLOv5 backbone. The 
average accuracy of the improved YOLOv5 algorithm for 
grading apples under the test set is 90.6%. For the detec-
tion of other fruits and vegetables, Yao et al. [26] developed 
a YOLOv5-based Kiwifruit defect detection model, called 
YOLOv5-Ours. The proposed model added a small target 
detection layer by embedding SELayer attention to different 
channels. The average detection accuracy of YOLOv5-Ours 
reached 94.7%. Wu et al. [22] constructed a new YOLOv5-
B model by enhancing the loss function. Then, the optimal 
truncation point is obtained by segmenting the contours 

Table 1  Performance of the improved YOLOv5 models

Detection object Networks model F1 (%) mAP (%) Detec-
tion speed 
(FPS)

GPU References

Apple Improved YOLOv5s 87.49 86.75 66.7 Nvidia Geforce RTX 2060 Yan et al. [25]
Apple YOLOv5-B 92.8 98.4 71 Nvidia Geforce GTX 1080 Lv et al. [12]
Apple YOLOv5-PRE 88.88 94.03 37.04 Nvidia Quadro P620 Sun et al. [18]
Apple Im-YOLOv5 90.74 90.6 59.63 Nvidia Geforce GTX 1660Ti Xu et al. [23]
Kiwifruit YOLOv5-Ours – 94.7 10 Nvidia GeForce GTX 1050Ti Yao et al. [26]
Banana YOLOv5-B 94.44 93.2 111.1 Nvidia Tesla V100 SXM2 Wu et al. [22]
Zanthoxylum Improved YOLOv5s – 94.5 88.33 Nvidia GeForce RTX 3060 Laptop Xu et al. [24]
Shoots of litchi YOLOv5-SBiC – 79.56 55.6 Nvidia GeForce RTX 3090 Liang et al. [9]
Fusarium head blight in wheat YOLOv5-DIOU 87.95 91.18 – Nvidia GeForce RTX 3060 Zhang et al. [27]
Tomato virus disease SE-YOLOv5 89.39 94.1 50.63 Nvidia GeForce RTX 2060 Super Qi et al. [13]
Tea leaf blight DDMA-YOLO 71.6 76.8 – Nvidia GeForce RTX 2060 Bao et al. [1]
Passion fruit pests Improved YOLOv5 95.54 96.51 129.87 – Li et al. [8]
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of the axes utilizing an edge detection algorithm. Experi-
ments show that the average detection accuracy of the pro-
posed model for banana multi-target recognition is 93.2%. 
Xu et al. [24] proposed an improved YOLOv5s-based tar-
get detection method for Zanthoxylum-picking robots. An 
improved CBF module is proposed based on the backbone 
CBH module, and a Specter module is proposed to replace 
the bottleneck CSP module. Test experiments conducted on 
NVIDIA Jetson TX2 show that the average inference time 
is 0.072 s. Liang et al. [9] developed a YOLOv5-SBiC algo-
rithm for late-autumn bud recognition. In the algorithm, a 
transformer module was introduced to speed up the network 
convergence. Besides, an attention mechanism module was 
used to help the model extract more useful information. 
Test results show that the proposed algorithm improves the 
recognition accuracy by 4.0% over the original YOLOv5 
algorithm, reaching 79.6%. In the field of pests and diseases 
detection of fruits and vegetables, Zhang et al. [27] pro-
posed a new method based on a target detection network, 
feature extraction, and classifier to detect adjacent wheat 
ears. The proposed algorithm combines distance-interlinked 
non-maximum suppression based on the original YOLOv5 
to form an improved YOLOv5 target detection network with 
an average detection accuracy of 90.67% and a detection 
time of 0.73 ms. Qi et al. [13] implemented the extraction 
of key features by inserting a squeeze stimulus module into 
the original YOLOv5 network framework, drawing on the 
human visual attention mechanism. The model was evalu-
ated on the tomato virus disease test set, and the average 
detection accuracy was 94.10%. Bao et al. [1] proposed a 
DDMA-YOLO-based UAV remote sensing method to detect 
and monitor tea leaf blight. The algorithm added a multi-
scale RFB module based on the original YOLOv5 network 
with dual-dimensional mixed attention (DDMA) in the neck, 
and the average detection accuracy was 76.8%. Li et al. [8] 
proposed a fast and lightweight improved YOLOv5 detec-
tion algorithm. Based on the original YOLOv5 model, a new 
point-line distance loss function was presented. In addition, 
an attention module was added to the network for adaptive 
attention, which can attend to the target object passion fruit 
pests in both channel and spatial dimensions. The average 
detection accuracy was 96.51%.

Considering the above-mentioned discussions, real-time 
apple detection methods with lightweight models need to be 
further developed. Through a comprehensive survey of the 
improved YOLO target detection methods in the agricultural 
field, although most of the existing detection models have rela-
tively high recognition accuracy, their increased complexity, 
parameters, and hardware requirements usually lead to low 
real-time performance. Therefore, designing a lightweight 
real-time apple detection algorithm is necessary to meet the 
requirements of real-time recognition of picking robots while 
ensuring recognition accuracy. In this paper, we propose an 

improved YOLOv5s-based real-time apple detection method 
to overcome the limitations of current apple recognition tech-
niques. The major contributions of this paper are as follows:

 (i) The CA attention mechanism module has been incor-
porated into the backbone network and the neck net-
work. In the backbone network, the CA attention 
mechanism can help the model automatically screen 
and focus on key feature channels, reduce unnec-
essary information redundancy, optimize model 
parameters, and reduce computational costs, thereby 
improving the efficiency and speed of the model. In 
the neck network, the CA attention mechanism can 
weight different feature channels during the feature 
fusion process, allowing the model to better integrate 
multi-scale and multi-level information, and enhance 
the diversity of features and the robustness of the 
model.

 (ii) The BiFPN block has been designed in the neck 
network, which first receives feature maps of differ-
ent scales from across the region in the backbone, 
and then performs concat operation on these feature 
maps, which is named Bi-concat. BiFPN combines 
the mechanism of bi-directional feature propaga-
tion, can effectively fuse the features of different 
scales, and thus improves the ability of the model 
to characterize the object at different scales and lev-
els. Besides, the BiFPN block makes the information 
transfer of the feature pyramid more balanced and 
effective through multiple iterations of feature fusion 
and updating, contributing to improved accuracy 
and stability of the object detection model. At the 
same time, it assists the model to better understand 
the location and size of the object in the image, thus 
improving the accuracy of object localization.

 (iii) The new detection head has been added in the head 
network. As the resolution of the feature maps used 
for small object detection increases, the local recep-
tive field of the feature maps shrinks accordingly, 
which allows the network to detect more small 
objects with lower resolution. The addition of this 
detection head enables the use of high-resolution 
feature maps to detect smaller objects that are far-
ther away, thereby improving the accuracy of object 
detection and localization.

2  Data acquisition and preprocessing

2.1  Apple images acquisition

In this research, the dataset was from the Agricultural 
Automation and Robotics Laboratory at Washington State 
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University that was originally utilized to estimate yields 
in robotic harvesting [11]. To obtain the dataset, the lab 
researchers installed the image sensor behind the prismatic 
gantry of the robot. The distance between the sensor and the 
tree was nearly 1.5 m. Figure 1 displays the apple images 
in the dataset from early morning to dusk. In this work, we 
took 1750 apple RGB images from the original dataset as 
the new dataset and initially divided this dataset according 
to the ratio of 0.85:0.15, where 1487 images were in the 
training set and 263 images were in the test set. There was 
no overlapping between the two sets.

2.2  Image labelling

The labelling software (Labelimg) is utilized to classify and 
label apple images that are visible to the human eyes after 
acquisition, as shown in Fig. 2. Due to the intricate environ-
ment in apple orchards, the apple images are separated into 
two categories: graspable and ungraspable, with the cor-
responding labels ‘apple’ and ‘block’. In detail, apples are 
categorized based on the following criteria:

 (i) Classification 1: Apples that are obstructed by leaves 
and branches are categorized as ungraspable apples.

 (ii) Classification 2: Small target apples that can be 
observed despite being far away are categorized as 

graspable apples, which provides valuable data for 
training models for small targets.

 (iii) Classification 3: Large target apples that are close 
enough and can be observed directly are categorized 
as graspable apples.

 (iv) Classification 4: Apples that are recognized in both 
bright daylight and insufficient light are categorized 
as graspable. This adds complexity to the data and 
enhances the robustness of the model.

2.3  Image augmentation

The quality of the training set plays a pivotal role in deter-
mining the capability of the convolutional neural network 
(CNN) model to identify apples accurately. If the training set 
is too small, it can lead to overfitting of the model, which may 
impede its performance in new or unknown environments. 
Image augmentation involves enhancing the visual quality of 
an image and augmenting its specific features by applying a 
series of processes. This methodology can effectively enlarge 
the size and diversity of the training set and improve the gen-
eralization ability of the CNN model. Specific image enhance-
ment methods were selected based on application scenarios 
and data characteristics. We have selected eight data augmen-
tation methods based on our own scenario requirements. These 
methods included random contrast, edge enhancement, con-
trast-limited adaptive histogram equalization (Clahe), motion 

Fig. 1  Apple images from various points in time [11]
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blur, perspective transformation, adding salt and pepper noise, 
max pool, and changing color temperature [25]. A total of 
11,896 enhanced images were generated by these methods 
from the initial training set of 1487 images, so the new train-
ing set consists of 13,383 images. Figure 3 illustrates the eight 
different image augmentation methods that have been used on 
each image.

3  Methods

3.1  YOLOv5s

The YOLOv5 algorithm is a one-stage target detection 
algorithm that generates class probabilities and position 
coordinate values for objects without requiring region 
proposals. It is one of the most popular target detection 
algorithms among agricultural researchers and its net-
work structure can be divided into four modules: input, 
backbone, neck, and head. The input module uses mosaic 
data augmentation, adaptive anchor frame calculation, and 
adaptive image scaling operations. The backbone network 
consists of focus and Cross Stage Partial (CSP) structures. 
The neck network utilizes a Feature Pyramid Network 
(FPN) and Path Aggregation Network (PAN) structure. 
The CIoU loss function is used as the loss function of 
the bounding box in the head module. Among them, CSP 
draws on CSPNet to address the problem of excessive 
computation in inference from the perspective of net-
work structure design. Note that the problem of excessive 
inference computation is mainly due to the duplication of 
gradient information in network optimization [21]. Tak-
ing the YOLOv5s network as an example, the first CSP 
structure, namely C3-1, is applied in the backbone, and the 
other CSP structure, namely C3-2, is applied in the neck, 
which enhances the ability of network feature fusion. Their 
structural compositions are shown in Fig. 4. The step size 
of the convolution kernel in front of each CSP structure 
is two, so that it can play the role of undersampling. In 
addition, YOLOv5 uses the Spatial Pyramid Pooling Fast 
(SPPF) module instead of the SPP module, which uses a 
cascade of multiple small-size pooling kernels instead of a 
single large-size pooling kernel in the SPP module. Thus, 
it further improves the running speed while fusing feature 
maps of different sensory fields to enrich the expression 
capability of feature maps.

Readers can refer to the official code (https:// github. 
com/ ultra lytics/ YOLOv5) for more details. Because the 
YOLOv5s model has the fewest parameters among the 
four models officially provided by YOLOv5, it is in line 
with the trend of lightweight and easier to deploy on fruit-
harvesting robots, thereby satisfying the effect of real-time 
grasping. Therefore, in this study, we choose it as the 
research candidate. Figure 5 depicts the network architec-
ture of the enhanced algorithm in detail.

3.2  CA block

The attention mechanism is essential in identifying targets 
as it enables the model to concentrate on crucial parts 

Fig. 2  Apple image labelling in the software

https://github.com/ultralytics/YOLOv5
https://github.com/ultralytics/YOLOv5
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of images, thereby improving accuracy and efficiency in 
detection. Hou et al. [6] proposed a CA mechanism that 
integrates position information into channel attention. In 
more detail, CA decomposes channel attention into two 
one-dimensional feature encoding processes that aggregate 

features along two spatial directions, respectively. This 
allows for capturing remote dependencies in one spatial 
direction while maintaining accurate location informa-
tion in the other spatial direction. The resulting feature 
maps are then encoded as a pair of direction-aware and 
position-sensitive attention maps, respectively, which can 
be applied complementarily to the input feature maps to 
enhance the representation of the object of interest. In 
addition, CA has the property of portability and can be 
flexibly embedded into CNN. Considering collectively, 
we choose it as our attention mechanism component to be 
introduced into the YOLOv5 network in this experiment. 
The specific operation of CA is divided into two steps: 
coordinate information embedding and CA generation. 
Figure 6 shows the structure of the CA block.

3.2.1  Coordinate information embedding

The CA block is designed to obtain attention to the width 
and height of the image and encode the exact position 
information. First, the input feature map X is divided into 
two directions, height h , and width w , and is pooled glob-
ally to obtain the feature maps in both directions. Thus, the 
output of the c th channel with height h can be expressed as

Fig. 3  Enhanced images using 
different image enhancement 
methods

Fig. 4  YOLOv5s partial component structure
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Similarly, the output of the c-th channel with width w can 
be written as

3.2.2  CA generation

After the transformation in information embedding, the 
obtained feature maps in two directions are concatenated 
together. Then, a 1 × 1 convolution kernel is used to convolve 
the concatenated feature maps. Further, the batch normaliza-
tion of the convolved feature maps is performed to obtain 
the feature map F1 , and the non-linear activation function is 

(1)zh
c
(h) =

1

W

∑

0≤i<W
xc(h, i).

(2)zw
c
(w) =

1

H

∑

0≤j<H
xc(j,w).

used to activate the feature map F1 to obtain the feature map 
f  . The above process can be expressed as follows:

Then, f  is sliced into two separate tensors f h and f w along 
the spatial dimension, and next, the feature maps f h and f w 
are transformed to the same number of channels as the input 
feature map X using two 1 × 1 convolutions Fh and Fw . The 
sigmoid activation function is used to activate it. The equation 
is expressed as follows:

Finally, the output of CA block Y can be written as

(3)f = �
(
F1

([
zh, zw

]))
.

(4)gh = �
(
Fh

(
f h
))
,

(5)gw = �
(
Fw(f

w)
)
.

(6)Y = X × gh × gw.

Fig. 5  The network architecture of YOLOv5s

Fig. 6  Structure of the CA block. The terms ‘X-Aug-Pool’ and ‘Y-Aug-Pool’ refer to the one-dimensional horizontal and vertical global pools, 
respectively
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3.3  BiFPN

To enhance the efficiency of the model, Tan et al. [19] devel-
oped a weighted bi-directional feature pyramid network. The 
main objective of this structure is to create a bi-directional 
connectivity mechanism based on the FPN, which allows 
information to flow in both directions and gradients to 
propagate throughout the network. This network is capable 
of multi-scale feature fusion of feature maps from different 
resolutions, thus improving the overall performance of the 
network. Since it is a versatile network, BiFPN can be seam-
lessly integrated with different neural network architectures, 
thus enhancing the generalization capability and stability of 
the network, for a wide range of image segmentation tasks. 
Figure 7 meticulously illustrates the comparison of FPN and 
BiFPN structures, where Pi represents a feature level with 
resolution of 1∕2i of the input images.

3.4  YOLOv5s‑BC

In actual detection, the YOLOv5s algorithm can detect 
apples with high recognition. However, due to the inter-
ference and influence of the complex environment in the 
orchard, small target apples that are far away are usually 
ignored by the algorithm. Considering that the obscured 
apples are mistaken as targets, this leads to the robot that is 
not able to grab the apples by estimating their position and 
posture correctly. Consequently, we propose an improved 
YOLOv5s algorithm, named YOLOv5s-BC, by making sev-
eral modifications as follows:

 (i) The CA attention mechanism block is introduced in 
the backbone network and the neck network. In the 
backbone network, the CA attention mechanism can 
help the model to automatically filter and focus on 

key feature channels, reduce unnecessary information 
redundancy, optimize model parameters, and reduce 
computational costs, thus improving the efficiency 
and speed of the model. In the neck network, the 
CA attention mechanism can weight different feature 
channels in the feature fusion process, which enables 
the model to better integrate multi-scale and multi-
level information, and enhances the diversity of fea-
tures and the robustness of the model. The C3-CA 
block is shown in Fig. 8.

 (ii) The BiFPN block is designed in the neck network, 
which first receives feature maps of different scales 
from across the region in the backbone, and then per-
forms concat operation on these feature maps, which 
is named Bi-concat. BiFPN combines the mechanism 
of bi-directional feature propagation, can effec-
tively fuse the features of different scales, and thus 
improves the ability of the model to characterize the 
object at different scales and levels. In addition, the 
BiFPN block makes the information transfer of the 
feature pyramid more balanced and effective through 
multiple iterations of feature fusion and updating, 
contributing to improved accuracy and stability of 
the object detection model. At the same time, it 
assists the model to better understand the location 
and size of the object in the image, thus improving 
the accuracy of object localization.

 (iii) A new detection head is added to the head network. 
As the resolution of the feature maps used for small 
object detection increases, the local receptive field of 
the feature maps shrinks accordingly, which allows 
the network to detect more small objects with lower 
resolution [31]. The addition of this detection head 
enables the use of high-resolution feature maps to 
detect smaller objects that are farther away, thereby 
improving the accuracy of object detection and local-
ization.

Figure 9 depicts the network architecture of the enhanced 
algorithm in detail.

3.5  Model evaluation index

To evaluate the performance of the established model, several 
indexes are discussed in this section. True positives (TP) refer 

Fig. 7  Comparison of FPN and BiFPN. For P3–P7, it is multi-scale 
features from level 3 to level 7

Fig. 8  Structure of the C3-CA block
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to positive samples that are categorized correctly. True nega-
tives (TN) are negative samples that are identified accurately. 
False positives (FP) are negative samples that are mislabeled 
as positives. False negatives (FN) occur when positive sam-
ples are wrongly labelled as negative. Precision and Recall are 
defined in Eqs. (7) and (8), respectively. The calculation for-
mula for Accuracy is shown in Eq. (9). F1 Score has become 
a metric often used in statistics to measure the accuracy of 
classification models due to the fact that it combines both the 
precision and recall of a classification model. It can be calcu-
lated by Eq. (10)

(7)Precision =
TP

TP + FP
,

(8)Recall =
TP

TP + FN
,

(9)Accuracy =
TP + TN

TP + FP + FN + TN
,

The precision–recall (P–R) curve is plotted with the 
horizontal coordinate as the recall rate R and the vertical 
coordinate as the precision rate P . The area enclosed by 
this curve is the average precision (AP). The calculation 
of AP is based on Eq. (11)

Mean average precision (mAP) is another commonly 
used evaluation metric in target detection models, which 
is the average of AP rate of each category.

The Intersection over Union (IoU) ratio is a crucial con-
cept in target detection. It is the ratio of the intersection 
areas and union areas between the predicted box and the 
ground truth box, with non-deformation and non-negativ-
ity on the scale, as shown in Eq. (12). Bgt is the area of 
ground truth box, and B is the area of predicted box. wgt 

(10)F1 =
2 × Precision × Recall

Precision + Recall
.

(11)AP = ∫
1

0

P(R)dR.

Fig. 9  The network architecture of YOLOv5s-BC



 Journal of Real-Time Image Processing (2024) 21:8888 Page 10 of 16

and hgt are the width and height of the ground truth box 
respectively. Similarly, w and h are the width and height of 
the predicted box, respectively (see Fig. 10a)

In Fig. 10a, it can be observed that two boxes did not 
intersect and as a result, IoU value is equal to zero which is 
insufficient to indicate their mutual distance. Additionally, 
when the loss is equivalent to zero, there is no backward 
transfer of gradient, and therefore, no learning progress can 
occur. Consequently, IoU falls short in providing a robust 
representation of their intersection. Figure 10b demonstrates 
that in both cases the IoU remains equal, however, their 
degree of overlap is different. To address this, numerous 
solutions have been proposed recently to enhance the IoU 
calculation. In this research, we adopt the original YOLOv5s 
selection, namely Complete IoU (CIoU), to compute the box 
loss (Box Loss).

The CIoU loss is proposed considering that the consist-
ency of the bounding box aspect ratio is an important geo-
metric factor [29]. � is a positive trade-off parameter (See 
Eq. (13)), � is the similarity of the metric aspect ratio (see 
Eq. (14)), where b and bgt denote the central points of ground 
truth box and predicted box, distance(⋅) is the Euclidean dis-
tance, and length(⋅) is the diagonal length of the smallest 

(12)IoU =
|B ∩ Bgt|
|B ∪ Bgt|

.

closed box that covers both boxes. CIoU loss is calculated 
by Eq. (15)

The Binary Cross Entropy (BCE) loss function is utilized 
to compute both classification loss (Cls Loss) and object 
loss (Obj Loss), as demonstrated in Eq. (16). n is the total 
number of samples, yi is the category which the i sample 
belongs to, and xi is the predicted probability of the i sample

The loss function measures the difference between pre-
dicted and ground truth information. A lower loss function 
value indicates greater similarity between the predicted and 
ground truth information. Therefore, the loss function is also 
an essential index to evaluate the target detection model. The 
loss function for our model is divided into three major parts: 
Box Loss, Cls Loss, and Obj Loss. It is the weighted sum of 
these losses (See Eq. (17))

4  Experiments and discussion

4.1  Experimental setup

In this experiment, the training and testing of the model were 
done on the server. The server configuration parameters are 
shown in Table 2. In addition, the YOLOv5s-BC network 

(13)� =
�

(1 − IoU) + �
,

(14)� =
4

�2

(
arctan

wgt

hgt
− arctan

w

h

)2

,

(15)

LossCIoU = 1 − CIoU = 1 − IoU +

(
distance(b, bgt)

length(B,Bgt)
+ ��

)
.

(16)LossBCE = −
1

n

n∑

i=1

[
yi ln

(
xi
)
+
(
1 − yi

)
ln
(
1 − xi

)]
.

(17)
Loss = coefbox × Lossbox + coefcls × Losscls + coefobj × Lossobj.

Fig. 10  IoU values for different situations

Table 2  Server configuration parameters

Parameters On the server

Operating system Ubuntu 18.04
GPU RTX A4000 (16GB)
CPU Intel Xeon Gold 5320
Deep learning framework Pytorch 1.8.1
Programming language Python 3.8
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employs stochastic gradient descent (SGD) as the optimizer, 
with specific hyper-parameters shown in Table 3. Addition-
ally, the model was trained for 200 epochs, and the batch size 
for model training was set to 16. The input image had a size 
of 640 pixels by default. After the above training parameters 
are determined, the model can be trained accordingly.

4.2  Experimental results

4.2.1  Comparison of different target detection algorithms

In this work, a series of ablation experiments were per-
formed on the apple dataset generated in Sect. 2 to assess the 
efficacy of the improved YOLOv5s-BC model. The results 
of the experiments are presented in Table 4.

After the inclusion of three additional modules, an 
enhanced detection model superior to YOLOv5s was 
achieved after training, albeit with a slight decrease in infer-
ence speed. Concurrently, the augmented complexity of the 
model leads to a minor increase in the generated weight files. 
To compensate for information loss during the transmission 
from the backbone network to the neck network and enhance 
the representation ability of the feature map. The network 
incorporates the CA attention mechanism module in series, 
leading to a significant increase in the average detection 
accuracy of the model. By further integrating shallower 
features and deep features, and incorporating the BiFPN 
module into the network, the convergence speed of model 
is notably enhanced, with the curve beginning to converge 
by the 120th epoch. The mAP has seen a 0.2% increase 
post-integration, and the AP for the block category has also 
improved by 0.4%. Finally, to solve the problem that small 
targets in the image are easily overlooked, a new detection 

head is added to the network. The convergence speed is dou-
bled compared to the case without the detection head. The 
curve begins to converge at the 60th epoch. Experimental 
findings demonstrate that the proposed improved strategy 
effectively boosts the detection accuracy of apple targets in 
complex environments.

Figure 11 shows the change in average detection accuracy 
mAP during the training process of 200 epochs when add-
ing different improvement strategies to the model. Figure 12 
shows the changes in the loss function loss during the train-
ing process of 200 epochs when adding different improve-
ment strategies to the model.

The efficacy of the YOLOv5s-BC was further tested by 
evaluating its performance against several other promi-
nent target detection models, namely, YOLOv8, YOLOv4, 
YOLOv3, SSD, Faster R-CNN (VGG), and Faster R-CNN 
(ResNet50). Specifically, Faster R-CNN (VGG) and Faster 
R-CNN (ResNet50) employ VGG and ResNet50 as their 
respective backbone networks. All eight models were trained 
using the same training dataset and parameters determined 
previously. The training results of different target detec-
tion algorithms are presented in Table 5. It shows that the 
improved YOLOv5s-BC model achieves the 88.7% mAP 
on the test sets, outperforming the original YOLOv5s, 
YOLOv4, YOLOv3, SSD, Faster R-CNN (ResNet50), 

Table 3  Hyper-parameters

Hyper-parameters Value

Initial value of learning rate 0.01
Momentum 0.937
Weight decay 0.0005
Box loss coefficient 0.05
Cls loss coefficient 0.5
Obj loss coefficient 1.0

Table 4  Ablation experiments 
on apple dataset

YOLOv5s CA BiFPN New head mAP APblock FPS Mb

✔ 84.8 74.2 88.5 13.7
✔ ✔ 88.3 79.9 68.04 14.0
✔ ✔ ✔ 88.5 80.3 62.12 14.9
✔ ✔ ✔ ✔ 88.7 80.5 55.25 16.7

Fig. 11  The mAP values of different strategies in ablation experi-
ments
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and Faster R-CNN (VGG) models by 4.6%, 3.6%, 20.48%, 
23.22%, 15.27%, and 15.59%, respectively.

On the other hand, the YOLOv5s-BC model demonstrates 
37.57% decrease in detection speed in comparison to the 
original YOLOv5s. Nevertheless, it provides a significant 
improvement over YOLOv4, YOLOv3, SSD, Faster R-CNN 
(ResNet50), and Faster R-CNN (VGG), by 434%, 331%, 
240%, 201%, and 72%, respectively. This observation high-
lights the superiority of detection speed of the one-stage 
target detection algorithm over the two-stage target detection 
algorithm. It is essential to note that models designed for 
mobile devices with limited resources require lightweight. 
Therefore, the number of model parameters is an important 
index that assesses the model performance. The number 
of network layers and model parameters are increased in 
our proposed model due to the CA blocks embedded and a 
new detection head added. It is noted that the weight file of 
YOLOv5s-BC is 21.9% bigger than the original YOLOv5s. 
However, it is smaller than YOLOv8, YOLOv4, YOLOv3, 
SSD, Faster R-CNN (ResNet), and Faster R-CNN (VGG) by 

4.7, 239.3, 229.6, 74.4, 96.8, and 530.2 Mb, respectively. In 
conclusion, although our proposed method is slightly infe-
rior to the original YOLOv5s model in terms of detection 
speed and the number of model parameters, it is higher than 
the original YOLOv5s model in terms of detection accu-
racy. The overall performance of our proposed model is 
also the highest when compared with other target detection 
algorithms.

The P–R curves in Fig. 13 depict the performance of the 
proposed model by comparing its prediction results with the 
true labels at different thresholds. A model is considered to 
perform better when its P–R curves for different categories 
of targets are closer to the upper right corner. Specifically, 
Table 6 displays the P–R curve and F1 values of the pro-
posed model, while Table 7 illustrates the accuracy of the 
proposed model when performed on the test set. For the 
pickable apples category, F1 is 91.6%. For the non-pickable 
apples category, F1 is 77.0%. This is due to the presence of 
leaves or overlapping apples obscuring them, making it dif-
ficult for the model to learn the complex high-level features. 
The overall F1 reaches 84.32%, which is the highest score 
among these algorithms. The detection accuracy reaches 
99.8% for the class of graspable apples and 98.55% for the 

Fig. 12  The loss values of different strategies in ablation experiments

Table 5  Comparison of 
detection results of different 
models

Models mAP (%) APblock (%) F1 (%) Detection speed 
(FPS)

Weight size (Mb)

Faster R-CNN
(VGG)

76.74 63.18 70.50 32.09 546.9

Faster R-CNN
(ResNet50)

76.95 62.44 70.50 18.34 113.5

SSD 68.1 50.86 68.12 16.27 91.1
YOLOv3 73.62 58.72 68.88 12.81 246.3
YOLOv4 85.62 76.11 81.31 10.35 256.0
YOLOv5s 84.8 74.2 79.83 88.5 13.7
YOLOv8s 88.6 80.4 84.0 56.49 21.4
YOLOv5s-BC 88.7 80.5 84.32 55.25 16.7

Fig. 13  The P–R curves of the proposed YOLOv5s-BC model



Journal of Real-Time Image Processing (2024) 21:88 Page 13 of 16 88

class of ungraspable apples. It is indicated that our model 
does not overfit on the test set and can detect new apple 
images well. Additionally, the model achieves a detection 
speed of over 55 FPS during video detection, demonstrating 
excellent recognition accuracy and efficiency in the real-time 
detection. Therefore, our model meets the standard require-
ments for mobile deployment.

4.2.2  Further test of the apple detection model

After conducting the aforementioned experiments, we have 
determined that the YOLOv5s-BC model offers the most 

optimal comprehensive performance, which satisfies the 
prerequisites for detecting apples in real time.

To further assess its accuracy in identifying the morpho-
logical attributes of apples, the feature maps of the detec-
tion layers were exhibited as heat maps. We chose picture 
number 1328 from the test set as the display image for 
conducting comparison experiments of YOLOv5s-BC and 
YOLOv5s models. Figure 14 illustrates the heat maps of 
both YOLOv5s and YOLOv5s-BC at the minimum detec-
tion layer. The YOLOv5s-BC model includes a new pre-
diction head to enhance recognition of smaller objects that 
may be concealed by leaves or located far away. Detection 
results at small and medium scales reveal that the YOLOv5s 
model only provides a rough indication of the target loca-
tion, which includes unnecessary information like leaves and 
branches. In comparison, our proposed model can identify 
the target more accurately while avoiding incorporating 
irrelevant details like leaves and branches, especially on 
small and medium scales. This is due to the CA mecha-
nism, which enables the model to better focus on the most 
relevant parts of the image and thus enhances the overall 
detection accuracy.

To demonstrate the effectiveness of the improved model 
more visually, testing has been performed based on the apple 
images randomly selected from the produced apple image 
test set. In addition, to further illustrate that the improved 
model is also applicable to other apple orchards, apple 
images were downloaded from the publicly available apple 

Table 6  Results of the proposed model

Category Apple (%) Block (%) Mean (%)

Precision 91.3 74.7 83.0
Recall 91.9 79.5 85.7
F1 91.6 77.0 84.3

Table 7  Accuracy of the proposed model

Category Apple Block

Ground truth 6259 5101
Detection results 6249 5027
Accuracy 99.8% 98.55%

Fig. 14  Heat maps of YOLOv5s-BC and YOLOv5s
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dataset published by the Robotic Sensor Networks Labora-
tory at the University of Minnesota to supplement the test set 
[4]. The images tested in Fig. 15 are from the produced apple 
image test set, and the images tested in Fig. 16 are from 
the MinneApple dataset. The red box in the figure indicates 

that the test object is of the category “apple”. The blue box 
indicates that the test object is of the category “block”, and 
the yellow dashed box indicates a missed detection. In the 
figure, the long distance represents the distance from the 
depth camera to the apple tree between 110 and 130 cm, 
and the short distance represents the distance from the depth 
camera to the apple tree between 55 and 65 cm.

Specifically, Fig. 15 presents the detection results before 
and after the improvement of the YOLOv5s model in the 
near field of view scene. Figure 15a, c depicts the detection 
outcomes of the YOLOv5s model, while Fig. 15b, d illus-
trates the detection outcomes of the YOLOv5s-BC model. 
It is evident from the figures that the original model had 
numerous instances of missing apples during detection, with 
a total of 15 and 11 apples being missed, respectively. The 
improved model YOLOv5s-BC has significantly improved 
this situation. In particular, it can accurately identify and 
classify small target apples that are far away and apples 
obscured by leaves. In addition, the confidence level of the 
improved model for the apple target is above 75%, which 
fully demonstrates that the improved model has better detec-
tion results for apple targets in close-range scenes. Fig-
ure 16 illustrates the detection results before and after the 
model YOLOv5s improvement in the far-field scene. Where 
Fig. 16a shows the detection results of model YOLOv5s and 
Fig. 16b shows the detection results of model YOLOv5s-BC. 
It can be observed from the figure that the original model 

Fig. 15  Comparison of detec-
tion results before and after 
model improvement in near 
field of view scenes (short 
distance: 55–65 cm)

Fig. 16  Comparison of detection results before and after model 
improvement in far field of view scenarios (long distance: 110–
130 cm)
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misclassifies the distracting objects obscured by leaves as 
"apple" due to the distance of the depth camera from the 
apple target. In addition, the original model misses ten tar-
gets in the detection when the targets are similar in color to 
the background. In contrast, the improved model has any 
high detection rate for apples in the new orchard environ-
ment. Especially, for the small target apples in the image, 
the improved model can basically recognize and classify 
all of them correctly. The improved model YOLOv5s-BC 
constructs a more efficient feature fusion network, which 
enables full feature fusion of high-level and lower-level 
information, providing more detection information for small 
targets. The experimental results show that the improved 
model performs better than the original model in detecting 
small targets in long-range scenes.

5  Conclusions

In this paper, a real-time detection method based on 
YOLOv5s-BC is presented for apple detection. By adding 
a new detection head and combining the CA and BiFPN 
modules to optimize the YOLOv5s network model, the 
image features of target apples can be effectively extracted 
and the detection capability of smaller target apples can 
be enhanced. The detailed conclusions are summarized as 
follows.

The mAP performance of the YOLOv5-BC model on 
the test set reaches 88.7%, improving over the YOLOv5s, 
YOLOv4, YOLOv3, SSD, Faster R-CNN (ResNet50), and 
Faster R-CNN (VGG) models by 4.6%, 3.6%, 20.48%, 
23.22%, 15.27%, and 15.59%. The weight size of the model 
is only 16.7 Mb, larger than the original YOLOv5s by 3 
Mb, but smaller than YOLOv8, YOLOv4, YOLOv3, SSD, 
Faster R-CNN (ResNet), and Faster R-CNN (VGG) by 4.7, 
239.3, 229.6, 74.4, 96.8, and 530.2 Mb. The detection of an 
image takes only 0.018 s, which guarantees the real-time 
requirements for apple detection. In the heat map, adding 
a new detection head to the model can detect apples from 
smaller targets. In addition, adding the CA mechanism 
makes the model pay more attention to and learn the high-
level information of the detected targets and abandon other 
irrelevant information. In the test experiments at short and 
long distances, the proposed model can detect all the targets 
more perfectly, displaying the well robust performance of 
the model.

However, there are still certain limitations of the 
YOLOv5-BC model, such as the existence of a small num-
ber of missed or false detections. Therefore, the attention 
mechanism of the model needs to be further optimized, and 
the backbone network of the model needs to be modified 

as well, to further improve the detection accuracy of the 
proposed model.
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