
Vol.:(0123456789)

Journal of Real-Time Image Processing (2024) 21:84
https://doi.org/10.1007/s11554-024-01467-z

RESEARCH

Real‑time lossless image compression by dynamic Huffman coding
hardware implementation

Duc Khai Lam1,2

Received: 30 January 2024 / Accepted: 20 April 2024 / Published online: 7 May 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
Over the decades, implementing information technology (IT) has become increasingly common, equating to an increasing
amount of data that needs to be stored, creating a massive challenge in data storage. Using a large storage capacity can solve
the problem of the file size. However, this method is costly in terms of both capacity and bandwidth. One possible method is
data compression, which significantly reduces the file size. With the development of IT and increasing computing capacity,
data compression is becoming more and more widespread in many fields, such as broadcast television, aircraft, computer
transmission, and medical imaging. In this work, we introduce an image compression algorithm based on the Huffman cod-
ing algorithm and use linear techniques to increase image compression efficiency. Besides, we replace 8-bit pixel-by-pixel
compression by dividing one pixel into two 4-bit halves to save hardware capacity (because only 4-bit for each input) and
optimize run time (because the number of different inputs is less). The goal is to reduce the image’s complexity, increase the
data’s repetition rate, reduce the compression time, and increase the image compression efficiency. A hardware accelerator
is designed and implemented on the Virtex-7 VC707 FPGA to make it work in real-time. The achieved average compression
ratio is 3,467. Hardware design achieves a maximum frequency of 125 MHz.

Keywords  Dynamic Huffman coding · Linear prediction · Real time · FPGA

1  Introduction

Image compression is an essential area of research in the
field of data compression. Today, with social platform devel-
opment, image and video data sizes are also increasing.
Therefore, image and video compressions are being widely
researched and developed because these are practical appli-
cations. Image compression methods are divided into two
categories: lossy compression and lossless compression
[13]. Both compression methods have advantages and disad-
vantages and are practically applied in many fields. Figure 1
shows the results of two methods of image compression.
There are several image compression algorithms:

Lempel–Ziv–Welch (LZW) [15]: They are also effective
for highly similar data sets, complex for large samples, and
not very duplicated.

Shannon–Fano coding [7]: The descending probability
sort method can better handle complex files, but the com-
pression ratio is not good because it has not yet created a
tree optimal binary.

Huffman coding [14]: The Huffman coding algorithm
compresses data in a lossless form. This algorithm must
browse the entire file before compressing and saving binary
tree information for decompression.

In this work, we propose a dynamic Huffman coding to
handle the limitations of the Huffman coding algorithm.
Besides, we use it in conjunction with the linear prediction
method to simplify the compressed data. In addition, we split
pixels to make data simpler. It helps us to reduce the com-
pression time and increase the compression rate. Finally, we
propose the hardware design architecture to implement the
proposed dynamic Huffman coding to make it work in real
time. Our goal is to successfully implement the algorithm
on the hardware platform, using Virtex-7 VC707 FPGA,

 *	 Duc Khai Lam
	 khaild@uit.edu.vn

1	 University of Information Technology, Ho Chi Minh City,
Vietnam

2	 Vietnam National University, Ho Chi Minh City, Vietnam

http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-024-01467-z&domain=pdf

	 Journal of Real-Time Image Processing (2024) 21:8484  Page 2 of 10

running at 400 MHz with frequency and achieve an average
compression ratio of 2.5.

The rest of this work is organized as follows: Sect. 2 intro-
duces the background of this work. Section 3 presents the
proposed algorithm used in this work. Section 4 describes
the hardware architecture of the proposed algorithm. Sec-
tion 5 shows the experimental results of the proposed algo-
rithm. Finally, Sect. 6 gives the conclusions of this work.

2 � Background

2.1 � Linear prediction

Prediction is a core part of compression methods. Because this
method can minimize most of the redundant space between

pixels [12], which improves the compression ratio, choosing
a tool to optimize the redundancy between pixels is essential.

The linear prediction method is used to remove the redun-
dancy between the pixels of the image, the predicted value
is rounded to the nearest integer, so the error value predic-
tion (the difference between the original value and the value
after prediction) is also an integer [10]. This ensures that the
reconstructed image is the same as the original image. The
block diagrams of the linear predictive encoding and decoding
system are shown in Fig. 2a and b.

The input image is first passed through the predictor, where
the neighboring pixels are calculated according to the predic-
tion template. The resulting values are then rounded to the
nearest integer. Finally, the error value is obtained by calcu-
lating the difference between the original pixel value and the
predicted value. The prediction model of the method is shown
in Table 1

The top left and bottom right pixel values of the input image
are retained. The pixel values at the other location are cal-
culated to obtain the predicted value Pi,j , as shown in Eq. 1.
Then, the predicted value is rounded, as shown in Eq. 2, and
the error value Ei,j is calculated based on the results of the
original pixel value and the predicted value, as shown in Eq. 3.

(1)Pi,j =
1

5
(Ii−1,j−1 + Ii−1,j + Ii−1,j+1 + Ii,j−1 + Ii,j+1)

Fig. 1   Lossless and lossy compressed images

Fig. 2   Linear prediction algo-
rithm

Table 1   Prediction linear model
Ii−1,j−1 Ii−1,j Ii−1,j+1

Ii,j−1 Ii,j Ii,j+1

Journal of Real-Time Image Processing (2024) 21:84	 Page 3 of 10  84

3 � Proposed method

3.1 � Dynamic Huffman coding

The Huffman Coding algorithm [14] uses the probability
distribution of the alphabet to develop codes for symbols
based on a binary tree.

Huffman coding allows the creation of an optimized
binary tree, significantly reducing the number of bits used
per pixel, and improving the compression ratio. However,
it requires knowing the input data in advance, calculating
the probabilities, and arranging the data. In addition, the
most significant disadvantage of Huffman Coding is that it
has to save the tree to use for the decompression process.

Therefore, our proposed algorithm is to use a dynamic
Huffman coding algorithm. It is an algorithm developed
based on Huffman coding to create a dynamic binary tree.
Instead of knowing the whole source data to compress like
the Huffman coding, the dynamic Huffman coding com-
presses each symbol of the source data when it is being
transmitted without having advanced knowledge of the
source data. The compressed data are decompressed after
receiving each symbol instead of receiving the entire data
and calculating the total number of characters to decom-
press like the Huffman coding algorithm. Therefore, the
dynamic Huffman coding can encode and decode the data
in real time.

Figure 3 shows how to implement the dynamic Huffman
coding algorithm. It includes five steps:

Step 1:	 The new input symbol is checked to determine
whether it is the first symbol in the dynamic binary tree.
If "Yes", a left side Not Yet Transferred (NYT) node and
a right side symbol node are born from the root node or
the last (parent) NYT node. The NYT node is called the
child node, and its weight is "0" right after being born.
The symbol node is unique, corresponding to each sym-
bol, and its weight is initiated by "1" right after being
born. If "No", the existing node of that symbol is tracked
in the dynamic binary tree, then its weight is added up
by "1".

Step 2:	 The compressed code is extracted by the codes of
the paths from the root node to the parent NYT node and
the binary codes of the input symbol.

(2)Pi,j = round(Pi,j)

(3)Ei,j = Ii,j − Pi,j

Step 3:	 Assign codes "0" and "1" for the path from the par-
ent node to the child NYT node and the symbol node,
respectively.

Step 4:	 Update the weights of the root and parent nodes in
the dynamic binary tree. The weight of the parent node
is the sum of its child NYT node and symbol node. The
weights are updated from the latest parent node to the
root node.

Step 5:	 Swap the paths of the dynamic binary tree. The
weights of the NYT node and symbol node of the same
parent nodes are compared. The node with the higher
weight is swapped to the right side along with its paths.

Figure 4 shows an example of the superiority of the Dynamic
Huffman coding over the conventional Huffman coding. This
example shows the progress in using Dynamic Huffman cod-
ing to compress the source data "ABBA". Each symbol is
presented by 4 bits in hexa format. When the first symbol
"A" is input, the compressed code of "A" is extracted by the
hexa code of "A" (1010). Then, the symbol "B" is input, and
the compressed code of "B" is extracted by the path code
from its parent node to the root node (0) and its hexa code
(1010). Then, another symbol, "B", is input; since "B" has
been input before, the compressed code of "B" is extracted
only by the path code from its parent node to the root node
(0). At this time, the weight of the left child node is bigger
than that of the right one, and then these nodes and their
paths are swapped. Another symbol, "A", is input; since "A"

START

(First input symbol)

First appeared symbol?

Parent NYT node gives birth

to a child NYT node and a

symbol node

Initiate weights for the child

NYT node and symbol node

Assign codes for the paths

from the parent node to the

child NYT and symbol nodes

Update weight for the

existing symbol node

Extract the compressed code

Update weights for the root

and all parent nodes

Swap the paths of the

dynamic tree

Next input symbol come?

END

Yes

Yes

No

No

Step 1

Step 2

Step 3

Step 4

Step 5

Fig. 3   Dynamic Huffman coding algorithm

	 Journal of Real-Time Image Processing (2024) 21:8484  Page 4 of 10

has also been input before, the compressed code of "A" is
extracted only by the path code from its parent node to the
root node (0). Finally, the compressed codes for the source
data "ABBA" are "1010 0 1011 0 0".

From the algorithm in Fig. 3 and the example in Fig. 4,
the compressed code of each symbol of the source data is
extracted immediately after each incoming symbol. There-
fore, the advantages of dynamic Huffman coding, when com-
pared to Huffman coding, are that, first, data can be com-
pressed and decompressed in real-time while the data are
being transmitted between the transmitter and the receiver.
Second, if data is changed while compressing is processed,
only the changed symbols are re-compressed instead of re-
compressed entire source data like the Huffman coding.
Third, it reduces the time needed to compress and reduces
data storage memory since it does not need to browse the
entire source data before compressing.

3.2 � Pixel code to Hexa code

The idea is based on a dynamic binary tree to compress pix-
els, where color values are represented differently with 256
values. Therefore, a binary tree implementation would take
256 nodes to represent the pixel values in the tree, making
the binary tree path costly for each input data. The solution
to this problem is to convert the input data type to hex code

and then process each character instead of going through a
whole pixel.

With this method, we only create a binary tree with a
maximum of 16 nodes containing data (equivalent to 16
hex characters) and 16 NYT nodes representing the path
of the binary tree at each node. In addition, the hardware
implementation will reduce the area significantly. With the
implementation, it only takes 32 registers to store for each
node instead of the original 256 registers. Besides, the tree
traversal will take a long time when the number of nodes in
the tree is too large if the tree with 256 nodes is used. There-
fore, the input processing minimizes the execution time of
the compression system.

4 � Proposed hardware architecture

4.1 � System overview

The system overview is depicted in Fig. 5. The input image
has different dimensions (256 x 256 or 512 x 512). We con-
verted the original gray image to a data type stored in Hexa-
decimal code on Python programming language software,
with each stored pixel represented by 8 bits. After that, the
Compression Core block compresses the image into a binary
bit string - this process is done on the hardware system. The
results obtained from the compression process are decom-
pressed and converted back to the original image by the
software. To evaluating the proposed system, we analyze,
calculate, and synthesize compression parameters and com-
pare them with the original image.

4.2 � Hardware architecture details

The Compression Core block has a detailed architecture, as
shown in Fig. 6, with different sub-blocks to easily imple-
ment and optimize the design.

First, the Linear Prediction block performs a linear pre-
diction process to process the input from 8 bits to 4 bits by
calculating the error value based on the neighboring pixel
values. The results of the Linear block will become the input
for the Check Memory, Check Tree, and Tree Register File

1

10

root node

NYT A: 1010

10

2

11
A: 1010

10

10
B: 1011

10

3

12
A: 1010

10

20
B: 1011

10

3

1 2
A: 1010

10

20
B: 1011

10

NYT

NYT NYT

Swapping

Input symbol: B

Input symbol: B

Input symbol: A

h

h

h

h

h

h

h

Compressed code

for A: 1010

Compressed code

for B: 0 1011

Compressed code

for B: 0

Compressed code ABBA: 1010 0 1011 0 0

4

2 2
A: 1010

10

20
B: 1011

10

NYT

h

h

Input symbol: A

Compressed code

for A: 0

Fig. 4   Example of using Dynamic Huffman coding to compress the
source data "ABBA"

Fig. 5   Overview of image compression system

Journal of Real-Time Image Processing (2024) 21:84	 Page 5 of 10  84

blocks. The Linear Prediction block helps reduce the num-
ber of input bits from 8 bits to 4 bits. The input of the linear
block will range from 0 to F. Normally, storing pixels will
take 256 registers to store the value for each node. However,
with the linear block transformation, we will only need 32
registers to store nodes in the tree, including 16 value nodes
and 16 NYT nodes. We see a big difference compared to 256
nodes to store pixel values.

The Check Memory block is responsible for checking
whether the value under consideration is in the binary tree,
with the input being the address value received from the
output of the Linear Prediction block. In case it is already
in the tree, this block is designed to use only 16 binary bits
to store the conditions of 16 data nodes in the tree. The bit
containing the value 1 means that the node has appeared in
the binary tree. Otherwise, the node has never appeared in
the tree. This design helps save maximum system area. The
Check Tree block checks the position of that value in the tree
by detecting each node in the tree (from the root node to the
leaf node) that satisfies the condition that the node value in
the tree matches the pixel value [3:0] taken from the Linear
block, the results of the Check Tree block will be the condi-
tion to execute the Output Block in case the Check Memory
block gives output equal to 1 (the node already exists in
the tree). This block uses only 16 binary bits to store the
conditions of 16 data nodes in the tree. The bit containing
the value 1 means that the node has appeared in the binary

tree. Otherwise, the node has never appeared in the tree. This
design helps save maximum system area.

Then, the Output block is responsible for outputting the
path of the node already in the tree (in case it already exists)
or the path of the current NYT node (in case it doesn’t exist).
The results of the Output Block are a string binary, which
includes the path of the node under consideration and the
binary value of the pixel [3:0]. Designing the two Check tree
and Output blocks to be independent of each other helps the
design to execute the pipeline, reducing system execution
time.

Next, Insert Register, considered a temporary register,
is used to store node values in the tree temporarily after
the node has complete data. This register is responsible for
writing the value to the Tree Register File block if that value
does not exist. The tree register file is designed specifically
to use only 32 registers for storage. Each register includes
value fields with specific meanings used to compare nodes
in the tree with each other. In addition, tree register files can
be read and written independently.

Finally, the Run Modify block is responsible for updating
the binary tree. The Run Modify checks to see if the node
in the tree satisfies the conditions of the binary tree (The
farther from the root node, the smaller the weight must be.
The left cannot be greater than the weight of the right node).
Then, through the Swap node block, a swap of the node
under consideration and the node in the tree is performed.

Fig. 6   Description of compression core hardware architecture

	 Journal of Real-Time Image Processing (2024) 21:8484  Page 6 of 10

Table 2 shows the synthesized results of each block based
on the proposed architecture on board the Virtex-7 VC707
FPGA. The duty cycle is the minimum time for each block
to perform the computation. Based on the duty cycle, each
block will have different operating frequencies. The remain-
ing blocks in the architecture are Register or Register File, so
the operation parameters will be based on the Compression
Core block. The Compression Core block has an operating
cycle based on the largest operating cycle on each module.
The operating cycle for the entire system is 8 ns, with an
operating frequency of 400 MHz.

5 � Experimental results

5.1 � Evaluation methodology

The evaluation method of the proposed algorithm is shown
in Fig. 7. The input image is converted to pixels using a text
file in Python language. The hardware compression system is
implemented using the hardware description language (Ver-
ilog). The hardware resources and the operating frequency
of our compression system are obtained by the synthesis

and simulation on the Vivado Embedded Development Kit
(EDK) platform. After performing image compression on
the hardware system, the results are obtained in binary code.
We analyzed the results and compared this with the com-
pression system on the software. If correct, these results are
processed by the software decompression system. The image
is rebuilt to the original image after performing the decom-
pression. In this work, we use an image data set consisting
of images with different sizes (256 x 256, 512 x 512), with
the endings.tif, and.pgm provided by the author in [1, 2].

5.2 � Results on the software implementation

The compression ratio (CR) measures the relative reduction
in the size of the data representation produced by the com-
pression algorithm. Compression ratio is defined as the ratio
between the size before compression and the size after com-
pression. Equation 4 shows how to calculate Compression
Rate, CR is Compression Rate, Sizeoriginal is the size of the
images original, Sizeencode is the size of images after encode.

The Bits per pixel (BPP) is the total number of bits used to
encode a pixel in the image. The smaller the number, the
simpler the image, and the better the algorithm. Equation 5
shows how to calculate value bits per pixel, BPP is bits per
pixel, TOB is the total of bits of images, and TOP is the total
of pixels of images.

We use Visual Studio platform to simulate the results of the
system. Figure 8 shows the testing images with the resolu-
tions of 512x512 and 256x256.

(4)CR =
Sizeoriginal

Sizeencode

(5)BPP =
TOB

TOP

Table 2   Synthesis results of each block

Block Clock (ns) Frequency (MHz)

Linear Prediction 2.5 ns 400 MHz
Check Tree 2.5 ns 400 MHz
Output Block 2.5 ns 400 MHz
Run Modify Block 2.5 ns 400 MHz
Check Parent 3 ns 333 MHz
Tree 3 ns 333 MHz
Swap Node 3 ns 333 MHz
Compresstion Core 3 ns 125 MHz

Fig. 7   Method evaluate results
of proposed algorithm

Journal of Real-Time Image Processing (2024) 21:84	 Page 7 of 10  84

Table 3 describes the results of the simulation of the
compression system on the software. The parameters are
calculated based on the compression ratio and BPP of the
dataset Waterloo [10] with the image extension.tif.

With this dataset, the proposed method achieves an
average compression ratio of 3.467 and an average BPP of

3.14. The results show that the algorithm is highly effec-
tive for images with large sizes and high complexity.

Figure 9 depicts a dataset of type Medical Images taken
from Kaggle [1], a dataset with images with a resolution of
512 x512 in PNG images. The evaluation methodology is
shown in Table 4. For medical images that are highly com-
plex and require high accuracy, the algorithm achieves quite
high efficiency. The average compression ratio is 2.064, and
bits per pixel is 4.0444.

Through simulation results from two datasets, we found
that the compression ratio is significantly improved for the
Medical image set. The bits per pixel ratio of the Medical
image set is better than that of the Waterloo image dataset.
In addition, resolution greatly affects the compression ratio
of the image.

5.3 � Results on the hardware implementation

We compared CR, BPP, and run-time results between the
technique using the Linear prediction combined with the full
pixel input dynamic Huffman (full pixel) and the technique
using the Linear prediction combined with the half pixel
input dynamic Huffman (half pixel). Comparison results are
shown in Table 5, with dataset in Fig. 10 with size images
512 × 384.

Fig. 8   12 different images from the Waterloo image compression benchmark

Table 3   Results on software implementation with dataset Waterloo

Images Resolution CR BPP

Bird 256 × 256 2.55 3.14
Bridge 256 × 256 1.74 4.6
Circles 256 × 256 7.28 1.1
Crosses 256 × 256 6.46 1.24
Slope 256 × 256 3.72 2.15
Squares 256 × 256 7.9 1.01
Boat 512 × 512 2.14 3.74
Library 464 × 352 1.73 4.64
Goldhill2 512 × 512 2.07 3.87
Lena2 512 × 512 2.18 3.68
Mandrill 512 × 512 1.67 4.80
Peppers 512 × 512 2.16 3.72
Average 3.467 3.14

Fig. 9   Five images from dataset media CT Covid

	 Journal of Real-Time Image Processing (2024) 21:8484  Page 8 of 10

The results show that the half-pixel technique is better
than the conventional full-pixel technique. The average
compression ratio parameter of half a pixel is 1.046, which
is better than that of the full pixel is 1.03. The BPP value
is also better, with half pixel 7.69 compared to 7.9 for full
pixel. Especially with pixel division, the number of differ-
ent inputs will be less, leading to a shorter average running
time. The average running time for half pixels is 13.8 s and
44.1 s for full pixels.

5.4 � Compare results with other techniques

Table 6 describes the results of comparing the BPP of this
proposed method with the algorithm proposed [10] and
other algorithms such as Huffman, Arithmetic Coding, JPEG
2000, JPEG-LS, CALIC [11], HEVC RExt, 7-Zip and the
Integer Wavelet Transform (IWT) - Huffman coding with
data set from the Waterloo images in Fig. 8.

As shown in Table 6, the BBP results of the proposed
technique are better than those of other techniques in images
with many textures, such as Bridge, and Mandrill. With

image Bridge, the BPP of the proposed algorithm is 4.6,
and the BPP average of another algorithm is 6.3. With image
Mandrill, the BPP of the proposed algorithm is 4.8, and
the BPP average of another algorithm is 6.35. Additionally,
the 7-Zip algorithm works well on simple images with less
complex textures.

Table 7 describes the hardware implementation results
of the proposed algorithm with related articles. The results
show that the proposed algorithm runs with a cycle time
shorter than other works, 0.5 times faster than the conven-
tional Huffman Coding algorithm, and 0.25 times faster
than the algorithm used in [5, 9]. In addition, the number
of combinational circuit blocks (LUTs) used by the algo-
rithm proposed is lower than the Huffman Coding [8] and
LZW [6] algorithms. With the results shown in Table 7, the
LZW algorithm [6] has the smallest and best operating cycle
compared to the algorithm proposed by the group and other
articles. Regarding other parameters, some works do not
mention them, so we could not compare each parameter of
the article in detail with the proposed system.

Table 8 describes the hardware implementation results
of the the proposed architecture with those in other works
using the same Vivado design platform. The hardware
implementation results show that the compression ratio in
the proposed system has a better operating cycle than that
in the article [3], the cycle of the proposed method is 8 ns,
and the cycle of the method in [3] is 9.081 ns. In addition,
the hardware usage parameters in the proposed method are
more optimal than those of the Modified color transforma-
tion (MCT/SCF) method in terms of the number of Flip Flop
used. We use 160 LUTs, 400 Register, and 1 Block Ram in
the proposed design.

Table 4   Results on the software implementation with medical images

Images Type Resolution CR BPP

Image 1 png 512x384 2.63 3.04
Image 2 png 512x384 2.57 3.11
Image 3 png 512x384 1.69 4.71
Image 4 png 512x384 1.70 4.73
Image 5 png 512x384 1.73 4.63
Average 2.064 4.0444

Table 5   Compare between the
half pixel input technique and
full pixel input technique

CR BPP Run time Type

Images Size Half pixel Full pixel Half pixel Full pixel Full pixel Half pixel

Image 1 512 × 384 1.04 1.02 7.76 7.89 13 s 40 s bmp
Image 2 512 × 384 1.11 1.08 7.21 7.92 15 s 45 s bmp
Image 3 512 × 384 1.04 1.04 7.74 7.90 14 s 47 s bmp
Image 4 512 × 384 1.05 1.04 7.67 7.95 13 s 40 s bmp
Image 5 512 × 384 1.03 1.02 7.87 7.79 14 s 45 s bmp
Image 6 512 × 384 1.01 1.01 7.91 7.97 14 s 44 s bmp
Average 1.046 1.03 7.69 7.9 13.8 44.1

Fig. 10   Dataset bmp images from Kaggle

Journal of Real-Time Image Processing (2024) 21:84	 Page 9 of 10  84

6 � Conclusion

In this work, we present the real-time image compression
techniques based on Dynamic Huffman Coding addition Pre-
diction Linear to improve compression rate and values Bits
Per Pixel. The average compression ratio was 2.5, and the
average bits per pixel achieved 3.467. The proposed hard-
ware design uses the linear prediction input processing tech-
nique and pixel halving to optimize hardware capacity. The
operating frequency of the proposed hardware implemented
on board Virtex-7 VC707 FPGA is 125 MHz. Hardware use
resources include 160 LUTs, 400 Registers, and 1 Block
RAM.

Acknowledgements  This research was supported by The VNUHCM-
University of Information Technology’s Scientific Research Support
Fund.

Author Contributions  Duc Khai Lam defined the methodology and
designed, wrote, reviewed, edited, and revised the paper.

Data Availability  No datasets were generated or analyzed during the
current study.

Declarations 

Conflict of interest  The authors declare no conflict of interest.

References

	 1.	 Hayden gunraj, dataset covid x ct- a large-scale chest ct dataset
for covid-19 detection. https://​www.​kaggle.​com/​datas​ets/​hgunr​aj/​
covid​xct

	 2.	 Srachejack , dataset tid2013. https://​www.​kaggle.​com/​datas​ets/​
srach​ejack/​tid20​13

Table 6   Compression results in bpp of the Waterloo image set

Images Size Huff. Arith. Coding JPEG 2000 JPEG -LS CALIC HEVC Rext 7-Zip IWT +Huff.[10] Prop.

Bird 256 × 256 6.80 6.77 3.14 3.47 3.32 3.42 4.23 2.86 3.14
Bridge 256 × 256 7.69 7.67 5.91 5.79 5.54 5.71 6.32 4.49 4.60
Circles 256 × 256 1.85 1.78 1.26 0.15 0.14 0.15 0.11 1.34 1.1
Crosses 256 × 256 1.00 0.19 1.43 0.39 0.37 0.38 0.18 2.03 1.24
Slope 256 × 256 7.54 7.52 1.06 1.57 1.50 1.55 1.70 1.67 2.15
Squares 256 × 256 1.35 1.08 0.25 0.08 0.08 0.08 0.05 0.70 1.01
Boat 512 × 512 7.15 7.12 4.10 4.25 4.07 4.19 5.29 3.52 3.74
Library 464 × 352 5.87 5.85 5.83 5.10 4.88 5.03 4.25 5.17 4.64
Goldchill 512 × 512 7.50 7.48 4.65 4.71 4.51 4.64 5.60 3.80 3.87
Lena2 512 × 512 7.49 7.45 4.02 4.24 4.06 4.18 5.52 3.25 3.68
Mandrill 512 × 512 7.38 7.36 6.02 6.04 5.78 5.95 6.39 5.04 4.80
Peppers 512 × 512 7.60 7.57 4.40 4.49 4.30 4.43 5.55 3.51 3.72
Average 5.7662 5.65 3.51 3.36 3.22 3.31 3.77 3.15 3.14

Table 7   Results compare hardware parameters with other algorithms

Algorithm Cycle Frequency Luts Register Block ram Board FPGA

Static Huffman Coding [8] 12.5 ns 80 MHz 854 187 NA Altera Flex10K20RC240
AHDB + PDLZW [9] 10 ns 100 MHz NA NA NA NA
LZW [6] 3.5 ns 280.17 MHz 307 278 13 Virtex 7 VC707
PNG (LZ77 + Huffman) [5] 10 ns 100 MHz NA NA NA NA
LZ77 [4] 10.2 ns 109 MHZ NA NA NA Virtex 5
Proposed 8 ns 125 MHz 160 400 1 Virtex 7 VC707

Table 8   Results compare
hardware parameter simulate on
vivado tools

Algorithm Cycle Frequency Luts Register Block ram Board FPGA

MCT [3] 9.081 ns 164.447 MHz 976 1046 None Sparten3e
SC [3] 7.237 ns 128.179 MHz 208 416 None Sparten3e
Proposed 8 ns 125 MHz 160 400 1 Virtex 7 VC707

https://www.kaggle.com/datasets/hgunraj/covidxct
https://www.kaggle.com/datasets/hgunraj/covidxct
https://www.kaggle.com/datasets/srachejack/tid2013
https://www.kaggle.com/datasets/srachejack/tid2013

	 Journal of Real-Time Image Processing (2024) 21:8484  Page 10 of 10

	 3.	 Al-Shebani, Q., Premaratne, P., Vial, P.J., McAndrew, D.J., Hal-
loran, B.: Co-simulation method for hardware/software evaluation
using xilinx system generator: a case study on image compres-
sion algorithms for capsule endoscopy. In: 2018 12th International
Conference on Signal Processing and Communication Systems
(ICSPCS), pp. 1–4. IEEE (2018)

	 4.	 Gao, Y., Ye, H., Wang, J., Lai, J.: Fpga bitstream compression and
decompression based on lz77 algorithm and bmc technique. In:
2015 IEEE 11th International Conference on ASIC (ASICON),
pp. 1–4. IEEE (2015)

	 5.	 Huang, S., Zheng, T.: Hardware design for accelerating png
decode. In: 2008 IEEE International Conference on Electron
Devices and Solid-State Circuits, pp. 1–4. IEEE (2008)

	 6.	 Kagawa, H., Ito, Y., Nakano, K.: Throughput-optimal hardware
implementation of lzw decompression on the fpga. In: 2019 Sev-
enth International Symposium on Computing and Networking
Workshops (CANDARW), pp. 78–83. IEEE (2019)

	 7.	 Katti, R.S., Ghosh, A.: Security using shannon-fano-elias codes.
In: 2009 IEEE International Symposium on Circuits and Systems,
pp. 2689–2692 (2009). https://​doi.​org/​10.​1109/​ISCAS.​2009.​
51183​56

	 8.	 Lee, T., Park, J.: Design and implementation of static huffman
encoding hardware using a parallel shifting algorithm. IEEE
Trans. Nucl. Sci. 51(5), 2073–2080 (2004)

	 9.	 Lin, M.B., Lee, J.F., Jan, G.E.: A lossless data compression and
decompression algorithm and its hardware architecture. IEEE
Trans. VLSI Syst. 14(9), 925–936 (2006)

	10.	 Liu, X., An, P., Chen, Y., Huang, X.: An improved lossless image
compression algorithm based on huffman coding. Multimed.
Tools Appl. 81(4), 4781–4795 (2022)

	11.	 Lone, M.R.: A high speed and memory efficient algorithm for
perceptually-lossless volumetric medical image compression.

Journal of King Saud University - Computer and Information Sci-
ences 34(6, Part A), 2964–2974 (2022). https://​doi.​org/​10.​1016/j.​
jksuci.​2020.​04.​014.https://​www.​scien​cedir​ect.​com/​scien​ce/​artic​
le/​pii/​S1319​15782​03034​99

	12.	 Matsuda, I., Shirai, N., Itoh, S.: Lossless coding using predictors
and arithmetic code optimized for each image. In: Visual Con-
tent Processing and Representation: 8th International Workshop,
VLBV 2003, Madrid, Spain, September 18-19, 2003. Proceedings
8, pp. 199–207. Springer (2003)

	13.	 Satone, K., Deshmukh, A., Ulhe, P.: A review of image compres-
sion techniques. In: 2017 International conference of Electronics,
Communication and Aerospace Technology (ICECA), vol. 1, pp.
97–101 (2017). https://​doi.​org/​10.​1109/​ICECA.​2017.​82036​51

	14.	 Sharma, M., et al.: Compression using huffman coding. IJCSNS
Int. J. Comput. Sci. Netw. Secur. 10(5), 133–141 (2010)

	15.	 Sun, M.Y., Xie, Y.H., Tang, X.A., Sun, M.Y.: Image compression
based on classification row by row and lzw encoding. In: 2008
Congress on Image and Signal Processing, vol. 1, pp. 617–621
(2008). https://​doi.​org/​10.​1109/​CISP.​2008.​302

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://doi.org/10.1109/ISCAS.2009.5118356
https://doi.org/10.1109/ISCAS.2009.5118356
https://doi.org/10.1016/j.jksuci.2020.04.014
https://doi.org/10.1016/j.jksuci.2020.04.014
https://www.sciencedirect.com/science/article/pii/S1319157820303499
https://www.sciencedirect.com/science/article/pii/S1319157820303499
https://doi.org/10.1109/ICECA.2017.8203651
https://doi.org/10.1109/CISP.2008.302

	Real-time lossless image compression by dynamic Huffman coding hardware implementation
	Abstract
	1 Introduction
	2 Background
	2.1 Linear prediction

	3 Proposed method
	3.1 Dynamic Huffman coding
	3.2 Pixel code to Hexa code

	4 Proposed hardware architecture
	4.1 System overview
	4.2 Hardware architecture details

	5 Experimental results
	5.1 Evaluation methodology
	5.2 Results on the software implementation
	5.3 Results on the hardware implementation
	5.4 Compare results with other techniques

	6 Conclusion
	Acknowledgements
	References

