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Abstract
Over the decades, implementing information technology (IT) has become increasingly common, equating to an increasing 
amount of data that needs to be stored, creating a massive challenge in data storage. Using a large storage capacity can solve 
the problem of the file size. However, this method is costly in terms of both capacity and bandwidth. One possible method is 
data compression, which significantly reduces the file size. With the development of IT and increasing computing capacity, 
data compression is becoming more and more widespread in many fields, such as broadcast television, aircraft, computer 
transmission, and medical imaging. In this work, we introduce an image compression algorithm based on the Huffman cod-
ing algorithm and use linear techniques to increase image compression efficiency. Besides, we replace 8-bit pixel-by-pixel 
compression by dividing one pixel into two 4-bit halves to save hardware capacity (because only 4-bit for each input) and 
optimize run time (because the number of different inputs is less). The goal is to reduce the image’s complexity, increase the 
data’s repetition rate, reduce the compression time, and increase the image compression efficiency. A hardware accelerator 
is designed and implemented on the Virtex-7 VC707 FPGA to make it work in real-time. The achieved average compression 
ratio is 3,467. Hardware design achieves a maximum frequency of 125 MHz.
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1  Introduction

Image compression is an essential area of research in the 
field of data compression. Today, with social platform devel-
opment, image and video data sizes are also increasing. 
Therefore, image and video compressions are being widely 
researched and developed because these are practical appli-
cations. Image compression methods are divided into two 
categories: lossy compression and lossless compression 
[13]. Both compression methods have advantages and disad-
vantages and are practically applied in many fields. Figure 1 
shows the results of two methods of image compression. 
There are several image compression algorithms:

Lempel–Ziv–Welch (LZW) [15]: They are also effective 
for highly similar data sets, complex for large samples, and 
not very duplicated.

Shannon–Fano coding [7]: The descending probability 
sort method can better handle complex files, but the com-
pression ratio is not good because it has not yet created a 
tree optimal binary.

Huffman coding [14]: The Huffman coding algorithm 
compresses data in a lossless form. This algorithm must 
browse the entire file before compressing and saving binary 
tree information for decompression.

In this work, we propose a dynamic Huffman coding to 
handle the limitations of the Huffman coding algorithm. 
Besides, we use it in conjunction with the linear prediction 
method to simplify the compressed data. In addition, we split 
pixels to make data simpler. It helps us to reduce the com-
pression time and increase the compression rate. Finally, we 
propose the hardware design architecture to implement the 
proposed dynamic Huffman coding to make it work in real 
time. Our goal is to successfully implement the algorithm 
on the hardware platform, using Virtex-7 VC707 FPGA, 
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running at 400 MHz with frequency and achieve an average 
compression ratio of 2.5.

The rest of this work is organized as follows: Sect. 2 intro-
duces the background of this work. Section 3 presents the 
proposed algorithm used in this work. Section 4 describes 
the hardware architecture of the proposed algorithm. Sec-
tion 5 shows the experimental results of the proposed algo-
rithm. Finally, Sect. 6 gives the conclusions of this work.

2 � Background

2.1 � Linear prediction

Prediction is a core part of compression methods. Because this 
method can minimize most of the redundant space between 

pixels [12], which improves the compression ratio, choosing 
a tool to optimize the redundancy between pixels is essential.

The linear prediction method is used to remove the redun-
dancy between the pixels of the image, the predicted value 
is rounded to the nearest integer, so the error value predic-
tion (the difference between the original value and the value 
after prediction) is also an integer [10]. This ensures that the 
reconstructed image is the same as the original image. The 
block diagrams of the linear predictive encoding and decoding 
system are shown in Fig. 2a and b.

The input image is first passed through the predictor, where 
the neighboring pixels are calculated according to the predic-
tion template. The resulting values are then rounded to the 
nearest integer. Finally, the error value is obtained by calcu-
lating the difference between the original pixel value and the 
predicted value. The prediction model of the method is shown 
in Table 1

The top left and bottom right pixel values of the input image 
are retained. The pixel values at the other location are cal-
culated to obtain the predicted value Pi,j , as shown in Eq. 1. 
Then, the predicted value is rounded, as shown in Eq. 2, and 
the error value Ei,j is calculated based on the results of the 
original pixel value and the predicted value, as shown in Eq. 3.

(1)Pi,j =
1

5
(Ii−1,j−1 + Ii−1,j + Ii−1,j+1 + Ii,j−1 + Ii,j+1)

Fig. 1   Lossless and lossy compressed images

Fig. 2   Linear prediction algo-
rithm

Table 1   Prediction linear model
Ii−1,j−1 Ii−1,j Ii−1,j+1

Ii,j−1 Ii,j Ii,j+1
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3 � Proposed method

3.1 � Dynamic Huffman coding

The Huffman Coding algorithm [14] uses the probability 
distribution of the alphabet to develop codes for symbols 
based on a binary tree.

Huffman coding allows the creation of an optimized 
binary tree, significantly reducing the number of bits used 
per pixel, and improving the compression ratio. However, 
it requires knowing the input data in advance, calculating 
the probabilities, and arranging the data. In addition, the 
most significant disadvantage of Huffman Coding is that it 
has to save the tree to use for the decompression process.

Therefore, our proposed algorithm is to use a dynamic 
Huffman coding algorithm. It is an algorithm developed 
based on Huffman coding to create a dynamic binary tree. 
Instead of knowing the whole source data to compress like 
the Huffman coding, the dynamic Huffman coding com-
presses each symbol of the source data when it is being 
transmitted without having advanced knowledge of the 
source data. The compressed data are decompressed after 
receiving each symbol instead of receiving the entire data 
and calculating the total number of characters to decom-
press like the Huffman coding algorithm. Therefore, the 
dynamic Huffman coding can encode and decode the data 
in real time.

Figure 3 shows how to implement the dynamic Huffman 
coding algorithm. It includes five steps: 

Step 1:	 The new input symbol is checked to determine 
whether it is the first symbol in the dynamic binary tree. 
If "Yes", a left side Not Yet Transferred (NYT) node and 
a right side symbol node are born from the root node or 
the last (parent) NYT node. The NYT node is called the 
child node, and its weight is "0" right after being born. 
The symbol node is unique, corresponding to each sym-
bol, and its weight is initiated by "1" right after being 
born. If "No", the existing node of that symbol is tracked 
in the dynamic binary tree, then its weight is added up 
by "1".

Step 2:	 The compressed code is extracted by the codes of 
the paths from the root node to the parent NYT node and 
the binary codes of the input symbol.

(2)Pi,j = round(Pi,j)

(3)Ei,j = Ii,j − Pi,j

Step 3:	 Assign codes "0" and "1" for the path from the par-
ent node to the child NYT node and the symbol node, 
respectively.

Step 4:	 Update the weights of the root and parent nodes in 
the dynamic binary tree. The weight of the parent node 
is the sum of its child NYT node and symbol node. The 
weights are updated from the latest parent node to the 
root node.

Step 5:	 Swap the paths of the dynamic binary tree. The 
weights of the NYT node and symbol node of the same 
parent nodes are compared. The node with the higher 
weight is swapped to the right side along with its paths.

Figure 4 shows an example of the superiority of the Dynamic 
Huffman coding over the conventional Huffman coding. This 
example shows the progress in using Dynamic Huffman cod-
ing to compress the source data "ABBA". Each symbol is 
presented by 4 bits in hexa format. When the first symbol 
"A" is input, the compressed code of "A" is extracted by the 
hexa code of "A" (1010). Then, the symbol "B" is input, and 
the compressed code of "B" is extracted by the path code 
from its parent node to the root node (0) and its hexa code 
(1010). Then, another symbol, "B", is input; since "B" has 
been input before, the compressed code of "B" is extracted 
only by the path code from its parent node to the root node 
(0). At this time, the weight of the left child node is bigger 
than that of the right one, and then these nodes and their 
paths are swapped. Another symbol, "A", is input; since "A" 
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Fig. 3   Dynamic Huffman coding algorithm
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has also been input before, the compressed code of "A" is 
extracted only by the path code from its parent node to the 
root node (0). Finally, the compressed codes for the source 
data "ABBA" are "1010 0 1011 0 0".

From the algorithm in Fig. 3 and the example in Fig. 4, 
the compressed code of each symbol of the source data is 
extracted immediately after each incoming symbol. There-
fore, the advantages of dynamic Huffman coding, when com-
pared to Huffman coding, are that, first, data can be com-
pressed and decompressed in real-time while the data are 
being transmitted between the transmitter and the receiver. 
Second, if data is changed while compressing is processed, 
only the changed symbols are re-compressed instead of re-
compressed entire source data like the Huffman coding. 
Third, it reduces the time needed to compress and reduces 
data storage memory since it does not need to browse the 
entire source data before compressing.

3.2 � Pixel code to Hexa code

The idea is based on a dynamic binary tree to compress pix-
els, where color values are represented differently with 256 
values. Therefore, a binary tree implementation would take 
256 nodes to represent the pixel values in the tree, making 
the binary tree path costly for each input data. The solution 
to this problem is to convert the input data type to hex code 

and then process each character instead of going through a 
whole pixel.

With this method, we only create a binary tree with a 
maximum of 16 nodes containing data (equivalent to 16 
hex characters) and 16 NYT nodes representing the path 
of the binary tree at each node. In addition, the hardware 
implementation will reduce the area significantly. With the 
implementation, it only takes 32 registers to store for each 
node instead of the original 256 registers. Besides, the tree 
traversal will take a long time when the number of nodes in 
the tree is too large if the tree with 256 nodes is used. There-
fore, the input processing minimizes the execution time of 
the compression system.

4 � Proposed hardware architecture

4.1 � System overview

The system overview is depicted in Fig. 5. The input image 
has different dimensions (256 x 256 or 512 x 512). We con-
verted the original gray image to a data type stored in Hexa-
decimal code on Python programming language software, 
with each stored pixel represented by 8 bits. After that, the 
Compression Core block compresses the image into a binary 
bit string - this process is done on the hardware system. The 
results obtained from the compression process are decom-
pressed and converted back to the original image by the 
software. To evaluating the proposed system, we analyze, 
calculate, and synthesize compression parameters and com-
pare them with the original image.

4.2 � Hardware architecture details

The Compression Core block has a detailed architecture, as 
shown in Fig. 6, with different sub-blocks to easily imple-
ment and optimize the design.

First, the Linear Prediction block performs a linear pre-
diction process to process the input from 8 bits to 4 bits by 
calculating the error value based on the neighboring pixel 
values. The results of the Linear block will become the input 
for the Check Memory, Check Tree, and Tree Register File 
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blocks. The Linear Prediction block helps reduce the num-
ber of input bits from 8 bits to 4 bits. The input of the linear 
block will range from 0 to F. Normally, storing pixels will 
take 256 registers to store the value for each node. However, 
with the linear block transformation, we will only need 32 
registers to store nodes in the tree, including 16 value nodes 
and 16 NYT nodes. We see a big difference compared to 256 
nodes to store pixel values.

The Check Memory block is responsible for checking 
whether the value under consideration is in the binary tree, 
with the input being the address value received from the 
output of the Linear Prediction block. In case it is already 
in the tree, this block is designed to use only 16 binary bits 
to store the conditions of 16 data nodes in the tree. The bit 
containing the value 1 means that the node has appeared in 
the binary tree. Otherwise, the node has never appeared in 
the tree. This design helps save maximum system area. The 
Check Tree block checks the position of that value in the tree 
by detecting each node in the tree (from the root node to the 
leaf node) that satisfies the condition that the node value in 
the tree matches the pixel value [3:0] taken from the Linear 
block, the results of the Check Tree block will be the condi-
tion to execute the Output Block in case the Check Memory 
block gives output equal to 1 (the node already exists in 
the tree). This block uses only 16 binary bits to store the 
conditions of 16 data nodes in the tree. The bit containing 
the value 1 means that the node has appeared in the binary 

tree. Otherwise, the node has never appeared in the tree. This 
design helps save maximum system area.

Then, the Output block is responsible for outputting the 
path of the node already in the tree (in case it already exists) 
or the path of the current NYT node (in case it doesn’t exist). 
The results of the Output Block are a string binary, which 
includes the path of the node under consideration and the 
binary value of the pixel [3:0]. Designing the two Check tree 
and Output blocks to be independent of each other helps the 
design to execute the pipeline, reducing system execution 
time.

Next, Insert Register, considered a temporary register, 
is used to store node values in the tree temporarily after 
the node has complete data. This register is responsible for 
writing the value to the Tree Register File block if that value 
does not exist. The tree register file is designed specifically 
to use only 32 registers for storage. Each register includes 
value fields with specific meanings used to compare nodes 
in the tree with each other. In addition, tree register files can 
be read and written independently.

Finally, the Run Modify block is responsible for updating 
the binary tree. The Run Modify checks to see if the node 
in the tree satisfies the conditions of the binary tree (The 
farther from the root node, the smaller the weight must be. 
The left cannot be greater than the weight of the right node). 
Then, through the Swap node block, a swap of the node 
under consideration and the node in the tree is performed.

Fig. 6   Description of compression core hardware architecture
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Table 2 shows the synthesized results of each block based 
on the proposed architecture on board the Virtex-7 VC707 
FPGA. The duty cycle is the minimum time for each block 
to perform the computation. Based on the duty cycle, each 
block will have different operating frequencies. The remain-
ing blocks in the architecture are Register or Register File, so 
the operation parameters will be based on the Compression 
Core block. The Compression Core block has an operating 
cycle based on the largest operating cycle on each module. 
The operating cycle for the entire system is 8 ns, with an 
operating frequency of 400 MHz.

5 � Experimental results

5.1 � Evaluation methodology

The evaluation method of the proposed algorithm is shown 
in Fig. 7. The input image is converted to pixels using a text 
file in Python language. The hardware compression system is 
implemented using the hardware description language (Ver-
ilog). The hardware resources and the operating frequency 
of our compression system are obtained by the synthesis 

and simulation on the Vivado Embedded Development Kit 
(EDK) platform. After performing image compression on 
the hardware system, the results are obtained in binary code. 
We analyzed the results and compared this with the com-
pression system on the software. If correct, these results are 
processed by the software decompression system. The image 
is rebuilt to the original image after performing the decom-
pression. In this work, we use an image data set consisting 
of images with different sizes (256 x 256, 512 x 512), with 
the endings.tif, and.pgm provided by the author in [1, 2].

5.2 � Results on the software implementation

The compression ratio (CR) measures the relative reduction 
in the size of the data representation produced by the com-
pression algorithm. Compression ratio is defined as the ratio 
between the size before compression and the size after com-
pression. Equation 4 shows how to calculate Compression 
Rate, CR is Compression Rate, Sizeoriginal is the size of the 
images original, Sizeencode is the size of images after encode.

The Bits per pixel (BPP) is the total number of bits used to 
encode a pixel in the image. The smaller the number, the 
simpler the image, and the better the algorithm. Equation 5 
shows how to calculate value bits per pixel, BPP is bits per 
pixel, TOB is the total of bits of images, and TOP is the total 
of pixels of images.

We use Visual Studio platform to simulate the results of the 
system. Figure 8 shows the testing images with the resolu-
tions of 512x512 and 256x256.

(4)CR =
Sizeoriginal

Sizeencode

(5)BPP =
TOB

TOP

Table 2   Synthesis results of each block

Block Clock (ns) Frequency (MHz)

Linear Prediction 2.5 ns 400 MHz
Check Tree 2.5 ns 400 MHz
Output Block 2.5 ns 400 MHz
Run Modify Block 2.5 ns 400 MHz
Check Parent 3 ns 333 MHz
Tree 3 ns 333 MHz
Swap Node 3 ns 333 MHz
Compresstion Core 3 ns 125 MHz

Fig. 7   Method evaluate results 
of proposed algorithm



Journal of Real-Time Image Processing (2024) 21:84	 Page 7 of 10  84

Table 3 describes the results of the simulation of the 
compression system on the software. The parameters are 
calculated based on the compression ratio and BPP of the 
dataset Waterloo [10] with the image extension.tif.

With this dataset, the proposed method achieves an 
average compression ratio of 3.467 and an average BPP of 

3.14. The results show that the algorithm is highly effec-
tive for images with large sizes and high complexity.

Figure 9 depicts a dataset of type Medical Images taken 
from Kaggle [1], a dataset with images with a resolution of 
512 x512 in PNG images. The evaluation methodology is 
shown in Table 4. For medical images that are highly com-
plex and require high accuracy, the algorithm achieves quite 
high efficiency. The average compression ratio is 2.064, and 
bits per pixel is 4.0444.

Through simulation results from two datasets, we found 
that the compression ratio is significantly improved for the 
Medical image set. The bits per pixel ratio of the Medical 
image set is better than that of the Waterloo image dataset. 
In addition, resolution greatly affects the compression ratio 
of the image.

5.3 � Results on the hardware implementation

We compared CR, BPP, and run-time results between the 
technique using the Linear prediction combined with the full 
pixel input dynamic Huffman (full pixel) and the technique 
using the Linear prediction combined with the half pixel 
input dynamic Huffman (half pixel). Comparison results are 
shown in Table 5, with dataset in Fig. 10 with size images 
512 × 384.

Fig. 8   12 different images from the Waterloo image compression benchmark

Table 3   Results on software implementation with dataset Waterloo

Images Resolution CR BPP

Bird 256 × 256 2.55 3.14
Bridge 256 × 256 1.74 4.6
Circles 256 × 256 7.28 1.1
Crosses 256 × 256 6.46 1.24
Slope 256 × 256 3.72 2.15
Squares 256 × 256 7.9 1.01
Boat 512 × 512 2.14 3.74
Library 464 × 352 1.73 4.64
Goldhill2 512 × 512 2.07 3.87
Lena2 512 × 512 2.18 3.68
Mandrill 512 × 512 1.67 4.80
Peppers 512 × 512 2.16 3.72
Average 3.467 3.14

Fig. 9   Five images from dataset media CT Covid
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The results show that the half-pixel technique is better 
than the conventional full-pixel technique. The average 
compression ratio parameter of half a pixel is 1.046, which 
is better than that of the full pixel is 1.03. The BPP value 
is also better, with half pixel 7.69 compared to 7.9 for full 
pixel. Especially with pixel division, the number of differ-
ent inputs will be less, leading to a shorter average running 
time. The average running time for half pixels is 13.8 s and 
44.1 s for full pixels.

5.4 � Compare results with other techniques

Table 6 describes the results of comparing the BPP of this 
proposed method with the algorithm proposed [10] and 
other algorithms such as Huffman, Arithmetic Coding, JPEG 
2000, JPEG-LS, CALIC [11], HEVC RExt, 7-Zip and the 
Integer Wavelet Transform (IWT) - Huffman coding with 
data set from the Waterloo images in Fig. 8.

As shown in Table 6, the BBP results of the proposed 
technique are better than those of other techniques in images 
with many textures, such as Bridge, and Mandrill. With 

image Bridge, the BPP of the proposed algorithm is 4.6, 
and the BPP average of another algorithm is 6.3. With image 
Mandrill, the BPP of the proposed algorithm is 4.8, and 
the BPP average of another algorithm is 6.35. Additionally, 
the 7-Zip algorithm works well on simple images with less 
complex textures.

Table 7 describes the hardware implementation results 
of the proposed algorithm with related articles. The results 
show that the proposed algorithm runs with a cycle time 
shorter than other works, 0.5 times faster than the conven-
tional Huffman Coding algorithm, and 0.25 times faster 
than the algorithm used in [5, 9]. In addition, the number 
of combinational circuit blocks (LUTs) used by the algo-
rithm proposed is lower than the Huffman Coding [8] and 
LZW [6] algorithms. With the results shown in Table 7, the 
LZW algorithm [6] has the smallest and best operating cycle 
compared to the algorithm proposed by the group and other 
articles. Regarding other parameters, some works do not 
mention them, so we could not compare each parameter of 
the article in detail with the proposed system.

Table 8 describes the hardware implementation results 
of the the proposed architecture with those in other works 
using the same Vivado design platform. The hardware 
implementation results show that the compression ratio in 
the proposed system has a better operating cycle than that 
in the article [3], the cycle of the proposed method is 8 ns, 
and the cycle of the method in [3] is 9.081 ns. In addition, 
the hardware usage parameters in the proposed method are 
more optimal than those of the Modified color transforma-
tion (MCT/SCF) method in terms of the number of Flip Flop 
used. We use 160 LUTs, 400 Register, and 1 Block Ram in 
the proposed design.

Table 4   Results on the software implementation with medical images

Images Type Resolution CR BPP

Image 1 png 512x384 2.63 3.04
Image 2 png 512x384 2.57 3.11
Image 3 png 512x384 1.69 4.71
Image 4 png 512x384 1.70 4.73
Image 5 png 512x384 1.73 4.63
Average 2.064 4.0444

Table 5   Compare between the 
half pixel input technique and 
full pixel input technique

CR BPP Run time Type

Images Size Half pixel Full pixel Half pixel Full pixel Full pixel Half pixel

Image 1 512 × 384 1.04 1.02 7.76 7.89 13 s 40 s bmp
Image 2 512 × 384 1.11 1.08 7.21 7.92 15 s 45 s bmp
Image 3 512 × 384 1.04 1.04 7.74 7.90 14 s 47 s bmp
Image 4 512 × 384 1.05 1.04 7.67 7.95 13 s 40 s bmp
Image 5 512 × 384 1.03 1.02 7.87 7.79 14 s 45 s bmp
Image 6 512 × 384 1.01 1.01 7.91 7.97 14 s 44 s bmp
Average 1.046  1.03 7.69 7.9 13.8 44.1

Fig. 10   Dataset bmp images from Kaggle



Journal of Real-Time Image Processing (2024) 21:84	 Page 9 of 10  84

6 � Conclusion

In this work, we present the real-time image compression 
techniques based on Dynamic Huffman Coding addition Pre-
diction Linear to improve compression rate and values Bits 
Per Pixel. The average compression ratio was 2.5, and the 
average bits per pixel achieved 3.467. The proposed hard-
ware design uses the linear prediction input processing tech-
nique and pixel halving to optimize hardware capacity. The 
operating frequency of the proposed hardware implemented 
on board Virtex-7 VC707 FPGA is 125 MHz. Hardware use 
resources include 160 LUTs, 400 Registers, and 1 Block 
RAM.
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AHDB + PDLZW [9] 10 ns 100 MHz NA NA NA NA
LZW [6] 3.5 ns 280.17 MHz 307 278 13 Virtex 7 VC707
PNG ( LZ77 + Huffman) [5] 10 ns 100 MHz NA NA NA NA
LZ77 [4] 10.2 ns 109 MHZ NA NA NA Virtex 5
Proposed 8 ns 125 MHz 160 400 1 Virtex 7 VC707

Table 8   Results compare 
hardware parameter simulate on 
vivado tools

Algorithm Cycle Frequency Luts Register Block ram Board FPGA

MCT [3] 9.081 ns 164.447 MHz 976 1046 None Sparten3e
SC [3] 7.237 ns 128.179 MHz 208 416 None Sparten3e
Proposed 8 ns 125 MHz 160 400 1 Virtex 7 VC707
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