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Abstract
The accuracy of the original YOLOv5 algorithm in detecting whether power company employees are wearing helmets is low 
due to the complex monitoring scenarios in the power warehouse and the small size of the helmets. As a result, it cannot be 
applied to actual operations. To address this issue, we developed the MCX-YOLOv5 helmet detection algorithm. Our model 
utilizes the YOLOv5 architecture and integrates a Coordinate-Spatial Attention Module (CSAM) to effectively filter the 
spatiotemporal data of the feature inputs. Additionally, we implement a Multi-scale Asymmetric Convolutions (MAConv) 
downsampling module to improve the algorithm's sensitivity to feature scale variations. To address the challenge of task 
information cross-coupling in coupled heads, we propose a decoupled head that is less heavy than YOLOv6 as a substitute. 
Our enhanced model achieved a 2.7% rise in the mean Average Precision at 50 (mAP50) and a 4.9% improvement in mAP75 
on our self-developed database through multiple experiments, with just a minimal increase in parameters. Our model has 
yielded significant performance improvements on the Kaggle open-source Hard Hat Workers Detection dataset (HHWD), 
the public Safety Helmet Wearing Dataset (SHWD), and the PASCAL Visual Object Classes (VOC) dataset. These results 
highlight the effectiveness of our proposed algorithm in achieving higher accuracy for safety helmet wear detection in stor-
age scenarios.
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1  Introduction

Ensuring that workers wear safety helmets while perform-
ing tasks at heights or in the presence of falling objects is 
of paramount importance. Safety helmets effectively reduce 
and disperse impact forces, thereby safeguarding the lives 
of workers in hazardous environments. Traditionally, super-
visors relied on manual oversight to determine whether 
workers were wearing helmets, which proved to be a time-
consuming and labor-intensive process. However, with the 
rapid advancements in computer vision technology, target 
detection has emerged as a crucial solution to address this 
issue. By applying target detection technology intelligently, 
the recognition of individuals wearing safety helmets can 

significantly enhance safety and convenience within power 
companies.

Through the implementation of computer vision, efficient 
monitoring of helmet compliance among workers can be 
achieved, simultaneously reducing the associated labor costs 
related to safety helmet detection. By leveraging intelligent 
surveillance systems based on target detection technology, 
power companies can ensure more effective adherence to 
safety helmet usage, thereby mitigating the risk of potential 
accidents, enhancing overall work safety, and optimizing the 
allocation of human resources and costs for the company.

Traditional object detection methods primarily use slid-
ing windows to build candidate boxes on images and extract 
features using techniques such as Scale-Invariant Feature 
transformation (SIFT) [1], Harr-like features (HLF) [2], 
and Histogram of Oriented Gradients (HOG) [3]. Then, 
template matching algorithms are used for target matching, 
or classification is performed using methods like Support 
Vector Machine (SVM) [4]. While these methods are effec-
tive in certain scenarios, they suffer from high complexity 
and poor robustness, making them unsuitable for current 
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object detection tasks. In recent years, deep learning-based 
methods have become the mainstream approach for helmet-
wearing detection and have made significant progress. How-
ever, they still face challenges in maintaining robust detec-
tion results, particularly in complex environments with small 
targets and surveillance scenarios.

In this study, we adopt the YOLOv5-7.0 algorithm as 
the primary solution, tailored to address the aforemen-
tioned limitations. YOLOv5 has proven to be effective in 
achieving high detection accuracy and real-time process-
ing capabilities. Building upon this foundation, we propose 
further enhancements to create an efficient helmet-wearing 
detection algorithm catered to the specific needs of power 
company personnel. The main improvements in this paper 
are as follows:

1.	 In this study, we report the introduction of a multi-scale 
fusion downsampling module known as Multi-scale 
Asymmetric Convolutions (MAConv), which draws 
inspiration from the theoretical framework proposed in 
FasterNet [5]. This module utilizes various downsam-
pling techniques internally, enabling the acquisition of 
comprehensive feature information while simultane-
ously decreasing the model’s parameters and computing 
complexity. The module additionally employs the tech-
nique of combining numerous modules and adjusting 
their weights adaptively in order to dynamically choose 
the most suitable way for aggregating features.

2.	 The Coordinate-Spatial Attention Module (CSAM) 
was utilized in our study to incorporate both coordinate 
attention and spatial attention. This module incorporates 
information from both coordinate and spatial positions 
to dynamically modify the weights of features. This 
adjustment process enhances the model's emphasis 
on and significance for the target regions. The imple-
mented design facilitates enhanced identification of 
essential characteristics of the intended items, resulting 
in heightened precision in detection and aiding in the 
precise identification of safety helmets in power storage 
environments.

3.	 We adopted a more lightweight decoupled head structure 
called VXDetect, which features a more compact design 
and lower computational complexity compared to the 
decoupled head in YOLOv6 [6] while maintaining stable 
accuracy.

4.	 A dataset specifically collected for the purpose of detect-
ing safety helmets among employees of power firms has 
been developed. This dataset has a total of 4000 photos 
that have been classified into four distinct categories.

The subsequent sections of this work are structured 
in the following manner: In the subsequent section, an 
examination of the most recent scholarly investigations 

pertaining to the domain of safety helmet detection will 
be conducted. The third part will detail the network archi-
tecture of the basic YOLOv5 model and its performance 
advantages in single-stage detection models. Section 4 pre-
sents an elaborate exposition of the model structure and 
module particulars pertaining to MCX-YOLOv5. In the 
fifth section, we provide an overview of the training envi-
ronment and give the findings of the experimental com-
parison. In conclusion, Sect. 6 provides a comprehensive 
summary of the entirety of the study.

2 � Related work

With the continuous advancement of technology, research-
ers are gradually shifting their focus from traditional image 
processing methods to deep learning, aiming to address the 
multifaceted challenges in the field of safety helmet detec-
tion. Despite the notable achievements of conventional 
algorithms in past studies, their robustness in complex 
environments remains constrained. In this context, deep 
learning methods have emerged, bringing heightened accu-
racy and adaptability to the domain of safety helmet detec-
tion. Subsequently, we will delve into two key aspects: 
safety helmet detection based on traditional algorithms and 
safety helmet detection based on deep learning. Through 
detailed discussions of these methods, we aim to unveil 
why they have become the focal point of current research.

2.1 � Safety helmet detection based on traditional 
algorithms

Initially, scholars employed conventional image-process-
ing methodologies for the purpose of helmet detection. 
For example, Park et al. employed the HOG technique to 
detect individuals wearing safety helmets. They accom-
plished this by identifying the existence of safety helmets 
in the region of the head through the utilization of color 
histograms [7]. Rubaiyat et al. used color information 
and the Hough transform method to find safety helmets 
by combining frequency domain data from images with 
human detection algorithms [8]. The safety helmet detec-
tion method that Du et al. proposed integrates temporal 
imagery and machine learning techniques [9]. Despite 
the excellent outcomes attained in these investigations, 
they are nonetheless confronted with specific challenges 
and constraints. These investigations utilize conventional 
object detection techniques that mainly depend on human 
feature extraction, leading to very limited robustness of the 
derived features, especially in intricate settings.
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2.2 � Safety helmet detection based on deep 
learning

Deep learning-based object identification approaches can 
be classified into three main categories: two-stage object 
detection, one-stage object detection, and transformer-
based object detection. Nevertheless, transformer-based 
object identification approaches are not well-suited for 
small datasets and edge deployment, primarily because of 
the inherent properties of self-attention. The extraordinary 
accuracy of two-stage object detection algorithms, such 
as Region-based Convolutional Neural Network (RCNN) 
[10], Fast RCNN [11], and Faster R-CNN [12], is widely 
recognized. However, these methods are characterized 
by slower detection speeds and higher computing com-
plexity. In contrast, there exist one-stage object identifi-
cation approaches that have been developed to achieve a 
trade-off between detection accuracy and computational 
efficiency. Notable examples include the You Only Look 
Once (YOLO) series [13–17], Single Shot Multi-box 
Detector (SSD) [18], and Center-Net [19]. Nevertheless, 
it is important to acknowledge that both one-stage and 
two-stage algorithms possess certain limits when it comes 
to effectively recognizing smaller safety helmet targets.

To obtain multi-scale global information, an author 
introduced self-attention methods into the Faster R-CNN 
framework in Reference [20]. The incorporation of this 
integration enables the model to effectively capture more 
intricate details by increasing its receptive field. Two-
stage object detection algorithms frequently require a lot 
of memory resources, despite the excellent accuracy they 
achieve. The authors of Reference [21] recommended the 
incorporation of a coordinate attention module into the 
YOLOv5 design. The Res2NetBlock structure’s residual 
block was used to replace the C3 residual block. This 
was done to improve the backward gradient flow and the 
model’s ability to include fine-grained features. In a prior 
investigation, the researchers (Reference [22]) proposed 
an advanced algorithmic model known as YOLOv5+. The 
proposed approach integrates a specialized detection layer 
that is specifically designed to enhance the accuracy of 
identifying small objects, thereby improving the overall 
performance of object detection. The methodology given 
by Reference [23] presents an approach for object recogni-
tion that leverages the SSD as its foundation. The proposed 
methodology integrates cross-layer attention mechanisms 
to improve the effectiveness of feature extraction and fea-
ture pyramids. Additionally, it employs multi-scale per-
ception modules to tackle the issue of low precision in 
detecting the presence of safety helmets. At present, the 
detection of safety helmets mostly depends on detection 
methods based on deep learning.

3 � YOLOv5 network

The YOLOv5 model has been widely adopted in the field 
of object detection and offers four different versions with 
varying complexities and parameter sizes. Subsequently, 
researchers have proposed the YOLOv6, YOLOv7, and 
YOLOv8 models, each with its own improvements and 
advancements over the previous versions. YOLOv6 intro-
duces model pruning and other techniques to enhance 
accuracy, making it more suitable for practical model 
deployment. YOLOv7 focuses on further enhancing model 
accuracy by incorporating modules like ELAN, resulting 
in higher precision. Although YOLOv7-tiny has the small-
est number of parameters and computational complexity, it 
is prone to overfitting. YOLOv8 is an integrated algorithm 
model specifically designed to facilitate practical deploy-
ment in real-world scenarios.

Considering the available options of YOLOv5s, 
YOLOv6s, YOLOv7-tiny, and YOLOv8s, this paper 
selects YOLOv5s as the foundational model for safety 
helmet detection based on several considerations, includ-
ing Params and Floating Point Operations (FLOPs). And 
The larger the number of FLOPs, the more computing 
resources will be consumed and the slower the speed 
of recognition will be. Table 1 provides a comparison 
of these models in terms of their respective parameters 
and computational demands, affirming the suitability of 
YOLOv5s for our research on safety helmet detection. And 
YOLOv7-tiny is too easy to overfit due to its positive and 
negative sample allocation strategies.

YOLOv5s stands out by maintaining a high level of 
accuracy while having a more lightweight architecture 
compared to other models. This characteristic makes it 
well-suited for deployment in resource-constrained envi-
ronments where computational resources are limited.

The YOLOv5s model is composed of four main com-
ponents: input, backbone, neck, and prediction. In the 
input stage, various data augmentation techniques are 
employed to effectively increase the diversity of image 
samples, enhancing the model’s ability to generalize to 
different scenarios. Moreover, an adaptive anchor box 
design is utilized to initialize multi-scale anchor boxes 
using clustering algorithms. This approach addresses the 

Table 1   Parameter comparison

Method Params (M) FLOPs (B)

YOLOv5s 7.20 16.5
YOLOv6s 18.5 45.3
YOLOv7-tiny 6.2 13.7
YOLOv8s 11.2 28.6
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issue of scale variations present in the detection targets 
within the dataset.

The overall model structure is illustrated in Fig. 1, where 
the C3 module represents a residual module that facilitates 
gradient flow across different layers, mitigating the risk of 
gradient vanishing and improving the model's training sta-
bility. The Neck component incorporates Spatial Pyramid 
Pooling Fusion (SPPF) pyramid pooling, which integrates 
feature scales to capture information at different levels of 
granularity. The output branch consists of three branches 
dedicated to detecting and recognizing large, medium, and 
small objects, respectively. With these innovative methods 
and components, YOLOv5 demonstrates state-of-the-art per-
formance on some datasets, showcasing its effectiveness in 
object detection tasks.

4 � MCX‑YOLOv5 network

In practical scenarios, the detection of safety helmet wear is 
widely recognized as a challenging task, particularly due to 
the small size of the objects involved. This paper proposes 
an improved model called MCX-YOLOv5, which is built 
upon the YOLOv5 framework. The overall structure of the 
MCX-YOLOv5 model is depicted in Fig. 2, which illustrates 
how these improvements are integrated within the model 
architecture.

In the MCX-YOLOv5 model, we introduce the CSAM 
before the SPPF module. The SPPF module allows the 
model to handle input images of various sizes, but it may 
lead to information loss across different channels due to mul-
tiple pooling operations. By incorporating attention before 
the SPPF layer in the backbone network, we effectively 
improve the feature distribution, enabling better capture of 
contextual information, feature selection, and accurate object 
localization. This enhancement significantly improves the 
model's performance and inference capabilities.

As for the MAConv module, it involves splitting higher-
level feature channels, down-sampling, and aggregating 
information. However, the splitting approach may not be 
suitable for shallow network layers with relatively low infor-
mation repetition. Therefore, in the MCX-YOLOv5 model, 
we apply the MAConv module only to the intermediate three 
layers of the CBS module. This allows for more effective 
information aggregation without compromising the perfor-
mance of the shallow layers.

4.1 � MAConv structure

The convolution process generates multiple output channels, 
with each channel representing a distinct feature representa-
tion. However, it is common to observe redundancy in fea-
ture extraction, where multiple channels capture similar or 
overlapping features. Figure 3 illustrates this phenomenon, 

Fig. 1   YOLOv5 network 
structure
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showing high similarity among the 32-channel feature maps, 
suggesting that certain features are redundant within the 
overall context. A comparison between the four feature maps 
highlighted by the red dashed box and the black dashed box 
reveals substantial similarity between them.

The approach presented in reference [24] tackles the issue 
of feature redundancy by partitioning the input feature map 
into representative and uncertainly redundant segments. The 
representative part is subjected to computationally intensive 
operations to extract essential information, while the uncer-
tain redundant part, which contains minor hidden details, is 
processed using lightweight operations.

The MAConv structure involves duplicating the input 
feature map X, resulting in two sets of feature inputs, Xa 
and Xb. By utilizing downsampling with channel increase 

and reducing the size of feature maps in the backbone net-
work architecture, Xa and Xb are further divided into Xa1, 
Xa2, Xb1, and Xb2. Each half of the input features under-
goes different downsampling operations, facilitating better 
information integration at multiple scales.

where X represents the input feature map. The subscript I 
distinguishes subsets within the two input feature sets (Xa 
and Xb), indexing different portions. For example, Xa1 and 
Xb1 may denote the first subset, while Xa2 and Xb2 represent 
the second. The I is used to differentiate components or indi-
ces within the two sets.

(1)Xai = Xbi =
1

2
X,

Fig. 2   MCX-YOLOv5 network 
structure

Fig. 3   The feature maps of the 
convolutional layer before SPPF
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The module structure depicted in the diagram above 
(Fig. 4) illustrates the components of MAConv, which com-
prises four types of downsampling modules. The maximum 
pooling operation reduces the spatial dimension of the data 
while preserving crucial features. The average pooling helps 
to smooth out noise and disturbances in the input data, 
enhancing the network’s robustness. Compared to maximum 
pooling, average pooling exhibits better stability as it is less 
affected by outliers in the data. Asymmetric convolution 
(AC) increases the effective size of the convolutional kernel 
in one direction, thereby expanding the model's receptive 
field and improving its ability to capture spatial features in 
the input signal.

Since the different downsampling modules extract fea-
tures of varying importance, it becomes necessary to allo-
cate the results obtained from multi-scale sampling. Prior to 
feature concatenation, a dynamic weight calculation based 
on softmax is performed on the four types of downsampling 
modules. This weight adjustment process considers the 
importance of the downsampling of feature information and 
optimizes the aggregation of features. By adaptively assign-
ing weights, the model can effectively prioritize relevant fea-
ture information and achieve optimized feature aggregation.

In the Eq. (2), the j represents the index for different 
weights, θj represents the corresponding feature weight 
(weight1-4) and FPj denotes the aggregated single-channel 
feature after channel dimension reduction. Yj represents the 
corresponding feature maps generated by the four types of 
downsampling modules, and Out is the module output after 
weight adjustment. The convolution operation before the 
softmax function maps the aggregation results of the four 

(2)�j =
eFPj

eFP1 + eFP2 + eFP3 + eFP4

(3)Out = Y1 × �1 + Y2 × �2 + Y3 × �3 + Y4 × �4.

modules onto four channels. The computed weight values 
are multiplied inversely, and finally, the channels are com-
bined to obtain the feature map with adaptively adjusted 
weights.

4.2 � Coordinate‑spatial attention

The incorporation of attention mechanisms into neural net-
work models is of paramount importance. Squeeze-and-
Excitation Networks (SE-Net) have emerged as prominent 
models in the field of channel attention processes [25]. 
Equation (4) can be employed to offer a more comprehensive 
depiction of the computational procedure employed by the 
channel attention module. The Convolutional Block Atten-
tion Module (CBAM) is widely recognized as a prominent 
model in the field of spatial attention mechanisms [26]. The 
CBAM integrates both channel attention and spatial atten-
tion. The channel attention module is designed to dynami-
cally modify channel-wise attributes in order to enhance the 
significance of relevant channels. Simultaneously, the spatial 
attention module performs the task of recalibrating features 
in a spatial manner by recording the interdependencies that 
exist among various spatial locations.

where the symbol σ denotes the sigmoid activation function, 
the MLP signifies a fully linked layer, AvgPool and MaxPool 
correspond to average pooling and maximum pooling pro-
cesses, and F denotes the input feature map.

The spatial attention module is an attention mechanism 
applied to the spatial dimension of the feature map. It aims 
to select locally dominant features by aggregating the most 
salient features within each channel, allowing the network 
to focus more on important local features. As illustrated in 
Fig. 5, this module considers both feature similarity and 

(4)
Mc(F) = �(MLP(AvgPool(F))

+MLP(MaxPool(F))),

Fig. 4   MAConv structure
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spatial distribution. Equation (5) presents the calculation 
method of the spatial attention module. And in Figs. 5, 6, 
and 7, the C, W, and H, respectively, denote the number of 
channels, width, and height of the feature map.

where f 7×7 represents a 7 × 7 convolutional kernel, Concat 
denotes channel concatenation, the symbol σ denotes the 
sigmoid activation function, Channel_MaxPool refers to the 
maximum pooling operation along the channel dimension, 
and Channel_AvgPool refers to the average pooling opera-
tion along the channel dimension. The F denotes the input 
feature map. Mc(F) is a feature map containing the impor-
tance weights for each spatial position.

The coordinate attention (CA) [27], as illustrated in 
Fig.  6, is a form of channel attention mechanism that 
specifically targets the spatial dimensions. The CA inte-
grates two-dimensional features by encoding the features 
along the X (width) and Y (height) directions, capturing 
long-range dependencies within each spatial direction. 
This approach helps preserve positional relationships 

(5)

Mc(F) = �(f 7×7

[

Concat(Channel_MaxPool(F),

Channel_AvgPool(F))

]

)

Fig. 5   Spatial attention

Fig. 6   CA structure

Fig. 7   CSAM structure
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that would typically be lost during traditional pooling-
based aggregation. By incorporating the CA, the model 
can effectively capture spatial information and enhance 
its understanding of the overall context.

The objective of the CA mechanism is to generate an 
attention vector, denoted as attention (X, Y), for each posi-
tion (X, Y) in the input feature map, represented as X with 
dimensions H, W, and C (height, width, and number of 
channels). The attention vector, Attention (X, Y), is com-
puted based on the spatial coordinates of the position (X, 
Y) and can be expressed as follows:

The feature vector f (X, Y) is obtained by applying two 
convolutional layers at the position (X, Y) in the feature 
map. One-dimensional average pooling is performed 
separately along the X and Y directions, decomposing 
the global average pooling operation. The resulting one-
dimensional vectors in the two directions are then con-
volved to fuse the information. Finally, the fused vector is 
split into two sets of position coordinates in the H and W 
directions. This enhances the model's ability to perceive 
input features in different directions, allowing it to handle 
directional features more effectively and improve overall 
performance. The representation is as follows:

In Eq. 7, xc(h, k) denotes the value of the kth element at 
channel c and position h in the input feature map. while 
Zh
c
(h) represents the output of channel c at position h. Here, 

H signifies a specific position along the height dimension, 
and W denotes the width at this position on the feature 
map. Equation 8 parallels Eq. 7, differing only in the spa-
tial direction. In Eq. 9, f h−w is the result of applying the 
1 × 1 convolution F1 to the concatenation of Zw

c
 and Zh

c
 . 

Typically, δ denotes the Hard–Swish activation function. 
In Eqs. (10) and (11), gw and gh are the outputs obtained by 
applying the sigmoid activation function (σ) to the results 
of the respective 1 × 1 convolutions Fw(f

w) and Fh(f
h).

(6)Attention(X, Y) = Sigmoid(f (X, Y)).

(7)Zh
c
(h) =

1

W

∑

0≤k≤W
xc(h, k)

(8)Zw
c
(w) =

1

H

∑

0≤l≤H
xc(w, l)

(9)f h−w = �(F1([Z
w
c
, Zh

c
]))

(10)gw = �(Fw(f
w))

(11)gh = �(Fh(f
h)).

The CSAM combines the spatial filtering capability of 
the CBAM and channel filtering with position preservation 
from the CA. As illustrated in Fig. 7, the CA establishes 
long-range dependencies in the X and Y directions, ensuring 
a basic receptive field. Subsequently, the spatial attention 
module extracts local advantageous information based on 
this foundation. This integration of both spatial and chan-
nel filtering allows the CSAM to capture both long-range 
dependencies and local details, contributing to the model's 
enhanced perception and feature representation.

4.3 � VXDetect decoupled head

In object detection, there are two different approaches to 
network design known as the coupled head and the decou-
pled head. The coupled head involves connecting the object 
detection head and the classification head in the network, 
allowing them to share the features extracted during the fea-
ture extraction process. In object detection, both localiza-
tion and classification tasks are performed simultaneously. 
However, the inherent differences between these two tasks 
can lead to an averaging effect when the features are fused.

On the other hand, the decoupled detection head per-
forms the classification and regression tasks in parallel, 
with separate feature extraction parts for each task. While 
this approach offers flexibility and modularity, a drawback 
is that it requires more computational resources and a larger 
network size. This is because it involves training the object 
detection and classification heads independently. There-
fore, adopting a lightweight, information-fused, decoupled 
approach becomes necessary.

In this paper, the VXDetect decoupling approach is built 
upon the decoupling approach in YOLOv6 and further 
reduces the computational parameters. As shown in Fig. 8b, 
in VXDetect, the two 3 × 3 convolution channels are halved, 
and the other half uses a 1 × 1 convolution. The 1 × 1 con-
volution is shared between the classification and regression 
tasks. During the gradient backpropagation process, VXDe-
tect employs a gradient fusion approach in the heads to share 
some underlying information and representation capacity, as 
opposed to the complete decoupling shown in Fig. 8a. By 
sharing the feature representation, different tasks can influ-
ence each other and learn shared features. This approach 
strikes a balance between efficiency and performance in 
object detection tasks.

5 � Experiments and analysis

In this section, we will start by giving a concise descrip-
tion of the experimental setup and parameters used. Then, 
we will introduce the dataset utilized for our experiments 
and the evaluation metrics employed to assess the model's 
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performance. Finally, we will present a detailed analysis of 
the results obtained from our experiments.

5.1 � Experimental environment

The environment used in this experiment is shown in 
Table 2.

5.2 � Experimental parameters and experimental 
evaluation

Before training, the automatic anchor box adaptation feature 
is utilized to adjust the sizes of the prior boxes. To ensure con-
sistency in the experiments, no pre-trained weights are utilized. 

The optimization algorithm employed is Stochastic Gradient 
Descent (SGD), with a batch size of 24. The total number of 
training iterations is set at 400. The initial learning rate is 0.01, 
and the final learning rate is 0.001. A cosine annealing learn-
ing rate adjustment strategy is implemented, with a momentum 
value of 0.937.

The evaluation metric employed in the experiments is the 
mean Average Precision (mAP), which combines precision 
and recall metrics. Precision (P) represents the percentage 
of correctly predicted positive samples among all predicted 
positive samples, while recall (R) represents the percentage 
of correctly predicted positive samples among all actual posi-
tive samples. True Positive (TP) is the number of correctly 
predicted positive samples. False Positive (FP) is the number 
of incorrectly predicted positive samples. False Negative (FN) 
is the number of incorrectly predicted negative samples. Aver-
age Precision (AP) is the area under the precision-recall curve. 
The P(r) represents the P at a given recall rate r. The mAP 
is the average AP across all classes. The specific calculation 
formulas are as follows:

(12)P =
TP

TP + FP

Fig. 8   Decoupled head 
structure. a V6Detect and b 
VXDetect

Table 2   Experimental environment

Lab environment Environment configuration

system Windows10
CPU 12th Gen Intel (R) Core (TM) i9-12900F
GPU NVIDIA GeForce RTX 3090
RAM 24G
Framework Pytorch1.13.0
CUDA version 11.6
Python version 3.9



	 Journal of Real-Time Image Processing (2024) 21:2727  Page 10 of 19

where m represents the number of detection classes and 
n represents the index from 1 to m.

5.3 � Experimental dataset

Due to the absence of specific datasets tailored for safety 
helmet detection in the power warehousing scenario, we 
compiled a dataset comprising 4000 images sourced from 
historical monitoring data within the power warehousing 
industry. We named this dataset “Electric Warehousing 
Helmet Detection” (EWHD). Given the relatively limited 
number of images, we partitioned the dataset into training, 
validation, and test sets, maintaining an 8:1:1 ratio. Assign-
ing a larger proportion of samples to the training set facili-
tates enhanced generalization of the model in the presence 
of data scarcity.

Furthermore, we conducted supplementary experiments 
to assess the performance of the MCX-YOLOv5 model in 
detecting safety helmet usage across general scenarios. To 
achieve this, we obtained a dataset of 5000 safety helmet 
detection images from the Kaggle platform, which we named 
“Hard Hat Workers Detection” (HHWD). The allocation 
ratio for this supplementary experiment mirrored that of the 
self-collected dataset. Both datasets encompass the follow-
ing class labels: “head_with_helmet” (0), “head_no_helmet” 
(1), “person_with_helmet” (2), and “person_no_helmet” (3). 

(13)R =
TP

TP + FN

(14)AP =

1

∫
0

P(r)dr

(15)mAP =

∑m

n=1
APn

m
,

A graphical depiction of the sample label instances and class 
ratios for both datasets is presented in Fig. 9.

In contrast to the HHWD dataset shown in Fig. 9b, the 
self-collected dataset presented in Fig. 9a demonstrates a 
more balanced distribution of label categories. However, 
an inherent limitation of the self-collected dataset is the 
overrepresentation of small objects as targets. To ensure a 
comprehensive evaluation of the model's detection capabili-
ties across scenes featuring objects of different sizes (small, 
medium, and large), we employed the PASCAL Visual 
Object Classes 2012 (VOC2012) and VOC2007 [28] data-
sets to establish a novel dataset. Additionally, we utilized the 
widely adopted Safety Helmet Wearing Dataset (SHWD) 
dataset to compare our research outcomes with those of 
other researchers for performance validation.

The new dataset configuration involved combining the 
training sets from both VOC 2012 and VOC 2007, resulting 
in a total of 8218 images for the training set. The validation 
set consisted of the test set from VOC 2012, encompassing 
5823 images. Finally, the test set comprised the validation 
set from VOC 2007, consisting of 2510 images. By adopting 
this dataset configuration, we aimed to evaluate the gener-
alization performance of the proposed model, ensuring its 
effectiveness across diverse scenarios.

5.4 � Results and analysis

The algorithm suggested in this study was subjected to mod-
ule ablation tests, in which the assessment metrics employed 
were mAP and model parameter count. The mAP metric is 
commonly used in evaluating the accuracy of algorithms. 
Additionally, the parameter count offers valuable informa-
tion regarding the size of the model. The results of the abla-
tion experiments are displayed in Table 3, where various 
model configurations are identified as M-YOLOv5, MC-
YOLOv5, and MCX-YOLOv5.

The M-YOLOv5 configuration integrates the MAConv 
architecture, whereas the MC-YOLOv5 configuration 

Fig. 9   Sample distribution. a 
EWHD dataset and b HHWD 
dataset
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includes both the MAConv architecture and the CSAM. The 
MCX-YOLOv5 configuration incorporates the utilization of 
MAConv, CSAM, and VXDetect.

The results of the module ablation tests are presented in 
Table 3. These experiments were conducted to evaluate the 
impact of different modules on the performance of the pro-
posed algorithm. The findings demonstrate the effectiveness 
of the lightweight module, MAConv, as it achieved a 0.4% 
improvement in mAP at 50% intersection over union (IoU) 
[29] while reducing the parameter count by 0.7 million. This 
indicates that the implemented module effectively enhances 
the model’s performance while reducing its complexity.

Figure 10’s visual representation demonstrates the ben-
efits of using the multi-scale sampling module. The reduc-
tion in similar features and increased utilization of redun-
dant features lead to better testing results. Furthermore, by 
integrating the CSAM into the model, MC-YOLOv5 showed 
significant improvements compared to the baseline YOLOv5 
model. It achieved a 1.1% enhancement in mAP at 50% and 
a 1.0% increase in mAP at 75%.

The class activation map (CAM) display shows how the 
CSAM has improved the weight distribution of the model. 

The visual investigation depicted in Fig. 11 examines the 
impact of the CSAM on the recognition of Person A. The 
input image is depicted in Fig. 11a, showcasing the detected 
target A. The heatmap representation in Fig. 11b demon-
strates the situation wherein the model exhibits a deficiency 
in attention, leading to dispersed attention weights on the 
target. Figure 11c illustrates the CAM obtained by applying 
the CSAM to participant A. Clearly, the introduction of the 
CSAM improves the model's weight allocation, leading to 
a more concentrated and confident detection of the target 
object.

By incorporating the VXDetect decoupled head, the mod-
el's detection performance was further improved. The mAP 
increased by 2.7% at the IoU threshold of 0.5 (mAP50), 
and the mAP at the IoU threshold of 75 (mAP75) showed a 
substantial improvement of 4.9%. Table 4 presents a com-
prehensive comparison of the experimental results obtained 
using the three different detection heads. V6Detect repre-
sents the decoupled head utilized in YOLOv6, while Decou-
pled Detect corresponds to the decoupled head employed 
in YOLOX [30]. It is evident from Table 4 that the VXDe-
tect decoupled head achieved comparable accuracy while 

Table 3   Results of ablation experiments on the test set in the EWHD dataset

Method P (%) R (%) mAP50 (%)

YOLOv5s 86.2 79.0 84.4
M-YOLOv5 86.3 79.2 84.8
MC-YOLOv5 86.9 79.8 85.5
MCX-YOLOv5 89.0 81.6 87.1

mAP75 (%) mAP50-95 (%) Params (M) FLOPs (B)

48.5 47.7 7.02 15.8
48.0 48.1 6.32 15.2
49.5 48.5 6.35 15.2
53.4 51.0 8.30 19.0

Fig. 10   Visualization of the 
feature map of the layer before 
SPPF
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exhibiting significantly fewer parameters and computations 
compared to both V6Detect and Decoupled Detect.

The curves depicted in Fig. 12 visually represent the per-
formance of the model in terms of loss and accuracy. It is 
clear that the proposed model outperforms the YOLOv5s 
model in both accuracy and convergence speed. The pro-
posed method exhibits higher accuracy and more efficient 
convergence, demonstrating its effectiveness in object detec-
tion tasks.

The proposed model in this study exhibits notable 
improvements in accuracy while incurring only a marginal 
increase in computational overhead compared to the origi-
nal model. The detection results of various models on the 
validation set under identical parameter configurations are 
presented in Table 5. It is evident that the model proposed 
in this paper outperforms other models in terms of accuracy 
while maintaining a comparable parameter count. Figure 13 
presents a comparative analysis of detection results between 
two images. The left image highlights instances where cer-
tain objects are subject to detection challenges, including 

partial occlusion and difficulties in detecting objects at 
medium to long distances. However, through optimization 
efforts, the right image demonstrates improved detection 
performance, effectively addressing the aforementioned 
challenges. The detection results in Fig. 13a have been sig-
nificantly enhanced and refined in Fig. 13b.

To assess the efficacy of the helmet-wearing detection 
model across different settings, we carried out tests utilizing 
the HHWD dataset. The approach for data segmentation, 
hyperparameter selection, and training strategies adhered 
to the same methodology as that employed for the EWHD 
dataset.

Table 6 displays the experimental findings, wherein the 
performance of the model is compared between the HHWD 
dataset and the EWHD dataset. It is important to acknowl-
edge that the observed enhancement in performance is 
significantly diminished due to disparities in data features 
between the two datasets. On average, there is a 1.5% gain 
in precision across various IoU thresholds.

However, examining Table 7, which provides a com-
prehensive evaluation of several models, it is evident that 
our model exhibits superior performance in comparison to 
yolov6s, yolov7-tiny, and yolov8s on the HHWD dataset. 
This observation serves as evidence that the modifications 
implemented in this study have led to improvements in 
performance.

Figure 14 depicts the accuracy/loss curve of the ablated 
model employed on the HHWD dataset.

On the SHWD dataset, which has been widely used in 
various studies, our proposed model remains highly com-
petitive. Table 8 shows that our model has a more balanced 
advantage when comparing the models by reproducing the 
four most recent papers published in journals. The models 
in references 1 and 2 improve the detection accuracy by dra-
matically increasing the FLOPs while ignoring the limita-
tions of detection speed and computational resources. The 
model in reference 3 employs a lightweight architecture to 
improve inference speed. However, this leads to a signifi-
cant decrease in model accuracy. Reference 4 has a similar 
size to the model in this paper but also has a slightly lower 

Fig. 11   Visualization results. a Target A, b without CSAM visualiza-
tion, and c CSAM visualization

Table 4   Comparison of the detection results of the different decoupled heads on the test set in the EWHD dataset

Method P (%) R (%) mAP50 (%)

V6Detect 88.6 81.6 87.1
Decoupled Detect 87.6 81.7 86.6
VX Detect 89.0 81.6 87.1

mAP75 (%) mAP50-95 (%) Params (M) FLOPs (B)

53.2 51.2 12.89 27.2
53.1 51.0 13.66 55.6
53.4 51.0 8.30 19.0
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refinement performance than our model on the SHWD data-
set. Moreover, with respect to the results of the three datasets 
mentioned above, the detection capability of MCX-YOLOv5 
in the field of helmet-wearing detection is also comparable 

to that of current state-of-the-art single-stage detection mod-
els and requires less computational resources.

The validation experiments conducted on a subset of the 
VOC dataset confirmed the generalizability and excellent 

Fig. 12   Variation of perfor-
mance evaluation metrics with 
the number of iterations for 
different groups in the EWHD 
dataset. a mAP@0.5, and b 
validation set loss

Table 5   Comparison of the detection results of the five models on the test dataset in the EWHD dataset

Method P (%) R (%) mAP50 (%)

YOLOv5s 86.2 79.0 84.4
YOLOv6s 80.5 51.1 83.1
YOLOv7-tiny 87.5 79.7 85.2
YOLOv8s 87.3 79.6 86.1
MCX-YOLOv5 89.0 81.6 87.1

mAP75 (%) mAP50-95 (%) Params (M) FLOPs (B)

48.5 47.7 7.02 15.8
46.8 46.9 18.50 45.17
47.6 47.2 6.01 13.0
54.5 51.3 11.13 28.4
53.4 51.0 8.30 19.0
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performance of our proposed model in other detection 
tasks. The hyperparameters used in the training process 
remained unchanged, and the number of training iterations 
was extended to 500. We trained and evaluated four other 
models, namely YOLOv5s, YOLOv7-tiny, YOLOv6s, and 
YOLOv8s, separately and compared their performance with 
our proposed model. As shown in Table 9, the detection 
results on the test set clearly indicate that our proposed 
model outperforms other models significantly at the IoU 
threshold of 0.5. Although it may not have an advantage at 
higher thresholds, in practical use, IoU threshold 0.5 is the 
most commonly used design threshold.

Figure 15 presents the performance improvement curves 
of the validation dataset during the training process of the 

five models. Compared to the other models, our proposed 
model converges faster.

Upon evaluating the outcomes of the experiments and 
analyzing the performance improvement curves during the 
training process, our observations have determined that 
the suggested model presents resilient generalization abili-
ties on various tasks and datasets. This signifies that said 
model not only attains outstanding performance in specific 
domains and datasets but also adjusts aptly to novel and 
unfamiliar circumstances, thus highlighting its vast scope 
of application.

It is important to note that during the comparative 
experiments, multiple prevalent object detection mod-
els were trained and evaluated. Out of these models, the 

Fig.  13   Experimental detec-
tion comparison results. 
a YOLOv5s, and b MCX-
YOLOv5

Table 6   Results of ablation experiments on the test set in the HHWD dataset

Method P (%) R (%) mAP50 (%)

YOLOv5s 90.8 84.7 91.7
M-YOLOv5 90.3 85.6 91.9
MC-YOLOv5 90.2 85.9 92.1
MCX-YOLOv5 91.1 87.0 92.5

mAP75 (%) mAP50-95 (%) Params (M) FLOPs (B)

73.0 62.5 7.02 15.8
73.4 62.5 6.32 15.2
73.9 63.2 6.35 15.2
75.7 64.8 8.30 19.0
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proposed model displays remarkable generalization per-
formance due to the combined effect of the three opti-
mization methods employed during the training process. 
The employed techniques enable the model to capture 
data patterns and features more effectively, leading to 

improved generalization. Additionally, the model’s suc-
cessful detection of small objects wearing safety helmets 
at long distances provides further evidence of its excep-
tional ability to handle complex and difficult scenarios. 
This feature is pivotal in meeting various needs in practical 

Table 7   Comparison of the detection results of the five models on the test set in the HHWD dataset

Method P (%) R (%) mAP50 (%)

YOLOv5s 90.8 84.7 91.7
YOLOv6s 89.0 82.2 89.1
YOLOv7-tiny 88.8 87.3 92.1
YOLOv8s 89.3 86.3 91.9
MCX-YOLOv5 91.1 87.0 92.5

mAP75 (%) mAP50-95 (%) Params (M) FLOPs (B)

48.5 73.0 62.5 7.02
46.8 69.8 60.8 18.50
47.6 71.7 61.4 6.01
54.5 75.3 64.8 11.13
53.4 75.7 64.8 8.30

Fig. 14   Variation of perfor-
mance evaluation metrics with 
the number of iterations for 
different groups in the HHWD 
dataset. a mAP@0.5, and b 
validation set loss
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settings, particularly in the areas of surveillance, security, 
and industry.

6 � Conclusions

This paper presents a comprehensive investigation into the 
detection of small objects and the enforcement of safety hel-
met usage in warehousing scenarios. Conventional detection 
algorithms commonly encounter issues such as low detection 
accuracy, missed detections, and false alarms. To overcome 

these challenges, we propose the integration of a CSAM, 
which effectively enhances the model’s ability to attend to 
relevant regions. Moreover, we introduce a weighted down-
sampling module, known as MAConv, specifically tailored 
for intermediate feature maps, thereby promoting greater 
diversity in lower-level features. Additionally, we replaced 
the coupled head with a lighter decoupled head, VXDetect, 
which effectively separates the classification and regression 
tasks.

After conducting a thorough analysis of the experimen-
tal outcomes, we confirm the exceptional efficacy of the 

Table 8   Comparison of the detection results of the nice models on the test set in the SHWD dataset

Method P (%) R (%) mAP50 (%)

YOLOv5s 94.0 89.4 94.5
YOLOv6s 92.9 88.7 92.65
YOLOv7-tiny 93.2 89.3 94.2
YOLOv8s 93.7 91.0 95.0
Reference1 [31] 93.1 91.0 95.8
Reference2 [32] 92.8 91.2 95.5
Reference3 [33] 93.7 87.9 93.6
Reference4 [34] 93.5 90.0 95.2
MCX-YOLOv5 93.0 90.4 95.5

mAP75 (%) mAP50-95 (%) Params (M) FLOPs (B)

65.3 61.7 7.02 15.8
62.6 59.5 18.50 45.17
62.6 59.5 6.01 13.0
66.0 63.1 11.13 28.4
66.7 61.9 10.50 197.9
66.8 61.8 7.3 72.6
62.6 59.2 4.11 9.10
66.0 62.0 7.2 18.8
66.5 62.5 8.30 19.0

Table 9   Comparison of the detection results of the five models on the test set in the VOC dataset

Method P (%) R (%) mAP50 (%)

YOLOv5s 75.0 63.0 70.2
YOLOv6s 78.0 62.0 70.5
YOLOv7-tiny 74.1 64.1 70.6
YOLOv8s 78.4 63.2 70.9
MCX-YOLOv5 75.8 65.7 72.9

mAP75 (%) mAP50-95 (%) Params (M) FLOPs (B)

47.3 44.1 7.02 15.8
52.4 48.8 18.50 45.17
46.6 43.9 6.01 13.0
54.4 50.0 11.13 28.4
51.0 47.4 8.30 19.0
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suggested algorithm in identifying small objects and ensur-
ing the implementation of safety helmets in warehouse set-
tings. Significantly, we have observed the noteworthy adapt-
ability of the model in dealing with varied data and practical 
scenarios. The improvements observed transcend specific 
datasets or scenarios and have been verified in diverse con-
texts, encompassing real-world situations and the VOC data-
set. This implies that our model not only identifies patterns 
from particular training data but also generalizes proficiently 
to unobserved conditions, showcasing robust adaptability. 
The successful demonstration of this generalization capac-
ity instills faith in the potential practical uses of our model. 
The model demonstrates strong adaptability across diverse 
environments, ranging from monitoring warehouses to 
industrial production lines, while maintaining a high level 
of detection accuracy. This affirms the model’s superiority in 
specific scenarios and underscores its resilience in managing 
unknown situations and evolving data.

In future studies, we will further explore the generaliza-
tion performance of the model while dealing with challenges 
across various industries and domains. We aim to strengthen 
the model’s reliability and applicability in different practical 

scenarios by conducting more tests on real-world applica-
tions to validate its generalization. Additionally, we will 
investigate methods that integrate object detection with 
object tracking and pedestrian re-identification techniques. 
We also intend to conduct in-depth research on lightweight 
methods, such as network pruning, to facilitate deployment 
on edge devices. In conclusion, our study offers not only 
an optimized detection method in warehouse scenarios but 
also highlights the model's strong generalization capabilities 
across a broad range of practical applications.
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