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Abstract
In recent years, discriminative correlation filters (DCF) with deep features have achieved excellent results in visual object 
tracking tasks. These trackers usually use multi-channel features of the fixed layer of the pre-trained network model to rep-
resent the target. However, the multi-channel features contain many interfering channels that are not conducive to object 
representation, resulting in overfitting and high computational complexity. To solve this problem, we research the correlation 
between multi-channel deep features and target saliency information and propose a novel DCF tracking method based on 
saliency-aware and adaptive channel selection. Specifically, we adaptively select the most representative feature channels 
to represent the target by calculating the energy mean ratio of the saliency-aware region to the search region, reducing the 
feature dimension and improving the tracking efficiency. Then, according to the feedback, the selected channels are given 
different weights to further enhance the discrimination of the filter. In addition, an adaptive update strategy is designed to 
alleviate the model degradation problem according to the fluctuation of feature maps in the recent frames. Finally, we use the 
alternating direction method of multipliers (ADMM) to optimize the proposed tracker model. Extensive experimental results 
on five well-known tracking benchmark datasets have verified the superiority of the proposed tracker with many state-of-
the-art deep features-based trackers, and the running speed of the algorithm can basically meet the real-time requirements.

Keywords Correlation filters · Visual tracking · Saliency detection · Channel selection

1 Introduction

Visual object tracking has always been a critical task in 
computer vision, and it is the premise of many higher-level 
image processing tasks. Object tracking technology is to 
use the target and background information of the initial 
video frame to predict the position and scale of the target 
in the subsequent frames, which is widely used in video 

surveillance, intelligent transportation, intelligent medi-
cal, and other practical scenarios [1–3]. In recent years, the 
object tracking algorithm has achieved outstanding results 
in tracking performance. However, it is still challenging 
to accurately position the target in complex environments 
such as scale variation, illumination variation, and object 
occlusion.

The object tracking algorithms based on discriminative 
correlation filters (DCF) have received extensive atten-
tion due to their excellent tracking performance and effi-
cient computational efficiency [4]. The characteristic of 
the DCF method is to collect samples by cyclic matrix and 
transform the correlation operation in the time domain into 
point-wise multiplication in the frequency domain by Fast 
Fourier Transform (FFT), which dramatically reduces the 
computational complexity and improves the speed of the 
algorithm. Most of the early correlation filter algorithms 
used handcrafted features such as histogram of oriented 
gradients (HOG) and color names (CN) to represent targets 
and showed favorable tracking results and excellent com-
putational efficiency, reaching state-of-the-art at that time 
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[5–7]. Convolutional neural network (CNN) features have a 
more robust representation power than handcrafted features, 
so many researchers have introduced multi-channel CNN 
features into the correlation filters framework [8–10].

It is indisputable that the success of recent DCF-based 
trackers is mainly due to the use of deep CNN features. As 
a result, researchers have proposed some methods to exploit 
the potential of deep features. Some trackers utilize princi-
pal component analysis (PCA) methods [8, 11] to reduce 
or compress the deep feature dimension but still need to 
address the high computational and memory costs required 
to extract deep features. Some algorithms improve tracking 
efficiency by using attention mechanisms [12] and assign-
ing weights [13, 14] to deep feature channels. Nevertheless, 
the number of feature channels used by these algorithms 
is still significant, and the computational efficiency needs 
to be improved. Many researchers have recently introduced 
saliency detection into the correlation filter tracking frame-
work and developed many advanced tracking algorithms 
with good results. However, most of these algorithms use 
image saliency information to either construct spatial or 
temporal regularization terms in the DCF model [15–17] 
to alleviate the boundary effect problem or to achieve rein-
forcement learning of the target appearance without pay-
ing attention to the correlation between multi-channel deep 
features and target saliency information [18, 19]. Recent 

studies [20, 21] have shown that different feature channels 
have different characteristics and contributions in the track-
ing process, especially multi-channel depth features. Deep 
features may contain many interference channels with irrel-
evant and redundant information to the target, and directly 
fusing all the hundreds and thousands of dimensional deep 
feature channels may produce severe overfitting, which leads 
to degradation of tracking performance.

Based on the above discussion, this paper proposes a new 
saliency-aware channel selection discriminative correlation 
filter (SCDCF) for robust visual tracking. The overall frame-
work of the proposed tracker is shown in Fig. 1. SCDCF 
includes three stages: training, detection, and update. Firstly, 
we obtain the multi-channel deep features containing the 
energy of the target saliency-aware region through the sali-
ency detection and feature extraction process. All channels 
are evaluated according to the proposed saliency-aware aver-
age energy ratio (SAER) indicator to obtain effective feature 
channels that pay more attention to the target information. 
Channels are given different weights according to their 
importance, and the final feature training filter is obtained 
to reduce the filter dimension and improve its discrimination 
power. Then, the selected feature channels and the trained 
filter perform correlation operations to obtain a response 
map to locate the target position. Finally, the proposed model 
updating mechanism is used for adaptive updating to avoid 
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Fig. 1  The overall framework of SCDCF tracker. SCDCF includes three processes: training, detection, and update, which are marked by blue, 
green, and purple boxes, respectively
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model degradation. The ADMM [22] algorithm is used to 
accelerate the solution of the proposed SCDCF model.

The main work of this paper is summarized as follows: 

1. The saliency detection method is introduced to obtain 
the saliency information of the target. The feature energy 
of the saliency-aware region is calculated according to 
the target mask to highlight the target appearance and 
suppress the interference of the background information 
in the bounding box during the tracking process.

2. A new channel evaluation indicator is proposed to evalu-
ate the importance of feature channels. Based on this, 
an adaptive channel selection mechanism is designed 
to select effective feature channels, reduce the feature 
dimension and enhance the discrimination ability of 
filters. According to the score, channel reliability is 
judged, and different weights are assigned to improve 
the representation ability of features.

3. An adaptive model updating mechanism is designed to 
judge the reliability of tracking results according to the 
fluctuation of the response map in the near time frame 
to ensure the accuracy of the target representation of the 
appearance model and alleviate the problem of model 
degradation.

4. The proposed trackers are evaluated on five public 
tracking datasets, including OTB2013 [23], OTB2015 
[24], TC128 [25], UAV123 [26], and VOT2018 [27]. 
Experimental results show SCDCF is superior to many 
advanced trackers.

2  Related work

Early DCF algorithms mostly use handcrafted features to 
represent targets, such as color, texture, and edge features. 
The MOOSE [28] tracker, which initially introduced cor-
relation filter theory into the field of object tracking, only 
used grayscale features to describe the target, and the track-
ing speed can reach hundreds of frames per second. Subse-
quently, Henriques et al. [29] incorporated multi-channel 
HOG features into the correlation filter framework and 
improved the algorithm accuracy by mapping linear space 
to high dimensional space through kernel functions. Danell-
jan et al. [30] extended the original RGB color space to 11 
dimensions, trained correlation filters using color names 
(CN) features containing rich color information. Many sub-
sequent trackers [5, 7] utilize complementary handcrafted 
features to describe the target to enhance the feature repre-
sentation power. Recently, due to the excellent performance 
of handcrafted features in computational efficiency and 
accuracy, DCF trackers based on handcrafted features have 
shown significant advantages in aerial target scenarios and 

are widely used in unmanned aerial vehicles (UAV) plat-
forms [15, 31, 32].

Deep features show strong representation ability with the 
rapid development of neural networks. Many trackers use 
multi-channel convolutional features extracted by deep neu-
ral network models to represent targets. Ma et al. [10] used 
the VGG-19 network to extract the multi-layer convolution 
features of the target and achieved precise positioning of 
the target according to the characteristics of different layers 
of features. Danelljan et al. [9] proposed the DeepSRDCF 
tracker based on spatially regularized discriminative cor-
relation filters (SRDCF [33]) combined with convolutional 
features for modeling. The C-COT [34] tracker used deep 
neural network to extract features, obtained feature maps 
of continuous spatial domains by interpolation operations, 
and applied Hessian matrices to achieve sub-pixel accuracy 
localization of target positions. Noting the interfering chan-
nels and running speed problems caused by multi-channel 
deep features, many tracking algorithms use attention mech-
anisms, feature compression, and other methods to alleviate 
them to achieve robust and fast tracking.

Saliency detection is to simulate the human visual atten-
tion mechanism to detect the most interesting and visually 
expressive areas in the image. It is widely used in visual 
tasks such as object detection, semantic segmentation, and 
image caption. Many recent works have applied it to object 
tracking and achieved good results. For example, some 
trackers introduce image saliency detection into the regu-
larization term of the DCF formula to alleviate the bound-
ary effect problem. According to the characteristics of aerial 
object tracking, Fu et al. [15] used the dual regularization 
strategy to construct the target saliency regularization model 
to achieve accurate real-time tracking of aerial objects. Feng 
et al. [16] integrated saliency information and target change 
information into the spatial weight map and proposed a 
dynamic saliency spatial regularization correlation filter 
method. Yang et al. [17] introduced two saliency informa-
tion extraction methods in the regularization process and 
proposed co-saliency spatio-temporal regularization corre-
lation filters. In addition, some researchers have also used 
saliency information to highlight image saliency regions for 
reinforcing learning of target appearance [18, 19].

Although the tracking performance of the above DCF 
trackers has been improved, the correlation between target 
saliency information and feature channel information is not 
considered. Therefore, we investigate the relationship between 
target saliency region information and multi-channel deep fea-
tures and propose a new channel selection method based on 
image saliency information. By combining saliency detection 
with feature channel selection, we can accurately highlight 
the target region and suppress the interference of background 
information in the target tracking frame, reduce the dimension 
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of feature channels and improve the discriminant ability of 
the filter.

3  Proposed method

In this section, we first briefly review the discriminative corre-
lation filters and describe the saliency-aware detection mecha-
nism used. Then we propose an adaptive channel selection 
method and our SCDCF model and use the ADMM method 
for optimization. Finally, we develop a new model update 
strategy.

3.1  Revisit of DCF

Given the initial target position in the first frame, the task of 
object tracking is to estimate the target position in subsequent 
frames. To locate the target position in the (t + 1) th frame, 
DCF uses the training sample 

{
Xt, Y

}
 of the t-th frame to learn 

the multi-channel correlation filter, where Xt ∈ ℝ
W×H×C is 

defined as a C-dimensional channel feature with width W and 
height H, and Y is the expected response map of the corre-
sponding Gaussian shape. To obtain a multi-channel correla-
tion filter, DCF expresses the objective as a regularized least 
squares problem:

where ⊗ denotes circular correlation operator, Xi
t
∈ ℝ

W×H 
and Fi

t
∈ ℝ

W×H represent the i-th channel of Xt and Ft , 
�
∑C

i=1
��Fi

t
��22 is a regularization term, and � is the regulari-

zation parameter. The task can be transformed into the Fou-
rier domain to derive the closed-form solution of Eq. 1 as 
follows:

where ⋅̂ stands for the Discrete Fourier Transform (DFT), ⋅∗ 
indicates the complex conjugate operator, and ⊙ represents 
the element-wise product operator.

According to the feature vector Z ∈ ℝ
W×H×C extracted 

from the candidate images of (t + 1) frame, the response map 
R ∈ ℝ

W×H can be obtained by the following equation:

where F−1 denotes the inverse DFT. The target position in 
(t + 1) frame is determined by the peak position in response 
map R.

(1)F̃t = argmin
Ft
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t
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i
t
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,

(2)F̂i
t
=

(
X̂i
t

)∗
⊙ Ŷ

(
X̂i
t

)∗
⊙ X̂i

t + 𝜆
,

(3)R = F
−1

(
C∑
i=1

Ẑi ⊙ F̂i
t

)
,

3.2  Background‑aware correlation filter

The overall objective function of Background-Aware Cor-
relation Filter (BACF) can be expressed as:

where Xi ∈ ℝ
T (T is the number of X pixels ), P is a binary 

matrix that is used to crop N ( N << T  ) elements in feature 
samples X, and P⊤ is the conjugate transpose of P.

The traditional correlation filter algorithm performs the 
cyclic shift operation on the positive sample extracted from 
the image target to obtain negative samples to train the filter. 
It does not model the real background information, which 
may lead to boundary effects and model drift problems. The 
handcrafted feature-based BACF uses a clipping matrix to 
crop negative samples from real background information to 
train filters, significantly improving the sample quality and 
quantity. Unfortunately, BACF uses handcrafted features to 
represent the target and treats all spatial feature channels 
equally, which cannot accurately identify the appearance 
changes of the target. In addition, BACF also expands the 
search area to deal with fast tracking problems, but it also 
introduces more background interference, which limits the 
improvement of algorithm performance. Therefore, we intro-
duce multi-channel deep features into the BACF framework 
to improve the accuracy of target appearance modeling and 
use saliency-aware detection and channel selection mecha-
nisms to reduce the interference of background clutter dur-
ing tracking.

3.3  Saliency‑aware detection mechanism

The existing advanced feature channel selection methods 
[20, 35] filter the channels according to the feature response 
in the rectangular target box. These methods improve the 
quality of the used feature channels to a certain extent but 
still introduce some background information to interfere 
with the learning of the filter. This paper aims to calculate 
the energy more suitable for the target appearance contour 
area for channel selection. Therefore, we introduce the sali-
ency detection [36] and design a saliency-aware detection 
mechanism. As shown in Fig. 2, firstly, according to the 
target region bounding box, i.e., red box, the region near 
the target is selected as the saliency detection region, i.e., 
blue box. Then the blue box region is detected to obtain the 
saliency map, and the target region mask is generated after 
threshold mapping. The generated mask can be used to seg-
ment the target and surrounding region robustly. Combined 

(4)argmin
F

1

2
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with the extracted search area features, the multi-channel 
saliency-aware region features that are more focused on the 
target saliency-aware region are obtained, which can sig-
nificantly shield the noise caused by the background infor-
mation in the tracking box. We use this characteristic of 
saliency detection to calculate the target saliency region (as 
shown in Fig. 3(a)). According to the feature map extracted 
from the search region (as shown in Fig. 3(b)), we can 
obtain the saliency-aware region feature map (as shown in 
Fig. 3(c)) and the background region feature map (as shown 
in Fig. 3(d)) of each channel.

3.4  Adaptive feature channels selection

The achievements of deep DCF trackers in recent years 
are largely attributed to the use of multi-channel convo-
lutional features, but due to the limited number of train-
ing samples for visual tracking, the deep networks used to 
extract convolutional features are often pre-trained in other 
computer vision tasks, such as VGGNet or MobileNet, 
which are trained on ImageNet [37]. Using the deep net-
work trained by general targets to extract multi-channel 
features of specific targets, hundreds of channels may 
contain a large number of interference channels, which 
may not contain target area information or contain more 
background information, affecting the learning of corre-
lation filters. Figure 4 shows the difference between the 
efficient channels and the interfering channels. Since the 
DCF tracker obtains the response map by extracting the 
search area features according to the target position in the 

Generated mask

Sample patch

Jogging-1 Human2 MotorRolling

Saliency map

Trans

Fig. 2  Visualization of the mask generation process. From top to bot-
tom, the images denote sample patch, saliency map, and generated 
mask. From left to right, the four sequences from OTB2015 dataset 
are Jogging-1, Human2, MotorRolling, and Trans respectively

Fig. 3  a Schematic diagram of the process of mask generation. b Fea-
ture map of search region. c Feature map of saliency-aware region. d 
Feature map of background region

Fig. 4  Visualization of feature maps for different channels of sequences. From top to bottom, the three sequences from OTB2015 dataset are 
Girl2, Human3, and MotorRolling, respectively
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previous frame, the feature channels that are beneficial 
for tracking should focus more on the energy of the tar-
get area, containing larger target area energy and smaller 
energy of other search areas.

Combining the analysis in Sect. 3.3, we propose a new 
feature channel evaluation indicator. As shown in Fig. 3c 
and 3d, we divide the feature map after saliency detec-
tion into the target saliency-aware region feature map and 
the background region feature map. The feature channel 
is evaluated by calculating the average energy ratio of 
these two parts. The proposed SAER indicator is defined 
as follows:

where Xi denotes the ith channel of feature X ∈ ℝ
W×H×C . 

We define EO(X
i) as the average energy value of the target 

saliency-aware region O:

where V(p, q) is defined as the feature energy value of posi-
tion (p, q), Area(O) represents the area of region O. Simi-
larly, EB(X

i) is defined as the average energy value of back-
ground region:

where S denotes the search region. We judge the confidence 
of the feature channel according to the SAER index. The 
higher the SAER score, the richer the target information 
contained in the channel, and the smaller the SAER score, 
indicating that the channel contains more background inter-
ference. Therefore, we calculate the SAER scores for all 
channels and adaptively select channels with scores higher 
than a given threshold for filter learning to reduce the inter-
ference of invalid feature channels.

On the other hand, in recent years, the channel attention 
mechanism has been widely used in computer vision tasks. It 
judges the importance of feature channels by modeling them 
and assigns greater weights to more important channels to 
enhance the discrimination of filters. Therefore, we combine 
the idea of channel attention with the proposed saliency-
aware channel selection mechanism, use SAER to judge the 
importance of the channel, and assign different weights to 
the selected channels so as to improve tracking efficiency 
and alleviate the shortcomings of channel attention. After 
the salience-aware channel selection, the effective feature 

(5)SAER(i) =
EO(X

i)

EB(X
i)
, i = 1, 2,⋯ ,C,

(6)EO(X
i) =

∑
(p,q)∈O V(p, q)

Area(O)
,

(7)EB(X
i) =

∑
(p,q)∈S V(p, q) −

∑
(p,q)∈O V(p, q)

Area(S) − Area(O)
,

with higher discriminative power and the score sequence A 
containing SAER scores of each channel are obtained, then 
the weight wi of the i-th channel can be expressed as:

3.5  Modeling and optimization of the SCDCF

Using the proposed feature channel selection method, 
we can obtain the effective feature XE that focus more 
on the target information and the corresponding weight 
sequences w. Therefore, the proposed SCDCF model can 
be expressed as:

where Xi
E
 and wi denote the i-th feature channel of the effec-

tive feature XE and its weight. After channel selection, the 
number of channels is reduced from C to D.

To improve the computational efficiency, we use XS to 
represent the final feature used to train the filter in the opti-
mization process, that is, Xi

S
= wi × Xi

E
 , and Xi

S
 represents 

the i-th feature channel of feature XS . The conversion of 
Eq. 9 to the frequency domain can be expressed as:

where Ĝ = [Ĝ1, Ĝ2,… , ĜD] is an auxiliary variable matrix, 
H is the orthonormal T × T  matrix of complex basis vectors 
for mapping any T-dimensional vector to the Fourier domain 
(e.g., ĝ =

√
THg ). We employ the augmented Lagrangian 

method to optimize Eq. 10:

where �̂� = [�̂�1, �̂�2,… , �̂�D]
⊤
∈ ℝ

T×D denotes the Lagrangian 
multiplier and � is the penalty parameter.

The ADMM algorithm can be applied to Eq. 11 to split 
it into three independent subproblems, each of which has 
a closed solution:

(8)wi = 1 +
1

2
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Then, the individual subproblems are solved iteratively as 
follows:

Subproblem F : The optimal solution can be easily 
obtained as follows:

where G =
1√
T
HP⊤Ĝ and 𝜂 =

1√
T
HP⊤�̂� . Fopt is obtained by 

Inverse Fast Fourier Transform(IFFT) of Ĝ and �̂�.
Subproblem Ĝ : For Ĝ , since each pixel is independent, 

it can be decomposed into T small subproblems. The closed 
solution can be obtained as follows:

w h e r e  ÛX(k) = X̂S(k)
⊤X̂S(k)  ,  ÛF(k) = X̂S(k)

⊤F̂(k)  , 
Û𝜗(k) = X̂S(k)

⊤
�̂�(k) and b = ÛX(k) + 𝜂T .

Updating other variables: The Lagrange multiplier �̂� 
and penalty parameter � are updated as:

where l represents the number of iterations and � is the scale 
factor.

3.6  Adaptive model Update

The traditional DCF algorithm uses linear interpolation to 
update the filter for each frame. This strategy of updating 
each frame can slowly learn the latest changes of the target 
by combining historical and current information. However, 
if the model continues to be updated under complicated 
situations such as severe target occlusion may introduce 
a large amount of interference information that is detri-
mental to the tracking process, resulting in model drift. 
To address these issues, researchers have developed two 
confidence indicators: APCE (Average Peak to Correlation 

(12)

⎧
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�

.

(13)Fopt =
� + �G

� + �∕T
,

(14)

Ĝ(k)opt =
1

𝜂

(
1

T
X̂S(k)Ŷ(k) + 𝜂F̂(k) − �̂�(k)

)

−
X̂S(k)

𝜂b

(
1

T
ÛX(k)Ŷ(k) + 𝜂ÛF(k) − Û𝜗(k)

)
,

(15)

{
�̂�l+1 = �̂�l + 𝜂(Ĝl+1 − Fl+1)

𝜂l = min(𝜂max, 𝛿𝜂
l)

,

Energy) [38] and PSR (Peak-to-Sidelobe Ratio) [28], 
which are used to analyze the similarity and peak intensity 
of the response map. Inspired by APCE and PSR, SCDCF 
uses the proposed RFM ( response map fluctuation ) metric 
to determine the fluctuation degree of the response map 
and sets the conditions for model updating according to 
the feedback.

where Ri,j is defined as the response value of position (i, j), 
Rmax , Rmin , and Rmean are the maximum, minimum, and aver-
age values in the response map R ∈ ℝ

W×H . Then the average 
RFM value RMFmean = (1∕n)

∑n

1
RMFn of nearly n frames 

is obtained, and whether to update is judged by comparing 
the current frame score RFM with RMFmean . Therefore, the 
model update for SCDCF can be expressed as:

where � is the ratio factor.

4  Experimental results

4.1  Implementation details

Platform: The proposed tracker is implemented in MAT-
LAB 2018a on a PC with an Intel(R) Xeon(R) Gold 
6136CPU at 3.00GHz, 512 G RAM and a single NVIDIA 
TITAN V GPU. The MatConvNet [39] toolbox is used 
to extract deep features from pre-trained CNN networks.

Parameters: To guarantee the fairness and objectivity 
of the evaluation, we follow some key parameters in the 
standard DCF method [7, 11] to construct tracker. For tar-
get localization, we use HOG features and shallow layer 
(conv3-4), middle layer (conv4-3), and deep layer (conv5-
1) features of the VGG-16 network to represent the target. 
We set the learning rate �=0.0135, and the SAER thresh-
old in Sect. 3.4 is 1.37. For model optimization, we set 
the number of iterations l of ADMM to be 2, the penalty 
parameter � to be 1, and the �max and � in Eq. 15 to be 104 
and 10, respectively. For model updating, We set the ratio 
factor �=0.65 in Eq. 17, refer to [40] to set the number of 
recent frames n=5. In addition, for some parameters of 
scale estimation, we refer to the ASRCF [11] tracker, and 
the remaining parameters are consistent with the BACF 
[7] tracker.

(16)
RMF =

Rmax − Rmin�
1

W×H

�∑W,H

i,j

�
Ri,j − Rmean

�2�
,

(17)
{

Update, RMFt > 𝜑RMFmean

Noupdate, RMFt ≤ 𝜑RMFmean

,



 Journal of Real-Time Image Processing (2023) 20:51

1 3

51 Page 8 of 17

4.2  Experiment datasets and evaluation metrics

We evaluate the effectiveness of the proposed tracking 
method on five public tracking datasets, including OTB2013 
[23], OTB2015 [24], TC128 [25], UAV123 [26], and 
VOT2018 [27]. For the OTB2013, OTB2015, TC128, and 
UAV123 datasets, we use the precision and success plots of 
the one-pass evaluation (OPE) strategy to measure the per-
formance of the tracker. The precision plot reports the pro-
portion of video frames whose distance between the bound-
ing box predicted by the tracker and the manually labeled 
actual bounding box is less than a certain threshold. The 
success plot reports the proportion of video frames whose 
overlap rate is greater than a certain threshold between the 
predicted bounding box and the real bounding box. We use 
the distance precision (DP) with a threshold of 20 pixels 
in the precision plot and the area under the curve (AUC) 
of the success plot to evaluate the tracker. The overlap pre-
cision (OP) is the corresponding score of the success plot 
when the overlap rate threshold is set to 0.5. In addition, the 
center position error (CLE) measures the average Euclid-
ean distance between the center position of the predicted 
bounding box and the real bounding box, and the speed of 
the tracker is shown in frames per second (FPS). For the 
VOT2018 dataset, we analyze the tracker performance using 

three metrics, expected average overlap (EAO), Accuracy, 
and Robustness.

4.3  Qualitative valuation

We select 10 representative sequences with different chal-
lenge attributes from the OTB2015 dataset for qualitative 
evaluation of our tracker, and the results are shown in Fig. 5. 
Comparison algorithms include DCF trackers based on deep 
features (i.e., DeepSTRCF [41], DeepSRDCF [9], C-COT 
[34], and HCF [10]) and DCF trackers based on handcrafted 
features (i.e., MCCT-H [40], ECO-HC [8], BACF [7], Staple 
[5], and KCF [29]). When the target is severely disturbed 
by the surrounding background (i.e., Box, Matrix), our 
approach performs well due to the saliency-aware detection 
mechanism that shields the background noise and makes the 
learned filter more focused on the target information. When 
the target is deformed and rotated (i.e., MotorRolling, Drag-
onbaby, Jump, Sylvester), SCDCF achieves accurate tracking 
in continuous frames because it uses the channel selection 
strategy to remove a large number of redundant channels 
and uses the channel adaptive weighting method to improve 
the representation of the features used effectively. Especially 
in the Jump sequence, which is more difficult to track, only 
the SCDCF tracker successfully tracks the target in several 

#54 #194 #326

#57 #79 #97

#8 #33 #63

#11 #41 #85

#460 #537 #612

#22 #48 #80

#12 #129 #160

#111#57#6

#7 #60 #164

#1246#1169#1075

SCDCF DeepSTRCF DeepSRDCF MCCT-H ECO-HC
C-COT BACF HCF Staple KCF

Fig. 5  Qualitative evaluation results of the proposed tracker and other 
advanced trackers for 10 challenge sequences from the OTB2015 
benchmark. From top to bottom and from left to right, these 

sequences are Bird1, Biker, Skiing, Matrix, Box, Dragonbaby, Iron-
man, Jump, MotorRolling and Sylvester, respectively
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algorithms. Similarly, because we use an adaptive update 
strategy to avoid unnecessary model updates, SCDCF also 
succeeds when the target is out of view (i.e., Bird1, Biker). 
In addition, Our tracker also performs well in terms of fast 
motion and illumination variation (i.e., Skiing, Ironman). 
The qualitative evaluation results show that the proposed 
SCDCF method is superior to many advanced tracking algo-
rithms in various complex situations.

4.4  Quantitative evaluation

OTB: Fig.  6 shows the precision and success plots of 
our method and other 16 trackers on the OTB2013 and 
OTB2015 datasets, including handcrafted features-based 
DCF trackers (i.e., ECO-HC [8], LADCF-HC [42], BACF 
[7], CACF [6], SRDCF [33], SAMF [43], KCF [29]), deep 

features-based DCF trackers (i.e., MCCT [40], DeepSTRCF 
[41], C-COT [34], DeepSRDCF [9], MCPF [44], HDT [45], 
HCF [10]), and deep learning-based trackers (i.e., SiamFC 
[46], SiamRPN [47]). Overall, our SCDCF tracker is supe-
rior to many advanced tracking algorithms in terms of DP 
and AUC scores. On OTB 2013, our method ranks first with 
a DP of 94.2% and an AUC of 71.6%. On OTB2015, SCDCF 
has the highest DP and AUC scores of 92.2% and 68.3%, 
respectively, which are 4.2%/0.8% and 7.1%/4.8% higher 
than DeepSTRCF and DeepSRDCF, which use multi-chan-
nel deep features, and 6.1%/2.3% higher than LADCFHC, 
which is the best performer among handcrafted feature based 
trackers. In addition, this work comprehensively compares 
SCDCF with other 9 deep learning-based trackers, including 
LUDT+ [48], LUDT [48], PrDiMP-18 [49], ROAM [50], 
ROAM+ [50], ATOM [51], GradNet [52], DiSiamRPN [53], 

Fig. 6  Precision and success plots of SCDCF and other state-of-the-art trackers on OTB2013 (first row) and OTB2015 (second row), with AUC 
and DP scores reported in the figure legend
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Fig. 7  Precision and success plots of SCDCF and other trackers on TC128, with AUC and DP scores reported in the figure legend

Table 1  Performance 
comparison with other SOTA 
trackers on OTB2015

Tracker Venue Prec. Succ. Tracker Venue Prec. Succ.

SCDCF This work 0.922 0.683 SiamRPN 2018’CVPR 0.851 0.637
LUDT+ 2021’IJCV 0.843 0.639 ECO-HC 2017’CVPR 0.856 0.643
LUDT 2021’IJCV 0.769 0.602 MCPF 2017’CVPR 0.873 0.628
PrDiMP-18 2020’CVPR 0.875 0.681 CACF 2017’CVPR 0.809 0.598
ROAM++ 2020’CVPR 0.904 0.680 BACF 2017’ICCV 0.822 0.621
ROAM 2020’CVPR 0.908 0.681 C-COT 2016’ECCV 0.903 0.673
ATOM 2019’CVPR 0.876 0.662 SiamFC 2016’ECCVW 0.771 0.582
GradNet 2019’ICCV 0.861 0.639 HDT 2016’CVPR 0.848 0.564
DiMP-18 2019’ICCV 0.856 0.658 DeepSRDCF 2015’ICCVW 0.851 0.635
LADCF-HC 2019’TIP 0.861 0.660 SRDCF 2015’ICCV 0.789 0.598
DaSiamRPN 2018’ECCV 0.858 0.644 HCF 2015’ICCV 0.837 0.562
MCCT 2018’CVPR 0.916 0.682 KCF 2015’TPAMI 0.696 0.477
DeepSTRCF 2018’CVPR 0.880 0.675 SAMF 2014’ECCV 0.762 0.560

Table 2  A comparison of our SCDCF method with 16 advanced trackers on OTB2015

Tracker SiamRPN SiamFC SAMF HCF HDT SRDCF CACF BACF

OP(%) 81.6 73.1 68.0 65.6 65.7 72.9 72.8 77.8
CLE(pixels) 19.6 33.2 33.9 22.8 20.1 38.6 31.5 26.5
Speed(fps) 34.2 84.3 33.7 10.4 5.5 4.3 37.6 37.1

Tracker MCPF DeepSRDCF ECO-HC LADCF-HC C-COT DeepSTRCF MCCT SCDCF

OP(%) 78.1 77.3 78.5 80.6 82.4 84.6 86.0 86.6
CLE(pixels) 20.9 21.4 22.7 20.6 14.0 17.8 10.7 8.4
Speed(fps) 0.5 0.3 24.6 20.0 0.2 6.4 7.5 14.8
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and DiMP-18 [54], on the OTB2015 dataset to present a 
more comprehensive evaluation. The results are shown in 
Table 1. Our SCDCF tracker achieves the best precision and 
success rate, outperforming the recent SOTA trackers.

To analyze the performance of the tracker in more detail, 
we evaluate the mean CLE, OP, and speed (fps) of SCDCF 
on OTB2015. Table 2 reports the comparison results of 
our method with 15 other trackers. In terms of OP, SCDCF 
achieves the best performance with 0.6%/2.0% improve-
ment over the second and third places (i.e., MCCT and 
DeepSTRCF). In terms of mean CLE, SCDCF maintains 
at 8.4 pixels, outperforming many state-of-the-art trackers. 
In terms of speed, the end-to-end Siamese network-based 
tracking algorithms (i.e., SiamFC and SiamRPN) are faster, 
reaching 84.3 fps and 34.2 fps, respectively. Due to their 
offline learning method, the tracking speed is fast, but the 
target appearance model cannot be dynamically adjusted 
by analyzing the context environment. The tracking effect 
is poor compared with the SCDCF using the online learn-
ing method. Among the many deep feature-based correla-
tion filter trackers, SCDCF is the fastest at 14.8fps, 4.4fps 
faster than the second-place HCF algorithm. This is because 
SCDCF uses channel selection to remove a large number of 
interfering feature channels to improve tracking efficiency. 
Overall, the tracking performance of our method is superior 
to the other advanced trackers.

TC128: We compare the proposed tracker with 10 
advanced trackers on TC128, such as MCCT [40], 

DeepSRDCF [9], DeepSTRCF [41], C-COT [34], SRDCF 
[33], BACF [7], SAMF [43], Struck [55], DSST [56], and 
KCF [29]. The evaluation results are shown in Fig. 7, and 
our method achieves the best DP/AUC scores. In terms of 
DP, our tracker scores the highest with 80.5%, which is 0.4% 
and 1.6% better than the second and third places (i.e., MCCT 
and DeepSTRCF). In terms of AUC, SCDCF ranks first, 
outperforming C-COT and DeepSRDCF by 1.8% and 5.5%.

UAV123: The UAV123 is one of the most popular 
datasets in the field of UAV object tracking. We compare 
SCDCF with 23 recent trackers on UAV123. As shown in 
Fig. 8, the overall performance of SCDCF is excellent. For 
more clarity, we also show the DP/AUC scores of the ten 
best-performing trackers in Table 3. It can be seen from the 

Table 3  A comparison of our SCDCF method with 9 advanced track-
ers on UAV123

Tracker Venue Prec. Succ.

SCDCF This work 0.770 0.520
ACSDCF 2021’IJCV 0.765 0.536
AutoTrack 2020’CVPR 0.689 0.472
fECO 2020’TIP 0.737 0.511
fDeepSTRCF 2020’TIP 0.721 0.508
ASRCF 2019’CVPR 0.737 0.508
MCCT 2018’CVPR 0.734 0.507
DeepSTRCF 2018’CVPR 0.728 0.513
ECO 2017’CVPR 0.741 0.525
ECO-HC 2017’CVPR 0.710 0.496

Fig. 8  Precision and success plots of SCDCF and other trackers on UAV123, with AUC and DP scores reported in the figure legend
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table that SCDCF scored 77.0% on the DP index, ranking 
first among the 23 trackers, leading the second and third (i.e., 
ACSDCF and ECO) by 0.5% and 2.9%. Likewise, SCDCF 
scored 52.0% on the AUC index, ranking third. Experimen-
tal results show that the SCDCF tracker performs better than 
most contrast trackers on UAV123 and is not inferior to the 
recently advanced trackers AutoTrack and ACSDCF, further 
validating the advantages of the proposed method.

VOT2018: To further evaluate the robustness and accu-
racy of the tracker, we also compare the SCDCF with 9 
advanced trackers on VOT2018, including ECO [8], MCCT 
[40], C-COT [34], CSRDCF [13], UpdateNet [57], SiamFC 
[46], DCFNet [58], Staple [5], and KCF [29]. We rank all 
algorithms according to the EAO score, and the results are 
shown in Fig. 9. Table 4 reports the scores of all algorithms 
on the three indicators in detail. From the table, we can see 
that the EAO score of SCDCF reaches the highest 0.280, 
which is 1.3% higher than C-COT and 0.7% higher than 
MCCT. On Robustness, our method ranks second only to 
ECO. Although the performance of MCCT and ECO tracker 
based on deep features on VOT2018 is also excellent, the 
number of deep feature channels used is enormous, and the 
algorithm runs slowly, especially ECO. Therefore, compared 
with other advanced tracking algorithms, the overall perfor-
mance of SCDCF is still in the optimal position.

4.5  Attribute‑based evaluation

To fully evaluate the performance of the tracker in various 
complex scenarios, we perform attribute-based evalua-
tion of SCDCF on OTB2015 and TC128 datasets. These 
attributes include occlusion (OCC), scale variation (SV), 
illumination variation (IV), background clutter (BC), fast 
motion (FM), blur (MB). Low resolution (LR), defor-
mation (DEF), out-of-view (OV), out-of-plane rotation 
(OPR), and in-plane rotation (IPR). Figure 10 shows the 
results of the comparative analysis on OTB2015. The 
SCDCF ranks first in DP for eight attributes: IV, FM, 
DEF, BC, SV, OV, OPR, and LR. Especially in OV and 
LR, it is 3.5% and 4.2% higher than the second and third 
places (i.e., C-COT and MCPF), and the DP score of 
SCDCF is also among the top in the remaining attributes. 
Figure 11 shows the results of the attribute analysis of 
SCDCF on TC128. In terms of DP, our method achieves 
the best in SV, OCC, FM, and OPR and remains in the 
top three in the remaining seven challenges. In terms of 
AUC, the SCDCF tracker ranks first in SV, OCC, and 
second in six attributes: IV, FM, OPR, IPR, OV, and BC. 
The evaluation results show that SCDCF can better cope 
with target variations in a variety of complex scenarios 

Table 4  A comparison of our SCDCF method with 9 advanced trackers on VOT2018

Tracker KCF Staple SiamFC DCFNet UpdateNet CSRCF C-COT ECO MCCT SCDCF

EAO 0.134 0.168 0.187 0.189 0.244 0.256 0.267 0.280 0.273 0.280
Accuracy 0.448 0.526 0.500 0.469 0.519 0.491 0.493 0.483 0.530 0.492
Robustness 0.781 0.684 0.585 0.518 0.454 0.356 0.318 0.276 0.318 0.295

Fig. 9  Expected average overlap 
(EAO) ranking plots on the 
VOT2018 dataset
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by fully using effective feature channels to represent the 
target during tracking.

4.6  Ablation study

we further conduct ablation studies on the OTB2013 and 
OTB2015 datasets to evaluate the contribution of each 
component in the proposed SCDCF tracker, and the evalu-
ation results are shown in Table 5. ’MU’ indicates the 
proposed adaptive model update strategy we designed. 
’SCS’ stands for the saliency-aware channel selection 
strategy. ’CW’ represents the channel weight assigned 
to the selected feature channel according to the SAER 
score. It can be seen from the table that each component 
improves the performance of the tracker to certain extent. 
In particular, after the introduction of salience-aware chan-
nel selection, the DP/AUC scores of the tracker improved 
significantly on OTB2013 and OTB2015, 3.0%/2.3% and 

2.8%/1.8%, respectively. Using SAER scores to assign 
channel weights also enhanced the stability of the tracker. 
Compared to the baseline, SCDCF combines all compo-
nent strengths to improve the AUC and DP metrics by 
10.7%/7.7% and 10.0%/6.2% on OTB2013 and OTB2015, 
respectively.

4.7  Discussion

Qualitative and quantitative experiments on several data-
sets have verified that the proposed saliency-aware channel 
selection can effectively improve the tracking accuracy of 
the correlation filter algorithms. Although in most practical 
scenarios, using the saliency-aware detection mechanism 
proposed in Sect. 3.3, we can obtain masks that match the 
target appearance profile, as shown in Fig. 2. However, a 
few environments will still affect the effectiveness of the 
saliency-aware detection mechanism, as shown in Fig. 12. In 
Fig. 12 a, due to the similarity between the target local and 
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Fig. 11  The 11 attributes-based DP (left) and AUC (right) scores of our tracker and other trackers on TC128

Table 5  DP and AUC scores of 
various variants of the proposed 
SCDCF on OTB2013 and 
OTB2015 datasets

Variant of our tracker OTB2013 OTB2015

DP Score AUC Score DP Score AUC Score

Baseline 0.835 0.639 0.822 0.621
Baseline+Deep 0.889 0.679 0.870 0.653
Baseline+Deep+MU 0.908 0.689 0.884 0.658
Baseline+Deep+SCS 0.919 0.702 0.898 0.671
Baseline+Deep+SCS+CW 0.924 0.707 0.913 0.677
Baseline+Deep+SCS+CW+MU 0.942 0.716 0.922 0.683
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the background environment, the mask generated by the sali-
ency-aware detection has some missing regions. In Fig. 12 
b, due to the low brightness and resolution of the image and 
the low color discrimination, the generated target mask is not 
complete enough. These results reveal the shortcomings of 
our method. To better improve the tracking performance, we 
will explore more advanced saliency detection algorithms 
to alleviate the above problems and study how to integrate 
saliency information with the DCF model further.

5  Conclusion

In this paper, we research the correlation between multi-
channel deep features and target saliency-aware region infor-
mation and propose a novel DCF-based tracking method via 
saliency-aware and adaptive channel selection. By compar-
ing the feature energy of the target saliency-aware region 
and the background region, the more discriminative effec-
tive channels in the multi-dimensional convolution features 
are selected, and high tracking accuracy can be achieved 
using a small number of feature channels. In addition, the 
proposed SAER indicator can also be used to determine the 
importance of channels and realize the adaptive allocation 
of channel weights. We also introduce the ADMM method 
to optimize the proposed SCDCF model. Extensive experi-
ments on five well-known datasets validate the effectiveness 
and robustness of the proposed method.
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