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Abstract
Recent monocular 3D face reconstruction methods demonstrate performance improvement regarding 3D face geometry 
retrieval. However, these methods pose numerous challenges, particularly during testing. One of the significant challenges is 
the requirement of processed (cropped and aligned) input, which leads to the dependency on the facial landmark coordinates 
detector. Moreover, input processing time degrades the network’s testing speed, thus increasing the test time. Therefore, we 
propose a REduced Dependency Fast UnsuperviSEd 3D Face Reconstruction (RED-FUSE) framework, which exploits 
unprocessed (uncropped and unaligned) face images to estimate reliable 3D face shape and texture, waiving off the require-
ment for prior facial landmarks information, and improving the network’s estimation speed. More specifically, we utilize a 
(1) Multi-pipeline training architecture to reconstruct accurate 3D faces from challenging (transformed) unprocessed test 
inputs without posing additional requirements and (2) Pose transfer module that ensures reliable training for unprocessed 
challenging images by attaining the inter-pipeline face pose consistency without requiring the respective facial landmark 
information. We performed qualitative and quantitative analysis of our model on the unprocessed CelebA-test dataset, LFW-
test set, NoW selfie challenge set and various open-source images. Our RED-FUSE outperforms a current method on the 
unprocessed CelebA-test dataset, e.g., for 3D shape-based, color-based, and 2D perceptual errors, the proposed method shows 
an improvement of ��.�% , ��.�% , and ��.�% , respectively. Moreover, our approach demonstrates a significant improvement 
of ��.�% on NoW selfie challenge. Furthermore, RED-FUSE requires lesser test time (a reduction from �.�� m.sec. to �.�� 
m.sec. per face) and poses minimal test time dependencies, demonstrating the effectiveness of the proposed method.

Keywords Unsupervised training · 3D Morphable Model (3DMM) · 3D face reconstruction · Reduced testing 
requirements · Improved testing speed

1 Introduction

3D face reconstruction from a monocular face image is a 
longstanding problem in the field of computer graphics and 
computer vision, which has numerous applications, such 
as face recognition [1], interaction in augmented/virtual 

environments [2], media manipulation, and animation [3]. 
For recovering 3D face shape and texture from monocu-
lar images, a statistical 3D Morphable Model (3DMM) [4] 
is most popularly utilized, built from hundreds of 3D face 
scans. 3DMM facilitates a search space spanning the range 
of 3D human faces. The points from the 3DMM search space 
contain information on 3D face geometry and texture. Along 
with these points, face illumination and pose coefficients are 
required to generate desired 3D faces. The reconstructed 3D 
faces imitate the face shape and color of the corresponding 
face images; thus the processing, i.e., cropping and align-
ment, of input face images is needed. Facial image process-
ing poses dependencies such as pre-trained landmark detec-
tors. Moreover, processing requires significant time, which 
is a major issue, particularly during testing.

Numerous deep learning-based monocular 3D face 
reconstruction methods [5–7] have been proposed, but 
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dependency reduction and test speed improvement are 
beyond the scope of these approaches, which are crucial for 
real-time application. Tewari et al. [5, 8] produce 3D faces in 
consistency with the processed inputs. Deng et al. [6] exploit 
dlib [9] and (or) MTCNN [10] to process the input face 
images for reconstructing accurate 3D faces. Tiwari et al. 
[7, 11] require processed face images at the input for gener-
ating occlusion robust 3D faces. Feng et al. [12] reconstruct 
detailed 3D faces from monocular processed face images. 
Although these methods improve the 3D face reconstruction 
accuracy,  they require processed input at the test time, lead-
ing to the need for facial landmark information. Moreover, 
processing reduces the testing speed, thus increasing the 
time required for testing these methods. Therefore, a novel 
training pipeline is required to overcome these issues and 
obtain accurate 3D faces from unprocessed (uncropped and 
unaligned) monocular images.

In this work, our aim is to estimate the 3D faces from 
unprocessed monocular face images to reduce the test time 
dependencies and improve the testing speed. Furthermore, 
an unsupervised training scheme is needed to overcome 
the requirement of difficult to procure ground truth 3D face 
scans. To achieve these objectives, we propose a REduced 
Dependency Fast UnsuperviSEd 3D Face Reconstruc-
tion  (RED-FUSE) framework, which estimates statisti-
cal 3D face coefficients for unprocessed face images in 
an unsupervised manner, as in Fig. 1. More specifically, 

RED-FUSE exploits a (1) Multi-pipeline architecture to 
ensure a reliable reconstruction of 3D faces from challeng-
ing unprocessed inputs and (2) Pose transfer module that 
facilitates the elimination of landmark requirements for 
training the network on various variants of unprocessed 
inputs. Due to the inclusion of challenging image variants 
(affine transformed) as the inputs to the training pipeline and 
landmark free network’s training for unprocessed variants, 
RED-FUSE produces accurate 3D face from real-world in-
the-wild face images.1 The proposed RED-FUSE is quali-
tatively and quantitatively evaluated on the numerous open 
source unprocessed images, CelebA-test dataset [13], LFW-
test set [14], and NoW selfie-based validation dataset [15]. 
Our method demonstrates superior performance over several 
methods. For example, we obtain an improvement of ��.�% , 
��.�% , ��.�% and ��.�% for 3D shape-based error, color-
based error, NoW selfie challenge, and visual similarity (per-
ceptual) error, respectively, compared to a recent approach.
Moreover, our test time improves from �.�� m.sec. to �.�� 
m.sec. per face compared to various 3D face reconstruction 
methods. 

A summary of our multi-fold contributions2 is as follows. 

Fig. 1  An overview of our 
REduced Dependency Fast 
UnsuperviSEd 3D Face 
Reconstruction (RED-FUSE) 
framework. The proposed 
method addresses the problem 
of unprocessed monocular 3D 
face reconstruction in an unsu-
pervised manner by exploiting 
novel pose transferring module 
and speeds up the testing 
process, without posing the 
requirement of 3D ground-truth 
face scans
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2 This paper is an extended version of [16].
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1. We propose REduced Dependency Fast UnsuperviSEd 
3D Face Reconstruction (RED-FUSE) to perform 3D 
face reconstruction from unprocessed face images with-
out posing additional requirements and dependencies.

2. We propose a pose transfer module, which integrates 
with our training framework to facilitate landmark-free 
training of unprocessed variants, thus aiding in eliminat-
ing the landmark requirement at the test time.

3. We leverage a multi-pipeline training scheme to learn 
the statistical representation of 3D faces for unprocessed 
variants of face images in an unsupervised manner, over-
coming the need for difficult-to-procure ground-truth 3D 
faces.

4. Our method demonstrates improvements for several 2D 
and 3D evaluation metrics. For example, the proposed 
approach improves 3D shape accuracy by ��%+ and 2D 
visual error by ��%+ , demonstrating the effectiveness 
of the proposed approach.

5. Our method does not require input processing during 
testing, thus eliminating the test time landmark depend-
ency and producing reliable 3D faces.

6. The proposed approach provides ��% faster inference 
than recent state-of-the-art monocular 3D face recon-
struction methods and shows real-time performance.

2  Related work

The literature behind 3D face reconstruction method [17–21] 
is vast. Therefore, we focus on morphable model-based [4, 
22–24] monocular 3D face reconstruction approaches and 
unsupervised training strategies.

3D Face Reconstruction Methods: 3D face shape 
retrieval from an unconstrained monocular face image is 
a mathematically ill-posed problem. A geometric prior 
is required to address the issue. 3DMM [4] has gained 
immense popularity in recent years, which serves as a 
strong prior for reconstructing 3D faces. Tewari et al. [5, 
25] exploit 3DMM to reconstruct 3D faces from face images 
by exploiting a cycle-consistent approach. Sela et al. [26] 
provide high-quality reconstructions by utilizing depth 
images and facial correspondence maps. Feng et al. [22] 
disentangle shape features such that the tasks of reconstruct-
ing 3D face shapes and learning discriminative shape fea-
tures for face recognition are accomplished simultaneously. 
Tran et al. [27] produce accurate 3D faces from non-frontal, 
obstructed face images. Genova et al. [28] use synthetic 
images with corresponding ground-truth data, where label-
free instances of real images are exploited to reconstruct 
3D faces. Deng et al. [6] attain deep-feature consistency to 
improve the reconstructed 3D face shape accuracy. Gecer 
et al. [29] produce high-fidelity 3D face texture and shape 
by estimating facial texture in UV space. Tu et al. [30] use 

sparse 2D facial landmark heatmaps to produce high-quality 
3D faces. Feng et al. [12] generate a UV displacement map 
containing person-specific details to reconstruct detailed 3D 
faces from monocular images. Zeng et al. [31] integrate a 
fitting-based approach with the shape-from-shading method 
[32] to reconstruct detailed 3D face geometry. Tiwari et al. 
[11] distill knowledge for tackling occlusions to reconstruct 
accurate 3D faces. Tiwari et al. [7] deploy a self-supervision 
strategy to generate occlusion robust 3D faces. However, 
these approaches require the processing of face images, 
which poses a dependency on prior landmark information 
and degrades the testing speed of the model. Besides, our 
method reconstructs reliable 3D faces from unprocessed face 
data without posing additional dependencies, thus demon-
strating reduced dependency and faster testing speed.

Unsupervised Learning: Recently, there has been a 
surge of interest in the unsupervised training scheme for 
monocular 3D face reconstruction using processed inputs, 
as it can learn statistical 3D face coefficients without human 
intervention. The key is to design a 3D face reconstruction 
task that relates the projected 3D faces with the correspond-
ing processed face images such that the 3D face coefficients 
can be self-annotated. Most recent developments for 3D face 
reconstruction tasks [8, 28, 29, 33] utilize the unsupervised 
approach mentioned above. Tewari et al. [8] establish con-
sistency between processed input and the rendered face to 
overcome the requirement of external supervision. Genova 
et al. [28] exploit labeled synthetic data, whereas label-
free instances of processed real inputs are used to perform 
unsupervised 3D face learning. Gecer et al. [29] estimate 
the relationship between the facial identity features and the 
parameters of a 3DMM for shape and texture for processed 
data in an unsupervised manner. Besides, our proposed task 
exploits unprocessed images as input to learn the accurate 
3D face representation without external supervision.

3  Technical details 

In this section, we present the preliminaries of 3D face 
reconstruction (Sect. 3.1). Moreover, we provide the details 
of proposed  REduced Dependency Fast UnsuperviSEd 3D 
Face Reconstruction (RED-FUSE), which reconstructs 3D 
faces from unprocessed face images without requiring exter-
nal supervision (Sect. 3.2).

3.1  Preliminaries

We present the preliminaries for reconstructing 3D faces 
from monocular face images. More specifically, we provide 
the details on the 3D Morphable Model (Sect. 3.1.1), which 
serves as a prior for facilitating fitting-based monocular 3D 



 Journal of Real-Time Image Processing (2023) 20:18

1 3

18 Page 4 of 16

face reconstruction. Moreover, we present the illumination 
assumption (Sect. 3.1.2), and face projection (Sect. 3.1.3).

3.1.1  3D Morphable Model (3DMM)

A 3DMM reconstructs the desired 3D face by exploiting 
the linear combination of shape ( � ∈ ℝ

80 ), expression 
( � ∈ ℝ

64 ), and texture ( � ∈ ℝ
80 ) coefficients with their 

respective basis vectors B� ∈ ℝ
80×3N , B� ∈ ℝ

64×3N , and 
B� ∈ ℝ

80×3N , respectively, as follows.

where, S ∈ ℝ
3N and T ∈ ℝ

3N are the mean 3D face shape 
and texture, respectively. It is worth noting that S , T  , B� , 
and B� are obtained from the Basel Face Model (BFM) [34]. 
BFM produces 3D faces with neutral expressions; thus, the 
expression basis B� is extracted from the Facewarehouse 
model [23]. Besides, our network estimates the face coeffi-
cients � , � , and � . Moreover, we exclude the reconstruction 
of ear and neck regions of 3D faces following [6], leading 
to N = 36 K face vertices.

3.1.2  Illumination assumption

We illuminate the reconstructed 3D faces (from Eq. (1)) 
using Spherical Harmonics (SH) under the assumption of a 
Lambertian surface reflectance, following [6]. In particular, 
we exploit SH basis vector � ∶ ℝ

3
→ ℝ , i-th vertex nor-

mal ni ∈ ℝ
3 , illumination coefficient �x ∈ ℝ

3 , and texture 
Ti ∈ ℝ

3 corresponding to i-th vertex vi ∈ ℝ
3 to illuminate 

3D faces, as follows.

In Eq. (2), Γ represents the illumination function for recon-
structed 3D faces.

3.1.3  3D face projection

To project the 3D faces onto the screen space, we map each 
3D face vertex (containing shape Si , texture Ti  , illumina-
tion � and pose p information such that i ∈ {1, 2,… , 3N} ) 
to the image plane by assuming a pinhole camera under full 
perspective projection, as follows.

where p contains R ∈ SO(3) and t ∈ ℝ
3 . It is worth noting 

that S = [S1,S2,… ,S3N] and T = [T1,T2,… ,T3N] , where 
N = 36 K. Moreover, Υ is projection function, whereas I′ 
denotes the projected 3D face.

(1)S = S + �B� + �B� , T = T + �B� ,

(2)�(vi, ni ∣ �) = Ti ⋅

9
∑

x=1

�x�(ni).

(3)I′ = Υ(Si,Ti,�, p),

3.2  Reduced dependency fast unsupervised 3D face 
reconstruction

Despite the recent advancements in monocular 3D face 
reconstruction methods, there is still a large scope for 
improvement concerning the test time dependencies. 
Moreover, the issue of test speed improvement is still 
under-addressed, which is crucial for real-time appli-
cations. One possible way to address the problem is to 
reconstruct 3D faces from unprocessed data, which elimi-
nates the facial landmark requirement at the test time and 
improves the estimation speed; thus, we aim to recon-
struct accurate 3D faces from unprocessed single-view 
face images without posing additional dependencies. To 
achieve our objective, we propose REduced Dependency 
Fast UnsuperviSEd 3D Face Reconstruction  (RED-
FUSE) framework, which exploits unprocessed face 
images and their variants to estimate the corresponding 3D 
face coefficients. More specifically, the proposed network 
exploits unprocessed (Original) image IO and it’s three 
variants i.e., Rotated IR , Skewed IS , and Translated IT as 
the inputs to multi-pipeline framework, estimates corre-
sponding 3D face coefficients CR , CS , CT , CO , generates 
corresponding 3D face meshes MR , MS , MT , MO , transfers 
the pose of MO to the remaining 3D face meshes, and pro-
jects them on the processed face image IP (obtained after 
processing IO ) to get the 2D images IR′ , IS′ , IT′ , IO′ , all 
similar to processed image IP as shown in Fig. 2. Further-
more, CR, CS, CT, CO are learned by ensuring the consist-
ency between processed image IP and projected 3D faces 
IR′ , IS′ , IT′ , IO′ . It should be noted that 3DMM coefficient 
Ci contains shape �i ∈ ℝ

80 , expressions � i ∈ ℝ
64 , texture 

�i ∈ ℝ
80 , illumination �i ∈ ℝ

27 , rotation and translation 
vectors (together known as pose coefficients) Ri ∈ ℝ

3 and 
ti ∈ ℝ

3 such that i ∈ {R, S,T,O} , for generating 3D faces. 
All the components required to train the proposed frame-
work are given below.

Pose Transfer Module: The conventional approaches 
ensure cycle consistency of the estimated 3D faces with 
their processed counterparts. The processing of face images 
requires facial landmark information. However, deriving 
facial landmarks becomes tedious and infeasible for tough 
unprocessed variants. Therefore, these methods fail to solve 
the problem of unprocessed monocular 3D face reconstruc-
tion. To overcome these issues, we exploit a novel pose 
transfer scheme. For this purpose, we transfer the pose coef-
ficients of the 3D face ( MO ) obtained from the unprocessed 
image to the 3D faces ( MR , MS , MT ) generated from the var-
iants of unprocessed input (as shown in Fig. 3), thus assist-
ing the RED-FUSE to attain consistency of all projected 3D 
faces ( IR′ , IS′ , IT′ , IO′ ) with a single processed facial image 
( IP ) (using Eq. (3)), without posing requirement of landmark 
information for unprocessed variants, as follows.
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where Sij and Tij are the i-th element of shape vector S 
and texture vector T  (from Eq. (1)), respectively, such that 
j ∈ {R, S, T ,O} . �j (from Eq. (2)) is the illumination vector, 
whereas pj=O represents the pose coefficients of estimated 
3D face MO . Also, Υ is the 3D face projection function, 
which aids in producing projected 3D face Ij′ on to the pro-
cessed image. It is worth noting that the module facilitates 
the network to waive-off facial landmark coordinate require-
ments during testing, thus reducing test time dependencies 
and improving estimation speed.

Obtaining 3D Face Alignment: To obtain the accurate 
pose of estimated 3D faces, we align the projected 3D 
faces IR′ , IS′ , IT′ , IO′ with the corresponding processed face 
image IP . Therefore, as follows, we obtain the consistency 
between 68 facial landmark coordinates using Landmark 
Loss LN.

(4)Ij′ = Υ(Sij ,Tij ,�j, pj=O),

In Eq. (5), LP is a set of landmark coordinates obtained for 
IP , whereas LR′ , LS′ , LT′ , LO′ are the facial landmark coor-
dinates of IR′ , IS′ , IT′ , IO′ , respectively. Also, ∣∣ ⋅ ∣∣ is the L2 
loss.

Obtaining Photometric Consistency: To learn the 3D 
face color, we regress the pixels of projected 3D faces IR′ , 
IS′ , IT′ , IO′ on to the corresponding processed face image IP , 
thus attaining the pixel-consistency using Photometric Loss 
LP , as follows.

(5)
LN =∣∣ LP − LR′ ∣∣ + ∣∣ LP − LS′ ∣∣

+ ∣∣ LP − LT′ ∣∣ + ∣∣ LP − LO′ ∣∣ .

(6)
LP =

A⋅ ∣∣ IP − IR′ ∣∣

∣∣ A ∣∣
+

A⋅ ∣∣ IP − IS′ ∣∣

∣∣ A ∣∣

+
A⋅ ∣∣ IP − IT′ ∣∣

∣∣ A ∣∣
+

A⋅ ∣∣ IP − IO′ ∣∣

∣∣ A ∣∣
,
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|| IP-IR' || + || IP-IS' || + || IP-IT' || + || IP-IO' ||
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Fig. 2  An overview of our REduced Dependency Fast UnsuperviSEd 
3D Face Reconstruction  (RED-FUSE) framework. The proposed 
method addresses the problem of unprocessed monocular 3D face 

reconstruction by exploiting novel pose transferring module in an 
unsupervised manner and speeds up the testing process, without the 
requirement of 3D ground-truth face scans
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where A represents the skin attention mask [6] obtained for 
IP . ⋅ denotes the element-wise multiplication.

Obtaining Deep Feature Similarity: To ensure the 
visual similarity between the processed image IP and the 
projected 3D faces IR′ , IS′ , IT′ , IO′ , we use Deep Feature 
Loss LD , as follows.

where �P is the deep feature for IP , whereas �R′ , �S′ , �T′ , �O′ 
represent the deep-feature vectors of IR′ , IS′ , IT′ , IO′ , respec-
tively. It should be noted that the deep features are obtained 
using pre-trained face recognition model FaceNet [35].

Regularization: For ensuring the plausibility of 
reconstructed 3D face shape, expressions and texture, we 
enforce the estimated shape ( �R, �S , �T , �O ), expression 
( �R , �S , �T , �O ) and texture ( �R, �S, �T , �O ) coefficients to 
follow the BFM distribution (normal), using Regulariza-
tion term, as follows.

(7)
LD = 4 −

(

< �P, �R′ >

∣∣ �P ∣∣∣∣ �R′ ∣∣
+

< �P, �S′ >

∣∣ �P ∣∣∣∣ �S′ ∣∣

+
< �P, �T′ >

∣∣ �P ∣∣∣∣ �T′ ∣∣
+

< �P, �O′ >

∣∣ �P ∣∣∣∣ �O′ ∣∣

)

,

where w�i
 , w�i

 and w�i
 are the weights associated with �i , � i 

and �i , respectively such that i ∈ {R, S, T ,O}.
Obtaining Overall Supervision: The overall supervi-

sory signal for training the Reduced dependency fast unsu-
pervised 3D face reconstruction framework is obtained 
using the pose transferring module (Eq. (4)), landmark 
loss LN (Eq. (5)), photometric loss LP (Eq. (6)), deep fea-
ture loss LD (Eq. (7)), and regularization LR (Eq. (8)). The 
mathematical formulation of overall loss function is as 
follows.

where wN , wP , wD , and wR are the weights associated with 
LN , LP , LD , and LR , respectively.

4  Experiments

In this section, we present the details of the training and 
testing datasets (Sect. 4.1). Also, the evaluation metrics 
and algorithms are detailed to evaluate the performance of 
the proposed method (Sect. 4.2). Moreover, we provide the 
implementation details of our approach (Sect. 4.3).

4.1  Datasets

We gathered various standard face datasets, such as 300W-
LP [36], LFW [14], etc., to form a training dataset. To 
validate the reconstruction accuracy, we use the test data-
set of CelebA [37], NoW selfie-based validation dataset 
[15] and LFW-test set [14].

4.2  Evaluation metrics

For evaluating the reconstruction accuracy of proposed 
RED-FUSE, we exploit various 3D and 2D evaluation met-
rics. Furthermore, we demonstrate the test speed improve-
ment of our using the time analysis. The details of the 
metrics are as follow.

(8)

LR = w�R
∣∣ �R ∣∣ +w�R

∣∣ �R ∣∣ +w�R
∣∣ �R ∣∣

+ w�S
∣∣ �S ∣∣ +w�S

∣∣ �S ∣∣ +w�S
∣∣ �S ∣∣

+ w�T
∣∣ �T ∣∣ +w�T

∣∣ �T ∣∣ +w�T
∣∣ �T ∣∣

+ w�O
∣∣ �O ∣∣ +w�O

∣∣ �O ∣∣ +w�O
∣∣ �O ∣∣,

(9)L = wNLN + wPLP + wDLD + wRLR,

αR, βR, γR ,δR, RR, tR

αS, βS, γS ,δS, RO, tO

αT, βT, γT ,δT, RT, tT

αO, βO, γO ,δO, RO, tO

MO

αT, βT, γT ,δT, RO, tOαR, βR, γR ,δR, RO, tO

\

αS, βS, γS ,δS, RS, tS

MR

MR

MS

MS

MT

MT

Fig. 3  A demonstration of the proposed pose transfer module. It is 
worth noting that apart from rotation and translation coefficients, we 
do not transfer other 3D face coefficients



Journal of Real-Time Image Processing (2023) 20:18 

1 3

Page 7 of 16 18

3D Shape and Color-based Error: The 3D shape and 
color-based error metrics evaluate the spatial and color differ-
ences between the estimated 3D faces and the corresponding 
ground truth. Specifically, each 3D face contains N = 36 K 
vertices; each vertex has an associated spatial location (x, y, z) 
and color values (r, g, b). The estimated vertex locations 
and texture values are compared with the ground-truth data 
using root mean square and standard deviation error metric. 
The mathematical formulation of the 3D shape-based error 
( M3DS ± S3DS ) is given below.

where M3DS and S3DS are the mean and standard deviation 
of shape error, respectively. Moreover, kiG and kiP are the 
ground-truth and predicted spatial locations of i-th vertex 
such that k ∈ {x, y, z} . Also, the mathematical formulation 
of the 3D color-based error ( M3DC ± S3DC ) is given below.

(10)

M3DS =
1

3N

∑

i

E3DSi
,

S3DS =
1

3N

∑

i

(E3DSi
−M3DS)

2 where,

E3DS =

√

(xiG − xiP )
2 + (yiG − yiP )

2 + (ziG − ziP )
2,
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(11)

M3DC =
1

3N

∑

i

E3DCi
,

S3DC =
1

3N

∑

i

(E3DCi
−M3DC)

2 where,

E3DC =

√

(riG − riP )
2 + (giG − giP)

2 + (biG − biP)
2.

M3DC and S3DC are the mean and standard deviation 
of the color error, respectively. Furthermore, kiG and kiP are 
the ground-truth and predicted color values associated with 
i-th face vertex such that k ∈ {r, g, b} where r denotes red, 
g represents green and b is blue color values. We exploit a 
total of 80 subjects for the comparison. An algorithm for 3D 
color and shape-based error evaluation is given in Algo. 1.

NoW Challenge: NoW selfie challenge [15] computes 
the scan-to-mesh distance between the ground truth scan and 
the estimated 3D faces on the selfie images. Our method pro-
duces 3D faces from unprocessed images such as selfies and 
near-face pictures; thus, the evaluation is crucial for dem-
onstrating the 3D shape accuracy of the proposed approach.

Perceptual Error: In addition to 3D evaluation, we also 
evaluate the performance of our model on the 2D perceptual 
metric using 3K, and 1.5K images of the CelebA-test, and 
LFW-test datasets, respectively. The metric emphasizes the 
visual similarity between the 2D face image and the rendered 
counterpart. Therefore, the metric is crucial for evaluating 
the visual consistency between the input data and the esti-
mated faces. To perform the evaluation, we leverage, seven 
high performing face recognition models VGG-Face [38], 
FaceNet [35], FaceNet-512 [35], OpenFace [39], DeepFace 
[40], ArcFace [41] and SFace [42], as follows.

(12)

M2DP =
∑

i

∣∣ (�iG − �iP) ∣∣,

S2DP =
1

M

∑

i

(∣∣ (�iG − �iP) ∣∣ −M2DP)
2,

where �iG ∈ ℝ
M and �iP ∈ ℝ

M are the ground truth and pre-
dicted vectors for i-th face image, respectively. ∣∣ ⋅ ∣∣ denotes 
L2 norm. Moreover, M2DP and S2DP are the mean and stand-
ard deviation of perceptual error vectors, respectively. Please 
refer to Algo. 2 for details.

Test-time Analysis: Finally, we evaluate the improve-
ment in the testing time by deriving its average percentage 
decrease compared to SOTA methods. For the comparison, 
we tested the models on 3K images from the CelebA-test 
dataset and derived the average time taken by each network.

Note that the training and testing datasets are distinct, and 
the testing data is not accessible during training.

4.3  Implementation details

Our REduced Dependency Fast UnsuperviSEd 3D Face 
Reconstruction  (RED-FUSE)  framework contains 3D 
face prediction networks, which estimate 3D face vector 
Ci ∈ ℝ

257 , containing shape �i ∈ ℝ
80 , expression � i ∈ ℝ

64 , 
texture �i ∈ ℝ

80 , illumination �i ∈ ℝ
27 , rotation Ri ∈ ℝ

3 , 
and translation ti ∈ ℝ

3 coefficients such that i ∈ {R, S, T ,O} . 
Therefore, the last fully-connected (FC) layer of our 
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backbone architecture contains 257 nodes. Following [6], 
we exploit ResNet-50 as our backbone architecture such 
that the classification layer is replaced by 257 nodal FC 
layer. Moreover, the in-the-wild (unprocessed) face images 
and their variants (rotated, skewed, and translated) of size 
224 × 224 serve as the inputs to our framework. Further-
more, the unprocessed face images (not their variants) are 
cropped, aligned (using the method in [43]), and reshaped 
to size 224 × 224 , which facilitate the unsupervised train-
ing. Besides, we opt for a batch of 5 for each case: rotated, 
skewed, and translated original unprocessed face images. 
Thus, the proposed framework is trained with a net batch size 
of 20. Our framework is initialized with ImageNet weights 

[44]. In addition, an Adam optimizer [45] is utilized with 
an initial learning rate of 10−4 , and 500K training iterations. 
The proposed framework contains the weights associated 
with the losses as wN = 1.6 × 10−3 , wP = 1.92,wD = 0.2 , 
wR = 3 × 10−4 , following R-Net [6].

4.4  Results

In this section, we compare the qualitative (Sect. 4.4.1) and 
quantitative results (Sect. 4.4.2) of our method with vari-
ous methods, MoFA [5, 8], R-Net [6], and MOPI [11] on 
the several open source images, test dataset of CelebA [37], 
LFW-test set [14] and NoW selfie dataset [15]. MoFA is 

Fig. 4  A comparison of 
qualitative performance of the 
proposed RED-FUSE model 
with R-Net and MoFA methods 
on open source images. Results 
show the superior 3D face 
reconstruction using the pro-
posed approach. *MOPI distills 
the knowledge from R-Net for 
occlusion robustness, resulting 
in the same performance

Unprocessed 
Images

RED-FUSE
(Ours)

R-Net
(CVPRW'19)

MOFA
(TPAMI'18)

MOPI
(WACV'22)
*

Fig. 5  A comparison of qualita-
tive performance of the pro-
posed RED-FUSE model with 
R-Net and MoFA methods on 
LFW datasets. *MOPI distills 
the knowledge from R-Net for 
occlusion robustness, resulting 
in the same performance

Unprocessed 
Images

RED-FUSE
(Ours)

R-Net
(CVPRW'19)

MOFA
(TPAMI'18)

MOPI*
(WACV'22)
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a preliminary CNN-based 3D face reconstruction method, 
whereas R-Net and MOPI generate the accurate 3D face 
from single-view face images using the CNN framework, 
and thus we choose these methods for the comparisons.

4.4.1  Qualitative results

With a single monocular unprocessed face image, RED-
FUSE reconstructs 3D face shape and texture without posing 
additional dependencies. The second rows of Figs. 4 and 5 
show that the proposed approach attains high visual simi-
larity between 3D faces and the corresponding unprocessed 
face images.

Figure  4 qualitatively compares RED-FUSE  results 
with the recent methods, namely MoFA [5], R-Net [6] and 
MOPI [11] on open source unprocessed images (such as 
YouTube, Google, etc.). Compared to these methods, RED-
FUSE reconstructs superior overall 3D face shape (row 
2, 3, 4 and 5) and estimates reliable 3D face pose (column 
3). In addition, RED-FUSE predicts better 3D face expres-
sions than all the other approaches. More specifically, MoFA 
either drags the search outside the 3DMM space (column 
3 and 6, row 5) or maps to a coordinate distant from the 
true coordinate in the search space, resulting in unreli-
able reconstruction results (column 1, 2, 4 and 5, row 5). 

Moreover, R-Net fails to capture accurate expressions from 
unprocessed face images, resulting in poor 3D face shape 
accuracy (column 1 and 3, row 4). Similar to R-Net, MOPI 
produces inaccurate face shapes and poses from unprocessed 
inputs (row 3). It is worth noting that all these methods are 
producing 3D faces with N = 36 K face vertices facilitating 
a fair comparison.

Figure 5 demonstrates the performance of our method on 
LFW [14] unprocessed images. The second row shows vari-
ations in the expressions and poses of 3D faces emphasizing 
the ability of RED-FUSE to re-produce difficult-to-produce 
facial expressions on 3D faces (column 3 and 5, row 2). 
Also, our model holds the ability to capture a range of accu-
rate 3D face shapes from unprocessed images. It is worth 

Table 1  A quantitative comparison of the perceptual error with other approaches on CelebA-test dataset, where the error numbers are the lower 
the better

Methods

Backbones MoFA (TPAMI’18) R-Net (CVPRW’19) MOPI (WACV’22) RED-FUSE (Ours)

VGG-Face [38] 1.00 ± 0.130 0.936 ± 0.130 0.934 ± 0.130 �.��� ± �.���

FaceNet [35] 1.296 ± 0.134 1.201 ± 0.141 1.197 ± 0.139 �.��� ± �.���

FaceNet-512 [35] 1.329 ± 0.123 1.210 ± 0.135 1.205 ± 0.134 �.��� ± �.���

OpenFace [39] 0.953 ± 0.181 0.885 ± 0.194 0.881 ± 0.193 �.��� ± �.���

DeepFace [40] 0.785 ± 0.164 0.781 ± 0.149 0.781 ± 0.149 �.��� ± �.���

ArcFace [41] 1.315 ± 0.171 1.259 ± 0.153 1.254 ± 0.150 �.��� ± �.���

SFace [42] 1.260 ± 0.110 1.230 ± 0.118 1.227 ± 0.116 �.��� ± �.���

Table 2  A quantitative comparison of the perceptual error with other approaches on LFW-test set, where the error numbers are the lower the bet-
ter

Methods

Backbones MoFA (TPAMI’18) R-Net (CVPRW’19) MOPI (WACV’22) RED-FUSE (Ours)

VGG-Face [38] 0.909 ± 0.140 0.915 ± 0.120 0.908 ± 0.119 �.��� ± �.���

FaceNet [35] 1.284 ± 0.210 1.254 ± 0.153 1.206 ± 0.128 �.��� ± �.���

FaceNet-512 [35] 1.294 ± 0.184 1.234 ± 0.156 1.201 ± 0.121 �.��� ± �.���

OpenFace [39] 0.932 ± 0.219 0.963 ± 0.215 0.960 ± 0.213 �.��� ± �.���

DeepFace [40] 0.740 ± 0.159 0.788 ± 0.147 0.782 ± 0.147 �.��� ± �.���

ArcFace [41] 1.314 ± 0.219 1.308 ± 0.136 1.298 ± 0.132 �.��� ± �.���

SFace [42] 1.231 ± 0.161 1.267 ± 0.111 1.250 ± 0.107 �.��� ± �.���

Table 3  A quantitative evaluation on the NoW validation selfie data-
set. Our results show superior performance compared to recent meth-
ods

Methods Median ( ↓) Mean ( ↓) Std. ( ↓)

MoFA (TPAMI’18) 1.99 2.54 2.32
R-Net (CVPRW’19) 1.81 2.41 2.41
MOPI (WACV’22) 1.81 2.41 2.41
RED-FUSE (Ours) �.�� �.�� �.��
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noting that RED-FUSE reliably predicts eyebrow patterns, 
gaze details, etc., resulting in the high perceptual similarity 
between the unprocessed input and the resultant 3D face. 
Finally, our approach effectively tackles minor occlusions 
such as caps and spectacles (column 1 and 3, row 2). MoFA 
aims to attain cycle consistency with the processed input 
images (row 5), thus resulting in poor visual appearance 
and sometimes may lead to not-a-human looking face (col-
umn 1, row 5). R-Net exploits deep-feature loss to improve 

the accuracy of 3D faces using cropped and aligned face 
images in the input, thus producing better results than MoFA 
but still estimates unreliable 3D face shape and expression 
for unprocessed face images (row 4). Furthermore, MOPI 
distills the knowledge from R-Net, showing similar perfor-
mance as R-Net (row 3). Besides, RED-FUSE exploits the 
unprocessed images and their variants to estimate 3D faces 
using a novel pose transfer module and regress the projection 
of predicted 3D faces over the corresponding processed vari-
ant of unprocessed face images for obtaining accurate 3D 
faces. Therefore, our approach shows significant improve-
ment in performance as compared to other recent methods.

In summary, RED-FUSE generates better reconstruc-
tion results, outperforming recent 3D face reconstruction 
approaches in terms of shape robustness, while producing 
reliable 3D face expression and pose. Moreover, the pro-
posed method effectively tackles minor occlusions and gen-
erates occlusion robust 3D faces.

4.4.2  Quantitative results

We compare the quantitative performance of our RED-FUSE 
framework with methods MoFA [8], R-Net [6], and MOPI 
[11] on four criteria: (1) Perceptual Error, (2) NoW Selfie 
Challenge, (3) 3D Shape-based and Color-based Errors, and 
(4) Required Testing Time and Dependencies, as follows.

(1) Perceptual Error: To emphasize the visual effec-
tiveness of the results obtained using our method over 
other recent approaches, we compare the perceptual error 
between rendered 3D faces and color 2D face images with 
MoFA, R-Net, and MOPI. Our results in Tables 1 and 2 
demonstrate superior performance compared to recent 
approaches. A significant improvement of ��.�% (1.007 
→ 0.731) , ��.�% (1.296 → 0.801), ��.�%(1.329 → 0.789) , 
��.�%(0.953 → 0.659) ,  ��.�% (0.785 → 0.646) ,  ��.�% 
(1.315 → 0.987) , and ��.�% (1.260 → 1.036) in the percep-
tual error for VGG-Face, FaceNet, FaceNet-512, OpenFace, 
DeepFace, ArcFace, and SFace, respectively, is achieved 
compared to MoFA on the CelebA-test dataset. Similarly, 
our approach obtains superior performance on the LFW-test 
set (Table 2) for various methods.

Fig. 6  A cumulative error plot obtained for the NoW validation selfie 
dataset. In the plot, the x-axis shows the scan-to-mesh distance error 
(in mm), whereas the y-axis displays the cumulative percentage such 
that the higher the curve, the better the shape-based accuracy. It 
is worth noting that the error curves for R-Net (orange) and MOPI 
(green) are overlapping

Table 4  A comparison of our method with methods MoFA, R-Net 
and MOPI, the principle of the lesser the better principle

Methods Shape-based Error ( ↓) Color-based Error ( ↓)

MoFA (TPAMI’18) 8.78 ± 0.23 4.23 ± 0.17

R-Net (CVPRW’19) 5.84 ± 0.16 3.50 ± 0.14

MOPI (WACV’22) 5.82 ± 0.16 3.50 ± 0.14

RED-FUSE (Ours) �.�� ± �.�� �.�� ± �.��

Table 5  A comparison of our method with recent methods MoFA, 
R-Net and MOPI. It is worth noting that the proposed method poses 
fewer dependencies and significantly reduces testing time. Moreover, 

we re-trained MoFA with the same backbone architecture (as ours) to 
facilitate a fair comparison. Furthermore, FC stands for the last fully-
connected layer

Methods Backbone Exploited Time Required in m.sec. ( ↓) Facial 
Landmarks 
Required

MoFA (TPAMI’18) ResNet-50 (FC: 257 nodes) 7.30 ✓

R-Net (CVPRW’19) ResNet-50 (FC: 257 nodes) 7.30 ✓

MOPI (WACV’22) ResNet-50 (FC: 257 nodes) 7.30 ✓

RED-FUSE (Ours) ResNet-50 (FC: 257 nodes) �.�� ×
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All these results demonstrate that the outputs of the pro-
posed approach are visually more similar to the faces in the 
unprocessed images, thus establishing the effectiveness of 
the proposed method.

2) NoW Selfie Challenge: We evaluate our dataset on the 
standard NoW validation selfie challenge [15]. Our results in 
Table 3 show that the proposed method outperforms recent 
methods by a large margin. For example, improvement of 
��.�% (1.99 → 1.40) and ��.�% (2.54 → 2.02) are obtained in 
the median and mean, respectively, compared to a monocu-
lar 3D face reconstruction method. Moreover, we show the 
improvement through a cumulative error plot in Fig. 6. In the 
plot, the curve corresponding to the proposed RED-FUSE is 
higher than the curves of other approaches, thus validating 
our method’s supremacy. It is worth noting that the evalua-
tion is performed on unprocessed images, i.e., no landmark 
information is exploited to estimate the meshes.

3) 3D Shape and Color-based Error: Table 4 shows 
the 3D shape and color-based error comparison of RED-
FUSE with regards to MoFA and R-Net. We infer that 
RED-FUSE improves the shape and color-based RMSE 

Fig. 7  An analysis of the impact 
of various losses on the training. 
Our results show that the model 
drifts the search outside 3DMM 
space when trained without 
landmark loss L

N
 . Besides, 

the network trained without 
photometric loss L

P
 or deep-

feature loss L
D
 demonstrates 

poor visual similarity with the 
input image

Unprocessed 
Images

With 
Pose Transfer 

Scheme

Without
Pose Transfer

Scheme

Fig. 8  A qualitative demonstration of the effectiveness of pose trans-
fer module for training the proposed framework
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errors by a large margin of ��.�% ( 8.78 → 3.14 ) and ��.�% 
( 4.23 → 2.97 ), respectively, compared to MoFA. Also, 
our method shows a significant improvement of ��.�% 
( 5.84 → 3.14 ) and ��.�% ( 3.50 → 2.97 ) for shape and 
color-based errors, respectively, with respect to R-Net. 
Furthermore, the improvement of ��.�% ( 5.82 → 3.14 ) 
and ��.�% ( 3.50 → 2.97 ) is obtained for shape and color-
based errors, respectively, compared to MOPI (Table 5).

4) Improved Inference Time: To emphasize the effi-
cacy of the proposed method for real-time applications, 
we compare our test time with the above-mentioned recent 
methods MoFA R-Net, and MOPI. These methods require 
the same test time due to the requirement of processing 
the raw data during testing. The proposed approach takes 
�.�� msec to generate a 3D face, whereas the above men-
tioned methods require �.�� msec per face, on average, 
when tested on a Linux platform (Ubuntu 16.04.7) with 
NVIDIA GK110GL GPU 3D controller card. Therefore, 
our method improves test time by a large margin of ��.�% 
(nearly 4 times faster) compared to the recent approaches. 
Moreover, unlike various methods, RED-FUSE doesn’t 
require 5 facial landmarks coordinates during the testing, 
thus eliminating all the test time dependencies.

4.5  Ablation analysis

We present a study on the impact of various losses exploited 
for the training (Sect. 4.5.1). Moreover, we provide an anal-
ysis (qualitative and quantitative) to validate the efficacy 
of the proposed pose-transferring module for training our 
model (Sect. 4.5.2).

4.5.1  Impact of losses

We exploit a combination of losses for learning the 3D 
face representation from unprocessed monocular images 
in an unsupervised manner. Therefore, we qualitatively 
demonstrate the effectiveness of each loss in the proposed 

framework (Fig. 7). In Fig. 7a, the model trained without 
photometric loss LP produces unreliable 3D face texture, 
i.e., the estimated skin color of the rendered face is incon-
sistent with the input image. Moreover, the network trained 
without landmark loss LN (Fig. 7b) drags the search outside 
the 3DMM, thus resulting in a not-a-human-looking face. 
Furthermore, the model trained without deep-feature loss LD 
produces visually less effective 3D faces (Fig. 7c). However, 
a network trained with all the losses ( LP , LN , and LD ) dem-
onstrates the best performance, establishing the efficacy of 
the proposed framework.

4.5.2  Impact of pose transfer module

A critical question arises: What is the impact of the pose 
transfer module on the training? To answer this, we train 
the model without exploiting the proposed scheme and 
regress the projection of estimated 3D faces (obtained from 
unprocessed image and its variants) over the corresponding 
aligned and cropped face image. Figure 8 shows that the 
performance of our model degrades when trained without 
the proposed module, particularly in terms of 3D face shape 
and expressions. We conjecture that the model trained with-
out our scheme is penalized for estimating poses consistent 
with the unprocessed image variants, impacting the 3D face 
shapes and expressions. Therefore, during testing, the model 
fails to capture accurate 3D face shapes and expressions 
from unprocessed face images. Besides, the model trained 
with the pose transfer scheme transfers the estimated 3D 
face pose of the original unprocessed image to the 3D faces 
of corresponding variants before penalizing pixel discrep-
ancies. Therefore, the model trained with the pose transfer 
module learns the correct 3D face shape and expression 
information from unprocessed face images.

Table 6  A study on the impact of pose transfer module in training the 
proposed RED-FUSE framework. It is worth noting that the best per-
formance is obtained by exploiting all the components (rotation and 
translation transfer) of the proposed module

Pose Transfer Errors

Rotation Translation Shape-based Error ( ↓) Color-based.Error ( ↓)

× × 4.24 ± 0.15 3.38 ± 0.13

✓ × 3.98 ± 0.14 3.23 ± 0.13

× ✓ 3.26 ± 0.12 3.07 ± 0.09

✓ ✓ �.�� ± �.�� �.�� ± �.��

Input Images 3D Faces

(a) Single face reconstruction

Input Images 3D Faces

(b) Undetected far-away faces

Fig. 9  An analysis of the limitations of the proposed model. (Left) 
The proposed model does not reconstruct the faces in red rings as 
the network has an upper limit of processing a single face per image. 
(Right) The faces in the blue ring are not reliably reconstructed, 
emphasizing the constraint on the area occupied by a face in the cap-
tured image
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Moreover, we demonstrate the impact of each component 
of the pose transfer module. Our results in Table 6 show 
that the model trained without rotation and translation trans-
ferring performs poorly on 3D -based errors. However, the 
accuracy improves by transferring the rotation coefficients 
( RO ) of the 3D mesh ( MO ) obtained from the unprocessed 
image to its variants.

Further improvement is observed in transferring the trans-
lation coefficient (tO ) of MO obtained from the unprocessed 
image to its variants. This emphasizes that the translation 
coefficient is crucial in improving the accuracy of 3D faces. 
Finally, the model trained with both coefficient transfer, 
translation, and rotation, demonstrates the best performance, 
thus, validating the effectiveness of the proposed pose trans-
fer module.

5  Limitations and future work

While RED-FUSE achieves SOTA results for the recon-
structed 3D faces (obtained from unprocessed monocular 
images) and the testing speed, numerous challenges exist. 
First, RED-FUSE reconstructs only one 3D face irrespec-
tive of the number of persons in the image (Fig. 9a). This 
leads to the need for a more robust network, which divides 
the images into patches and reconstructs 3D faces based on 
the face information obtained from each patch. More spe-
cifically, the patch size should be small enough to contain a 
single face only. However, such a network increases compu-
tational complexity and poses several dependencies during 
training, such as prior knowledge of the number of faces 
in the image. Moreover, RED-FUSE poses challenges in 
estimating 3D faces from images containing far-away faces 
(Fig. 9b). This suggests the need for more diverse unpro-
cessed training data. Therefore, a face dataset is required 
for training, consisting of far-away faces, such that the cor-
responding processed 2D face images do not lose facial 
information. Finally, details such as makeup, mustaches, 
etc. (Fig. 9a, row 1) are not reproduced as we exploit BFM, 
leading to a visual discrepancy between the input image and 
the corresponding 3D face. BFM spans the range of human 
facial appearance, thus posing a challenge in reproducing 
facial accessories such as makeup. Also, BFM contains Prin-
cipal Component Analysis (PCA) basis vectors (obtained by 
projecting 3D facial data from high-dimensional space to 
low-dimensional space) for shape and texture reconstruc-
tion, resulting in the loss of fine facial details. A different 
approach is needed to estimate 3D faces beyond 3DMM.

In future works, we aim to empower our model to tackle 
the above mentioned issues, including patch-wise 3D face 
reconstruction, training on expanded face dataset, and recon-
struction surpassing the constraints posed by 3DMM.

6  Conclusion

In this work, we proposed a novel REduced Dependency 
Fast UnsuperviSEd 3D Face Reconstruction (RED-FUSE) 
framework to reconstruct 3D faces from unprocessed face 
images in an unsupervised manner without posing additional 
dependencies. In particular, RED-FUSE is trained on vari-
ous 2D face datasets using a multi-pipeline training archi-
tecture. A novel pose transfer scheme is exploited to learn 
the accurate 3D face representation without affecting shape 
and texture accuracy. This enables lesser dependencies and 
improved estimation during inference. Our experiments 
indicate that the proposed model improves the perceptual 
error, NoW selfie challenge, 3D shape, and color-based 
error by a large margin of ��.�% , ��.�% , ��.�% , and ��.�% , 
respectively, outperforming the current method. Moreover, 
our approach significantly reduces testing time, i.e., ��.�% ; 
thus, RED-FUSE not only reduces test time dependencies 
and improves estimation speed, but also produces reliable 
3D faces. Due to the reconstruction accuracy, lower depend-
encies, and speed, the proposed model is beneficial for real-
time applications.
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