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Abstract
Since the rise of convolutional neural networks (CNN), deep learning-based computer vision has been a dynamic field of 
research. Nevertheless, modern CNN architectures have not given sufficient consideration to real−time applications within 
limited computation settings and always compromise speed and accuracy. To this end, a novel approach to CNN design, 
based on the emerging technology of compressive sensing (CS), is proposed. For instance, CS networks function in a com-
pression−reconstruction approach as an encoder−decoder neural network. This approach transforms the computer vision 
problem into a multioutput learning problem by incorporating the CS network into a recognition network for joint training. 
As to the deployment phase, images are obtained from a CS−acquisition device and fed directly, without reconstruction, 
to the new recognition network. Following such an approach considerably improves transmission bandwidth and reduces 
the computational burden. Furthermore, the redesigned CNN holds fewer parameters than its original counterpart, thus 
reducing model complexity. To validate our findings, object detection using the Single−Shot Detector (SSD) network was 
redesigned to operate in our CS−based ecosystem using different datasets. The results show that the lightweight CS network 
offers good performance at a faster running speed. For instance, the number of FLOPS was reduced by 57% compared to the 
SSD baseline. Furthermore, the proposed CS_SSD achieves a compelling accuracy while being 30% faster than its original 
counterpart on small GPUs. Code is available at: https://​github.​com/​Boude​rbal-​Imene/​CS-​SSD.

Keywords  Computer vision · Real-time · Convolutional neural network · Compressive sensing · SSD · Embedded systems · 
Robots

1  Introduction

Throughout the past decade, convolutional neural networks 
(CNN) have acquired great interest in both the industrial 
and academic fields and have emerged as the leading tech-
nique for visual recognition tasks. Despite the vast traction 
that CNN gained, a gap between expectations and real-
ity persisted. Therefore, practical use of such networks in 

real-world applications requires an optimal level of perfor-
mance next to which higher response time is sought. How-
ever, to achieve much higher performance, modern neural 
networks have become very deep and difficult to tune on 
large datasets. On the other hand, the design of efficient 
(small and performant) neural networks has become a new 
research focus that has not matured yet [6]. Even more, the 
development of vision-based perception capabilities for 
embedded systems, such as robots or autonomous vehicles, 
with rapid response time and high accuracy is not easy to 
achieve. With limited computational power and weight 
capabilities, the choice of sensors and algorithms able to 
run onboard in real time is the real challenge. Common 
computer vision approaches usually employ multiple sen-
sors, including cameras, LASERs, LIDARs, and RADARs. 
Nevertheless, these sensors have their drawbacks, including 
the high cost and low spatial resolution, they are havier end 
consume more, interference between the different sensing 
modalities, adding to that the preprocessing latency [40]. 
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The best compromise of cost and quality at a reasonable 
preprocessing load is offered by cameras [5]. Therefore, in 
the present work, we focus on accelerating computer vision 
models using cameras to achieve image understanding. Most 
of the proposed architectures in the literature are designed to 
process RGB images even though the latter are compressed 
before or after acquisition for storage and transmission pur-
poses using either engineered compression algorithms or 
machine-learning ones (Fig. 1a). Hence, adding an addi-
tional decoding step, which is computationally costly and 
memory demanding, complicates the real-time and embed-
ded deployment. A possible alternative is to design architec-
tures capable of learning with compressed representations 
(Figure 1b), rather than traditional RGB images in order 
to speed up training and inference of deep networks [14]. 
Likewise, image compression algorithms have also benefited 
from the rise of CNN. In addition to their outstanding com-
pression performances, learned compression algorithms can 
be adapted to specific target domains resulting in better com-
pression rates than engineered ones. One famous learned 
compression algorithm that has gained significant interest 
is compressive sensing (CS) tailored to image acquisition 
applications. A plausible idea would be to develop recog-
nition architectures that work directly on CS compressed 
representations and bypass the reconstruction phase.

In this paper, we explore CS on adapted CNN architec-
tures to perform computer vision tasks. The chosen com-
puter vision task to validate the proposed approach is object 
detection based on the Single-Shot Detector (SSD) network 
since they encompass classification and regression tasks in a 
single network [25]. The proposed lightweight compressed-
sensing architecture is inspired by [33] and is composed of 
two networks for sampling and reconstruction. Our approach 
aims at taking the latent space representations resulting from 
the sampling network and using them for training and infer-
ence in the adapted architectures. The major contributions 
of the paper are the following:

–	 A lightweight CS network is proposed based on the one 
contributed in [33] which provides minimal latency for 
both sampling and reconstruction.

–	 We propose a new approach that enables recognition 
networks to operate in CS-based ecosystems. By rede-

signing the early layers of the recognition network (back-
bone), this latter will exploit sampled data directly with-
out further reconstruction.

–	 We validate the proposed approach for the detection task 
using the SSD object detector upon heavy and light back-
bones, namely VGG and Mobilenet, respectively.

–	 Both the redesigned backbones and the SSD head are 
enhanced by adding Batch Normalization layers to permit 
training from scratch.

–	 Our approach is validated on three different datasets on 
high-performing and small GPUs. The obtained results 
are promising, achieving interesting accuracies while 
being up to 30% faster on small GPUs, which is suitable 
for resource-constrained devices and embedded environ-
ments.

We focus on redesigning computer vision architectures for 
applications in embedded settings and we validate our find-
ings on object detection tasks. The remainder of this paper 
is organized as follows. The background on object detection, 
CS paradigm and compressed learning related works are 
introduced in Sect. 2. In Sect. 3, the details of the proposed 
approach are presented. Section 4 provides the experimen-
tal setup followed by the experimental results in Sect. 5. In 
Sect. 6, we conclude the paper.

2 � Related works

2.1 � Object detection

Since the rise of CNN, deep learning-based object detec-
tion has been outperforming traditional methods by a sig-
nificant margin. Existing models are mainly based on RGB 
images and can be either two-stage or one-stage detectors. 
Two-stage models rely on region proposal followed by 
box classification, such as R-CNN [13] and its subsequent 
improved versions (Fast R-CNN [12], Faster R-CNN [32], 
Mask RCNN [17] and Cascade RCNN [7]). While mod-
els belonging to this category have been proven successful, 
they remain highly computationally expensive. On the other 
hand, the current state-of-the-art of fast object detection is 
mainly driven by one-stage detectors such as YOLO [28] 

Fig. 1   a RGB-based training/inference pipeline; b compressed images training/inference pipeline
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and SSD [25]. By re-framing object detection as a single 
regression problem, a single network that simultaneously 
outputs bounding box coordinates and class scores could 
be used [26]. For YOLO models, the prediction relies on 
global image features extracted from convolutional layers, 
which significantly improves the detection speed at the cost 
of detection precision. Nonetheless, YOLO improvements 
[4, 29, 30] are one of the fastest and most accurate object 
detectors by integrating several improvements such as multi-
label object class prediction, prediction across scale, the use 
of K-means clustering to determine box priors, etc. Another 
popular one-shot detector is SSD. This latter considers a 
fixed set of default bounding boxes with an associated fea-
ture map at different scales and aspect ratios. By coupling 
the box matching strategy with the multi-scale features, 
SSD is significantly more accurate than the original YOLO 
network with a higher detection speed. Also, SSD-based 
models such as [15] are one of the most accurate and light-
weight object detectors. Moreover, many attempts to accel-
erate existing state-of-the-art models have been carried out. 
The authors of [23] proposed a general compression pipeline 
(through pruning, knowledge distillation, and quantization) 
for one-stage object detection networks to meet the real-time 
requirements. In [16], a lightweight and fast object detec-
tor based on ShuffleNetV2 and YOLO head is proposed. 
The model has achieved competitive results in accuracy and 
speed while being lightweight. Likewise, many efforts were 
made to accelerate object detection tasks for specific appli-
cations. The work in [39] proposed a faster version SSD 
model based on parameter reduction and dilated convolu-
tion. The obtained results showed that the proposed model 
achieves higher speed compared to the original one for spe-
cific applications (apple detection, bicycle detection, and 
vehicle detection). In [31], a real-time traffic sign detection 
network using DS-DetNet and lite fusion FPN is proposed. 
The model achieves compelling accuracy with high speed. 
It should be noted that the methods mentioned above were 
proposed to speed up the inference stage using RGB-based 
architectures. The proposed approach herein aims at improv-
ing the network’s inference speed by considering lightweight 
compressed inputs. Since this work focuses on embedded 
settings with limited resources, such as transportation sys-
tems and robots, the SSD one-stage object detector was cho-
sen as the baseline architecture for the proposed solution. 
For instance, the combination of our approach with other 
RGB-based classifiers, detectors, or segmentation networks 
could be of interest. Also, the combination of our approach 
with the above-mentioned ones could be relevant.

2.2 � Compressive sensing

Compressive sensing is a powerful sensing paradigm to 
sample sparse signals with much fewer samples than the 

Shannon-Nyquist sampling limit [3, 21]. Inherent redun-
dancy present in real signals like images and videos allows 
significant data compression. CS exploits this redundancy 
and enables sampling at Sub-Nyquist rates. This makes CS 
extremely useful for capturing images and videos in sys-
tems that cannot afford high data bandwidth. The ability to 
sample very few data points and still be able to reconstruct 
the original signal helps to create lower power consumption 
imaging systems. The existing CS methods are mainly clas-
sified into two categories: iterative optimization-based CS 
methods and neural network-based CS [24]. Refer to [24, 33] 
for a review on existing solutions. For methods belonging 
to both categories, the theory behind CS guarantees that a 
sparse signal (in some domains) can be exactly recovered 
from many fewer measurements. Concretely, suppose that 
x ∈ RN×1 is a real-valued signal and Φ ∈ RM×N is a sampling 
matrix, with M << N , the CS measurements acquisition is 
expressed as:

where y ∈ RM×1 is the CS measurement. In general, because 
the number of unknowns is much larger than the number of 
observations [11], recovering the original signal x from its 
corresponding measurements, y is not feasible. However, 
if the signal x is sparse in some domain Ψ , the CS theory 
shows that an exact recovery of x is possible. The CS recon-
struction can be formulated as:

where Ψx is the spare coefficients for domain Ψ , and the 
subscript p is usually set to 1 or 0, characterizing the sparsity 
of the vector Ψx.

2.3 � Neural networks and compression: compressed 
learning

Compressed learning concepts were first introduced in [1], 
which showed that direct inference from compressed repre-
sentations and measurements is feasible with high perfor-
mances. In the light of this approach and given that training 
and particularly inference speed is critical, many works have 
focused on accelerating networks’ computations by employ-
ing spatial frequency decomposition, and other image com-
pressed representations obtained using engineered codecs [8, 
9, 14]. Other works have explored deep learned compressed 
data to promising effect [1, 34]. In [14], the authors dem-
onstrate the use of DCT coefficients available in the JPEG 
image format as an effective input representation to CNN. 
Instead of inputting RGB pixels, a JPEG-compressed image 
half-decompressed to 8 × 8 block DCT coefficients is used 
to input the network. The method can achieve good perfor-
mance while offering a significant speedup, primarily by 

(1)y = Φx

(2)min
x

||Ψx||p, subject to ∶ y = Φx
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replacing the first two blocks with the already-computed 
JPEG DCT coefficients. Several approaches are evalu-
ated to sample and place the DCT input into the network. 
However, few examples of architectures exploring features 
obtained from learned image compression algorithms exist 
in the literature. A relevant work is [34], where the authors 
explore the use of learned compressed image representa-
tion for solving two computer vision tasks (classification 
and semantic segmentation) without employing a decod-
ing step. The compressed inputs are acquired using a heavy 
auto-encoder architecture. The results are compared to those 
obtained using RGB images and are similar for classification 
and slightly improved segmentation (especially for aggres-
sive compression rates). The authors also jointly train the 
compression and classification and show that it can enhance 
the results. However, the deep encoder constitutes a memory 
and computation burden and is inefficient. Another work is 
the one proposed in [41]. The author proposed a compres-
sive convolutional network (CCN), which is a compressive-
sensing-enabled CNN. The proposed CCN optimizes and 
reuses the convolution operations of the first layers of the 
detector for recoverable data embedding and image com-
pression. Therefore, no extra computational overhead is 
required for image compression. However, the detection task 
is performed, as usual, i.e. on RGB images. The approach 
we propose is most related to [34] since we aim to use deep 
learned image compressed representations directly to solve 
vision tasks.

3 � Methodology

Traditionally, CNNs deployed in embedded systems such as 
robots or autonomous vehicles are fed with a flow of RGB 
images from a high-resolution acquisition device to perceive 

the surrounding environment better. Frame-by-frame pro-
cessing of such an enormous amount of data requires hefty 
computational resources.

Additionally, and motivated by the emergence of deep 
learning and compressive sensing, different learned sam-
pling mechanisms were developed to incorporate CS in 
image and video acquisition. In fact, and in contrast to 
traditional compression algorithms such as JPEG, learned 
CS does not override the spatial structure of images, as it 
generates feature maps ready to be explored with adapted 
architectures. Consequently, using such sampling methods 
for data acquisition than exploring the acquired data would 
be more efficient than traditional pipelines. In this scope, 
the present work proposes and explores an efficient learned 
compression method, namely learned CS for both real-time 
sampling and reconstruction, for object detection task and 
adapts state-of-the-art architectures accordingly. Figure 2 
illustrates the proposed pipeline.

The proposed solution transforms the recognition prob-
lem into a multiple output learning problem [37]. The pro-
posed scheme learns simultaneously to predict two outputs 
given an input image. The first is the reconstructed image 
following the CS branch, and the second is the bounding 
boxes and scores following the detection branch. It offers in 
one hand two training procedures:

–	 The entire network can be trained jointly from scratch 
or from a previous trained state of the CS network as an 
initialization;

–	 The detection network can be trained using a fixed previ-
ously trained sampling network.

However, in this work, only the first training procedure is 
explored. Furthermore, during deployment and inference, 
the reconstruction part can be omitted since the compressive 

Fig. 2   The proposed architecture for joint object detection and image sampling
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camera using the sampling learned weights deliverers rep-
resentations ready to be explored by the modified detection 
network. Hence, the gain for such architectures mainly stems 
from the reduced data transfer between CPU and GPU due to 
image compression and decompression. As it can be seen in 
Fig. 2, after the generation of the compressed representation 
by the sampling network, this latter is fed to the reconstruc-
tion network to optimize for mean-squared reconstruction 
error and to the new detection network (named CS_D) to 
optimize for both classification and bounding box regression 
losses. The total loss function is:

where LCS is the loss term for the compressive sensing net-
work (see Eq. 4), and LOD is the CS_D loss (see Eq. 5). � 
controls the trade-off between compression loss and detec-
tion loss.

where x is the input image and x̂ is the reconstructed image 
such as: x̂ = R(S(x)).

Similarly to [25], the CS_D loss function consists of two 
terms: Lconf and Lloc where N is the matched default boxes. 
Lloc is the localization loss which is the Smooth L1 loss 
between the predicted box l and the ground-truth box g. Lconf 
is the confidence loss which is the Softmax loss over multi-
ple classes confidences c ( � is set to 1 by cross validation).

3.1 � Lightweight CNN for image compressive 
sensing: L_CSnet

The proposed lightweight CNN for image CS is inspired by 
[33]. It has a sampling network and a reconstruction net-
work. The sampling network is used to learn the sampling 
matrix and acquire CS measurements. The reconstruction 
network, which is linear, learns an end-to-end mapping from 
the CS measurements to the reconstructed images (Fig. 3). 
In contrast to [33], the deep nonlinear reconstruction net-
work used for quality refinement is removed.

3.1.1 � Sampling network

First, the image is divided into non-overlapping blocks of 
size B × B × l (l is the number of channels). Then, using a 
sampling matrix ΦB of size nB × lB2 , the CS measurements 
are acquired. A convolution layer is used to imitate the com-
pressed sampling process (while considering each row of 
the sampling matrix ΦB as a filter). The size of each filter in 
the sampling layer is B × B × l (according to the size of the 

(3)Lc = �LCS + LOD

(4)LCS = MSE(x, x̂)

(5)LOD = L(x, c, l, g) =
1

N

(
Lconf (x, c) + �Lloc(x, l, g)

)

image blocks) so that each filter outputs one measurement. 
For the sampling ratio M

N
 , there are nB =

M

N
lB2 rows in the 

sampling matrix ΦB to obtain nB CS measurements. There-
fore, there are nB filters of size B × B × l in this network. 
Formally, the sampling process S can be expressed as :

where ∗ represents convolution operation, x is the input 
image, y is the CS measurement, Ws corresponds to nB fil-
ters of size B × B × l . The output of the sampling network to 
an image block is a 1 × 1 × nB vector. The learned sampling 
matrix can efficiently utilize the characteristic of images and 
make the CS measurements retain more structural informa-
tion for better reconstruction. In the application phase, the 
learned sampling matrix is used as an encoder to generate 
CS measurements.

3.1.2 � Reconstruction network

To reconstruct the image, the pseudo-inverse matrix of the 
sampling network ΦB is used, following the works in [33, 
38]. Given CS measurements yi of the jth block, its recon-
struction result is 

∼
xj =

∼

Φyj . ΦB is a matrix of size lB2 × nB 
. Similar to the sampling process, a convolution layer with 
special kernel size and stride could be used to implement 
the reconstruction process. Similar to [33], the matrix 

∼

ΦB is 
optimized instead of the pseudo-inverse matrix of ΦB . The 
reconstruction process R can be expressed as:

where y is the CS measurement, and Wint is the filters. The 
size of each one of the lB2 convolution filter in the recon-
struction layer is 1 × 1 × nB . The stride of this convolution 
layer is set to 1 × 1 to reconstruct each block and the bias is 
ignored. Each column of 

∼

R(y) is a 1 × 1 × lB2 vector corre-
sponding to an image block of size B × B × l . A combination 
layer, which contains a reshape and a concatenation func-
tion, is used to obtain the final reconstructed image.

3.2 � Recognition network

Our goal is to design a CNN for object detection starting 
from compressed representations of images obtained via the 
sampling network of the deep CS model described in the 
previous subsection. As mentioned earlier, the chosen base-
line to design such a network is the state-of-the-art object 
detector SSD.

3.2.1 � RGB baselines

Like most CNN object detectors (except YOLO and its 
variants), SSD relies on existing classification modules. 

(6)y = S(x) = Ws ∗ x

(7)
∼

R(y) = Wint ∗ y
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Originally, SSD was designed to use the VGG network as 
a backbone. However, object detection networks are not 
restricted to a specific classification backbone and can eas-
ily use others, provided that the dimensions of input images 
and network outputs are compatible. The proposed approach 
was implemented using two backbones, namely VGG and 
MobileNet [19], to evaluate its impact on both heavy and 
lightweight architectures. Other computer vision tasks, such 
as classification and segmentation, can also be used along-
side the proposed approach. We first use the original SSD 
framework (based on VGG), then we study the effectiveness 
of BatchNorm for training SSD from scratch following the 
approach proposed in [42] (denoted SSD_BN). We incor-
porate BatchNorm layers after each convolutional layer in 
the VGG backbone and head (MobileNet already has Batch-
Norm layers). According to the authors [42], BatchNorm 
renders the optimization landscape remarkably smoother, 
inducing a more predictable and steady behavior of the 
gradients to permit bigger searching space and prompter 
convergence.

3.2.2 � CS based‑architectures

The use of compressed representation requires the design 
of adequate CNN. Figure 2 illustrates the proposed archi-
tecture where the global model is composed of two subnet-
works, the CS one and the SSD one. The SSD subnetwork 
(i.e. backbone and head) used in the CS-based models is the 
SSD_BN. This latter is further adapted to allow compressed 
data processing and is denoted: CS_D_i_j where i stands for 
the block size B and j for the sampling rate M

N
 used in the CS 

sub-network.
It is worth mentioning that the block sizes were chosen 

to produce compressed representations that could be fed to 
CS_D models. In the literature [11, 27, 33], a block size of 
32 was used, but in this work, other values were explored. 
For input images with spatial dimension h × w × l , the 
sampling network of the CS model outputs a compressed 
representation with dimensions B × B × nB , where nB is the 
number of produced feature maps (corresponding to nB fil-
ters, as described in Sect. 3.1.1). Therefore, variants of the 
backbones architecture are proposed to use these latent space 
representations as input. Similar to [34], these networks are 
designed by cutting off the front of the regular RGB models 
that have a larger spatial dimension than B × B.

The spatial data inputs that will be investigated are 
75 × 75 and 38 × 38 . The first one is obtained using a block 
size of B = 4 and input images of 300 × 300 , while for 
the second one, a block size of B = 8 and input images of 
304 × 304 . For the VGG backbone, the first and second con-
volutional blocks are removed for the former inputs, and the 
compressed representations are fed to the third convolutional 
block. Similarly, the fourth convolutional block is used 

directly after removing previous blocks for the later inputs. 
As for the Mobilenet network, only inputs of 75 × 75 are 
used while removing the early three convolutional blocks.

4 � Experimental setup

4.1 � Evaluation metrics

The image quality assessment we use herein to evaluate the 
proposed CS network is a full reference one based on Peak 
Signal-to-Noise Ratio [18] (PSNR) and Structural Similarity 
Index [36] (SSIM) metrics. The former is used as it corre-
lates with the pixel-based loss used in the optimization of 
the CS branch (see Eq. 4). The second is used to measure 
better the similarity of images as perceived by humans. Also, 
sampling and reconstruction latency are analyzed. For the 
object detection task, the mean average precision (mAP) at 
different IOU thresholds along with the number of Frames 
Per Seconds (FPS) that can be processed by the network are 
used [27]. Besides, the number of floating-point operations 
[20] (FLOPs) that represents the amount of calculation of a 
model is used to measure models complexity.

4.2 � Datasets

The experimentations were carried out on the YYmnist, 
the Pascal VOC datasets and the Mask dataset (Table 1). It 
should be mentioned that the first one has similar classes, as 
all of them are black sharing a white background. As for the 
pascal VOC, the classes belong to sparse and heterogenous 
categories (cow vs. tv monitor, for example), and the last 
used dataset has only one class (with mask).

4.3 � Training procedure

On the Pascal VOC dataset, we used the same training set-
tings as the original SSD (the baseline for this study), includ-
ing data augmentation and anchor settings for all models 
(RGB-based SSD and CS-based SSD). When training SSD_
BN variants, obtained by adopting the approach proposed 
in [42], we use their proposed configuration (learning rate, 
batch size, etc.), to ascertain the effectiveness of Batchnorm 
layers in training from scratch. For the YYmnist dataset and 
the Mask dataset, a simple data augmentation pipeline is 
used to accelerate the training process.

After hyperparameter tuning on NVIDIA Tesla V100 
GPUs, all generated models are trained from scratch. A large 
batch size (of 128 images) is used for training to ensure the 
stable statistical results of BatchNorm in the training phase. 
All models are trained for a fixed number of epochs with no 
early stopping to ensure a fair test comparison between their 
results. The loss function to minimize is described in Eq. (3).
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5 � Experimental results

5.1 � Models complexity

Execution time required for a forward pass through a neural 
network depends on the number of floating-point opera-
tions (FLOPs). From Fig. 4, we can see that by applying 
our approach:

–	 VGG backbone: for the set of models where a block size 
of 4 is used, the gain in terms of FLOPS is 31% , and for 
those where a block size of 8 is up to 57%;

–	 Mobilenet backbone: the number of FLOPs is reduced 
by 23% using a block size of 4.

5.2 � Evaluation of the proposed lightweight CS 
network

Herein, we investigate the performance of L_CSnet network 
in terms of both image reconstruction quality and running 
speed (Table 2). We compare it with the JPEG standard [35], 
as it is one of the most popular and effective compression 
algorithms, and two state-of-the-art deep learning based CS 
method, namely ReconNet [22] and CSnet [33]. For this part 
of the evaluation, our model was trained using the DIV2k 
dataset [2] using 256 × 256 grayscale images. For a fair com-
parison, we follow [22, 33] to use a block size of 32 × 32 and 
Set11 [2] as the evaluation dataset. Refer to section S1 (Sup-
plementary Information) for a deeper full reference evalua-
tion of the proposed CS network based on [10].

In contrast to the JPEG standard, the deep learning-based 
CS methods are much faster (95.24%, 97.34% and 99.76% 
for Reconet, CSnet and L_CSNet, respectively). However, 
the JPEG standard performs better in image quality metrics 
(PSNR and SSIM). Comparing the learned CS methods, our 
model is faster, offering acceptable reconstruction perfor-
mances (gained 1.56 dB over ReconNet and lost 2.53 dB 
over CSnet). We explain this gain in speed by the linearity 
of the reconstruction branch of the proposed CS network 
(no enhancement step as in [33]). Yet, it is also the reason 
for the loss in image quality. Still, similar to [22, 33], the 
proposed solution can easily be adapted to specific target 
domains since it is learned, such as stereo, medical, and 
aerial imaging, leading to even better compression perfor-
mances. Figure 5 and section S2 illustrate qualitative results 
of the proposed compressive sensing model.

Even when employed in classical training and inference 
pipelines, L_CSNet is more interesting since it offers shorter 
encoding/decoding time, mainly due to the linear reconstruc-
tion branch (Figure S2.4).

5.3 � Analysis of Batch‑normalization when training 
from scratch

To ascertain the contribution of Batch-normalization lay-
ers, we train SSD from scratch without BatchNorm as 
our baseline. As mentioned before, BatchNorm induces a 
remarkably smoother optimization landscape, permitting a 
bigger searching space and prompter convergence. When we 
use the original SSD configuration, our baseline produces 
63.4% mAP on VOC 2007, which is 12.5% worse than the 
performance reached by the detector when it is initialized 
with a pre-trained classification network (i.e. 75.9%). As 
for the SSD_BN model, an equivalent mAP to the detector 
initialized with the pre-trained VGG backbone is reached 
(i.e. 75.8%). Refer to Table 3 for more details.

5.4 � Detection results

After hyperparameter tuning of the newly designed multi-
output learning networks (CS_D), Adam optimizer was used 
since the network did not converge using the SGD optimizer, 
even though it was the one that permitted the SSD_BN net-
work to converge from scratch. Also, higher learning rate 
values adversely affect the CS part of the network, leading 
to divergence (0.001 is used after tuning). Furthermore, the 
SSD_BN is retrained from scratch using this configuration 
for a fair comparison (refer to Table 3 for more details).

5.4.1 � Detection results on the YYmnist dataset

Extensive experiments were conducted on the YYmnist 
dataset. For both used backbones, similar mAP is obtained 
using compressed representations in comparison with the 
networks using the full input (see Fig. 6). Consequently, it 
appears that full images are not critical to correctly detect-
ing objects within images (refer to figure S2.5 for a sample 
image alongside the 4 highest entropy channels of the com-
pressed representation and predicted boxes from this latter). 
The obtained results aligned with the results of [5, 14, 34], 
which claims that CNNs are resilient to image compression 
given that its level is sufficient. Moreover, from Table 4, we 
can see that the loss in accuracy is negligible compared to 
the gain in FPS and can be improved by using more sophis-
ticated augmentation pipelines. Also, as mentioned before, 
the classes of this dataset (MNIST classes) share many char-
acteristics and are not sparse, causing the results of the CS-
based SSD models to be close to their original counterparts. 
After further training of the best performing configurations, 
the CS_D models reached the baseline one in terms of accu-
racy (refer to Table 4).

For the VGG-based models, using a block size of B = 8 
resulted in better improvements in the speed of the models. 
All different used aspect ratios resulted in almost the same 
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speed with slightly different drops in mAP. The worst perfor-
mance is obtained for the sampling ratio of 0.01 (compres-
sion rate = 99% ) with a decline in mAP of 18.6% . In fact, 
the CS_D_8_5 network is 30% faster then the original SSD 
while being only 0.017% less accurate on the mAP metric. 
This speed up gain is due to the fact that the CS_D_8_5 
branch used for detection has three convolutional blocks less 
than the original SSD and thus requires less time to process 
its inputs and produce predictions. Using a block size of 
B = 4 resulted in a slight improvement in the FPS of models 
compared to using a block size ofB = 8 because, first their 
is an additional convolutional block in the CS_D_4_j mod-
els compared to the CS_D_8_j models and second because 
the shape of the CS measurement using a block size of 4 is 
larger ( 75 × 75 × c for B = 4 vs 38 × 38 × c for B = 8 , c is 
the number of channels and depend on the sampling ratio 
M

N
 ) and thus requiring more time to flow through the detec-

tion branch. The most significant improvement is for the 
sampling ratio of 0.01 with a drop in mAP of 4.1% . From 
the reported results in Table 4, even though data are com-
pressed using the sampling ratios 0.5, 0.25, 0.1 resulting in 
more compressed representations (less channels with smaller 
sampling ratio), the FPS that the models can process seem to 
saturate with an identical or small drop in performance. In 
general, the FPS ratio increased when reducing the sampling 
ratio (increasing the compression rate) and increasing the 
block size, except for the value 0.5 with a block size of 4. A 
possible explanation for such a performance behaviour could 
be that hyper-parameters tuned for a certain configuration is 
not the best for all configurations. Thus, block size, compres-
sion ratio, and image resolution are new hyper-parameters to 
tune. Similarly for the Mobilenet-based models, the CS_D 
model is 32.1% faster than the RGB one while being only 
3.8% less accurate. Training for an additional 20 epochs 
reduces this gap to only 1%.

5.4.2 � Detection results on the PASCAL VOC dataset

The preliminary results obtained in the first experiments per-
mitted us to choose the best configurations to validate the 
proposed approach on the Pascal VOC dataset. Four VGG-
based configurations are selected (CS_D_4_01, CS_D_8_5, 
CS_D_8_25, and CS_D_8_1) and will be compared to the 
SSD_BN network. The chosen models are those that deliv-
ered the best results in term of speed-up and accuracy. The 
results obtained on the PASCAL VOC dataset follow the 
findings of the first experiments on the YYmnist dataset 
(Table 5). However, for the pascal VOC dataset, the loss in 
accuracy is more critical (9.1% for the best configuration). 
There may be two reasons for this fact, the first one being 
the sparsity and heterogeneity of PASCAL VOC classes and 
the second one being the inability of the used CS network to 
encode relevant features of such dataset.

As it was mentioned before, the CS network proposed to 
validate our approach is single-scale, lightweight and lin-
ear Fig. 3. Therefore, its ability to learn relevant features 
of many classes is restricted/limited (Figures S4.7 and S4.8 
illustrates some detection results on the PASCAL VOC test 
set). To overcome these limits, we propose a variant of our 
approach using a multi-layer CS network, described in detail 
in S3. The rational idea behind this step is the assumption 
that multi-layer sampling would emphasize the ability of the 
CS network to represent sparse features. However, the results 
show that single-scale and multi-scale sampling networks 
perform equivalently when used in our approach (refer to 
S3 for detailed results). We believe the reason behind such 
performance is the absence of both nonlinearity and bias in 
the sampling network (to maintain compatibility with the 
conventional CS). According to [34], the recognition net-
work would perform better if an autoencoder architecture 
is used to obtain the compressed representations. However, 
the drawback of using an autoencoder is the memory com-
plexity and time the encoder needs to generate the feature 
maps, which is neither suitable for embedded systems nor 
real-time applications. Thus, to improve the performance 
focus should be on the recognition branch. Furthermore, 
from the obtained results (Fig. 7), we conclude that the 
detection branch performance is not affected by the image 
quality metrics, SSIM and PSNR, confirming the no need 
for the enhancement block in the reconstruction branch in 
our approach.

As to speed-up gain, we have found that the proposed 
solution delivers more interesting accelerations on small 
GPUs. The same implementation is 41.66% faster on Nvidia 
GTX 950M and 21.62% faster on Tesla V100-SXM2. A 
possible explanation for this is that powerful GPUs have 
more RAM (4GB for Nvidia GTX 950M vs. 32GB for Tesla 
V100-SXM2) and thus can store input data, weight param-
eters and activations as an input propagates through the net-
work. Worth mentioning that our implementation was not 
optimized for GPUs; hence, it will deliver better results in 
terms of speed-up.

Fig. 3   Proposed light compressive sensing CNN architecture
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5.4.3 � Detection results on the Mask dataset

We have also tested one of our best performing models on 
the Mask dataset, using both the VGG and Mobilenet back-
bones. For the CS-based models a high compression rate of 
75% which correspond to a sampling rate of M

N
= 0.25 . Refer 

to Table 6 for the obtained results (figure S4.9 shows some 
detection results obtained using compressed data).

5.5 � Approach limitations

The proposed approach is particularly suited for homoge-
nous datasets and wherever the memory constraints and stor-
age are critical. However, when applied to a sparse dataset 
it fails to learn relevant features for the recognition branch. 
This weakness arises from the linearity of the CS network, 

Table 1   Datasets characteristics Dataset Classes Dataset samples Observation

PASCAL VOC 20 16,551 (training 07+12); 
4,952 (test 07)

Sparse and heterogeneous classes

YYmnist 10 1000 (training/test) Localize digits from 0 to 9 with 
different aspect ratios

Mask 1 134 (training); 15 (test)

Fig. 4   Model complexity (BFLOPS) for the different networks

Table 2   Average running time and image quality metrics for the 
lightweight_CSNet, the JPEG standard, ReconNet [22] and CSnet 
[33] for a sampling ratio of M

N
= 0.1 on Set11 test images

Method Avg. running time SSIM PSNR Programming Lan-
guage

L_CSNet 0.00138 0.85 25.84 Python + TensorFlow
JPEG 0.584 0.978 39.85 /
ReconNet 0.0278 0.662 24.28 Matlab + Matcon-

venet
CSnet 0.0155 0.815 28.37 Matlab + Matcon-

venet

Fig. 5   Sample from PASCAL VOC dataset: (left) original image, 
(right) reconstructed image using the sampling/reconstruction branch 
of the CS_D model

Table 3   Analysis of BatchNorm for SSD trained from scratch on 
VOC 2007 test set

All the networks are based on the truncated VGG backbone network, 
with and without BatchNorm layers

Network Training type Configuration mAP(%)

SSD From scratch lradam = 0.001 , batchsize =32 63.4%
Pretrained lradam = 0.001 , batchsize = 32 75.9%

SSD_BN From scratch lrsgd = 0.05 , batchsize = 128 75.8%
From scratch lradam = 0.001 , batchsize = 128 69.5%

Fig. 6   mAP vs FPS for the CS-based detection networks
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which is also the strong point of our approach. Subsequent 
research will focus on enhancing the detection branch out-
puts while exploring CS-sampled data.

6 � Conclusion

This paper proposes a new efficient approach to design 
CNN for embedded environments with limited resources 
for real-time applications. Although the existing CNN 
models achieved state-of-the-art performances, they still 

Table 4   FPS, mAP and image 
quality metrics for different 
backbones, sampling rates M

N
 

(averaged over test images) and 
block sizes

mAP
50

 , mAP after 50 epochs; mAP
70

 , mAP after 70 epochs
FPS is averaged for a batch size of 1
The best performance is marked in bold font

Network Backbone B M

N

FPS mAP
50

mAP
70

Encoding time (s) Recon-
struction 
time (s)

SSD VGG / / 40 90 / / /
CS_D_4_5 4 0.5 41 90 0.0027 0.002
CS_D_4_25 4 0.25 42 89.9 0.0027 0.0018
CS_D_4_1 4 0.1 42 89.1 0.0026 0.0017
CS_D_4_01 4 0.01 51 85.9 0.0022 0.0013
CS_D_8_5 8 0.5 57 88.9 89.1 0.0021 0.00143
CS_D_8_25 8 0.25 56 88.8 89 0.0021 0.00134
CS_D_8_1 8 0.1 57 88.5 88.7 0.0021 0.00136
CS_D_8_01 8 0.01 55 84.8 84.9 0.0022 0.00146
SSD Mobilenet / / 55 55.8 / / /
CS_D_4_25 4 0.25 81 52 54.8 0.0020 0.0017

Fig. 7   Detection results, mAP, SSIM and PSNR values over the different trained SSD based models on the Pascal VOC dataset
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suffer from efficiency. To cope with this limit and validate 
our approach, the single-shot object detector was redesigned 
using compressed data according to the proposed method. 
During training, a lightweight CS network is merged with a 
truncated recognition network for joint learning of sampling 
/reconstruction and detection weights. During deployment, 
only the truncated backbone and the detection neck are used 
to predict from compressed data delivered by a compressive 
device that uses the sampling network of the designed light-
weight CS model. Through our experiments, we showed that 
the detection models took a parameter reduction in chan-
nel deletion and convolution reduction, respectively. Also, 
the proposed training workflow permitted the augmentation 
of the dataset during training, which adversely affected the 
approach proposed in [14]. Our approach is particularly well 
suited for embedded use, as demonstrated by our tests on 
the Nvidia GTX 950M. In the future, we think some top-
ics need to be deeply investigated to improve the proposed 
approach. First, combine our approach with those of the lit-
erature that permits the improvement of performance. Also, 
the optimization of our implementation for GPUs to achieve 
better results. Furthermore, the combination of our approach 
with lighter and more efficient backbones such as the one 
proposed in [39]. Finally, validate the proposed approach 
using other computer vision tasks, such as segmentation and 
tracking.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s11554-​022-​01255-7.
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