
Vol.:(0123456789)1 3

Journal of Real-Time Image Processing (2022) 19:1199–1210
https://doi.org/10.1007/s11554-022-01255-7

ORIGINAL RESEARCH PAPER

Towards SSD accelerating for embedded environments: a compressive
sensing based approach

Imene Bouderbal1 · Abdenour Amamra1 · M. El‑Arbi Djebbar1 · M. Akrem Benatia1

Received: 15 May 2022 / Accepted: 13 September 2022 / Published online: 28 September 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Since the rise of convolutional neural networks (CNN), deep learning-based computer vision has been a dynamic field of
research. Nevertheless, modern CNN architectures have not given sufficient consideration to real−time applications within
limited computation settings and always compromise speed and accuracy. To this end, a novel approach to CNN design,
based on the emerging technology of compressive sensing (CS), is proposed. For instance, CS networks function in a com-
pression−reconstruction approach as an encoder−decoder neural network. This approach transforms the computer vision
problem into a multioutput learning problem by incorporating the CS network into a recognition network for joint training.
As to the deployment phase, images are obtained from a CS−acquisition device and fed directly, without reconstruction,
to the new recognition network. Following such an approach considerably improves transmission bandwidth and reduces
the computational burden. Furthermore, the redesigned CNN holds fewer parameters than its original counterpart, thus
reducing model complexity. To validate our findings, object detection using the Single−Shot Detector (SSD) network was
redesigned to operate in our CS−based ecosystem using different datasets. The results show that the lightweight CS network
offers good performance at a faster running speed. For instance, the number of FLOPS was reduced by 57% compared to the
SSD baseline. Furthermore, the proposed CS_SSD achieves a compelling accuracy while being 30% faster than its original
counterpart on small GPUs. Code is available at: https://​github.​com/​Boude​rbal-​Imene/​CS-​SSD.

Keywords  Computer vision · Real-time · Convolutional neural network · Compressive sensing · SSD · Embedded systems ·
Robots

1  Introduction

Throughout the past decade, convolutional neural networks
(CNN) have acquired great interest in both the industrial
and academic fields and have emerged as the leading tech-
nique for visual recognition tasks. Despite the vast traction
that CNN gained, a gap between expectations and real-
ity persisted. Therefore, practical use of such networks in

real-world applications requires an optimal level of perfor-
mance next to which higher response time is sought. How-
ever, to achieve much higher performance, modern neural
networks have become very deep and difficult to tune on
large datasets. On the other hand, the design of efficient
(small and performant) neural networks has become a new
research focus that has not matured yet [6]. Even more, the
development of vision-based perception capabilities for
embedded systems, such as robots or autonomous vehicles,
with rapid response time and high accuracy is not easy to
achieve. With limited computational power and weight
capabilities, the choice of sensors and algorithms able to
run onboard in real time is the real challenge. Common
computer vision approaches usually employ multiple sen-
sors, including cameras, LASERs, LIDARs, and RADARs.
Nevertheless, these sensors have their drawbacks, including
the high cost and low spatial resolution, they are havier end
consume more, interference between the different sensing
modalities, adding to that the preprocessing latency [40].

 *	 Imene Bouderbal
	 imene.bouderbal@yahoo.com

	 Abdenour Amamra
	 abdenour.amamra@gmail.com

	 M. El‑Arbi Djebbar
	 medjebbar@gmail.com

	 M. Akrem Benatia
	 akrem.benatia@yahoo.com

1	 Ecole Militaire Polytechnique, Bordj El‑Bahri BP 17,
Algiers, Algeria

https://github.com/Bouderbal-Imene/CS-SSD
http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-022-01255-7&domain=pdf

1200	 Journal of Real-Time Image Processing (2022) 19:1199–1210

1 3

The best compromise of cost and quality at a reasonable
preprocessing load is offered by cameras [5]. Therefore, in
the present work, we focus on accelerating computer vision
models using cameras to achieve image understanding. Most
of the proposed architectures in the literature are designed to
process RGB images even though the latter are compressed
before or after acquisition for storage and transmission pur-
poses using either engineered compression algorithms or
machine-learning ones (Fig. 1a). Hence, adding an addi-
tional decoding step, which is computationally costly and
memory demanding, complicates the real-time and embed-
ded deployment. A possible alternative is to design architec-
tures capable of learning with compressed representations
(Figure 1b), rather than traditional RGB images in order
to speed up training and inference of deep networks [14].
Likewise, image compression algorithms have also benefited
from the rise of CNN. In addition to their outstanding com-
pression performances, learned compression algorithms can
be adapted to specific target domains resulting in better com-
pression rates than engineered ones. One famous learned
compression algorithm that has gained significant interest
is compressive sensing (CS) tailored to image acquisition
applications. A plausible idea would be to develop recog-
nition architectures that work directly on CS compressed
representations and bypass the reconstruction phase.

In this paper, we explore CS on adapted CNN architec-
tures to perform computer vision tasks. The chosen com-
puter vision task to validate the proposed approach is object
detection based on the Single-Shot Detector (SSD) network
since they encompass classification and regression tasks in a
single network [25]. The proposed lightweight compressed-
sensing architecture is inspired by [33] and is composed of
two networks for sampling and reconstruction. Our approach
aims at taking the latent space representations resulting from
the sampling network and using them for training and infer-
ence in the adapted architectures. The major contributions
of the paper are the following:

–	 A lightweight CS network is proposed based on the one
contributed in [33] which provides minimal latency for
both sampling and reconstruction.

–	 We propose a new approach that enables recognition
networks to operate in CS-based ecosystems. By rede-

signing the early layers of the recognition network (back-
bone), this latter will exploit sampled data directly with-
out further reconstruction.

–	 We validate the proposed approach for the detection task
using the SSD object detector upon heavy and light back-
bones, namely VGG and Mobilenet, respectively.

–	 Both the redesigned backbones and the SSD head are
enhanced by adding Batch Normalization layers to permit
training from scratch.

–	 Our approach is validated on three different datasets on
high-performing and small GPUs. The obtained results
are promising, achieving interesting accuracies while
being up to 30% faster on small GPUs, which is suitable
for resource-constrained devices and embedded environ-
ments.

We focus on redesigning computer vision architectures for
applications in embedded settings and we validate our find-
ings on object detection tasks. The remainder of this paper
is organized as follows. The background on object detection,
CS paradigm and compressed learning related works are
introduced in Sect. 2. In Sect. 3, the details of the proposed
approach are presented. Section 4 provides the experimen-
tal setup followed by the experimental results in Sect. 5. In
Sect. 6, we conclude the paper.

2 � Related works

2.1 � Object detection

Since the rise of CNN, deep learning-based object detec-
tion has been outperforming traditional methods by a sig-
nificant margin. Existing models are mainly based on RGB
images and can be either two-stage or one-stage detectors.
Two-stage models rely on region proposal followed by
box classification, such as R-CNN [13] and its subsequent
improved versions (Fast R-CNN [12], Faster R-CNN [32],
Mask RCNN [17] and Cascade RCNN [7]). While mod-
els belonging to this category have been proven successful,
they remain highly computationally expensive. On the other
hand, the current state-of-the-art of fast object detection is
mainly driven by one-stage detectors such as YOLO [28]

Fig. 1   a RGB-based training/inference pipeline; b compressed images training/inference pipeline

1201Journal of Real-Time Image Processing (2022) 19:1199–1210	

1 3

and SSD [25]. By re-framing object detection as a single
regression problem, a single network that simultaneously
outputs bounding box coordinates and class scores could
be used [26]. For YOLO models, the prediction relies on
global image features extracted from convolutional layers,
which significantly improves the detection speed at the cost
of detection precision. Nonetheless, YOLO improvements
[4, 29, 30] are one of the fastest and most accurate object
detectors by integrating several improvements such as multi-
label object class prediction, prediction across scale, the use
of K-means clustering to determine box priors, etc. Another
popular one-shot detector is SSD. This latter considers a
fixed set of default bounding boxes with an associated fea-
ture map at different scales and aspect ratios. By coupling
the box matching strategy with the multi-scale features,
SSD is significantly more accurate than the original YOLO
network with a higher detection speed. Also, SSD-based
models such as [15] are one of the most accurate and light-
weight object detectors. Moreover, many attempts to accel-
erate existing state-of-the-art models have been carried out.
The authors of [23] proposed a general compression pipeline
(through pruning, knowledge distillation, and quantization)
for one-stage object detection networks to meet the real-time
requirements. In [16], a lightweight and fast object detec-
tor based on ShuffleNetV2 and YOLO head is proposed.
The model has achieved competitive results in accuracy and
speed while being lightweight. Likewise, many efforts were
made to accelerate object detection tasks for specific appli-
cations. The work in [39] proposed a faster version SSD
model based on parameter reduction and dilated convolu-
tion. The obtained results showed that the proposed model
achieves higher speed compared to the original one for spe-
cific applications (apple detection, bicycle detection, and
vehicle detection). In [31], a real-time traffic sign detection
network using DS-DetNet and lite fusion FPN is proposed.
The model achieves compelling accuracy with high speed.
It should be noted that the methods mentioned above were
proposed to speed up the inference stage using RGB-based
architectures. The proposed approach herein aims at improv-
ing the network’s inference speed by considering lightweight
compressed inputs. Since this work focuses on embedded
settings with limited resources, such as transportation sys-
tems and robots, the SSD one-stage object detector was cho-
sen as the baseline architecture for the proposed solution.
For instance, the combination of our approach with other
RGB-based classifiers, detectors, or segmentation networks
could be of interest. Also, the combination of our approach
with the above-mentioned ones could be relevant.

2.2 � Compressive sensing

Compressive sensing is a powerful sensing paradigm to
sample sparse signals with much fewer samples than the

Shannon-Nyquist sampling limit [3, 21]. Inherent redun-
dancy present in real signals like images and videos allows
significant data compression. CS exploits this redundancy
and enables sampling at Sub-Nyquist rates. This makes CS
extremely useful for capturing images and videos in sys-
tems that cannot afford high data bandwidth. The ability to
sample very few data points and still be able to reconstruct
the original signal helps to create lower power consumption
imaging systems. The existing CS methods are mainly clas-
sified into two categories: iterative optimization-based CS
methods and neural network-based CS [24]. Refer to [24, 33]
for a review on existing solutions. For methods belonging
to both categories, the theory behind CS guarantees that a
sparse signal (in some domains) can be exactly recovered
from many fewer measurements. Concretely, suppose that
x ∈ RN×1 is a real-valued signal and Φ ∈ RM×N is a sampling
matrix, with M << N , the CS measurements acquisition is
expressed as:

where y ∈ RM×1 is the CS measurement. In general, because
the number of unknowns is much larger than the number of
observations [11], recovering the original signal x from its
corresponding measurements, y is not feasible. However,
if the signal x is sparse in some domain Ψ , the CS theory
shows that an exact recovery of x is possible. The CS recon-
struction can be formulated as:

where Ψx is the spare coefficients for domain Ψ , and the
subscript p is usually set to 1 or 0, characterizing the sparsity
of the vector Ψx.

2.3 � Neural networks and compression: compressed
learning

Compressed learning concepts were first introduced in [1],
which showed that direct inference from compressed repre-
sentations and measurements is feasible with high perfor-
mances. In the light of this approach and given that training
and particularly inference speed is critical, many works have
focused on accelerating networks’ computations by employ-
ing spatial frequency decomposition, and other image com-
pressed representations obtained using engineered codecs [8,
9, 14]. Other works have explored deep learned compressed
data to promising effect [1, 34]. In [14], the authors dem-
onstrate the use of DCT coefficients available in the JPEG
image format as an effective input representation to CNN.
Instead of inputting RGB pixels, a JPEG-compressed image
half-decompressed to 8 × 8 block DCT coefficients is used
to input the network. The method can achieve good perfor-
mance while offering a significant speedup, primarily by

(1)y = Φx

(2)min
x

||Ψx||p, subject to ∶ y = Φx

1202	 Journal of Real-Time Image Processing (2022) 19:1199–1210

1 3

replacing the first two blocks with the already-computed
JPEG DCT coefficients. Several approaches are evalu-
ated to sample and place the DCT input into the network.
However, few examples of architectures exploring features
obtained from learned image compression algorithms exist
in the literature. A relevant work is [34], where the authors
explore the use of learned compressed image representa-
tion for solving two computer vision tasks (classification
and semantic segmentation) without employing a decod-
ing step. The compressed inputs are acquired using a heavy
auto-encoder architecture. The results are compared to those
obtained using RGB images and are similar for classification
and slightly improved segmentation (especially for aggres-
sive compression rates). The authors also jointly train the
compression and classification and show that it can enhance
the results. However, the deep encoder constitutes a memory
and computation burden and is inefficient. Another work is
the one proposed in [41]. The author proposed a compres-
sive convolutional network (CCN), which is a compressive-
sensing-enabled CNN. The proposed CCN optimizes and
reuses the convolution operations of the first layers of the
detector for recoverable data embedding and image com-
pression. Therefore, no extra computational overhead is
required for image compression. However, the detection task
is performed, as usual, i.e. on RGB images. The approach
we propose is most related to [34] since we aim to use deep
learned image compressed representations directly to solve
vision tasks.

3 � Methodology

Traditionally, CNNs deployed in embedded systems such as
robots or autonomous vehicles are fed with a flow of RGB
images from a high-resolution acquisition device to perceive

the surrounding environment better. Frame-by-frame pro-
cessing of such an enormous amount of data requires hefty
computational resources.

Additionally, and motivated by the emergence of deep
learning and compressive sensing, different learned sam-
pling mechanisms were developed to incorporate CS in
image and video acquisition. In fact, and in contrast to
traditional compression algorithms such as JPEG, learned
CS does not override the spatial structure of images, as it
generates feature maps ready to be explored with adapted
architectures. Consequently, using such sampling methods
for data acquisition than exploring the acquired data would
be more efficient than traditional pipelines. In this scope,
the present work proposes and explores an efficient learned
compression method, namely learned CS for both real-time
sampling and reconstruction, for object detection task and
adapts state-of-the-art architectures accordingly. Figure 2
illustrates the proposed pipeline.

The proposed solution transforms the recognition prob-
lem into a multiple output learning problem [37]. The pro-
posed scheme learns simultaneously to predict two outputs
given an input image. The first is the reconstructed image
following the CS branch, and the second is the bounding
boxes and scores following the detection branch. It offers in
one hand two training procedures:

–	 The entire network can be trained jointly from scratch
or from a previous trained state of the CS network as an
initialization;

–	 The detection network can be trained using a fixed previ-
ously trained sampling network.

However, in this work, only the first training procedure is
explored. Furthermore, during deployment and inference,
the reconstruction part can be omitted since the compressive

Fig. 2   The proposed architecture for joint object detection and image sampling

1203Journal of Real-Time Image Processing (2022) 19:1199–1210	

1 3

camera using the sampling learned weights deliverers rep-
resentations ready to be explored by the modified detection
network. Hence, the gain for such architectures mainly stems
from the reduced data transfer between CPU and GPU due to
image compression and decompression. As it can be seen in
Fig. 2, after the generation of the compressed representation
by the sampling network, this latter is fed to the reconstruc-
tion network to optimize for mean-squared reconstruction
error and to the new detection network (named CS_D) to
optimize for both classification and bounding box regression
losses. The total loss function is:

where LCS is the loss term for the compressive sensing net-
work (see Eq. 4), and LOD is the CS_D loss (see Eq. 5). �
controls the trade-off between compression loss and detec-
tion loss.

where x is the input image and x̂ is the reconstructed image
such as: x̂ = R(S(x)).

Similarly to [25], the CS_D loss function consists of two
terms: Lconf and Lloc where N is the matched default boxes.
Lloc is the localization loss which is the Smooth L1 loss
between the predicted box l and the ground-truth box g. Lconf
is the confidence loss which is the Softmax loss over multi-
ple classes confidences c ( � is set to 1 by cross validation).

3.1 � Lightweight CNN for image compressive
sensing: L_CSnet

The proposed lightweight CNN for image CS is inspired by
[33]. It has a sampling network and a reconstruction net-
work. The sampling network is used to learn the sampling
matrix and acquire CS measurements. The reconstruction
network, which is linear, learns an end-to-end mapping from
the CS measurements to the reconstructed images (Fig. 3).
In contrast to [33], the deep nonlinear reconstruction net-
work used for quality refinement is removed.

3.1.1 � Sampling network

First, the image is divided into non-overlapping blocks of
size B × B × l (l is the number of channels). Then, using a
sampling matrix ΦB of size nB × lB2 , the CS measurements
are acquired. A convolution layer is used to imitate the com-
pressed sampling process (while considering each row of
the sampling matrix ΦB as a filter). The size of each filter in
the sampling layer is B × B × l (according to the size of the

(3)Lc = �LCS + LOD

(4)LCS = MSE(x, x̂)

(5)LOD = L(x, c, l, g) =
1

N

(
Lconf (x, c) + �Lloc(x, l, g)

)

image blocks) so that each filter outputs one measurement.
For the sampling ratio M

N
 , there are nB =

M

N
lB2 rows in the

sampling matrix ΦB to obtain nB CS measurements. There-
fore, there are nB filters of size B × B × l in this network.
Formally, the sampling process S can be expressed as :

where ∗ represents convolution operation, x is the input
image, y is the CS measurement, Ws corresponds to nB fil-
ters of size B × B × l . The output of the sampling network to
an image block is a 1 × 1 × nB vector. The learned sampling
matrix can efficiently utilize the characteristic of images and
make the CS measurements retain more structural informa-
tion for better reconstruction. In the application phase, the
learned sampling matrix is used as an encoder to generate
CS measurements.

3.1.2 � Reconstruction network

To reconstruct the image, the pseudo-inverse matrix of the
sampling network ΦB is used, following the works in [33,
38]. Given CS measurements yi of the jth block, its recon-
struction result is

∼
xj =

∼

Φyj . ΦB is a matrix of size lB2 × nB
. Similar to the sampling process, a convolution layer with
special kernel size and stride could be used to implement
the reconstruction process. Similar to [33], the matrix

∼

ΦB is
optimized instead of the pseudo-inverse matrix of ΦB . The
reconstruction process R can be expressed as:

where y is the CS measurement, and Wint is the filters. The
size of each one of the lB2 convolution filter in the recon-
struction layer is 1 × 1 × nB . The stride of this convolution
layer is set to 1 × 1 to reconstruct each block and the bias is
ignored. Each column of

∼

R(y) is a 1 × 1 × lB2 vector corre-
sponding to an image block of size B × B × l . A combination
layer, which contains a reshape and a concatenation func-
tion, is used to obtain the final reconstructed image.

3.2 � Recognition network

Our goal is to design a CNN for object detection starting
from compressed representations of images obtained via the
sampling network of the deep CS model described in the
previous subsection. As mentioned earlier, the chosen base-
line to design such a network is the state-of-the-art object
detector SSD.

3.2.1 � RGB baselines

Like most CNN object detectors (except YOLO and its
variants), SSD relies on existing classification modules.

(6)y = S(x) = Ws ∗ x

(7)
∼

R(y) = Wint ∗ y

1204	 Journal of Real-Time Image Processing (2022) 19:1199–1210

1 3

Originally, SSD was designed to use the VGG network as
a backbone. However, object detection networks are not
restricted to a specific classification backbone and can eas-
ily use others, provided that the dimensions of input images
and network outputs are compatible. The proposed approach
was implemented using two backbones, namely VGG and
MobileNet [19], to evaluate its impact on both heavy and
lightweight architectures. Other computer vision tasks, such
as classification and segmentation, can also be used along-
side the proposed approach. We first use the original SSD
framework (based on VGG), then we study the effectiveness
of BatchNorm for training SSD from scratch following the
approach proposed in [42] (denoted SSD_BN). We incor-
porate BatchNorm layers after each convolutional layer in
the VGG backbone and head (MobileNet already has Batch-
Norm layers). According to the authors [42], BatchNorm
renders the optimization landscape remarkably smoother,
inducing a more predictable and steady behavior of the
gradients to permit bigger searching space and prompter
convergence.

3.2.2 � CS based‑architectures

The use of compressed representation requires the design
of adequate CNN. Figure 2 illustrates the proposed archi-
tecture where the global model is composed of two subnet-
works, the CS one and the SSD one. The SSD subnetwork
(i.e. backbone and head) used in the CS-based models is the
SSD_BN. This latter is further adapted to allow compressed
data processing and is denoted: CS_D_i_j where i stands for
the block size B and j for the sampling rate M

N
 used in the CS

sub-network.
It is worth mentioning that the block sizes were chosen

to produce compressed representations that could be fed to
CS_D models. In the literature [11, 27, 33], a block size of
32 was used, but in this work, other values were explored.
For input images with spatial dimension h × w × l , the
sampling network of the CS model outputs a compressed
representation with dimensions B × B × nB , where nB is the
number of produced feature maps (corresponding to nB fil-
ters, as described in Sect. 3.1.1). Therefore, variants of the
backbones architecture are proposed to use these latent space
representations as input. Similar to [34], these networks are
designed by cutting off the front of the regular RGB models
that have a larger spatial dimension than B × B.

The spatial data inputs that will be investigated are
75 × 75 and 38 × 38 . The first one is obtained using a block
size of B = 4 and input images of 300 × 300 , while for
the second one, a block size of B = 8 and input images of
304 × 304 . For the VGG backbone, the first and second con-
volutional blocks are removed for the former inputs, and the
compressed representations are fed to the third convolutional
block. Similarly, the fourth convolutional block is used

directly after removing previous blocks for the later inputs.
As for the Mobilenet network, only inputs of 75 × 75 are
used while removing the early three convolutional blocks.

4 � Experimental setup

4.1 � Evaluation metrics

The image quality assessment we use herein to evaluate the
proposed CS network is a full reference one based on Peak
Signal-to-Noise Ratio [18] (PSNR) and Structural Similarity
Index [36] (SSIM) metrics. The former is used as it corre-
lates with the pixel-based loss used in the optimization of
the CS branch (see Eq. 4). The second is used to measure
better the similarity of images as perceived by humans. Also,
sampling and reconstruction latency are analyzed. For the
object detection task, the mean average precision (mAP) at
different IOU thresholds along with the number of Frames
Per Seconds (FPS) that can be processed by the network are
used [27]. Besides, the number of floating-point operations
[20] (FLOPs) that represents the amount of calculation of a
model is used to measure models complexity.

4.2 � Datasets

The experimentations were carried out on the YYmnist,
the Pascal VOC datasets and the Mask dataset (Table 1). It
should be mentioned that the first one has similar classes, as
all of them are black sharing a white background. As for the
pascal VOC, the classes belong to sparse and heterogenous
categories (cow vs. tv monitor, for example), and the last
used dataset has only one class (with mask).

4.3 � Training procedure

On the Pascal VOC dataset, we used the same training set-
tings as the original SSD (the baseline for this study), includ-
ing data augmentation and anchor settings for all models
(RGB-based SSD and CS-based SSD). When training SSD_
BN variants, obtained by adopting the approach proposed
in [42], we use their proposed configuration (learning rate,
batch size, etc.), to ascertain the effectiveness of Batchnorm
layers in training from scratch. For the YYmnist dataset and
the Mask dataset, a simple data augmentation pipeline is
used to accelerate the training process.

After hyperparameter tuning on NVIDIA Tesla V100
GPUs, all generated models are trained from scratch. A large
batch size (of 128 images) is used for training to ensure the
stable statistical results of BatchNorm in the training phase.
All models are trained for a fixed number of epochs with no
early stopping to ensure a fair test comparison between their
results. The loss function to minimize is described in Eq. (3).

1205Journal of Real-Time Image Processing (2022) 19:1199–1210	

1 3

5 � Experimental results

5.1 � Models complexity

Execution time required for a forward pass through a neural
network depends on the number of floating-point opera-
tions (FLOPs). From Fig. 4, we can see that by applying
our approach:

–	 VGG backbone: for the set of models where a block size
of 4 is used, the gain in terms of FLOPS is 31% , and for
those where a block size of 8 is up to 57%;

–	 Mobilenet backbone: the number of FLOPs is reduced
by 23% using a block size of 4.

5.2 � Evaluation of the proposed lightweight CS
network

Herein, we investigate the performance of L_CSnet network
in terms of both image reconstruction quality and running
speed (Table 2). We compare it with the JPEG standard [35],
as it is one of the most popular and effective compression
algorithms, and two state-of-the-art deep learning based CS
method, namely ReconNet [22] and CSnet [33]. For this part
of the evaluation, our model was trained using the DIV2k
dataset [2] using 256 × 256 grayscale images. For a fair com-
parison, we follow [22, 33] to use a block size of 32 × 32 and
Set11 [2] as the evaluation dataset. Refer to section S1 (Sup-
plementary Information) for a deeper full reference evalua-
tion of the proposed CS network based on [10].

In contrast to the JPEG standard, the deep learning-based
CS methods are much faster (95.24%, 97.34% and 99.76%
for Reconet, CSnet and L_CSNet, respectively). However,
the JPEG standard performs better in image quality metrics
(PSNR and SSIM). Comparing the learned CS methods, our
model is faster, offering acceptable reconstruction perfor-
mances (gained 1.56 dB over ReconNet and lost 2.53 dB
over CSnet). We explain this gain in speed by the linearity
of the reconstruction branch of the proposed CS network
(no enhancement step as in [33]). Yet, it is also the reason
for the loss in image quality. Still, similar to [22, 33], the
proposed solution can easily be adapted to specific target
domains since it is learned, such as stereo, medical, and
aerial imaging, leading to even better compression perfor-
mances. Figure 5 and section S2 illustrate qualitative results
of the proposed compressive sensing model.

Even when employed in classical training and inference
pipelines, L_CSNet is more interesting since it offers shorter
encoding/decoding time, mainly due to the linear reconstruc-
tion branch (Figure S2.4).

5.3 � Analysis of Batch‑normalization when training
from scratch

To ascertain the contribution of Batch-normalization lay-
ers, we train SSD from scratch without BatchNorm as
our baseline. As mentioned before, BatchNorm induces a
remarkably smoother optimization landscape, permitting a
bigger searching space and prompter convergence. When we
use the original SSD configuration, our baseline produces
63.4% mAP on VOC 2007, which is 12.5% worse than the
performance reached by the detector when it is initialized
with a pre-trained classification network (i.e. 75.9%). As
for the SSD_BN model, an equivalent mAP to the detector
initialized with the pre-trained VGG backbone is reached
(i.e. 75.8%). Refer to Table 3 for more details.

5.4 � Detection results

After hyperparameter tuning of the newly designed multi-
output learning networks (CS_D), Adam optimizer was used
since the network did not converge using the SGD optimizer,
even though it was the one that permitted the SSD_BN net-
work to converge from scratch. Also, higher learning rate
values adversely affect the CS part of the network, leading
to divergence (0.001 is used after tuning). Furthermore, the
SSD_BN is retrained from scratch using this configuration
for a fair comparison (refer to Table 3 for more details).

5.4.1 � Detection results on the YYmnist dataset

Extensive experiments were conducted on the YYmnist
dataset. For both used backbones, similar mAP is obtained
using compressed representations in comparison with the
networks using the full input (see Fig. 6). Consequently, it
appears that full images are not critical to correctly detect-
ing objects within images (refer to figure S2.5 for a sample
image alongside the 4 highest entropy channels of the com-
pressed representation and predicted boxes from this latter).
The obtained results aligned with the results of [5, 14, 34],
which claims that CNNs are resilient to image compression
given that its level is sufficient. Moreover, from Table 4, we
can see that the loss in accuracy is negligible compared to
the gain in FPS and can be improved by using more sophis-
ticated augmentation pipelines. Also, as mentioned before,
the classes of this dataset (MNIST classes) share many char-
acteristics and are not sparse, causing the results of the CS-
based SSD models to be close to their original counterparts.
After further training of the best performing configurations,
the CS_D models reached the baseline one in terms of accu-
racy (refer to Table 4).

For the VGG-based models, using a block size of B = 8
resulted in better improvements in the speed of the models.
All different used aspect ratios resulted in almost the same

1206	 Journal of Real-Time Image Processing (2022) 19:1199–1210

1 3

speed with slightly different drops in mAP. The worst perfor-
mance is obtained for the sampling ratio of 0.01 (compres-
sion rate = 99% ) with a decline in mAP of 18.6% . In fact,
the CS_D_8_5 network is 30% faster then the original SSD
while being only 0.017% less accurate on the mAP metric.
This speed up gain is due to the fact that the CS_D_8_5
branch used for detection has three convolutional blocks less
than the original SSD and thus requires less time to process
its inputs and produce predictions. Using a block size of
B = 4 resulted in a slight improvement in the FPS of models
compared to using a block size ofB = 8 because, first their
is an additional convolutional block in the CS_D_4_j mod-
els compared to the CS_D_8_j models and second because
the shape of the CS measurement using a block size of 4 is
larger ( 75 × 75 × c for B = 4 vs 38 × 38 × c for B = 8 , c is
the number of channels and depend on the sampling ratio
M

N
 ) and thus requiring more time to flow through the detec-

tion branch. The most significant improvement is for the
sampling ratio of 0.01 with a drop in mAP of 4.1% . From
the reported results in Table 4, even though data are com-
pressed using the sampling ratios 0.5, 0.25, 0.1 resulting in
more compressed representations (less channels with smaller
sampling ratio), the FPS that the models can process seem to
saturate with an identical or small drop in performance. In
general, the FPS ratio increased when reducing the sampling
ratio (increasing the compression rate) and increasing the
block size, except for the value 0.5 with a block size of 4. A
possible explanation for such a performance behaviour could
be that hyper-parameters tuned for a certain configuration is
not the best for all configurations. Thus, block size, compres-
sion ratio, and image resolution are new hyper-parameters to
tune. Similarly for the Mobilenet-based models, the CS_D
model is 32.1% faster than the RGB one while being only
3.8% less accurate. Training for an additional 20 epochs
reduces this gap to only 1%.

5.4.2 � Detection results on the PASCAL VOC dataset

The preliminary results obtained in the first experiments per-
mitted us to choose the best configurations to validate the
proposed approach on the Pascal VOC dataset. Four VGG-
based configurations are selected (CS_D_4_01, CS_D_8_5,
CS_D_8_25, and CS_D_8_1) and will be compared to the
SSD_BN network. The chosen models are those that deliv-
ered the best results in term of speed-up and accuracy. The
results obtained on the PASCAL VOC dataset follow the
findings of the first experiments on the YYmnist dataset
(Table 5). However, for the pascal VOC dataset, the loss in
accuracy is more critical (9.1% for the best configuration).
There may be two reasons for this fact, the first one being
the sparsity and heterogeneity of PASCAL VOC classes and
the second one being the inability of the used CS network to
encode relevant features of such dataset.

As it was mentioned before, the CS network proposed to
validate our approach is single-scale, lightweight and lin-
ear Fig. 3. Therefore, its ability to learn relevant features
of many classes is restricted/limited (Figures S4.7 and S4.8
illustrates some detection results on the PASCAL VOC test
set). To overcome these limits, we propose a variant of our
approach using a multi-layer CS network, described in detail
in S3. The rational idea behind this step is the assumption
that multi-layer sampling would emphasize the ability of the
CS network to represent sparse features. However, the results
show that single-scale and multi-scale sampling networks
perform equivalently when used in our approach (refer to
S3 for detailed results). We believe the reason behind such
performance is the absence of both nonlinearity and bias in
the sampling network (to maintain compatibility with the
conventional CS). According to [34], the recognition net-
work would perform better if an autoencoder architecture
is used to obtain the compressed representations. However,
the drawback of using an autoencoder is the memory com-
plexity and time the encoder needs to generate the feature
maps, which is neither suitable for embedded systems nor
real-time applications. Thus, to improve the performance
focus should be on the recognition branch. Furthermore,
from the obtained results (Fig. 7), we conclude that the
detection branch performance is not affected by the image
quality metrics, SSIM and PSNR, confirming the no need
for the enhancement block in the reconstruction branch in
our approach.

As to speed-up gain, we have found that the proposed
solution delivers more interesting accelerations on small
GPUs. The same implementation is 41.66% faster on Nvidia
GTX 950M and 21.62% faster on Tesla V100-SXM2. A
possible explanation for this is that powerful GPUs have
more RAM (4GB for Nvidia GTX 950M vs. 32GB for Tesla
V100-SXM2) and thus can store input data, weight param-
eters and activations as an input propagates through the net-
work. Worth mentioning that our implementation was not
optimized for GPUs; hence, it will deliver better results in
terms of speed-up.

Fig. 3   Proposed light compressive sensing CNN architecture

1207Journal of Real-Time Image Processing (2022) 19:1199–1210	

1 3

5.4.3 � Detection results on the Mask dataset

We have also tested one of our best performing models on
the Mask dataset, using both the VGG and Mobilenet back-
bones. For the CS-based models a high compression rate of
75% which correspond to a sampling rate of M

N
= 0.25 . Refer

to Table 6 for the obtained results (figure S4.9 shows some
detection results obtained using compressed data).

5.5 � Approach limitations

The proposed approach is particularly suited for homoge-
nous datasets and wherever the memory constraints and stor-
age are critical. However, when applied to a sparse dataset
it fails to learn relevant features for the recognition branch.
This weakness arises from the linearity of the CS network,

Table 1   Datasets characteristics Dataset Classes Dataset samples Observation

PASCAL VOC 20 16,551 (training 07+12);
4,952 (test 07)

Sparse and heterogeneous classes

YYmnist 10 1000 (training/test) Localize digits from 0 to 9 with
different aspect ratios

Mask 1 134 (training); 15 (test)

Fig. 4   Model complexity (BFLOPS) for the different networks

Table 2   Average running time and image quality metrics for the
lightweight_CSNet, the JPEG standard, ReconNet [22] and CSnet
[33] for a sampling ratio of M

N
= 0.1 on Set11 test images

Method Avg. running time SSIM PSNR Programming Lan-
guage

L_CSNet 0.00138 0.85 25.84 Python + TensorFlow
JPEG 0.584 0.978 39.85 /
ReconNet 0.0278 0.662 24.28 Matlab + Matcon-

venet
CSnet 0.0155 0.815 28.37 Matlab + Matcon-

venet

Fig. 5   Sample from PASCAL VOC dataset: (left) original image,
(right) reconstructed image using the sampling/reconstruction branch
of the CS_D model

Table 3   Analysis of BatchNorm for SSD trained from scratch on
VOC 2007 test set

All the networks are based on the truncated VGG backbone network,
with and without BatchNorm layers

Network Training type Configuration mAP(%)

SSD From scratch lradam = 0.001 , batchsize =32 63.4%
Pretrained lradam = 0.001 , batchsize = 32 75.9%

SSD_BN From scratch lrsgd = 0.05 , batchsize = 128 75.8%
From scratch lradam = 0.001 , batchsize = 128 69.5%

Fig. 6   mAP vs FPS for the CS-based detection networks

1208	 Journal of Real-Time Image Processing (2022) 19:1199–1210

1 3

which is also the strong point of our approach. Subsequent
research will focus on enhancing the detection branch out-
puts while exploring CS-sampled data.

6 � Conclusion

This paper proposes a new efficient approach to design
CNN for embedded environments with limited resources
for real-time applications. Although the existing CNN
models achieved state-of-the-art performances, they still

Table 4   FPS, mAP and image
quality metrics for different
backbones, sampling rates M

N

(averaged over test images) and
block sizes

mAP
50

 , mAP after 50 epochs; mAP
70

 , mAP after 70 epochs
FPS is averaged for a batch size of 1
The best performance is marked in bold font

Network Backbone B M

N

FPS mAP
50

mAP
70

Encoding time (s) Recon-
struction
time (s)

SSD VGG / / 40 90 / / /
CS_D_4_5 4 0.5 41 90 0.0027 0.002
CS_D_4_25 4 0.25 42 89.9 0.0027 0.0018
CS_D_4_1 4 0.1 42 89.1 0.0026 0.0017
CS_D_4_01 4 0.01 51 85.9 0.0022 0.0013
CS_D_8_5 8 0.5 57 88.9 89.1 0.0021 0.00143
CS_D_8_25 8 0.25 56 88.8 89 0.0021 0.00134
CS_D_8_1 8 0.1 57 88.5 88.7 0.0021 0.00136
CS_D_8_01 8 0.01 55 84.8 84.9 0.0022 0.00146
SSD Mobilenet / / 55 55.8 / / /
CS_D_4_25 4 0.25 81 52 54.8 0.0020 0.0017

Fig. 7   Detection results, mAP, SSIM and PSNR values over the different trained SSD based models on the Pascal VOC dataset

1209Journal of Real-Time Image Processing (2022) 19:1199–1210	

1 3

suffer from efficiency. To cope with this limit and validate
our approach, the single-shot object detector was redesigned
using compressed data according to the proposed method.
During training, a lightweight CS network is merged with a
truncated recognition network for joint learning of sampling
/reconstruction and detection weights. During deployment,
only the truncated backbone and the detection neck are used
to predict from compressed data delivered by a compressive
device that uses the sampling network of the designed light-
weight CS model. Through our experiments, we showed that
the detection models took a parameter reduction in chan-
nel deletion and convolution reduction, respectively. Also,
the proposed training workflow permitted the augmentation
of the dataset during training, which adversely affected the
approach proposed in [14]. Our approach is particularly well
suited for embedded use, as demonstrated by our tests on
the Nvidia GTX 950M. In the future, we think some top-
ics need to be deeply investigated to improve the proposed
approach. First, combine our approach with those of the lit-
erature that permits the improvement of performance. Also,
the optimization of our implementation for GPUs to achieve
better results. Furthermore, the combination of our approach
with lighter and more efficient backbones such as the one
proposed in [39]. Finally, validate the proposed approach
using other computer vision tasks, such as segmentation and
tracking.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s11554-​022-​01255-7.

Declarations 

Conflict of interest  The authors declare that they have no conflict of
interest.

References

	 1.	 Adler, A., Elad, M., Zibulevsky, M.: Compressed learning: a deep
neural network approach. arXiv:​1610.​09615 (2016)

	 2.	 Agustsson, E., Timofte, R.: Ntire 2017 challenge on single image
super-resolution: Dataset and study. In: Proceedings of the IEEE
conference on computer vision and pattern recognition work-
shops, pp. 126–135 (2017)

	 3.	 Bethi, Y.R.T., Narayanan, S., Rangan, V., Thakur, C.S.: Real-time
object detection and localization in compressive sensed video on
embedded hardware. arXiv:​1912.​08519 (2019)

	 4.	 Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: Optimal
speed and accuracy of object detection. arXiv:​2004.​10934 (2020)

	 5.	 Bouderbal, I., Amamra, A., Benatia, M.A.: How would image
down-sampling and compression impact object detection in the
context of self-driving vehicles? In: CSA, pp. 25–37 (2020)

	 6.	 Bouderbal, I., Amamra, A., Benatia, M.A.: An analytical study of
efficient cnns tuning and scaling for traffic signs recognition. In:
2021 international conference on recent advances in mathematics
and informatics (ICRAMI), pp. 1–6, IEEE (2021)

	 7.	 Cai, Z., Vasconcelos, N.: Cascade r-cnn: High quality object
detection and instance segmentation. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence (2019)

	 8.	 Deguerre, B., Chatelain, C., Gasso, G.: Fast object detection in
compressed jpeg images. In: 2019 IEEE intelligent transportation
systems conference (ITSC), pp. 333–338, IEEE (2019)

	 9.	 Deguerre, B., Chatelain, C., Gasso, G.: Object detection in the dct
domain: is luminance the solution? In: 2020 25th international
conference on pattern recognition (ICPR), pp. 2627–2634, IEEE
(2021)

	10.	 Ding, K., Ma, K., Wang, S., Simoncelli, E.P.: Comparison of full-
reference image quality models for optimization of image process-
ing systems. Int. J. Comput. Vis. 129(4), 1258–1281 (2021)

Table 5   mAP, image quality
metrics, FPS, encoding and
decoding times (averaged over
test images) for the different cs
based SSD models on different
GPUs

FPS is averaged for batch size of 1
The best performance is marked in bold font

GTX 950M Tesla V100-SXM2

Network mAP SSIM PSNR FPS Enc. time Rec. time FPS Enc. time Rec. time

SSD_BN (adam) 69.5% / / 7 / / 29
CS_D_8_5 48.4% 0.87 32.94 11 0.0036 0.0036 34 0.0022 0.0021
CS_D_8_25 60.3% 0.94 32.45 12 0.0036 0.0036 37 0.0026 0.0021
CS_D_8_1 60.4% 0.84 27.54 12 0.0034 0.0035 37 0.0022 0.0021
CS_D_4_01 56.2% 0.53 19.82 9 0.0036 0.0037 33 0.0022 0.002

Table 6   FPS, mAP, encoding
and decoding times for different
models on the Mask dataset
after 40 epochs

FPS is averaged for a batch size of 1

Network Backbone B M

N

FPS mAP Enc. time Rec. time

SSD VGG 36 86.4
CS_D_4_25 8 0.25 53 72.8 0.0024 0.0021
SSD Mobilenet
CS_D_4_25 4 0.25 66 63 0.0021 0.0019

https://doi.org/10.1007/s11554-022-01255-7
http://arxiv.org/abs/1610.09615
http://arxiv.org/abs/1912.08519
http://arxiv.org/abs/2004.10934

1210	 Journal of Real-Time Image Processing (2022) 19:1199–1210

1 3

	11.	 Fowler, J.E., Mun, S., Tramel, E.W.: Multiscale block compressed
sensing with smoothed projected landweber reconstruction. In:
2011 19th European signal processing conference, pp. 564–568,
IEEE (2011)

	12.	 Girshick, R.: Fast r-cnn. In: Proceedings of the IEEE international
conference on computer vision, pp. 1440–1448 (2015)

	13.	 Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hier-
archies for accurate object detection and semantic segmentation.
In: Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 580–587 (2014)

	14.	 Gueguen, L., Sergeev, A., Kadlec, B., Liu, R., Yosinski, J.: Faster
neural networks straight from jpeg. Adv. Neural Inf. Process. Syst.
31, 3933–3944 (2018)

	15.	 Guo, S., Liu, Y., Ni, Y., Ni, W.: Lightweight ssd: real-time light-
weight single shot detector for mobile devices. In: VISIGRAPP
(5: VISAPP), pp. 25–35 (2021)

	16.	 Han, J., Yang, Y.: L-net: lightweight and fast object detector-based
shufflenetv2. J. Real-Time Image Process. 18(6), 2527–2538
(2021)

	17.	 He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In:
Proceedings of the IEEE international conference on computer
vision, pp. 2961–2969 (2017)

	18.	 Hore, A., Ziou, D.: Image quality metrics: Psnr vs. ssim. In: 2010
20th international conference on pattern recognition, pp. 2366–
2369. IEEE (2010)

	19.	 Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W.,
Weyand, T., Andreetto, M., Adam, H.: Mobilenets: efficient con-
volutional neural networks for mobile vision applications. arXiv:​
1704.​04861 (2017)

	20.	 Justus, D., Brennan, J., Bonner, S., McGough, A.S.: Predicting
the computational cost of deep learning models. In: 2018 IEEE
international conference on big data (Big Data), pp. 3873–3882,
IEEE (2018)

	21.	 Khosravy, M., Gupta, N., Patel, N., Duque, C.A.: Recovery in
compressive sensing: a review. In: Compressive sensing in health-
care, pp. 25–42 (2020)

	22.	 Kulkarni, K., Lohit, S., Turaga, P., Kerviche, R., Ashok, A.:
Reconnet: non-iterative reconstruction of images from compres-
sively sensed measurements. In: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pp. 449–458
(2016)

	23.	 Li, Z., Sun, Y., Tian, G., Xie, L., Liu, Y., Su, H., He, Y.: A com-
pression pipeline for one-stage object detection model. J. Real-
Time Image Process. 18(6), 1949–1962 (2021)

	24.	 Liao, L., Li, K., Yang, C., Liu, J.: Low-cost image compressive
sensing with multiple measurement rates for object detection. Sen-
sors 19(9), 2079 (2019)

	25.	 Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y.,
Berg, A.C.: Ssd: single shot multibox detector. In: European con-
ference on computer vision, pp. 21–37. Springer (2016)

	26.	 Ophoff, T., Van Beeck, K., Goedemé, T.: Exploring rgb+ depth
fusion for real-time object detection. Sensors 19(4), 866 (2019)

	27.	 Padilla, R., Passos, W.L., Dias, T.L., Netto, S.L., da Silva, E.A.: A
comparative analysis of object detection metrics with a companion
open-source toolkit. Electronics 10(3), 279 (2021)

	28.	 Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look
once: Unified, real-time object detection. In: Proceedings of the
IEEE conference on computer vision and pattern recognition, pp.
779–788 (2016)

	29.	 Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In:
Proceedings of the IEEE conference on computer vision and pat-
tern recognition, pp. 7263–7271 (2017)

	30.	 Redmon, J., Farhadi, A.: Yolov3: an incremental improvement.
arXiv:​1804.​02767 (2018)

	31.	 Ren, K., Huang, L., Fan, C., Han, H., Deng, H.: Real-time traffic
sign detection network using ds-detnet and lite fusion fpn. J. Real-
Time Image Process. 18(6), 2181–2191 (2021)

	32.	 Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-
time object detection with region proposal networks. Adv. Neural
Inf. Process. Syst. 28, 91–99 (2015)

	33.	 Shi, W., Jiang, F., Liu, S., Zhao, D.: Image compressed sensing
using convolutional neural network. IEEE Trans. Image Process.
29, 375–388 (2019)

	34.	 Torfason, R., Mentzer, F., Agustsson, E., Tschannen, M., Timofte,
R., Van Gool, L.: Towards image understanding from deep com-
pression without decoding. arXiv:​1803.​06131 (2018)

	35.	 Wallace, G.K.: The jpeg still picture compression standard. IEEE
Trans. Consumer Electron. 38(1), 5 (1992)

	36.	 Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image
quality assessment: from error visibility to structural similarity.
IEEE Trans. Image Process. 13(4), 600–612 (2004)

	37.	 Xu, D., Shi, Y., Tsang, I.W., Ong, Y.S., Gong, C., Shen, X.: Survey
on multi-output learning. IEEE Trans. Neural Netw. Learn. Syst.
31(7), 2409–2429 (2019)

	38.	 Zhang, J., Zhao, D., Gao, W.: Group-based sparse representation
for image restoration. IEEE Trans. Image Process. 23(8), 3336–
3351 (2014)

	39.	 Zhang, X., Xie, H., Zhao, Y., Qian, W., Xu, X.: A fast ssd model
based on parameter reduction and dilated convolution. J. Real-
Time Image Process. 18(6), 2211–2224 (2021)

	40.	 Zhao, Z.Q., Zheng, P., Xu, S.T., Wu, X.: Object detection with
deep learning: a review. IEEE Trans. Neural Netw. Learn. Syst.
2019, 5 (2019)

	41.	 Zhou, X., Xu, L., Liu, S., Lin, Y., Zhang, L., Zhuo, C.: An efficient
compressive convolutional network for unified object detection
and image compression. In: Proceedings of the AAAI conference
on artificial intelligence, vol. 33, pp. 5949–5956 (2019)

	42.	 Zhu, R., Zhang, S., Wang, X., Wen, L., Shi, H., Bo, L., Mei, T.:
Scratchdet: Training single-shot object detectors from scratch. In:
Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 2268–2277 (2019)

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s);
author self-archiving of the accepted manuscript version of this article
is solely governed by the terms of such publishing agreement and
applicable law.

Imene Bouderbal  is currently a Ph.D. candidate at the Ecole Militaire
Polytechnique (EMP), Algeria. Her work focuses on deep-learning
based computer vision for real-time applications. She has obtained
a Master’s degree in computer science and a computer engineering
degree from EMP in 2017.

http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1803.06131

	Towards SSD accelerating for embedded environments: a compressive sensing based approach
	Abstract
	1 Introduction
	2 Related works
	2.1 Object detection
	2.2 Compressive sensing
	2.3 Neural networks and compression: compressed learning

	3 Methodology
	3.1 Lightweight CNN for image compressive sensing: L_CSnet
	3.1.1 Sampling network
	3.1.2 Reconstruction network

	3.2 Recognition network
	3.2.1 RGB baselines
	3.2.2 CS based-architectures

	4 Experimental setup
	4.1 Evaluation metrics
	4.2 Datasets
	4.3 Training procedure

	5 Experimental results
	5.1 Models complexity
	5.2 Evaluation of the proposed lightweight CS network
	5.3 Analysis of Batch-normalization when training from scratch
	5.4 Detection results
	5.4.1 Detection results on the YYmnist dataset
	5.4.2 Detection results on the PASCAL VOC dataset
	5.4.3 Detection results on the Mask dataset

	5.5 Approach limitations

	6 Conclusion
	References

