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Abstract
Recovering texture information from the aliasing regions has always been a major challenge for single image super-resolution 
(SISR) task. These regions are often submerged in noise so that we have to restore texture details while suppressing noise. 
To address this issue, we propose an efficient Balanced Attention Mechanism (BAM), which consists of Avgpool Channel 
Attention Module (ACAM) and Maxpool Spatial Attention Module (MSAM) in parallel. ACAM is designed to suppress 
extreme noise in the large-scale feature maps, while MSAM preserves high-frequency texture details. Thanks to the parallel 
structure, these two modules not only conduct self-optimization, but also mutual optimization to obtain the balance of noise 
reduction and high-frequency texture restoration during the back propagation process, and the parallel structure makes the 
inference faster. To verify the effectiveness and robustness of BAM, we applied it to 10 state-of-the-art SISR networks. The 
results demonstrate that BAM can efficiently improve the networks' performance, and for those originally with attention 
mechanism, the substitution with BAM further reduces the amount of parameters and increases the inference speed. Infor-
mation multi-distillation network (IMDN), a representative lightweight SISR network with attention, when the input image 
size is 200 × 200, the FPS of proposed IMDN-BAM precedes IMDN {8.1%, 8.7%, 8.8%} under the three SR magnifications 
of × 2, × 3, × 4, respectively. Densely residual Laplacian network (DRLN), a representative heavyweight SISR network with 
attention, when the scale is 60 × 60, the proposed DRLN-BAM is {11.0%, 8.8%, 10.1%} faster than DRLN under × 2, × 3, × 4. 
Moreover, we present a dataset with rich texture aliasing regions in real scenes, named realSR7. Experiments prove that 
BAM achieves better super-resolution results on the aliasing area.

Keywords Single image super-resolution · Texture aliasing · Inference acceleration · Lightweight attention mechanism

1 Introduction

Single image super-resolution (SISR) is one of the popu-
lar computer vision research topics [1, 2], which aims 
to reconstruct a high-resolution (HR) image from a low-
resolution (LR) image. With the success of deep learning 
prevailed in computer vision, many convolutional neural 
network (CNN)-based super-resolution (SR) methods have 
been proposed. According to their architectures, they can 
be categorized into linear [3–8], residual [9, 10], recursive 

[11–13], densely connected [14–16], multi-path [17], and 
adversarial [18] designs. To further improve the quality [19] 
of SR results while controlling parameter amounts, atten-
tion mechanisms [20, 21] were adopted in some SISR net-
works. At the same time, there exist quite a lot of excellent 
SISR networks [22–26] without the attention mechanism. 
One motivation of our work is to propose a plug-and-play 
attention mechanism for them so that their applications can 
be more extensive, and make it more fair to compare these 
networks with those with attention [27–30]. The attention 
mechanism [20, 21] was first applied to classification tasks. 
Due to its remarkable results in classification, great efforts 
have been made along this direction and expanded its appli-
cation to SISR tasks. However, the SISR networks are so 
diverse that the attention module is usually designed solely 
for a specific network structure. These proposed attention 
mechanisms require a baseline to compare with in order to 
verify their effectiveness. Therefore, another motivation of 
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our work is to propose a baseline of attention mechanism for 
SISR. Actually, our BAM is not only more efficient but also 
more lightweight than the attention mechanisms proposed 
in [27–30], which has been proved in our experiments. One 
major problem for the existing SISR networks is the infor-
mation restoration in the texture aliasing area, so our biggest 
motivation is to overcome this problem. As shown in Fig. 1, 
IMDN-BAM has superior results in the texture aliasing area 
compared with IMDN.

The proposed BAM is plug-and-play for the majority of 
SISR networks. For those without attention, BAM can be 
easily inserted behind the basic block or before the upsam-
pling layer. Only adding a few number of parameters, it can 
generally improve the SR results, validated by peak signal-
to-noise ratio (PSNR) and structural similarity index meas-
ure (SSIM) [19] metrics. For those with attention, BAM can 
seamlessly replace their attention mechanism. Due to the 
simple structure and high efficiency of BAM, it can gener-
ally reduce the amount of parameters and improve the SR 
performance. We experimented on six networks without 
attention and four with attention to verify the effectiveness 
and robustness of BAM. Contributions are summarized as 
follows:

• We propose a lightweight and efficient attention mecha-
nism, for the SISR task. BAM can restore high-frequency 
texture information as much as possible while suppress-
ing the extreme noise in the large-scale feature maps. 
Furthermore, the parallel structure can improve the infer-
ence speed.

• We conduct comparative experiments on 10 state-of-the-
art SISR networks [22–30]. The insertion or replacement 
of BAM generally improves the PSNR and SSIM val-
ues of final SR results and the visual quality, and for 
those [27–30] with attention, the replacement of BAM 
further reduces the amount of parameters and acceler-
ates the inference speed. What is more, for lightweight 
SISR networks [23–25, 27, 31], the comparative experi-

ments illustrate that BAM can generally improve their 
performance but barely increase or even decrease the 
parameters, which is significant for their deployment on 
terminals.

• We present a real-scene SISR dataset considering the 
practical texture aliasing issue. BAM can achieve better 
SR performance on this more realistic dataset.

2  Related works

In this section, 10 SISR networks used in control experi-
ments will be introduced. The specific position where the 
BAM is inserted or replace the original attention module in 
each SISR network is shown in Fig. 2.

2.1  SISR networks without attention mechanism

Enhanced deep residual super-resolution network (EDSR) 
[26] as the champion of NTIRE 2017 Challenge on Single 
Image Super-Resolution, removes the BN layer and the last 
activation layer in the residual network, allowing the resid-
ual structure originally designed for high-level problems 
to make a significant breakthrough in the low-level SISR 
problem. Our BAM module is inserted before the upsam-
pling layer and marked with a purple solid circle in Fig. 2. 
To achieve real-time performance, Namhyuk Ahn proposed 
cascading residual network (CARN) [25] in which the mid-
dle part is based on ResNet. In addition, the local and global 
cascade structures can integrate features from multiple lay-
ers, which enables learning multi-scale information of the 
feature maps. Its lightweight variant, CARN-M, compro-
mises the performance for speed. For these two networks, 
BAM is inserted behind each block. multi-scale residual 
network (MSRN) [22] combines local multi-scale features 
with global features to fully exploit the LR image, which 
solves the issue of feature disappearance during propagation. 
BAM will be concatenated to the end of each MSRN block.

Super lightweight super-resolution network (s-LWSR) 
[23] is specifically designed for the deployment of real-time 
SISR task on mobile devices. It borrows the idea of U-Net 
[31] and is the first attempt to apply the encoder–decoder 
structure for the SISR problem. The encoder part employs a 
similar structure with MobileNetV2 [32] and residual block 
as the basic building blocks of the network. To adapt to dif-
ferent scenarios, three networks of different size, s-LWSR16, 
s-LWSR32 and s-LWSR64, were proposed. Here, we choose 
the middle-size one, s-LWSR32. For s-LWSR32, the BAM 
will be inserted before the upsampling layer.

In recent years, many lightweight SR models have been 
proposed. Among them, adaptive weighted super-resolution 
network (AWSRN) [24] is a representative one. A novel local 
fusion block is designed in AWSRN for efficient residual 

Fig. 1  Comparison of × 4 SR results of IMDN and IMDN-BAM on 
the realSR7 dataset. IMDN-BAM shows better super-resolution 
results on texture aliasing areas
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learning, which consists of stacked adaptive weighted resid-
ual units and a local residual fusion unit. It can achieve effi-
cient flow and fusion of information and gradients. Moreo-
ver, an adaptive weighted multi-scale (AWMS) module is 
proposed to not only make full use of the features in recon-
struction layer but also reduce the amount of parameters 
by analyzing the information redundancy between branches 
of different scales. Different from the aforementioned net-
works, BAM will be inserted before the AWMS module.

2.2  SISR networks with attention mechanism

In the SISR field, the study focused on attention mechanism 
is relatively less than the ones on the network structure. The 
common attention mechanisms applied to SR are mainly 
the soft ones, including channel attention, spatial attention, 
pixel attention, and non-local attention. We introduce four 
networks with their own attention mechanism here.

LR input images contain rich low-frequency informa-
tion, which is usually treated equally with high-frequency 
information across channels. This will hamper the net-
work's learning ability. In order to solve the problem, 
residual channel attention network (RCAN) [29] was pro-
posed. It leads the SISR model performance in terms of 
PSNR and SSIM metrics, thus is often used as the baseline 
by the following works. RCAN utilized a residual-in-resid-
ual (RIR) structure to construct the whole network, which 
allows the rich low-frequency information to directly prop-
agate to the rear part through multiple skip connections. 
Thus, the network can focus on learning high-frequency 

information. What is more, a channel attention (CA) 
mechanism was utilized to adaptively adjusts features by 
considering the interdependence between channels. In our 
experiments, CA will be replaced with BAM.

IMDN is a representative lightweight SISR network 
with attention mechanism. It is constructed by the cas-
caded information multi-distillation blocks (IMDB) 
consisting of distillation and selective fusion parts. The 
distillation module extracts hierarchical features step-by-
step, and fusion module aggregates them according to 
the importance of candidate features, which is evaluated 
by the proposed contrast-aware channel attention (CCA) 
mechanism.

Pixel attention network (PAN) [27] is the winning solu-
tion of AIM2020 VTSR Challenge. Although its amount 
of parameters is only 272 K, its performance is comparable 
to SRResNet [5] and CARN. PAN newly proposed a pixel 
attention (PA) mechanism, similar to channel attention and 
spatial attention. The difference is that PA generates 3D 
attention maps, which allows the performance improve-
ment with fewer parameters.

DRLN [30] employs cascading residual on the residual 
structure to allow the flow of low-frequency information 
so that the network can focus on learning high and mid-
level features. Moreover, it proposes a Laplacian attention 
(LA) to model the crucial features to learn the inter-level 
and intra-level dependencies between the feature maps. In 
the comparative experiments, CA, CCA, PA, and LA will 
be replaced with BAM.

Fig. 2  Structure diagram of six SISR networks without attention (where CARN and CARN-m have the same network structure but different 
number of channels) and four SISR networks with attention. BAM module is represented by a purple solid circle
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3  Proposed method

Some texture details in low-resolution images are often 
overwhelmed by extreme noises, which leads to a major 
difficulty to recover texture information from the texture 
aliasing area. To solve this problem, we proposed the BAM 
composed of ACAM and MSAM in parallel, where ACAM 
is dedicated to suppressing extreme noise in the large-scale 
feature maps and MSAM tries to pay more attention to the 
high-frequency texture details. Moreover, the parallel struc-
ture of BAM will allow not only self-optimization, but also 
mutual optimization of the channel and spatial attention dur-
ing the gradient backpropagation process so as to achieve a 
balance between them. It can obtain the best noise reduction 
and high-frequency information recovery capabilities, and 
the parallel structure can speed up the inference process. 
The schematic of BAM is shown in Fig. 3. Since ACAM and 
MSAM generate vertical and horizontal attention weights 
for the input feature maps respectively, the dimension of 
their output is inconsistent. One is N × C × 1 × 1 and the 
other is N × 1 × H ×W  . Thus, we use broadcast multiplica-
tion to fuse them into an N × C × H ×W  weight tensor, and 
then multiply it with the input feature maps element-wisely. 
Here, N is the batch size (N = 16 in our experiments), C is 
the number of channels of the feature maps, H and W are the 
height and width of the feature maps. In ACAM, avgpool 
operation is used to obtain the average value of each feature 

map, while in MSAM, maxpool operation is used to get the 
max value among the C channels for each position on the 
feature map, and they can be expressed as

where F ∈ ℝ
N×C×H×W represents the input feature maps, 

max{} means to get the max value.

3.1  Avgpool channel attention module

Channel attention needs to find channels with more impor-
tant information from the input feature maps and give them 
higher weights. It is highly likely for a channel with the 
dimension of H ×W  (in our experiments, H = W ≥ 64 ) to 
contain some abnormal extrema. Maxpool will pick these 
extreme values as noise and get the wrong attention infor-
mation, which will make the texture recovery more difficult. 
Therefore, we only use avgpool to extract channel informa-
tion so that it complies with Occam's razor principle when 
suppressing extreme noise and then pass it through a multi-
layer perceptron (MLP) composed of two point-wise convo-
lution layers. To increase the nonlinearity of MLP, PReLU 
[33] is used to activate the first convolution layer output. In 

(1)Avgpool(N,C, 1, 1) =
1

H ×W

H−1∑

h=0

W−1∑

w=0

F(N,C, h,w),

(2)
Maxpool(N, 1,H,W) = max {F(N, c,H,W), c ∈ [0,C − 1]},

Fig. 3  BAM, consisting of ACAM and MSAM in parallel. The chan-
nel attention from ACAM and the spatial attention from MSAM will 
be fused by broadcast multiplication and then multiplied with the 

input feature maps element-wisely to obtain the final attention result. 
a ACAM. The channel attention information is extracted by avgpool. 
b MSAM. The spatial attention information is extracted by maxpool
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addition, to reduce the parameter amount and computational 
complexity of ACAM, MLP adopts the bottleneck architec-
ture [34]. The number of input channels is r times the num-
ber of output channels for the first convolution layer. After 
PReLU activation, the number of channels is restored by the 
second convolution layer. Finally, the channel weights are 
generated by a sigmoid activation function. The generation 
process of ACAM can be described by

where Fk×k
n−>n∕r

 represents the convolution layer with the ker-
nel size of k × k (for Eq. 3, k = 1 ), the input channel number 
of n and the output channel number of n∕r , r is set to 16 and 
n is determined by the channel numbers of the input feature 
maps in experiments. PReLU and Sigmoid are defined as

In the ablation experiments, in order to verify the mini-
malism of AvgPool for channel attention, a comparative 
experiment is carried out by adding MaxPool to ACAM, 
which is named as  ACAM+, and the mathematical expres-
sion is

To reduce the parameter amount and the computational 
complexity, AvgPool and MaxPool share the MLP.

3.2  Maxpool spatial attention module

Spatial attention generates weights for the horizontal sec-
tion of the input feature maps. Its goal is to find lateral areas 
which contribute most to the final HR reconstruction and 
give them higher weights. These areas usually contain high-
frequency details in the form of extreme values in the chan-
nel. Thus, using maxpool operation for spatial attention is 
appropriate.

The output of maxpool passes a convolution layer with 
large receptive field of k × k (for Eq. 7, k = 7), and then gets 
activated by the sigmoid function to obtain the spatial atten-
tion weights. This design effectively controls the amount of 
parameters. It can be expressed by

(3)
ACAM(F) = Sigmoid[Fk×k

n∕r−>n
(PReLU(Fk×k

n−>n∕r
(Avgpool(F))))],

(4)PReLU =

{
x, x > 0

a ⋅ x, x ≤ 0, a = 1
,

(5)Sigmoid =
1

1 + e−x
.

(6)
ACAM+(x) = Sigmoid[f 1×1n∕r−>n(PReLU(f

1×1
n−>n∕r(AvgPool(x))))

+ f 1×1n∕r−>n(PReLU(f
1×1
n−>n∕r(MaxPool(x))))].

(7)MSAM(x) = Sigmoid[F7×7
1−>1

(Maxpool(x))].

Similarly, to verify the minimalism of MSAM, AvgPool 
will be added to MSAM to form a new structure named as 
 MSAM+ in ablation experiments. It can be written as

3.3  Balanced attention mechanism

There are two innovations in the design of BAM. One is 
that the ACAM tries to suppress the extreme noise and the 
MSAM tries to maintain the texture information. The other 
is the parallel structure, which makes the generation pro-
cess of channel attention and spatial attention independent of 
each other and allows the mutual optimization of two atten-
tions during the backpropagation. The combination of these 
two innovations enables BAM to recover as much high-
frequency information as possible from the texture aliasing 
area. Ablation experiments prove that the current design 
of BAM can effectively control the parameter amount and 
obtain better performance than the original networks, evalu-
ated by PSNR and SSIM metrics. The formula of BAM is

where ⊗ means broadcast multiplication and ⊙ stands for 
Hadamard multiplication. Because the outputs of ACAM 
and MSAM have different dimensions, we utilize broadcast 
multiplication to fuse them and then element-wisely multi-
ply it with the input feature maps to obtain the final atten-
tion results. ACAM and MSAM are self-optimized in their 
respective gradient backpropagation process. To reveal the 
mutual optimization of ACAM and MSAM in the gradient 
backpropagation process of BAM, we give the partial deriva-
tive of BAM concerning the input feature maps F as follows:

As illustrated in Eq. 10, not only is ACAM and MSAM 
related to each other but also related to each other’s first-
order partial differentials (The gradient), which means 
ACAM and MSAM can optimize mutually in the gradient 
backpropagation process of BAM.

To show that BAM is minimally effective, we replace 
ACAM and MSAM with  ACAM+ and  MSAM+ to form a 
new structure  BAM+ in the ablation comparative experi-
ments.  BAM+ can be expressed as

(8)
MSAM+(x) = Sigmoid[f 7×7

2−>1
(MaxPool(x);AvgPool(x))].

(9)BAM(F) = ACAM(F)⊗MSAM(F)⊙ F,

(10)

𝜕BAM(F)

𝜕F
=

𝜕ACAM(F)

𝜕F
⊗MSAM(F)⊙ F + ACAM(F)⊗

𝜕MSAM(F)

𝜕F
⊙ F + ACAM(F)⊗MSAM(F).

(11)BAM+(F) = ACAM+(F)⊗MSAM+(F)⊙ F.



946 Journal of Real-Time Image Processing (2022) 19:941–955

1 3

3.4  Parameter amount analysis

Moreover, to study the effect of BAM insertion on the origi-
nal network parameter amount, we calculate the parameters 
of BAM, which depend on the parameters of ACAM and 
MSAM. First, we calculate the parameter amount of the con-
volutional layer without bias term using

where k is the size of the convolution kernel, nin and nout is 
the number of input and output channels of the convolutional 
layer, respectively.

Based on Eq. 3 and Eq. 12, the parameter amount of 
ACAM can be obtained by

where k is the kernel size which is equal to 1 in Eq. 13, r 
is the scale factor between the number of input and output 
channels (in our experiments, r is set to 16) and the last item 
is the parameter amount of PReLU. Based on Eq. 7 and 
Eq. 12, the parameter amount of MSAM is

In Eq.  14, k = 7 , nin = nout = 1 . And we can see that 
MSAM only has 49 parameters.

4  Experiments and discussions

To demonstrate the effectiveness and robustness of BAM, 
we select six existing SISR networks without attention 
[22–26] and four with attention [27–30] for control experi-
ments. How BAM is inserted or replaces the original atten-
tion module has been elaborated in Sect. 2. Also, to further 
improve the effectiveness of BAM, IMDN is selected as the 
base model for the ablation experiments. Its CCA module is 
replaced with CA, SE, CBAM and BAM sequentially.

4.1  Datasets and metrics

As shown in Table 1, the training sets for different SISR net-
works are different, and for the deep learning task, the richer 
the data is, the better the results would be. Therefore, to 
fully verify the efficient performance of the proposed BAM, 
we choose the smallest training set for training. Following 
[24, 25], we use 800 high-quality (2 K resolution) images 
from DIV2K [35] as the training set, and evaluate on Set5 
[36], Set14 [37], BSD100 [38], and Manga109 [39] with 
the PSNR and SSIM metrics under the upscaling factors 
of × 2, × 3, and × 4, respectively, for ablation experiments we 
add Urban100 [40] for validation. In all the experiments, 

(12)Param = k × k × nin × nout,

(13)ParamACAM = k × k ×
(
nin ×

nin

r
+

nin

r
× nin

)
+

nin

r
,

(14)ParamMSAM = k × k × nin × nout.

bicubic interpolation is utilized as the resizing method. 
Referring to [41], we calculate the metrics on the luminance 
channel (Y channel of the YCbCr channels converted from 
the RGB channels).

4.2  Implementation details

During the training, we use the RGB patches with size of 
64 × 64 from the LR input together with its corresponding 
HR patches. We only apply data augmentation to the train-
ing data. Specifically, the 800 image pairs in training set are 
cropped into five pairs from the four corners and center of 
the original image so that the training set is expanded by five 
times to 4000 image pairs. In addition, we randomly rotate 
and flip them during the training process.

For optimization, Adam is used and its initial learning 
rate is set as 0.0001, which will be halved at every 200 
epochs. The batch size is set as 16. We train for a total of 
1000 epochs. The loss function for training is L1 loss func-
tion, which can be expressed as

where ILR and IHR are the input LR image and the target HR 
image respectively, LSR represents the SISR network using 
the upsampling scale of SR, h, w and c are the height, width 
and channels of the HR image, respectively, and ||1 is the 
L1 norm.

We adopt pytorch 1.1.0 framework to implement experi-
ments on the desktop computer with 3.4 GHz Intel Xeon-E5-
2643-v3 CPU, 64G RAM, and two NVIDIA GTX 2080Ti 
GPUs.

4.3  Comparisons with original SISR networks

For the convenience of discussion, we refer to the origi-
nal networks as the control group, the BAM versions as 
the experimental group and add the “BAM” suffix to the 
networks’ original name. The control experiments’ results 
of without and with attention networks are summarized 
in Tables 2 and 3, respectively. The networks are listed in 

(15)

L1loss =
1

3hw

C−1∑

c=0

H−1∑

h=0

W−1∑

w=0

‖‖‖L⊖
SR(ILR(c, h,w)) − IHR(c, h,w)

‖‖‖1,

Table 1  Training sets for the original networks used in experiments

Training sets Networks

DIV2K800 [35] AWSRN, RCAN, IMDN
DIV2K1000 [35] EDSR, MSRN, s-LWSR32

DIVCK800 [35], Flickr2K [42] PAN, DRLN
DIV2K1000 [34], 291 images [43], 

Berkeley Segmentation Dataset [44]
CARN, CARN-M
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the order of their publication times, respectively [24]. It 
can be seen from Tables 2 and 3 that, except for RCAN-
BAM and PAN-BAM at the × 3 and × 4 scaling factor on 
the Manga109 benchmark, all the other experimental 
groups outperform their corresponding control group on 
PSNR metric. Although the PSNR metric of RCAN-BAM 
is lower than the one of RCAN, its SSIM metric is still 
higher than that of RCAN. It reflects that BAM is more 
capable of restoring the fine structures than the color. In 
addition, for the three scale factors, the highest PSNR and 
SSIM metrics are all achieved by DRLN-BAM, and for × 4 
upsampling scale, the PSNR/SSIM metrics improve-
ments on four benchmarks are {0.03/0.0007, 0.17/0.0036, 
0.95/0.0289, 0.55/0.0070} separately, meanwhile the 
reduction of the parameter amount is 266.7 K. Compared 
with the original attention mechanism of DRLN, BAM 
reduces the parameters, but obtains better performance.

Actually, some control experiments used additional data 
sets [35, 42–44] for training in their original papers, as 
shown in Table 1. In detail, CARN used extra [35, 43, 44]; 
PAN, DRLN used extra [42]; s-LWSR32, EDSR and MSRN 
used all the images in DIV2K [35]. For deep learning tasks, 
there is a universally used law, the richer the amount of data, 
the better the effect. Although our experimental groups have 
the disadvantage of a smaller training set, but can generally 
achieve a better PSNR/SSIM results than the corresponding 
control groups. For lightweight networks such as PAN and 
IMDN, it is traditionally quite difficult to further improve 
their performance. The proposal of BAM makes it possi-
ble to enhance these lightweight SISR networks even with 
reduced parameters, which is of great significance for their 
deployment in realistic cases.

The results of the comparative experiments in Tables 2 
and 3 show that for the networks without attention, the 

Table 2  Control experiment results on 6 SISR networks without attention, the lightweight SISR networks are marked in bold black

Scale Method Param Set5 Set14 BSD100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

×2

EDSR(CVPRW’17)[26] 40729.6K 38.11/0.9601 33.92/0.9195 32.32/0.9013 -
EDSR-BAM 40737.9K 38.19/0.9613↑0.08/↑0.0012 34.00/0.9213↑0.08/↑0.0018 34.20/0.9273↑1.88/↑0.0260 39.72/0.9806
CARN(ECCV’18)[25] 1592.0K 37.76/0.9590 33.52/0.9166 32.09/0.8978 -
CARN-BAM 1593.7K 37.84/0.9600↑0.08/↑0.0010 33.55/0.9167↑0.03/↑0.0001 33.90/0.9245↑1.81/↑0.0267 38.68/0.9787
CARN-M(ECCV’18)[25] 1161.3K 37.53/0.9583 33.26/0.9141 31.92/0.8960 -
CARN-M-BAM 1163.0K 37.75/0.9597↑0.22/↑0.0014 33.44/0.9158↑0.18/↑0.0017 33.81/0.9237↑1.89/↑0.0277 38.48/0.9783
MSRN(ECCV’18)[22] 5930.3K 38.08/0.9605 33.74/0.9170 32.23/0.9013 38.64/0.9771
MSRN-BAM 5934.9K 38.11/0.9610↑0.03/↑0.0005 33.84/0.9192↑0.10/↑0.0018 34.12/0.9265↑1.89/↑0.0252 39.45/0.9801↑0.81/↑0.0030
s-LWSR32(TIP’19)[23] 534.1K - - - -
s-LWSR32-BAM 534.3K 37.91/0.9603 33.63/0.9174 33.97/0.9252 38.82/0.9791
AWSRN(CVPR’19)[24] 1396.9K 38.11/0.9608 33.78/0.9189 32.26/0.9006 38.87/0.9776
AWSRN-BAM 1397.2K 38.14/0.9610↑0.03/↑0.0002 33.91/0.9201↑0.13/↑0.0012 34.15/0.9268↑1.89/↑0.0262 39.41/0.9802↑0.54/↑0.0026

×3

EDSR(CVPRW’17)[26] 43680.0K 34.65/0.9282 30.52/0.8462 29.25/0.8091 -
EDSR-BAM 43688.3K 35.26/0.9417↑0.61/↑0.0135 31.15/0.8607↑0.63/↑0.0145 29.73/0.8212↑0.48/↑0.0121 34.04/0.9495
CARN(ECCV’18)[25] 1592.0K 34.29/0.9255 30.29/0.8407 29.06/0.8034 -
CARN-BAM 1593.7K 34.93/0.9392↑0.64/↑0.0137 30.93/0.8560↑0.64/↑0.0153 29.57/0.8171↑0.51/↑0.0137 33.52/0.9456
CARN-M(ECCV’18)[25] 1161.3K 33.99/0.9236 30.08/0.8367 28.91/0.8000 -
CARN-M-BAM 1163.0K 34.81/0.9383↑0.82/↑0.0147 30.84/0.8540↑0.76/↑0.0173 29.49/0.8150↑0.58/↑0.0150 33.31/0.9438
MSRN(ECCV’18)[22] 6115.0K 34.38/0.9262 30.34/0.8395 29.08/0.8041 33.44/0.9427
MSRN-BAM 6119.5K 35.20/0.9412↑0.82/↑0.0150 31.10/0.8590↑0.76/↑0.0195 29.66/0.8195↑0.58/↑0.0154 33.90/0.9483↑0.46/↑0.0056
s-LWSR32(TIP’19)[23] 580.4K - - - -
s-LWSR32-BAM 580.6K 34.98/0.9395 30.94/0.8569 29.58/0.8175 33.50/0.9459
AWSRN(CVPR’19)[24] 1476.1K 34.52/0.9281 30.38/0.8426 29.16/0.8069 33.85/0.9463
AWSRN-BAM 1476.5K 35.13/0.9408↑0.61/↑0.0127 31.09/0.8590↑0.71/↑0.0164 29.65/0.8191↑0.49/↑0.0132 33.82/0.9478↑0.03/↑0.0015

×4

EDSR(CVPRW’17)[26] 43089.9K 32.46/0.8968 28.80/0.7876 27.71/0.7420 -
EDSR-BAM 43098.2K 32.46/0.8986↑0.00/↑0.0018 28.92/0.7901↑0.12/↑0.0025 28.63/0.7688↑0.92/↑0.0268 31.49/0.9219
CARN(ECCV’18)[25] 1592.0K 32.13/0.8940 28.60/0.7810 27.58/0.7350 -
CARN-BAM 1593.7K 32.17/0.8944↑0.04/↑0.0004 28.72/0.7839↑0.12/↑0.0029 28.46/0.7628↑0.88/↑0.0278 30.81/0.9140
CARN-M(ECCV’18)[25] 1161.3K 31.92/0.8900 28.42/0.7760 27.44/0.7300 -
CARN-M-BAM 1163.0K 31.98/0.8915↑0.06/↑0.0015 28.54/0.7792↑0.08/↑0.0032 28.35/0.7593↑0.91/↑0.0293 30.44/0.9091
MSRN(ECCV’18)[22] 6082.6K 32.07/0.8903 28.60/0.7751 27.52/0.7273 30.17/0.9034
MSRN-BAM 6078.0K 32.14/0.8940↑0.07/↑0.0037 28.66/0.7830↑0.06/↑0.0079 28.45/0.7626↑0.93/↑0.0353 30.69/0.9122↑0.52/↑0.0088
s-LWSR32(TIP’19)[23] 571.1K 32.04/0.8930 28.15/0.7760 27.52/0.7340 -
s-LWSR32-BAM 571.3K 32.07/0.8935↑0.03/↑0.0005 28.70/0.7843↑0.55/↑0.0083 28.48/0.7636↑0.96/↑0.0296 30.82/0.9137
AWSRN(CVPR2019)[24] 1587.1K 32.27/0.8960 28.69/0.7843 27.64/0.7385 30.72/0.9109
AWSRN-BAM 1587.4K 32.29/0.8962↑0.02/↑0.0002 28.80/0.7863↑0.11/↑0.0020 28.54/0.7658↑0.90/↑0.0273 31.12/0.9172↑0.40/↑0.0063

The parameter amount is calculated based on a 240 × 360 RGB image. The growth or decline of PSNR/SSIM compared with the corresponding 
control group is indicated by↑ and ↓ respectively (the higher the better). The best two results are highlighted in red and blue colors, respectively
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incorporation of BAM can further increase their perfor-
mance indicated by PSNR and SSIM metrics by only add-
ing a small number of parameters. As illustrated in Fig. 4, 
for the original networks with attention, BAM not only 
reduces the number of parameters but also improves the 
model performance. This thoroughly proves the efficiency 
and robustness of BAM. The calculation of Param Dec-
rement and PSNR Increment in Fig. 4 are expressed as 
following:

where Pori and PBAM represent the parameter amounts of 
the control and experimental groups, respectively, PSNRori 
and PSNRBAM stand for the PSNR results of the control and 
experimental groups separately.

Figure 5 displays the × 4 SR results of five groups of SISR 
networks with or without BAM on a representative image 
selected from the BSD100 dataset. For the three networks 
without attention, EDSR, CARN and AWSRN, their BAM 
version only increases a few parameters but greatly improves 
the metrics. Especially for EDSR-BAM, which achieves a 
very obvious visual improvement compared to the control 
group. For the two lightweight networks with attention, 
IMDN and PAN, the BAM replacement increases the SR 
quality while reducing the number of parameters.

(16)ParamDecrement = (Pori − PBAM)∕Pori ⋅ 1000‰,

(17)PSNRIncrement = PSNRBAM − PSNRori,

Figure 6 displays the visual perception comparison 
between the × 4 SR results of the experimental group and 
the control group for IMDN and DRLN. IMDN and DRLN 
can stand for the current lightweight and heavyweight top-
level networks, respectively. As can be seen, the experi-
mental group is capable of recovering more detailed infor-
mation and has a significant improvement on the aliased 
texture areas, such as alphabet letters, Chinese characters, 
cloth textures, hairs, and even facial wrinkles. Whether 
for a lightweight network such as IMDN or a heavyweight 
network such as DRLN, the BAM replacement can further 
improve the visual quality of SR results with the reduced 
parameters. IMDN-BAM and DRLN-BAM can be uti-
lized as baselines for the follow-up researches. And these 
two sets of figures thoroughly validate the effectiveness 
of BAM. Figure 7 illustrates the metrics improvement on 
four lightweight SISR networks of × 3 SR results. The SR 
results of experimental groups all make a great improve-
ment compared to the control group on PSNR/SSIM met-
rics. For the two networks without attention, AWSRN and 
CARN, their BAM versions only increase a few param-
eters but greatly improves the metrics; for the two light-
weight networks with attention, IMDN and PAN, the BAM 
replacement increases the SR quality while reducing the 
number of parameters.

Table 3  Control experiment results on 4 SISR networks with attention, the lightweight SISR networks are marked in bold black 

Scale Method Param Set5 Set14 BSD100 Manga109 
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM 

 
 
 
 
×2 

RCAN(ECCV’18)[29] 15444.7K 38.27/0.9617 34.23/0.9225 32.46/0.9031 39.44/0.9786 
RCAN-BAM 15441.7K↓3.0K 38.32/0.9618↑0.05/↑0.0001 34.25/0.9230↑0.02/↑0.0005 34.29/0.9282↑1.83/↑0.0251 39.86/0.9806↑0.42/↑0.0020 
IMDN(ACM MM’19)[28] 694.4K 38.00/0.9605 33.63/0.9177 32.19/0.8996 38.88/0.9774 
IMDN-BAM 694.3K↓0.1K 38.03/0.9607↑0.03/↑0.0002 33.73/0.9183↑0.10/↑0.0006 34.05/0.9259↑1.86/↑0.0263 39.33/0.9800↑0.45/↑0.0026 
PAN(ECCVW’20)[27] 261.4K 38.00/0.9605 33.59/0.9181 32.18/0.8997 38.70/0.9773 
PAN-BAM 261.0K↓0.4K 38.00/0.9606↑0.00/↑0.0001 33.70/0.9181↑0.11/↑0.0000  34.03/0.9255↑1.85/↑0.0258 39.19/0.9797↑0.31/↑0.0024 
DRLN(TPAMI’20)[30] 34430.2K 38.27/0.9616 34.28/0.9231 32.44/0.9028 39.58/0.9786 
DRLN-BAM 34163.4K↓266.8K 38.32/0.9619↑0.05/↑0.0003 34.42/0.9237↑0.14/↑0.0006 34.33/0.9284↑1.89/↑0.0256 40.41/0.9820↑0.83/↑0.0034 

 
 
 
 
×3 

RCAN(ECCV2018)[29] 15629.3K 34.74/0.9299 30.65/0.8482 29.32/0.8111 34.44/0.9499 
RCAN-BAM 15626.3K↓3.0K 35.36/0.9424↑0.62/↑0.0125 31.22/0.8611↑0.57/↑0.0129 29.75/0.8215↑0.43/↑0.0104 34.07/0.9501↓0.37/↑0.0002 
IMDN(ACM MM’19)[28] 703.1K 34.36/0.9270 30.32/0.8417 29.09/0.8046 33.61/0.9445 
IMDN-BAM 703.0K↓0.1K 35.06/0.9405↑0.70/↑0.0135 30.99/0.8568↑0.67/↑0.0151 29.61/0.8181↑0.52/↑0.0135 33.80/0.9474↑0.19/↑0.0029 
PAN(ECCVW’20)[27] 261.4K 34.40/0.9271 30.36/0.8423 29.11/0.8050 33.61/0.9448 
PAN-BAM 261.0K↓0.4K 34.77/0.9379↑0.37/↑0.108 30.88/0.8545↑0.52/↑0.0122 29.50/0.8145↑0.39/↑0.0095 33.19/0.9435↓0.42/↓0.0013 
DRLN(TPAMI’20)[30] 34614.8K 34.78/0.9303 30.73/0.8488 29.36/0.8117 34.71/0.9509 
DRLN-BAM 34348.1K↓266.7K 35.42/0.9431↑0.64/↑0.0128 31.32/0.8628↑0.59/↑0.0140 29.81/0.8224↑0.45/↑0.0107 34.73/0.9527↑0.02/↑0.0018 

 
 
 
 
×4 

RCAN(ECCV’18)[29] 15592.4K 32.63/0.9002 28.87/0.7889 27.77/0.7436 31.22/0.9173 
RCAN-BAM 15589.4K↓3.0K 32.64/0.9003↑0.01/↑0.0001 29.00/0.7918↑0.13/↑0.0029 28.69/0.7710↑0.92/↑0.0274 31.09/0.9209↑0.13/↑0.0036 
IMDN(ACM MM’19)[28] 715.2K 32.21/0.8948 28.58/0.7811 27.56/0.7353 30.47/0.9084 
IMDN-BAM 715.1K↓0.1K 32.24/0.8955↑0.03/↑0.0007 28.75/0.7847↑0.17/↑0.0036 28.51/0.7642↑0.95/↑0.0289 31.02/0.9154↑0.55/↑0.0070 
PAN(ECCVW’20)[27] 272.4K 32.13/0.8948 28.61/0.7822 27.59/0.7363 30.51/0.9095 
PAN-BAM 271.6K↓0.8K 32.14/0.8941↑0.01/↓0.0007 28.69/0.7831↑0.08/↑0.0009 28.46/0.7623↑0.87/↑0.0260 30.79/0.9131↑0.28/↑0.0036

DRLN(TPAMI’20)[30] 34577.9K 32.63/0.9002 28.94/0.7900 27.83/0.7444 31.54/0.9196
DRLN-BAM 34311.2K↓266.7K 32.66/0.9005↑0.03/↑0.0003 29.08/0.7925↑0.06/↑0.0025 28.75/0.7714↑0.92/↑0.0270 31.90/0.9257↑0.36/↑0.0061

The parameter amount is calculated based on a 240 × 360 RGB image, and its growth or decline compared with the corresponding control group 
is indicated by ↑ and ↓ respectively (the lower the better). The growth or decline of PSNR/SSIM compared with the corresponding control 
group is indicated by ↑ and ↓ respectively (the higher the better). The best two results are highlighted in red and blue colors respectively
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Fig. 4  Under the × 2 and × 4 upsampling scales, the relationship between the parameter decrement and the PSNR increment of the four SISR 
networks with attention

Fig. 5  Comparative experiments of five SISR networks under scal-
ing factors of × 4. The best two results are highlighted in red and blue 
colors, respectively. The red dashed ellipse is used to guide areas 

where the visual effect is not obvious improved. The improvement 
between EDSR-BAM and EDSR is significant
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4.4  Ablation experiments

4.4.1  Comparison with another four attention mechanisms

To verify the efficiency of BAM, we conduct ablation 
experiments on three scaling factors of × 2, × 3, and × 4 
based on the IMDN. Its original attention module, CCA, is 
replaced with CA, SE, CBAM and BAM, respectively. We 
evaluate on the five benchmarks of Set5, Set14, BSD100, 
Urban100 and Manga109 with PSNR and SSIM metrics.

From the results of ablation experiments in Table 4, 
it can be found that under three scaling factors, all the 
networks using BAM obtain the highest SSIM and PSNR 
metrics on five benchmark datasets. Moreover, after 
replacing CCA with SE or CBAM, the performance of 
the model is worse than the original version, reflecting that 
the effective attention mechanism on classification tasks 
does not necessarily have the same effect on the SISR task. 
Moreover, Fig. 8 shows the × 4 SR results of five attention 
mechanisms used in Table 4, where we can see that BAM 
maintains a great balance between noise suppression and 
high-frequency texture detail recovery. BAM is the best 

one to recover the texture aliasing area among the five 
attention mechanisms.

4.4.2  Minimization verification

To verify the minimalism of BAM and its two basic mod-
ules, ACAM and MSAM, and the efficiency of the paral-
lel structure of BAM, we conduct ablation experiments on 
three scaling factors of ×2 , ×3 , and ×4 based on the light-
weight network IMDN. Its original attention module, CCA, 
is replaced with ACAM,  ACAM+, MSAM,  MSAM+, BAM, 
 BAM+, and CBAM, respectively. We evaluate on the four 
benchmarks of Set5, Set14, BSD100, and Manga109 with 
PSNR and SSIM metrics.

To show the minimalism of ACAM and MSAM, 
their results are compared with the ones of  ACAM+ and 
 MSAM+, respectively. As for BAM, we compare it with 
 BAM+. To verify that the parallel structure is more bal-
anced than the series structure so as to generate attention 
more reasonably, BAM is compared with CBAM which 
cascades channel and spatial attentions. From the results of 
ablation experiments in Table 5, it can be found that under 

Fig. 6  Visual perception comparison of the SR results from 
IMDN versus IMDN-BAM and DRLN versus DRLN-BAM on the 
Manga109 dataset under the scale factor of × 4. Comparing their 

results, we can see that the SISR networks with BAM can generally 
better restore the fine structures, including cloth textures, alphabet let-
ters, facial wrinkles, hairs and Chinese characters
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three scaling factors of ×2 , ×3 , and ×4 , all the experiments 
using BAM obtain the highest SSIM and PSNR metrics on 
four benchmarks. Compared with  ACAM+ and  MSAM+, 

the networks with ACAM and MSAM are more light-
weight but achieve higher PSNR and SSIM. This verifies 
that the use of only AvgPool to extract channel attention 

Fig. 7  Metrics comparison of the × 3 SR results of 4 lightweight SISR networks, the best results are marked in bold red. The highest PSNR and 
SSIM scores are all achieved by AWSRN-BAM

Table 4  Ablation experiment results on Set5, Set14, BSD100, and Manga109 under three scaling factors of × 2, × 3 and × 4 for IMDN with 
another four attention mechanisms 

Scale Method Param GFLOPs Set5 Set14 BSD100 Urban100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

×2
IMDN(CCA) 694.4K 70.000 38.00/0.9605 33.63/0.9177 32.19/0.8996 32.17/0.9238 38.88/0.9774
IMDN(CA) 694.4K 70.000 37.86/0.9602 33.62/0.9173 33.94/0.9250 31.64/0.9234 38.97/0.9793
IMDN(SE) 694.0K 70.000 37.87/0.9602 33.60/0.9173 33.93/0.9249 31.69/0.9238 38.95/0.9792
IMDN(CBAM) 694.6K 70.086 37.87/0.9602 33.54/0.9168 33.89/0.9244 31.64/0.9234 38.62/0.9786
IMDN(BAM) 694.3K 70.027 38.03/0.9607 33.73/0.9183 34.05/0.9259 32.18/0.9283 39.33/0.9800

×3
IMDN(CCA) 703.1K 70.831 34.36/0.9270 30.32/0.8417 29.09/0.8046 28.17/0.8519 33.61/0.9445
IMDN(CA) 703.1K 70.831 34.91/0.9392 30.91/0.8558 29.54/0.8168 28.92/0.8663 33.48/0.9456
IMDN(SE) 702.7K 70.831 34.93/0.9396 30.92/0.8558 29.54/0.8170 28.94/0.8667 33.53/0.9456
IMDN(CBAM) 703.2K 70.917 34.92/0.9393 30.91/0.8550 29.54/0.8164 28.82/0.8678 33.26/0.9444
IMDN(BAM) 703.0K 70.858 35.06/0.9405 30.99/0.8568 29.61/0.8181 29.11/0.8698 33.80/0.9474

×4
IMDN(CCA) 715.2K 71.994 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838 30.47/0.9084
IMDN(CA) 715.2K 71.994 32.01/0.8921 28.59/0.7815 28.39/0.7611 25.74/0.7749 30.63/0.9111
IMDN(SE) 714.8K 71.994 32.07/0.8930 28.62/0.7822 28.41/0.7618 25.77/0.7760 30.70/0.9118
IMDN(CBAM) 715.4K 72.080 32.18/0.8941 28.68/0.7829 28.45/0.7627 25.84/0.7788 30.59/0.9114
IMDN(BAM) 715.1K 72.021 32.24/0.8955 28.75/0.7847 28.51/0.7642 26.08/0.7854 31.02/0.9154

The parameter amount and computational load are calculated based on an RGB image with the size of 240 × 360. The best two results are high-
lighted in red and blue colors, respectively
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information and only MaxPool to extract spatial attention 
information is effective for the SISR task. The comparison 
between BAM and  BAM+ shows the minimalism of BAM.

4.4.3  Quantitative verification

To quantitatively verify that the insertion of BAM 
improves the network's SR performance, we conduct fur-
ther experiments on IMDN-BAM. We randomly select one 
of the six BAMs in IMDN-BAM, extract its input and out-
put feature maps, and then calculate the definition evalu-
ation function SMD2 [45] values for each feature map in 
input and output feature maps separately, finally, obtain 
the average values of these two sets of data. The larger 
the SMD2 value, the richer the texture. The expression of 
SMD2 is as follows:

 in which, H and W are the pixel height and width of each 
feature map, and f (h,w) is the gray value of the feature map 
at pixel coordinate (h,w) . Figure 9 shows the SMD2 values 
of each feature map in input and output feature maps in a 
certain BAM layer of IMDN-BAM, after the input feature 
maps are assigned attention by BAM, the average SMD2 
indicators of the output feature maps are all improved, and 
the improvements are {0.0136, 0.0143, 0.0274,0.0189, 
0.0244, 0.0242, 0.0128, 0.0364}, respectively. The experi-
ment results reflect that BAM has indeed improved the clar-
ity and texture richness of feature maps, and quantitatively 
verify the efficient performance of BAM.

4.5  Speed comparison

To further prove the minimalism and efficiency of BAM, 
we select IMDN and DRLN as the representatives of light-
weight and heavyweight SISR networks respectively, and 
compare the FPS between the experimental group and the 
control group with multiple input scales. Under each input 
scale, we count the average inference time of 700 images to 
calculate FPS, and it can be expressed as following

where Frames is the number of images, and TimeFrames is the 
total time utilized for inference.

Figure  10 shows the FPS curves of IMDN-BAM and 
IMDN, DRLN-BAM and DRLN under different input scales 

(18)

SMD2 =

H,W∑

h,w=1,1

|f (h,w) − f (h − 1,w)| ⋅ |f (h,w) − f (h,w − 1)|
255HW

,

(19)FPS = Frames∕TimeFrames,

Fig. 8  Comparison of × 4 SR results by five attention mechanisms on 
the realSR7 dataset proposed in this paper

Table 5  Minimization verification experiment results on Set5, Set14, BSD100, and Manga109 under scaling factors of ×2 , ×3 and ×4 for IMDN

Scale Method Params GFLOPs Set5 Set14 BSD100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

×2

IMDN(ACAM) 694.0K 70.000 37.98/0.9606 33.69/0.9181 34.02/0.9256 39.22/0.9798
IMDN(ACAM+) 694.0K 70.033 37.97/0.9605 33.66/0.9177 33.97/0.9252 38.68/0.9787
IMDN(MSAM) 691.2K 69.994 37.96/0.9605 33.68/0.9181 34.02/0.9257 38.93/0.9794
IMDN(MSAM+) 691.5K 70.019 37.93/0.9604 33.62/0.9173 33.97/0.9253 38.85/0.9792
IMDN(BAM) 694.3K 70.027 38.03/0.9607 33.73/0.9183 34.05/0.9259 39.33/0.9800
IMDN(BAM+) 694.6K 70.086 37.94/0.9604 33.64/0.9176 33.98/0.9251 38.83/0.9788

×3

IMDN(ACAM) 702.7K 70.831 34.94/0.9394 30.94/0.8559 29.57/0.8171 33.55/0.9457
IMDN(ACAM+) 702.7K 70.864 34.92/0.9394 30.91/0.8555 29.56/0.8166 33.12/0.9438
IMDN(MSAM) 699.9K 70.825 34.95/0.9395 30.95/0.8567 29.57/0.8173 33.50/0.9458
IMDN(MSAM+) 700.2K 70.850 34.94/0.9394 30.95/0.8566 29.56/0.8171 33.48/0.9456
IMDN(BAM) 703.0K 70.858 35.06/0.9405 30.99/0.8568 29.61/0.8181 33.80/0.9474
IMDN(BAM+) 703.3K 70.917 35.00/0.9401 30.94/0.8565 29.57/0.8179 33.40/0.9458

×4

IMDN(ACAM) 714.8K 71.994 32.20/0.8946 28.71/0.7838 28.47/0.7633 30.85/0.9140
IMDN(ACAM+) 714.8K 72.027 32.12/0.8935 28.69/0.7828 28.46/0.7624 30.67/0.9115
IMDN(MSAM) 712.0K 71.988 32.09/0.8937 28.67/0.7830 28.46/0.7628 30.76/0.9127
IMDN(MSAM+) 712.3K 72.013 32.08/0.8933 28.63/0.7824 28.43/0.7622 30.70/0.9116
IMDN(BAM) 715.1K 72.021 32.24/0.8955 28.75/0.7847 28.51/0.7642 31.02/0.9154
IMDN(BAM+) 715.4K 72.080 32.21/0.8947 28.70/0.7834 28.48/0.7630 30.73/0.9122

The parameter amount and computational load are calculated based on a 240 × 360 RGB image. For each scaling factor group, the best and the 
second best results are highlighted In Red And Blue Colors, respectively
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on 2080Ti. It can be seen that the experimental group has the 
advantage in inference speed as well, and the speed advantage 
gets more obvious when the scale of the input image is smaller. 
When the input image size is 200 × 200, the FPS of proposed 
IMDN-BAM exceeds IMDN {8.1%, 8.7%, 8.8%} under the 
three SR magnifications of × 2, × 3, and × 4, respectively. When 
the input image scale is 60 × 60, the FPS of proposed DRLN-
BAM exceeds DRLN {11.0%, 8.8%, 10.1%} under × 2, × 3, 
and × 4. The above experimental results illustrate that BAM 
can accelerate the inference speed while improving network 
performance indicators, which has significant application value 
for the landing of lightweight networks on mobile terminals.

Fig. 9  Texture richness comparison between Input and Output feature 
maps of BAM based on IMDN-BAM, under × 2 upsampling scales. 
We draw the SMD2 value curves of each feature map in Input (red) 
and Output (blue) feature maps of BAM, and use the average SMD2 

value of each curve to measure their texture richness, the higher the 
better, the improvement of SMD2 index before and after BAM opera-
tion quantitatively illustrate the effectiveness of our proposed BAM

Fig. 10  Speed comparison between IMDN-BAM and IMDN, DRLN-
BAM and DRLN on 2080Ti under × 2, × 3, and × 4 upsampling scales. 
As shown in Fig. 9, experimental groups are faster than the control 
groups under each input scale and each upsampling factor
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5  Conclusion

Aiming at the problem that textures are often overwhelmed 
by extreme noise in SISR tasks, we propose an attention 
mechanism BAM, consisting of ACAM and MSAM in par-
allel. ACAM can well suppress extreme noise in large-scale 
feature maps, while MSAM focuses more on high-frequency 
texture details. The overall parallel structure of BAM ena-
bles ACAM and MSAM to optimize each other during the 
back propagation process, so as to obtain an optimal balance 
between noise suppression and texture restoration. In addi-
tion, the parallel structure brings in a faster inference speed. 
BAM is a universal attention mechanism research for SISR 
tasks. This research can improve the performance of SISR 
networks without attention, and provide a strong baseline 
for the subsequent attention mechanism works for SISR. 
The control experimental results strongly prove that BAM 
can efficiently improve the performance of state-of-the-art 
SISR networks and further reduce the parameter amounts 
and improve the inference speed for those originally with 
attention. The ablation experimental results illustrate the 
efficiency of BAM. What’s more, BAM demonstrates higher 
capability to restore the texture aliasing area in real scenes 
on the realSR7 dataset proposed in this paper.
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