
Vol.:(0123456789)1 3

Journal of Real-Time Image Processing (2022) 19:763–773
https://doi.org/10.1007/s11554-022-01221-3

ORIGINAL RESEARCH PAPER

Enhancing distance transform computation by leveraging the discrete
nature of images

Guillaume Fuseiller1,2 · Romain Marie1,3  · Gilles Mourioux1 · Erick Duno2 · Ouiddad Labbani‑Igbida1

Received: 18 January 2022 / Accepted: 19 April 2022 / Published online: 27 May 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
This paper presents a major reformulation of a widely used solution for computing the exact Euclidean distance transform
of n-dimensional discrete binary shapes. Initially proposed by Hirata, the original algorithm is linear in time, separable, and
easy to implement. Furthermore, it accounts for the fastest existing solutions, leading to its widespread use in the state of the
art, especially in real-time applications. In particular, we focus on the second step of this algorithm, where the lower envelope
of a set of parabolas has to be computed. By leveraging the discrete nature of images, we show that some of those parabolas
can be merged into line segments. It reduces the computational cost of the algorithm by about 20% in most practical cases,
while maintaining its exactness. To evaluate the proposed improvement on different cases, two state-of-the art benchmarks
are implemented and discussed.

Keywords  Distance transform · Linear time algorithm · Dynamic programming

Mathematics Subject Classification  MSC 68U10 · MSC 68U05 · 94A08

1  Introduction

First introduced by Rosenfeld et al. [1], the distance trans-
form (DT) of a binary shape associates to each point its
distance to the nearest boundary point. When this distance
is defined by the Euclidean metric (which is by far the most
common case), the DT is then referred as Euclidean distance
transform (EDT). This fundamental geometric operator finds
applications in various fields, such as shape analysis, data

compression, computer graphics or robotics. As such, it has
been widely investigated over the years, leading to a large
number of real-time solutions in arbitrary dimensions.

As pointed out by Fabbri et al. [2], existing EDT algo-
rithms can generally be classified into three categories,
depending on the order in which pixels are processed:

–	 Ordered propagation algorithms emulate the eikonal
equation: a wavefront is initiated at the boundaries of
the considered binary shape, and propagates at constant
speed towards its center, whilst assigning to each encoun-
tered pixel the (current) distance traveled by the wave.

–	 Raster scan algorithms process pixels by scanning each
line (forward then backward) in a sequential order.

–	 Dimensional reduction algorithms first compute the 1D
DT for each row (or column) independently. This inter-
mediate result is then used in a second step where the 2D
DT is obtained. When the considered shape is defined in
higher dimensions, this process repeats iteratively along
each direction until the n-dimensional distance transform
is finally obtained (i.e. the actual DT).

This work was partially supported by Valeo.

 *	 Romain Marie
	 marie@3il.fr; Romain.Marie@xlim.fr

	 Guillaume Fuseiller
	 Guillaume.Fuseiller@xlim.fr

	 Gilles Mourioux
	 Gilles.Mourioux@xlim.fr

	 Ouiddad Labbani‑Igbida
	 Ouiddad.Labbani-Igbida@xlim.fr

1	 XLim Institute, UMR CNRS 7252, University of Limoges,
16 rue Atlantis, 87068 Limoges Cedex, France

2	 VALEO Materiaux de Friction, Limoges, France
3	 3iL Groupe, 43 rue de Sainte‑Anne, 87015 Limoges, France

http://orcid.org/0000-0001-6599-426X
http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-022-01221-3&domain=pdf

764	 Journal of Real-Time Image Processing (2022) 19:763–773

1 3

The work described hereafter relates to this last cate-
gory. In such approaches, although the first step (1D DT) is
straightforward, this is not the case for the following ones.
Specific properties of the Euclidean metric must be lever-
aged to minimize the computational cost and guarantee an
exact EDT. One popular solution was initially introduced
by Saito et al. [4]. It is based on the lower envelope of a
set of parabolas, from which the EDT of a given line can
be deduced (see Fig. 2).

The main contribution of this article is a new formula-
tion of this strategy. While maintaining its separability and
linear complexity, it leverages the discrete nature of digital
shapes to merge successive parabolas into line segments
(see Fig. 2). As such, it allows to generate the exact same
result (i.e. the exact EDT) while significantly reducing the
computational cost. Additionally, the resulting algorithm
is extremely short and simple to implement in arbitrary

dimensions, thus favoring its use on a wide range of real-
time contexts, especially when GPU-based implementation
is not an option. Note that this last point explains why
most recent works, such as [5] or [6] are not compared to
the proposed solution.

To better understand the theoretical and algorithmic under-
pinnings of this contribution, the rest of the article is organized
as follows: In Sect. 2, a brief history of exact EDT is presented,
with particular emphasis on algorithms based on dimensional
reduction. In Sect. 3, preliminary concepts are introduced,
including general definitions related to EDT computation,
and its relation to the lower envelope of a set of parabolas. In
Sect. 4, the core contribution is presented, both in terms of
theory and effective implementation. Sect. 5 is dedicated to
the experimental validation, where the gain of the proposed
algorithm is quantified with respect to the best state-of-the-art
algorithms, before concluding this work in Sect. 6.

Fig. 1   (left) An example of a binary shape, where black cells repre-
sent obstacles. (center) The one-dimensional DT, where each cell’s
value corresponds to its distance to the nearest black cell on the same

row. (right) The resulting squared EDT. The column in red is the one
considered on Fig. 2

Fig. 2   Squared EDT computation for the red column in Fig. 1 based on: (left) the lower envelope of a set of parabolas [3], and (right) the lower
envelope of a set of line segments and parabolas. Notice how, at discrete points (red crosses), both representations generate the same values

765Journal of Real-Time Image Processing (2022) 19:763–773	

1 3

2 � State of the art

Early DT algorithms were based on raster scan [1] or
ordered propagation [7], and considered city-block or chess-
board discrete metrics. The issue of Euclidean DT compu-
tation was thereafter investigated more than a decade later.
Although fast to compute, the algorithms proposed in [8, 9]
were only approximations, and therefore required a costly
post-processing step [10, 11]. For a complete overview of
the approximate method, we refer the reader to the state-of-
the-art proposed by Fabbri et al. [2] or the technical survey
proposed in [12] for implementation details. In the follow-
ing, we will focus on exact EDT algorithms.

From the early 90’s, exact EDT algorithms based on
dimensional reduction became popular. In such approaches
the basic idea is to first compute the 1D DT for each row
(or column) independently, and then use this intermedi-
ate result in a second phase to compute the 2D DT. The
non trivial part is the second step, where various algo-
rithms have been proposed to minimize the computational
cost and guarantee an exact EDT. There are three main
variants of this approach guaranteeing linear complexity
with respect to the discrete grid size. The first is based
on Voronoi diagrams (VD). Instead of computing the
VD explicitly (which is time consuming, and in no case
linear), Breu et al. [13] proposed an EDT algorithm that
efficiently determines the intersection between an image
line and the VD, without constructing it explicitly. This
approach was later improved by Guan et al. [14], who
took advantage of the fact that adjacent points tend to
have the same nearest boundary. Although the concepts
are exactly the same, more efficient algorithms were then
successively proposed by Maurer et al. [15] and Wang
et al. [16] (who also introduced a recursive generaliza-
tion to higher dimensions). The second variant is based on
mathematical morphology. After Shih et al. [17] showed
that the EDT can be computed by a single gray-scale mor-
phological erosion of the input shape, Lotufo et al. [18]
proposed a strategy to decompose the structuring element
into a set of 1D elements, thus leading to an independent
scanning algorithm. The last variant uses parabola inter-
sections, as originally introduced by Saito et al. [4]. The
central idea is to speed up the second phase (and possibly
additional phases) by computing the lower envelope of a
set of parabolas, from which the EDT of a given line can
be deduced (see Sect. 3). This approach has been greatly
improved, reformulated and enhanced over the years ([3,
19, 20]), and has led to a set of algorithms with exactly
the same complexity (i.e. linear in the grid size), but with
a variable constant term.

3 � EDT computation using lower envelope
of parabolas

3.1 � General idea

For the sake of simplicity, and given that the following
can easily be generalized to higher dimensions, let’s con-
sider a two- dimensional binary image input, I = X ∪ X

c
of dimension m × n (m rows, n columns), where X denotes
the shape, and Xc the background. The EDT of I is a 2D
grid DI = {D(�)} storing for each pixel � = (x1, x2) its dis-
tance D(�) to the nearest background point:

This formulation provides an efficient computation process
using two steps :

–	 First, each row of index l is independently considered
as a 1D signal to generate a one dimensional EDT
G = {g(�)} :

–	 Second, each column of index c is scanned to deduce the
distance transform D(�) by solving:

As discussed in [4], the min operation in the second step
is equivalent to a calculation of the lower envelope of a
set of parabolas. Let us consider a given column c as a
one-dimensional signal. Each row l defines a parabola
Fl(i) = (i − l)2 + g(l, c)2 representing the (squared) distance
between a point along c and the closest boundary point
from (l, c) along row l. Consequently, the lower envelope
of the set F = {Fl} of all parabolas exactly defines the
EDT for column c.

3.2 � EDT algorithm based on parabolas lower
envelope

Several works [3, 19–21] have thus focused on the defini-
tion of efficient algorithms to compute such a lower enve-
lope. They are extremely close to each other, both in term
of formulation and performance. According to our tests
(see Sect. 5), the one proposed by [20] slightly outper-
forms the others. Algorithms 1 and 2 present the corre-
sponding pseudo-code for both steps.

(1)∀� ∈ I, D(�) = min
�∈Xc

√
(x1 − y1)

2 + (x2 − y2)
2

(2)∀� = (l, x2), g(�) = min
(l,y2)∈X

c
|x2 − y2|

(3)∀� = (x1, c), D(�)2 = min
1≤l≤m

{(x1 − l)2 + g(l, c)2}

766	 Journal of Real-Time Image Processing (2022) 19:763–773

1 3

The first algorithm (Algo. 1), corresponding to the
one-dimensional EDT computation, is common to all
solutions (including ours), and is simply a direct applica-
tion of Eq. 2. The second algorithm (Algo. 2) is central
to the proposed contribution, and therefore requires some
explanation. For each column j ∈ [0, n[(line 1), the core
idea is to determine the ordered subset of F contributing
to its lower envelope, using a single scan of each cell. For
this, it uses two arrays v and z to store for each parabola k
of this subset, (i) the horizontal coordinate of its summit
(v[k]), and (ii) the starting position of its contribution to
the lower envelope (z[k]), corresponding to its intersection
with the previous parabola ( k − 1 ) (see Table 1 for an illus-
tration). Both arrays are initialized with the first parabola
of the column (line 2). At a given step of the algorithm,

corresponding to a cell i ∈ [1,m[(line 3), v and z contain k
parabolas defining a temporary lower envelope. To deter-
mine whether or not the parabola Fi contributes to the last
one, its intersection s(v[k], i) with Fv[k] is calculated :

Let w = 1 + s(v[k], i) denote the closest integer higher than
this intersection coordinate (line 4). Two cases are then to
be considered:

–	 w is higher than z[k] (line 8): as illustrated Fig. 3 (left),
it means that Fv[k] still contributes to the lower envelope
of F (from z[k] to w − 1 ). Fi is then added to the list
such that z[k + 1] = w , and v[k + 1] = i.

–	 w is lower than or equal to z[k] (lines 5 to 7): as illus-
trated Fig. 3 (center), it involves that the contribution
to the lower envelope of Fv[k] is entirely covered by the
one of Fi . Therefore, Fv[k] is removed, and the process
is repeated with Fv[k−1].

Once each cell has been considered, v and z entirely
define the lower envelope of F  . The last step is thus to iter-
ate through the column, and compute for each cell its Euclid-
ean distance, based on the parabola associated to its position
(lines 9 to 12).

It should be noted that, for a shape defined in ℤn , Algo.2
is simply repeated for each dimension except the first one
(i.e. n − 1 times).

4 � EDT Algorithm based on parabolas
and line segments

4.1 � General idea of the proposed method

A simple analysis of Algo. 2 shows that the main computa-
tional load is induced by lines 4 and 7, where the intersection
between two parabolas is determined (Eq. 4). The core idea
behind the proposed approach is to reduce the frequency of
this operation. To achieve this goal, two properties induced
by the context are leveraged.

–	 The considered shapes are defined on discrete grids.
Thus, due to sampling, adjacent cells often tend to have
the same one-dimensional distance transform g. As illus-
trated in Fig. 2 (bottom left), for a given column, the
corresponding lower envelope is then formed of a large
number of identical parabolas, up to a shift along the
axis.

–	 The distance transform is also defined on a discrete
grid. In other words, as long as the resulting EDT is

(4)s(v[k], i) =
i2 − v[k]2 + g(i, j) − g(v[k], j)

2(i − v[k])

767Journal of Real-Time Image Processing (2022) 19:763–773	

1 3

exact for each cell, the lower envelope calculated for
each column does not have to be exact for any continu-
ous point on the grid domain.

Based on these properties, this work proposes to approxi-
mate adjacent parabolas of the same height by a single
line segment connecting their summit, as illustrated in
Fig. 2. This approach has two major advantages. First, as
explained previously, this reduces the number of entities
composing the lower envelope for each column, and there-
fore the number of intersections (lines 4 and 7) to be com-
puted. Second, the construction of such line segments can
be performed using a fast-forward process, which allows
to entirely skip lines 4–8 of Algo. 2 for the corresponding
cells.

4.2 � Lower envelope computation

Similarly to the original work, the lower envelope of a given
column c is built incrementally by successively considering
the parabolas Fi for each i ∈ [0, n[ , and, if necessary, by
adding a single one as a parabola, or several ones as a line
segment. The success of this process depends on answering
the following questions:

–	 When should a line segment be added ? Consider when
a parabola Fl (computed from row l and defined by the
tuple {z[k], v[k]} ) has just been added. This parabola
marks the beginning of a line segment when (i) the begin-
ning of its area of influence z[k] is inferior or equal to its
center v[k], and (ii) at least the following two parabolas
have the same height as Fl :

 The first condition is required, because when not
respected, the summit of Fl does not belong to the lower
envelope, and thus cannot be the beginning of a line
segment.

–	 How to efficiently add a line segment? Assuming the two
previous conditions are respected, a fast forward from
row l to row l + L is performed (i.e., all the parabolas
in between are not considered). Two elements are then
added to the lower envelope:

–	 A line segment from l to l + L with height h = g(l, c)2
to encapsulate all the required information for the
skipped parabolas,

–	 A parabola starting from and centered on l + L to
ensure the transition with the rest of the lower enve-
lope.

(5)
{

z[k] ≤ v[k]

∃L ≥ 2 | ∀j ∈ [l, l + L], g(j, c) = g(l, c)

Fig. 3   The three cases to be considered when adding the red parabola
to the lower envelope: (left) When z[k] <= w , the parabola k (in blue)
still contributes to the lower envelope; (center) when z[k] > w , the
parabola k is totally eclipsed by the red one. It is thus removed from

the lower envelope; and (right) when the element k is a line segment,
the process is exactly the same, except that w is calculated based on
Eq. 6 instead of Eq. 4

Table 1   Proposed representation of the lower envelope

 For parabolas, v and z are exactly the same as in [20]

Parabola Line segment

v [k] Horizontal location
of the parabola’s
center

Height of the line segment

z [k] Beginning of the
zone of influence

Beginning of the zone of influence

t [k] 0 1

768	 Journal of Real-Time Image Processing (2022) 19:763–773

1 3

	  Notice that the whole process, while potentially con-
sidering a large number of parabolas, does not require
any calculation.

–	 How to efficiently add a parabola? When Fl does not
belong to a line segment, it has to be added on the lower
envelope by itself. This process leads to evaluate its inter-
section with the last element to determine if the latter
should be removed, and iterates until this is not the case.
Two cases are then to be considered:

–	 Case 1: the last element is a parabola: Eq. 4 is used,
exactly as in [20] (lines 4–7 of Algo. 2).

–	 Case 2: the last element is a line segment. Let h be
its height. In this case, the intersection with Fl is
obtained by solving the second-order system Fl = h ,
and keeping the lowest solution (i.e. the one on the
left of the parabola). It is then given by:

 As in the parabola/parabola case, let w = 1 + s2(h, l)
be the nearest integer higher than this intersection.
When the start of the line segment follows the
intersection (i.e. when z[k] > w ), it is completely
occluded by the parabola, and is therefore removed
from the lower envelope. Otherwise, as illustrated
(Fig. 3 (right)), the line segment still contributes to
the lower envelope (from z[k] to w − 1 ). The parabola
is then added to the list such that z[k + 1] = w and
v[k + 1] = i.

4.3 � Efficient implementation

In the original version of the algorithm (Algo. 2), the lower
envelope is represented with two arrays v and z storing respec-
tively for each parabola k: i) the horizontal coordinate of its
summit (v[k]), and ii) the starting position of its zone of influ-
ence (z[k]). Given its computational and memory efficiencies,
this representation is adapted and completed to fit the proposed
combination of parabolas and line segments. First, a third array
t is added to store the nature of a given object k (parabola or
line segment). Arbitrarily, t[k] is set to 0 when k is a parabola,
and to 1 otherwise. Second, when the object k is a line seg-
ment, the array v is recycled to store the (unique) value of g
along it (i.e. the height of the line segment). Please refer to
Table 1 for a clear understanding of this representation.

The structure of the proposed algorithm is given in (Algo.
3). To start, the fast forward process is implemented (lines
4–10). Once the presence of a line segment has been asserted
(lines 4 and 6), it is added in line 7 and the process ends (lines
8 and 9) by adding the last parabola (line 10). Notice that when
the test (line 6) is not valid (i.e. when the next parabola of a
potential line segment is not at the same height), the algorithm

(6)s2(h, l) = l −
√
h − g(l, c)2

jumps to line 10 and simply adds Fi as a parabola without com-
puting its intersection with Fi−1 . The rest of the algorithm, i.e.
lines 11–20, follows exactly the same structure as the original
algorithm (Algo. 2). The only differences lay in lines 15 and
20, to hand over the cases where the current considered ele-
ment of the lower envelope is a line segment. In particular, the
intersection with Fi is calculated (Eq. 6) on line 15, while line
20 describes how to determine the DT D2(i, j) of a line seg-
ment, simply given by its height v[k].

5 � Comparative results

5.1 � Methodology

A complete benchmark was conducted to compare the pro-
posed approach with the fastest existing CPU-based algo-
rithms for exact EDT computation. They consist of the solu-
tions offered by:

769Journal of Real-Time Image Processing (2022) 19:763–773	

1 3

–	 Felzenszwalbe et al. [20], which performs an independ-
ent scanning based on the lower envelope of parabolas
as detailed in Sect. 3;

–	 Hirata [3] which is similar to [20] with a slightly different
algorithm for constructing the lower envelope;

–	 Maurer et al. [15] which performs independent scanning
based the partial construction of the Voronoi diagram;

–	 Lucet et al. [22] which performs an independent scanning
based on the Legendre Conjugate;

–	 Schouten et al. [23] that uses a combination of ordered
propagation, raster scanning and independent scanning.

With the exception of the last one, all algorithms are directly
comparable to the proposed approach, as they are rela-
tively easy to implement, separable, generalizable to higher
dimensions, and linear in the number of pixels. The FEED
algorithm introduced by Schouten et al. [23] is much more
complicated to implement and configure. Furthermore, it is
not linear in the image size and has exponential complexity
when dealing with higher dimensions (according to Schouten
et al. [24]). However, the authors have shown its excellent
performances on 2D shapes. Although, we do not consider
it to be in the same scope as the proposed algorithm, it was
still added to the benchmark. Except for FEED, for which we
directly used the source code provided by the authors (about
500 optimized lines with many implementation tricks), all
algorithms were re-implemented according to their formula-
tion, and optimized with all known strategies. In particular,
as stated in [23], the order of processing (i.e. first the rows
and then the columns, or vice-versa) does not affect the accu-
racy of the result, but it influences the execution time. For all
algorithms, the fastest implementation was therefore selected,
which in our case was column-row ordering.

To guarantee full control over these assessments and
encourage the comparison of the present work with yet-
to-be-released algorithms, all source codes (including
algorithms and benchmark implementation) can be found
on github.1 Finally, although all the algorithms (except
for FEED) are separable, they were implemented without
any parallelization on a laptop equipped with an Intel Core
i7-5600U CPU @ 2.60GHz. Their execution time could thus
be easily reduced on any modern processor with a multi-core
architecture.

5.2 � Fabbri et al. dataset

The first dataset considered here was introduced by Fab-
bri et al. [2] in a comparative survey to review state-of-the-
art sequential 2D EDT algorithms. It considers a variety of
artificial 2d binary shapes (see Fig. 4), and is designed to

highlight the pros and cons of each approach. The results of
this dataset are presented in Table 2. Overall, they confirm
those presented in [23]. The FEED algorithm outperforms
other solutions (including the presented work) in most sce-
narios, whilst the algorithm proposed by [22] is generally the
slowest. Additionally, although the theoretical foundations
of both works are exactly the same, the algorithm proposed
by [20] is significantly faster than the one initially introduced
by [3], with an average gain of around 10% . It validates the
algorithmic choice discussed earlier.

Another global observation depicted by Table 2 is the
good performance of the proposed approach, as it outper-
forms other comparable algorithms (except FEED), ranging
from 13% for the solution proposed by Felzenswalb, to 41%
for Lucet et al. algorithm. However, it is worth noting that
this statement is not true for 3 scenarios, namely random
pixels, rotating line and Lenna edges which require specific
attention. Consider for example the case of random pixels.
In this scenario, a set of images are generated by setting an
increasing percentage of random pixels as the background.
As detailed in Fig. 5, the proposed algorithm is slower than
[20] and [3] until about 70% of the image is filled with
background points. This behavior clearly highlights the
overload induced by mixing line segments with parabolas.
As the points are randomly generated, the background is
not connected. To generate line segments, the algorithm
has to search for non-existent adjacent parabolas, which
increases the computational cost by at most 5% (compared
to [20] and [3]). From 70% , the background pixels become
highly connected. This cost is then largely counterbalanced
by the gain induced by the line segments now found, and
the proposed approach begins to significantly outperform
other algorithms. Finally, we also observe that the FEED
algorithm suffers from the same drawback, but to a much
greater extent.

Following the same reasoning, the proposed algorithm
is also slightly slower when applied on Lenna edges (by
definition, edges are thin, and therefore rarely generate line
segments) and on the rotating line. Note however that for all
these scenarios, the difference remains very small.

5.3 � The Kimia’s dataset

Although the Fabbri et al. dataset considers a wide range of
shapes, with varying geometric properties, it remains artifi-
cial and not representative of real-world application cases.
Therefore, we also compared the algorithms considered on
the dataset proposed in [25]. It is a collection of 216 binary
images representing real world entities (objects, animals,
...). The computational cost obtained by averaging a hundred
runs of each algorithm on each image is presented in Fig. 6.

Overall, the hierarchy in terms of execution time between
the considered algorithms is consistent across the entire 1  http://​www.​github.​com/​RomMa​rie/​Enhan​cedDT.

http://www.github.com/RomMarie/EnhancedDT

770	 Journal of Real-Time Image Processing (2022) 19:763–773

1 3

dataset. More specifically, the FEED algorithm remains the
fastest, followed by the proposed solution. The latter is in
average 20% faster than the method it extends (i.e. Felzen-
swalb work), and about 35% faster than Hirata’s algorithm.
Finally, the other algorithms are significantly slower. Please
notice that, as shown in Fig. 6, the considered shapes are
extremely different in terms of topology and geometry.
Although it has a clear influence on the computational cost,
the performance order of the algorithms remains unchanged
throughout the dataset.

5.4 � Discussion

In this section, six algorithms (including the proposed
one) have been compared in terms of computational cost.
It clearly shows that FEED [23] outperforms the others,
whilst the proposed solution consistently comes at the sec-
ond place. At this point, the reader might thus question the
interest of this work. Together with the quantitative compari-
son, a qualitative reflection is further added.

Implementation difficulty: We spent a considerable
amount of time implementing all the benchmark algorithms.
As such, we can affirm that among them, the easiest were
those proposed by Felzenswalb [20] and Hirata [3], followed
by ours, Maurer [15], and finally Lucet [22]. Although a
C++ source code is made available by the authors for FEED
(as supplementary material), it still consists in around 500
very dense lines, making it by far the most difficult to imple-
ment. This is, in our opinion, a major drawback for this algo-
rithm, because its use in a different context (with another
programming language or in higher dimension) is far from
straightforward. This is certainly not the case for the pro-
posed algorithm.

Parameter tuning: Unlike the other five methods,
FEED’s performance relies heavily on tuning six param-
eters. In the source code provided in the supplementary
material, it is stated that “A way to do it is to start with an
initial educated guess and then vary P1 to obtain minimal
time. Then repeat this with P2 to P6, followed by going
back from P5 to P1”. Although we may have our doubts as

Table 2   Computation time results on the [2] dataset, for the algorithms considered in the benchmark

Images Computation time (in ns/pixel) per algorithm

Proposed Felzenswalb Hirata Maurer Lucet Schouten

Ave Rms Ave Rms Ave Rms Ave Rms Ave Rms Ave Rms

Rotating line 7.86 1.67 7.64 1.61 8.07 1.69 8.20 1.70 6.11 0.3 19.90 8.11
Rotating line, inverse 4.20 0.05 6.69 0.07 8.79 0.08 8.65 0.197 9.03 0.07 1.79 0.05
Inscribed circle 8.99 0.26 9.23 0.36 9.90 0.14 10.70 0.31 11.98 4.81 44.88 21.68
Inscribed circle, inverse 5.09 0.25 7.20 0.17 9.04 0.19 9.09 0.35 12.95 4.62 3.82 0.53
Random pixels (see Fig. 5) 18.92 6.50 19.21 5.19 18.60 4.15 19.92 5.11 23.10 3.50 18.52 8.73
Random squares 6.69 1.51 7.97 0.81 9.29 0.32 9.33 0.40 17.59 0.80 7.10 3.83
Point in corner 5.76 0.12 7.81 0.14 9.45 0.14 8.89 0.11 10.35 2.91 1.86 0.07
Point in corner, inverse 4.00 0.15 6.43 0.17 8.71 0.20 8.58 0.16 12.18 2.95 1.74 0.05
Lenna edges 16.34 15.42 14.30 15.95 17.05 13.68
Lenna edges, inverse 7.51 9.07 10.56 10.77 16.36 4.74

Fig. 4   Samples of the considered shapes extracted from Fabbri’s
dataset. From left to right: inscribed circle, random pixels (50%), ran-
dom squares (75%), Lenna edges (inverse). The images have differ-

ent complexities to test the algorithms in different situations and their
dependency on image content 2

771Journal of Real-Time Image Processing (2022) 19:763–773	

1 3

to what an “initial educated guess” should be, the results
presented in this article for FEED are the ones obtained
after spending time working on P1–P6 to obtain the best
possible execution time. As pointed out in [23], the differ-
ence between default values and fine-tuning is about 44%,
which is huge. While fine-tuning is clearly a strength of
FEED (since it optimizes the performance of the algorithm
for a given context), it also increases the difficulty of actu-
ally using it effectively.

Generalization to higher dimensions: Among the six
considered algorithms, only those proposed by Lucet [22]
and Schouten [23] cannot be directly generalized to higher
dimensions. As described in [24], FEED requires major
adaptations (and a new set of parameters) to work effi-
ciently in 3D, and is not yet designed to work in arbitrary
dimensions.

Based on these points, the proposed algorithm clearly
seems to be an interesting alternative, especially when work-
ing in arbitrary dimensions.

Fig. 5   Evolution of the com-
putational cost (in ns/pixel)
for each considered algorithm,
when increasing the number of
background pixels (randomly
generated). Although slower
in the beginning, the pro-
posed algorithm (and FEED)
outperforms other comparable
solutions when the background
is sufficiently connected

Fig. 6   Computational cost (in ns/pixel) of each considered algorithm, when applied on the 216 images of Kimia’s dataset. Note that, although
the FEED algorithm is clearly faster, the proposed approach consistently outperforms the other state-of-the-art solutions

772	 Journal of Real-Time Image Processing (2022) 19:763–773

1 3

6 � Conclusion

In this article, we presented a major reformulation to the
well-known solution for the Euclidean Distance Transform
computation initially introduced by Saito et al. [4]. It lever-
ages the discrete nature of the input shape and the output
result to limit the frequency of evaluating the intersection
between two parabolas, which is a computationally expen-
sive operation. The resulting algorithm remains linear in
the shape size, but allows the constant term to be reduced
significantly.

We proposed a comprehensive analysis and benchmark-
ing of several similar state-of-the-art algorithms. Although
slower than the FEED algorithm (which is, to our knowl-
edge, the fastest at this stage), it is both easy to implement
and easily scalable to higher dimensions. In fact, our ongo-
ing work uses this algorithm as input for robot path planning
in 4-dimensional space, where FEED is definitely not an
option.

Declarations 

Conflict of interest  The authors declare that they have no conflict of
interest.

References

	 1.	 Rosenfeld, A., Pfaltz, J.L.: Distance functions on digital pictures.
Pattern Recogn. 1(1), 33–61 (1968)

	 2.	 Fabbri, R., da Fontoura-Costa, L., Torelli, J.C., Bruno, O.M.: Ad
Euclidean distance transform algorithms: a comparative survey.
ACM Comput. Surv. 40(1), 1–2 (2008)

	 3.	 Hirata, T.: A unified linear-time algorithm for computing distance
maps. Inf. Process. Lett. 58(3), 129–133 (1996)

	 4.	 Saito, T., Toriwaki, J.I.: New algorithms for Euclidean distance
transformation of an n-dimensional digitized picture with applica-
tions. Pattern Recogn. 27(11), 1551–1565 (1994)

	 5.	 Leal, J., Ramírez-Torres, J., Barron-Zambrano, J., Diaz-Man-
riquez, A., Nuño-Maganda, M.A., Saldivar-Alonso, V.: Parallel
raster scan for Euclidean distance transform. Symmetry (2020).
https://​doi.​org/​10.​3390/​sym12​111808

	 6.	 Manduhu, M., Jones, M.W.: A work efficient parallel algorithm for
exact Euclidean distance transform. IEEE Trans. Image Process.
28(11), 5322–5335 (2019)

	 7.	 Montanari, U.: A method for obtaining skeletons using a quasi-
Euclidean distance. J. ACM (JACM) 15, 600–624 (1968)

	 8.	 Danielsson, P.E.: Euclidean distance mapping. Comput. Graphics
Image Process. 14(3), 227–248 (1980). https://​doi.​org/​10.​1016/​
0146-​664X(80)​90054-4

	 9.	 Borgefors, G.: Distance transformations in arbitrary dimensions.
Comput. Vis. Graphics Image Process. 27(3), 321–345 (1984).
https://​doi.​org/​10.​1016/​0734-​189X(84)​90035-5

	10.	 Cuisenaire, O., Macq, B.M.: Fast Euclidean distance transfor-
mation by propagation using multiple neighborhoods. Comput.
Vis. Image Underst. 76, 163–172 (1999)

	11.	 Shih, F.Y., Wu, Y.T.: Fast Euclidean distance transformation
in two scans using a 3 × 3 neighborhood. Comput. Vis. Image
Underst. 93(2), 195–205 (2004)

	12.	 Strutz, T.: The distance transform and its computation (2021)
	13.	 Breu, H., Gil, J., Kirkpatrick, D.G., Werman, M.: Linear time

Euclidean distance algorithms. IEEE Trans. Pattern Anal. Mach.
Intell. 17(5), 529–533 (1995)

	14.	 Guan, W., Ma, S.: A list-processing approach to compute Voro-
noi diagrams and the Euclidean distance transform. IEEE Trans.
Pattern Anal. Mach. Intell. 20(7), 757–761 (1998)

	15.	 Maurer, C.R., Qi, R., Raghavan, V., Member, S.: A linear time
algorithm for computing exact Euclidean distance transforms
of binary images in arbitrary dimensions. IEEE Trans. Pattern
Anal. Mach. Intell. 25, 265–270 (2003)

	16.	 Wang, J., Tan, Y.: Efficient Euclidean distance transform algo-
rithm of binary images in arbitrary dimensions. Pattern Recogn.
46(1), 230–242 (2013)

	17.	 Shih, F.Y., Mitchell, O.R.: A mathematical morphology
approach to Euclidean distance transformation. IEEE Trans.
Image Process. 1(2), 197–204 (1992)

	18.	 Lotufo, R., Zampirolli, F.A.: Fast multidimensional parallel
Euclidean distance transform based on mathematical morphol-
ogy. In: 14th Brazilian Symposium on Computer Graphics and
Image Processing (SIBGRAPI 2001), 15–18 October 2001, Flo-
rianopolis, Brazil, pp. 100–105 (2001)

	19.	 Meijster, A., Roerdink, J.B.T.M., Hesselink, W.H.: A general
algorithm for computing distance transforms in linear time. In:
International Symposium on Mathematical Morphology and its
Applications to Image and Signal Processing, ISMM 2000, Palo
Alto, CA, USA, June 26–28, 2000, pp. 331–340 (2000)

	20.	 Felzenszwalb, P.F., Huttenlocher, D.P.: Distance transforms of
sampled functions. Theory Comput. 8(1), 415–428 (2012)

	21.	 Coeurjolly, D., Montanvert, A.: Optimal separable algorithms
to compute the reverse Euclidean distance transformation and
discrete medial axis in arbitrary dimension. IEEE Trans. Pattern
Anal. Mach. Intell. 29(3), 437–448 (2007)

	22.	 Lucet, Y.: A linear Euclidean distance transform algorithm
based on the linear-time Legendre transform. In: Second Cana-
dian Conference on Computer and Robot Vision (CRV 2005),
9–11 May 2005, Victoria, BC, Canada, pp. 262–267 (2005)

	23.	 Schouten, T.E., van den Broek, E.L.: Fast exact Euclidean dis-
tance (FEED): a new class of adaptable distance transforms.
IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2159–2172
(2014)

	24.	 Schouten, T., Kuppens, C.H., van den Broek, E.L.: Three dimen-
sional fast exact Euclidean distance (3d-feed) maps. Pattern Rec-
ogn. Lett. PRL (2006). https://​doi.​org/​10.​1117/​12.​643721

	25.	 Sebastian, T.B., Kimia, B.B.: Curves vs. skeletons in object rec-
ognition. Signal Process. 85(2), 247–263 (2005)

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Guillaume Fuseiller  received the Engeneering degree in mechatronics
from the Ecole Nationale Supérieure d′Ingenieurs de Limoges (ENSIL)
in 2014, and the Ph.D. degree in robotics from the University of Limo-
ges, France, in 2019. He is currently CEO of his company FUGAMA
which integrates robots and vision controls for industry in Aixe Sur
Vienne, France. His research interests include robotics, 3D vision, and
real-time path planning.

Romain Marie  received the Ph.D. degree in Robotics from the Uni-
versité de Picardie Jules Verne, France, in 2014. He is now an associ-
ate professor at Université de Limoges (France) in the CNRS XLim
Institute (REMIX Team). His teaching are carried out at the engi-
neering school 3iL Ingénieurs. His current research interests include

https://doi.org/10.3390/sym12111808
https://doi.org/10.1016/0146-664X(80)90054-4
https://doi.org/10.1016/0146-664X(80)90054-4
https://doi.org/10.1016/0734-189X(84)90035-5
https://doi.org/10.1117/12.643721

773Journal of Real-Time Image Processing (2022) 19:763–773	

1 3

omnidirectional vision, real time medial axis filtering, and vision based
robot localization, navigation and mapping.

Gilles Mourioux  graduated from the “Ecole Normale Supérieure de
Cachan” in Mechanical Engineering in 1993. He obtained a thesis in
Robotics at the University of Orleans (FR) in 2006. Since 2009, he
is associate professor at the National Superior School of Engineer of
Limoges (ENSIL-ENSCI). His research work is done in the “smart
systems and network” team of the XLIM laboratory (UMR CNRS no.
7252). His current research topics are robotics, localization and also
virtual and/or augmented reality for robotics applications.

Erick Duno  works for Valeo since 1988. He is currently a friction mate-
rial process own at Valeo since 2018 (senior process expert for friction
material processing since 2013). He was the supervisor for Valeo dur-
ing the Ph.D. of Guillaume Fuseiller.

Ouiddad Labbani‑Igbida  received the Ph.D. degree in Automatic
control, Robotics and Computer science from Université de Franche-
Comté, Besançon, France. She obtained the Habilitation Degree from
Université de Picardie Jules Verne, France, in 2011. Since 2013, she
holds a tenured position as a Full Professor at Université de Limo-
ges (France) in the CNRS XLIM Institute and ENSIL Engineering
School. She is the Head of the ENSIL Mechatronics Department and
of the XLIM Robotics and Mechatronics research group. Her research
interests include enactive perception, perception based localization and
navigation of heterogeneous robots, network and collective robotics.

	Enhancing distance transform computation by leveraging the discrete nature of images
	Abstract
	1 Introduction
	2 State of the art
	3 EDT computation using lower envelope of parabolas
	3.1 General idea
	3.2 EDT algorithm based on parabolas lower envelope

	4 EDT Algorithm based on parabolas and line segments
	4.1 General idea of the proposed method
	4.2 Lower envelope computation
	4.3 Efficient implementation

	5 Comparative results
	5.1 Methodology
	5.2 Fabbri et al. dataset
	5.3 The Kimia’s dataset
	5.4 Discussion

	6 Conclusion
	References

