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Abstract
This paper presents a major reformulation of a widely used solution for computing the exact Euclidean distance transform 
of n-dimensional discrete binary shapes. Initially proposed by Hirata, the original algorithm is linear in time, separable, and 
easy to implement. Furthermore, it accounts for the fastest existing solutions, leading to its widespread use in the state of the 
art, especially in real-time applications. In particular, we focus on the second step of this algorithm, where the lower envelope 
of a set of parabolas has to be computed. By leveraging the discrete nature of images, we show that some of those parabolas 
can be merged into line segments. It reduces the computational cost of the algorithm by about 20% in most practical cases, 
while maintaining its exactness. To evaluate the proposed improvement on different cases, two state-of-the art benchmarks 
are implemented and discussed.
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1  Introduction

First introduced by Rosenfeld et al. [1], the distance trans-
form (DT) of a binary shape associates to each point its 
distance to the nearest boundary point. When this distance 
is defined by the Euclidean metric (which is by far the most 
common case), the DT is then referred as Euclidean distance 
transform (EDT). This fundamental geometric operator finds 
applications in various fields, such as shape analysis, data 

compression, computer graphics or robotics. As such, it has 
been widely investigated over the years, leading to a large 
number of real-time solutions in arbitrary dimensions.

As pointed out by Fabbri et al. [2], existing EDT algo-
rithms can generally be classified into three categories, 
depending on the order in which pixels are processed:

–	 Ordered propagation algorithms emulate the eikonal 
equation: a wavefront is initiated at the boundaries of 
the considered binary shape, and propagates at constant 
speed towards its center, whilst assigning to each encoun-
tered pixel the (current) distance traveled by the wave.

–	 Raster scan algorithms process pixels by scanning each 
line (forward then backward) in a sequential order.

–	 Dimensional reduction algorithms first compute the 1D 
DT for each row (or column) independently. This inter-
mediate result is then used in a second step where the 2D 
DT is obtained. When the considered shape is defined in 
higher dimensions, this process repeats iteratively along 
each direction until the n-dimensional distance transform 
is finally obtained (i.e. the actual DT).
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The work described hereafter relates to this last cate-
gory. In such approaches, although the first step (1D DT) is 
straightforward, this is not the case for the following ones. 
Specific properties of the Euclidean metric must be lever-
aged to minimize the computational cost and guarantee an 
exact EDT. One popular solution was initially introduced 
by Saito et al. [4]. It is based on the lower envelope of a 
set of parabolas, from which the EDT of a given line can 
be deduced (see Fig. 2).

The main contribution of this article is a new formula-
tion of this strategy. While maintaining its separability and 
linear complexity, it leverages the discrete nature of digital 
shapes to merge successive parabolas into line segments 
(see Fig. 2). As such, it allows to generate the exact same 
result (i.e. the exact EDT) while significantly reducing the 
computational cost. Additionally, the resulting algorithm 
is extremely short and simple to implement in arbitrary 

dimensions, thus favoring its use on a wide range of real-
time contexts, especially when GPU-based implementation 
is not an option. Note that this last point explains why 
most recent works, such as [5] or [6] are not compared to 
the proposed solution.

To better understand the theoretical and algorithmic under-
pinnings of this contribution, the rest of the article is organized 
as follows: In Sect. 2, a brief history of exact EDT is presented, 
with particular emphasis on algorithms based on dimensional 
reduction. In Sect. 3, preliminary concepts are introduced, 
including general definitions related to EDT computation, 
and its relation to the lower envelope of a set of parabolas. In 
Sect. 4, the core contribution is presented, both in terms of 
theory and effective implementation. Sect. 5 is dedicated to 
the experimental validation, where the gain of the proposed 
algorithm is quantified with respect to the best state-of-the-art 
algorithms, before concluding this work in Sect. 6.

Fig. 1   (left) An example of a binary shape, where black cells repre-
sent obstacles. (center) The one-dimensional DT, where each cell’s 
value corresponds to its distance to the nearest black cell on the same 

row. (right) The resulting squared EDT. The column in red is the one 
considered on Fig. 2

Fig. 2   Squared EDT computation for the red column in Fig. 1 based on: (left) the lower envelope of a set of parabolas [3], and (right) the lower 
envelope of a set of line segments and parabolas. Notice how, at discrete points (red crosses), both representations generate the same values
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2 � State of the art

Early DT algorithms were based on raster scan [1] or 
ordered propagation [7], and considered city-block or chess-
board discrete metrics. The issue of Euclidean DT compu-
tation was thereafter investigated more than a decade later. 
Although fast to compute, the algorithms proposed in [8, 9] 
were only approximations, and therefore required a costly 
post-processing step [10, 11]. For a complete overview of 
the approximate method, we refer the reader to the state-of-
the-art proposed by Fabbri et al. [2] or the technical survey 
proposed in [12] for implementation details. In the follow-
ing, we will focus on exact EDT algorithms.

From the early 90’s, exact EDT algorithms based on 
dimensional reduction became popular. In such approaches 
the basic idea is to first compute the 1D DT for each row 
(or column) independently, and then use this intermedi-
ate result in a second phase to compute the 2D DT. The 
non trivial part is the second step, where various algo-
rithms have been proposed to minimize the computational 
cost and guarantee an exact EDT. There are three main 
variants of this approach guaranteeing linear complexity 
with respect to the discrete grid size. The first is based 
on Voronoi diagrams (VD). Instead of computing the 
VD explicitly (which is time consuming, and in no case 
linear), Breu et al. [13] proposed an EDT algorithm that 
efficiently determines the intersection between an image 
line and the VD, without constructing it explicitly. This 
approach was later improved by Guan et al. [14], who 
took advantage of the fact that adjacent points tend to 
have the same nearest boundary. Although the concepts 
are exactly the same, more efficient algorithms were then 
successively proposed by Maurer et al. [15] and Wang 
et al. [16] (who also introduced a recursive generaliza-
tion to higher dimensions). The second variant is based on 
mathematical morphology. After Shih et al. [17] showed 
that the EDT can be computed by a single gray-scale mor-
phological erosion of the input shape, Lotufo et al. [18] 
proposed a strategy to decompose the structuring element 
into a set of 1D elements, thus leading to an independent 
scanning algorithm. The last variant uses parabola inter-
sections, as originally introduced by Saito et al. [4]. The 
central idea is to speed up the second phase (and possibly 
additional phases) by computing the lower envelope of a 
set of parabolas, from which the EDT of a given line can 
be deduced (see Sect. 3). This approach has been greatly 
improved, reformulated and enhanced over the years ([3, 
19, 20]), and has led to a set of algorithms with exactly 
the same complexity (i.e. linear in the grid size), but with 
a variable constant term.

3 � EDT computation using lower envelope 
of parabolas

3.1 � General idea

For the sake of simplicity, and given that the following 
can easily be generalized to higher dimensions, let’s con-
sider a two- dimensional binary image input, I = X ∪ X

c 
of dimension m × n (m rows, n columns), where X  denotes 
the shape, and Xc the background. The EDT of I is a 2D 
grid DI = {D(�)} storing for each pixel � = (x1, x2) its dis-
tance D(�) to the nearest background point:

This formulation provides an efficient computation process 
using two steps :

–	 First, each row of index l is independently considered 
as a 1D signal to generate a one dimensional EDT 
G = {g(�)} : 

–	 Second, each column of index c is scanned to deduce the 
distance transform D(�) by solving: 

As discussed in [4], the min operation in the second step 
is equivalent to a calculation of the lower envelope of a 
set of parabolas. Let us consider a given column c as a 
one-dimensional signal. Each row l defines a parabola 
Fl(i) = (i − l)2 + g(l, c)2 representing the (squared) distance 
between a point along c and the closest boundary point 
from (l, c) along row l. Consequently, the lower envelope 
of the set F = {Fl} of all parabolas exactly defines the 
EDT for column c.

3.2 � EDT algorithm based on parabolas lower 
envelope

Several works [3, 19–21] have thus focused on the defini-
tion of efficient algorithms to compute such a lower enve-
lope. They are extremely close to each other, both in term 
of formulation and performance. According to our tests 
(see Sect. 5), the one proposed by [20] slightly outper-
forms the others. Algorithms 1 and 2 present the corre-
sponding pseudo-code for both steps.

(1)∀� ∈ I, D(�) = min
�∈Xc

√
(x1 − y1)

2 + (x2 − y2)
2

(2)∀� = (l, x2), g(�) = min
(l,y2)∈X

c
|x2 − y2|

(3)∀� = (x1, c), D(�)2 = min
1≤l≤m

{(x1 − l)2 + g(l, c)2}



766	 Journal of Real-Time Image Processing (2022) 19:763–773

1 3

The first algorithm (Algo. 1), corresponding to the 
one-dimensional EDT computation, is common to all 
solutions (including ours), and is simply a direct applica-
tion of Eq. 2. The second algorithm (Algo. 2) is central 
to the proposed contribution, and therefore requires some 
explanation. For each column j ∈ [0, n[ (line 1), the core 
idea is to determine the ordered subset of F  contributing 
to its lower envelope, using a single scan of each cell. For 
this, it uses two arrays v and z to store for each parabola k 
of this subset, (i) the horizontal coordinate of its summit 
(v[k]), and (ii) the starting position of its contribution to 
the lower envelope (z[k]), corresponding to its intersection 
with the previous parabola ( k − 1 ) (see Table 1 for an illus-
tration). Both arrays are initialized with the first parabola 
of the column (line 2). At a given step of the algorithm, 

corresponding to a cell i ∈ [1,m[ (line 3), v and z contain k 
parabolas defining a temporary lower envelope. To deter-
mine whether or not the parabola Fi contributes to the last 
one, its intersection s(v[k], i) with Fv[k] is calculated :

Let w = 1 + s(v[k], i) denote the closest integer higher than 
this intersection coordinate (line 4). Two cases are then to 
be considered:

–	 w is higher than z[k] (line 8): as illustrated Fig. 3 (left), 
it means that Fv[k] still contributes to the lower envelope 
of F  (from z[k] to w − 1 ). Fi is then added to the list 
such that z[k + 1] = w , and v[k + 1] = i.

–	 w is lower than or equal to z[k] (lines 5 to 7): as illus-
trated Fig. 3 (center), it involves that the contribution 
to the lower envelope of Fv[k] is entirely covered by the 
one of Fi . Therefore, Fv[k] is removed, and the process 
is repeated with Fv[k−1].

Once each cell has been considered, v and z entirely 
define the lower envelope of F  . The last step is thus to iter-
ate through the column, and compute for each cell its Euclid-
ean distance, based on the parabola associated to its position 
(lines 9 to 12).

It should be noted that, for a shape defined in ℤn , Algo.2 
is simply repeated for each dimension except the first one 
(i.e. n − 1 times).

4 � EDT Algorithm based on parabolas 
and line segments

4.1 � General idea of the proposed method

A simple analysis of Algo. 2 shows that the main computa-
tional load is induced by lines 4 and 7, where the intersection 
between two parabolas is determined (Eq. 4). The core idea 
behind the proposed approach is to reduce the frequency of 
this operation. To achieve this goal, two properties induced 
by the context are leveraged.

–	 The considered shapes are defined on discrete grids. 
Thus, due to sampling, adjacent cells often tend to have 
the same one-dimensional distance transform g. As illus-
trated in Fig. 2 (bottom left), for a given column, the 
corresponding lower envelope is then formed of a large 
number of identical parabolas, up to a shift along the 
axis.

–	 The distance transform is also defined on a discrete 
grid. In other words, as long as the resulting EDT is 

(4)s(v[k], i) =
i2 − v[k]2 + g(i, j) − g(v[k], j)

2(i − v[k])
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exact for each cell, the lower envelope calculated for 
each column does not have to be exact for any continu-
ous point on the grid domain.

Based on these properties, this work proposes to approxi-
mate adjacent parabolas of the same height by a single 
line segment connecting their summit, as illustrated in 
Fig. 2. This approach has two major advantages. First, as 
explained previously, this reduces the number of entities 
composing the lower envelope for each column, and there-
fore the number of intersections (lines 4 and 7) to be com-
puted. Second, the construction of such line segments can 
be performed using a fast-forward process, which allows 
to entirely skip lines 4–8 of Algo. 2 for the corresponding 
cells.

4.2 � Lower envelope computation

Similarly to the original work, the lower envelope of a given 
column c is built incrementally by successively considering 
the parabolas Fi for each i ∈ [0, n[ , and, if necessary, by 
adding a single one as a parabola, or several ones as a line 
segment. The success of this process depends on answering 
the following questions:

–	 When should a line segment be added ? Consider when 
a parabola Fl (computed from row l and defined by the 
tuple {z[k], v[k]} ) has just been added. This parabola 
marks the beginning of a line segment when (i) the begin-
ning of its area of influence z[k] is inferior or equal to its 
center v[k], and (ii) at least the following two parabolas 
have the same height as Fl : 

 The first condition is required, because when not 
respected, the summit of Fl does not belong to the lower 
envelope, and thus cannot be the beginning of a line 
segment.

–	 How to efficiently add a line segment? Assuming the two 
previous conditions are respected, a fast forward from 
row l to row l + L is performed (i.e., all the parabolas 
in between are not considered). Two elements are then 
added to the lower envelope:

–	 A line segment from l to l + L with height h = g(l, c)2 
to encapsulate all the required information for the 
skipped parabolas,

–	 A parabola starting from and centered on l + L to 
ensure the transition with the rest of the lower enve-
lope.

(5)
{

z[k] ≤ v[k]

∃L ≥ 2 | ∀j ∈ [l, l + L], g(j, c) = g(l, c)

Fig. 3   The three cases to be considered when adding the red parabola 
to the lower envelope: (left) When z[k] <= w , the parabola k (in blue) 
still contributes to the lower envelope; (center) when z[k] > w , the 
parabola k is totally eclipsed by the red one. It is thus removed from 

the lower envelope; and (right) when the element k is a line segment, 
the process is exactly the same, except that w is calculated based on 
Eq. 6 instead of Eq. 4

Table 1   Proposed representation of the lower envelope

 For parabolas, v and z are exactly the same as in [20]

Parabola Line segment

v [k] Horizontal location  
of the parabola’s  
center

Height of the line segment

z [k] Beginning of the  
zone of influence

Beginning of the zone of influence

t [k] 0 1
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	    Notice that the whole process, while potentially con-
sidering a large number of parabolas, does not require 
any calculation.

–	 How to efficiently add a parabola? When Fl does not 
belong to a line segment, it has to be added on the lower 
envelope by itself. This process leads to evaluate its inter-
section with the last element to determine if the latter 
should be removed, and iterates until this is not the case. 
Two cases are then to be considered:

–	 Case 1: the last element is a parabola: Eq. 4 is used, 
exactly as in [20] (lines 4–7 of Algo. 2).

–	 Case 2: the last element is a line segment. Let h be 
its height. In this case, the intersection with Fl is 
obtained by solving the second-order system Fl = h , 
and keeping the lowest solution (i.e. the one on the 
left of the parabola). It is then given by: 

 As in the parabola/parabola case, let w = 1 + s2(h, l) 
be the nearest integer higher than this intersection. 
When the start of the line segment follows the 
intersection (i.e. when z[k] > w ), it is completely 
occluded by the parabola, and is therefore removed 
from the lower envelope. Otherwise, as illustrated 
(Fig. 3 (right)), the line segment still contributes to 
the lower envelope (from z[k] to w − 1 ). The parabola 
is then added to the list such that z[k + 1] = w and 
v[k + 1] = i.

4.3 � Efficient implementation

In the original version of the algorithm (Algo. 2), the lower 
envelope is represented with two arrays v and z storing respec-
tively for each parabola k: i) the horizontal coordinate of its 
summit (v[k]), and ii) the starting position of its zone of influ-
ence (z[k]). Given its computational and memory efficiencies, 
this representation is adapted and completed to fit the proposed 
combination of parabolas and line segments. First, a third array 
t is added to store the nature of a given object k (parabola or 
line segment). Arbitrarily, t[k] is set to 0 when k is a parabola, 
and to 1 otherwise. Second, when the object k is a line seg-
ment, the array v is recycled to store the (unique) value of g 
along it (i.e. the height of the line segment). Please refer to 
Table 1 for a clear understanding of this representation.

The structure of the proposed algorithm is given in (Algo. 
3). To start, the fast forward process is implemented (lines 
4–10). Once the presence of a line segment has been asserted 
(lines 4 and 6), it is added in line 7 and the process ends (lines 
8 and 9) by adding the last parabola (line 10). Notice that when 
the test (line 6) is not valid (i.e. when the next parabola of a 
potential line segment is not at the same height), the algorithm 

(6)s2(h, l) = l −
√
h − g(l, c)2

jumps to line 10 and simply adds Fi as a parabola without com-
puting its intersection with Fi−1 . The rest of the algorithm, i.e. 
lines 11–20, follows exactly the same structure as the original 
algorithm (Algo. 2). The only differences lay in lines 15 and 
20, to hand over the cases where the current considered ele-
ment of the lower envelope is a line segment. In particular, the 
intersection with Fi is calculated (Eq. 6) on line 15, while line 
20 describes how to determine the DT D2(i, j) of a line seg-
ment, simply given by its height v[k].

5 � Comparative results

5.1 � Methodology

A complete benchmark was conducted to compare the pro-
posed approach with the fastest existing CPU-based algo-
rithms for exact EDT computation. They consist of the solu-
tions offered by:
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–	 Felzenszwalbe et al. [20], which performs an independ-
ent scanning based on the lower envelope of parabolas 
as detailed in Sect. 3;

–	 Hirata [3] which is similar to [20] with a slightly different 
algorithm for constructing the lower envelope;

–	 Maurer et al. [15] which performs independent scanning 
based the partial construction of the Voronoi diagram;

–	 Lucet et al. [22] which performs an independent scanning 
based on the Legendre Conjugate;

–	 Schouten et al. [23] that uses a combination of ordered 
propagation, raster scanning and independent scanning.

With the exception of the last one, all algorithms are directly 
comparable to the proposed approach, as they are rela-
tively easy to implement, separable, generalizable to higher 
dimensions, and linear in the number of pixels. The FEED 
algorithm introduced by Schouten et al. [23] is much more 
complicated to implement and configure. Furthermore, it is 
not linear in the image size and has exponential complexity 
when dealing with higher dimensions (according to Schouten 
et al. [24]). However, the authors have shown its excellent 
performances on 2D shapes. Although, we do not consider 
it to be in the same scope as the proposed algorithm, it was 
still added to the benchmark. Except for FEED, for which we 
directly used the source code provided by the authors (about 
500 optimized lines with many implementation tricks), all 
algorithms were re-implemented according to their formula-
tion, and optimized with all known strategies. In particular, 
as stated in [23], the order of processing (i.e. first the rows 
and then the columns, or vice-versa) does not affect the accu-
racy of the result, but it influences the execution time. For all 
algorithms, the fastest implementation was therefore selected, 
which in our case was column-row ordering.

To guarantee full control over these assessments and 
encourage the comparison of the present work with yet-
to-be-released algorithms, all source codes (including 
algorithms and benchmark implementation) can be found 
on github.1 Finally, although all the algorithms (except 
for FEED) are separable, they were implemented without 
any parallelization on a laptop equipped with an Intel Core 
i7-5600U CPU @ 2.60GHz. Their execution time could thus 
be easily reduced on any modern processor with a multi-core 
architecture.

5.2 � Fabbri et al. dataset

The first dataset considered here was introduced by Fab-
bri et al. [2] in a comparative survey to review state-of-the-
art sequential 2D EDT algorithms. It considers a variety of 
artificial 2d binary shapes (see Fig. 4), and is designed to 

highlight the pros and cons of each approach. The results of 
this dataset are presented in Table 2. Overall, they confirm 
those presented in [23]. The FEED algorithm outperforms 
other solutions (including the presented work) in most sce-
narios, whilst the algorithm proposed by [22] is generally the 
slowest. Additionally, although the theoretical foundations 
of both works are exactly the same, the algorithm proposed 
by [20] is significantly faster than the one initially introduced 
by [3], with an average gain of around 10% . It validates the 
algorithmic choice discussed earlier.

Another global observation depicted by Table 2 is the 
good performance of the proposed approach, as it outper-
forms other comparable algorithms (except FEED), ranging 
from 13% for the solution proposed by Felzenswalb, to 41% 
for Lucet et al. algorithm. However, it is worth noting that 
this statement is not true for 3 scenarios, namely random 
pixels, rotating line and Lenna edges which require specific 
attention. Consider for example the case of random pixels. 
In this scenario, a set of images are generated by setting an 
increasing percentage of random pixels as the background. 
As detailed in Fig. 5, the proposed algorithm is slower than 
[20] and [3] until about 70% of the image is filled with 
background points. This behavior clearly highlights the 
overload induced by mixing line segments with parabolas. 
As the points are randomly generated, the background is 
not connected. To generate line segments, the algorithm 
has to search for non-existent adjacent parabolas, which 
increases the computational cost by at most 5% (compared 
to [20] and [3]). From 70% , the background pixels become 
highly connected. This cost is then largely counterbalanced 
by the gain induced by the line segments now found, and 
the proposed approach begins to significantly outperform 
other algorithms. Finally, we also observe that the FEED 
algorithm suffers from the same drawback, but to a much 
greater extent.

Following the same reasoning, the proposed algorithm 
is also slightly slower when applied on Lenna edges (by 
definition, edges are thin, and therefore rarely generate line 
segments) and on the rotating line. Note however that for all 
these scenarios, the difference remains very small.

5.3 � The Kimia’s dataset

Although the Fabbri et al. dataset considers a wide range of 
shapes, with varying geometric properties, it remains artifi-
cial and not representative of real-world application cases. 
Therefore, we also compared the algorithms considered on 
the dataset proposed in [25]. It is a collection of 216 binary 
images representing real world entities (objects, animals, 
...). The computational cost obtained by averaging a hundred 
runs of each algorithm on each image is presented in Fig. 6.

Overall, the hierarchy in terms of execution time between 
the considered algorithms is consistent across the entire 1  http://​www.​github.​com/​RomMa​rie/​Enhan​cedDT.

http://www.github.com/RomMarie/EnhancedDT
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dataset. More specifically, the FEED algorithm remains the 
fastest, followed by the proposed solution. The latter is in 
average 20% faster than the method it extends (i.e. Felzen-
swalb work), and about 35% faster than Hirata’s algorithm. 
Finally, the other algorithms are significantly slower. Please 
notice that, as shown in Fig. 6, the considered shapes are 
extremely different in terms of topology and geometry. 
Although it has a clear influence on the computational cost, 
the performance order of the algorithms remains unchanged 
throughout the dataset.

5.4 � Discussion

In this section, six algorithms (including the proposed 
one) have been compared in terms of computational cost. 
It clearly shows that FEED [23] outperforms the others, 
whilst the proposed solution consistently comes at the sec-
ond place. At this point, the reader might thus question the 
interest of this work. Together with the quantitative compari-
son, a qualitative reflection is further added.

Implementation difficulty: We spent a considerable 
amount of time implementing all the benchmark algorithms. 
As such, we can affirm that among them, the easiest were 
those proposed by Felzenswalb [20] and Hirata [3], followed 
by ours, Maurer [15], and finally Lucet [22]. Although a 
C++ source code is made available by the authors for FEED 
(as supplementary material), it still consists in around 500 
very dense lines, making it by far the most difficult to imple-
ment. This is, in our opinion, a major drawback for this algo-
rithm, because its use in a different context (with another 
programming language or in higher dimension) is far from 
straightforward. This is certainly not the case for the pro-
posed algorithm.

Parameter tuning: Unlike the other five methods, 
FEED’s performance relies heavily on tuning six param-
eters. In the source code provided in the supplementary 
material, it is stated that “A way to do it is to start with an 
initial educated guess and then vary P1 to obtain minimal 
time. Then repeat this with P2 to P6, followed by going 
back from P5 to P1”. Although we may have our doubts as 

Table 2   Computation time results on the [2] dataset, for the algorithms considered in the benchmark

Images Computation time (in ns/pixel) per algorithm

Proposed Felzenswalb Hirata Maurer Lucet Schouten

Ave Rms Ave Rms Ave Rms Ave Rms Ave Rms Ave Rms

Rotating line 7.86 1.67 7.64 1.61 8.07 1.69 8.20 1.70 6.11 0.3 19.90 8.11
Rotating line, inverse 4.20 0.05 6.69 0.07 8.79 0.08 8.65 0.197 9.03 0.07 1.79 0.05
Inscribed circle 8.99 0.26 9.23 0.36 9.90 0.14 10.70 0.31 11.98 4.81 44.88 21.68
Inscribed circle, inverse 5.09 0.25 7.20 0.17 9.04 0.19 9.09 0.35 12.95 4.62 3.82 0.53
Random pixels (see Fig. 5) 18.92 6.50 19.21 5.19 18.60 4.15 19.92 5.11 23.10 3.50 18.52 8.73
Random squares 6.69 1.51 7.97 0.81 9.29 0.32 9.33 0.40 17.59 0.80 7.10 3.83
Point in corner 5.76 0.12 7.81 0.14 9.45 0.14 8.89 0.11 10.35 2.91 1.86 0.07
Point in corner, inverse 4.00 0.15 6.43 0.17 8.71 0.20 8.58 0.16 12.18 2.95 1.74 0.05
Lenna edges 16.34 15.42 14.30 15.95 17.05 13.68
Lenna edges, inverse 7.51 9.07 10.56 10.77 16.36 4.74

Fig. 4   Samples of the considered shapes extracted from Fabbri’s 
dataset. From left to right: inscribed circle, random pixels (50%), ran-
dom squares (75%), Lenna edges (inverse). The images have differ-

ent complexities to test the algorithms in different situations and their 
dependency on image content 2
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to what an “initial educated guess” should be, the results 
presented in this article for FEED are the ones obtained 
after spending time working on P1–P6 to obtain the best 
possible execution time. As pointed out in [23], the differ-
ence between default values and fine-tuning is about 44%, 
which is huge. While fine-tuning is clearly a strength of 
FEED (since it optimizes the performance of the algorithm 
for a given context), it also increases the difficulty of actu-
ally using it effectively.

Generalization to higher dimensions: Among the six 
considered algorithms, only those proposed by Lucet [22] 
and Schouten [23] cannot be directly generalized to higher 
dimensions. As described in [24], FEED requires major 
adaptations (and a new set of parameters) to work effi-
ciently in 3D, and is not yet designed to work in arbitrary 
dimensions.

Based on these points, the proposed algorithm clearly 
seems to be an interesting alternative, especially when work-
ing in arbitrary dimensions.

Fig. 5   Evolution of the com-
putational cost (in ns/pixel) 
for each considered algorithm, 
when increasing the number of 
background pixels (randomly 
generated). Although slower 
in the beginning, the pro-
posed algorithm (and FEED) 
outperforms other comparable 
solutions when the background 
is sufficiently connected

Fig. 6   Computational cost (in ns/pixel) of each considered algorithm, when applied on the 216 images of Kimia’s dataset. Note that, although 
the FEED algorithm is clearly faster, the proposed approach consistently outperforms the other state-of-the-art solutions
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6 � Conclusion

In this article, we presented a major reformulation to the 
well-known solution for the Euclidean Distance Transform 
computation initially introduced by Saito et al. [4]. It lever-
ages the discrete nature of the input shape and the output 
result to limit the frequency of evaluating the intersection 
between two parabolas, which is a computationally expen-
sive operation. The resulting algorithm remains linear in 
the shape size, but allows the constant term to be reduced 
significantly.

We proposed a comprehensive analysis and benchmark-
ing of several similar state-of-the-art algorithms. Although 
slower than the FEED algorithm (which is, to our knowl-
edge, the fastest at this stage), it is both easy to implement 
and easily scalable to higher dimensions. In fact, our ongo-
ing work uses this algorithm as input for robot path planning 
in 4-dimensional space, where FEED is definitely not an 
option.
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