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Abstract
For self-driving cars and advanced driver assistance systems, lane detection is imperative. On the one hand, numerous cur-
rent lane line detection algorithms perform dense pixel-by-pixel prediction followed by complex post-processing. On the 
other hand, as lane lines only account for a small part of the whole image, there are only very subtle and sparse signals, and 
information is lost during long-distance transmission. Therefore, it is difficult for an ordinary convolutional neural network 
to resolve challenging scenes, such as severe occlusion, congested roads, and poor lighting conditions. To address these 
issues, in this study, we propose an encoder–decoder architecture based on an attention mechanism. The encoder module is 
employed to initially extract the lane line features. We propose a spatial recurrent feature-shift aggregator module to further 
enrich the lane line features, which transmits information from four directions (up, down, left, and right). In addition, this 
module contains the spatial attention feature that focuses on useful information for lane line detection and reduces redun-
dant computations. In particular, to reduce the occurrence of incorrect predictions and the need for post-processing, we 
add channel attention between the encoding and decoding. It processes encoding and decoding to obtain multidimensional 
attention information, respectively. Our method achieved novel results on two popular lane detection benchmarks (CULane 
F1-measure 76.2, TuSimple accuracy 96.85%), which can reach 48 frames per second and meet the real-time requirements 
of autonomous driving.
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1  Introduction

In modern society, cars have become the basic means of 
transportation for people. Therefore, as the number of 
cars increases and traffic conditions become increasingly 
complex, advanced driver assistance systems (ADAS) are 
becoming critically important. ADAS utilize a variety of 
sensors installed in the car and rely on the timely collec-
tion of environmental data from inside and outside the car 
to alert the driver of possible dangers. Lane detection is an 
important and challenging task for ADAS. With the help 
of lane line detection, drivers can better understand current 
road conditions and act in challenging scenarios, such as 
severe obstructions, extreme weather conditions, and tunnel 
access. Furthermore, lane line detection can help reduce the 

occurrence of traffic accidents. Therefore, lane line detection 
plays an important role in autonomous driving technology.

Many studies have been conducted on lane marking [5, 
9, 10, 15, 16, 23, 25, 28, 32, 35, 38, 43], most of which are 
based on two-stage semantic segmentation methods [14, 
21, 32]. In the first stage, the image is classified pixel-by-
pixel and each pixel is assigned a label, to specify whether 
it belongs to the lane line. However, this method has a fatal 
disadvantage—it does not consider the relationship between 
each pixel and requires a second stage of post-processing. 
For example, geometric constraints, such as structural or 
similarity constraints, are added to the lane lines, and the 
parameters need to be manually adjusted to match the first 
stage. Therefore, this method suffers from robustness and 
scalability problems in different environments and datasets. 
An alternative approach was provided by some researchers 
who tried to convey the spatial information via feature maps, 
such as spatial convolutional neural network (SCNN) [33] 
and recurrent feature-shift aggregator (RESA) [53]. SCNN 
replaces the conventional layer-by-layer convolutions with 
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slice-by-slice convolutions, which allows information to 
be transferred across rows and columns. However, because 
sequential information transfer between adjacent rows or 
columns requires several iterations and a relatively long 
inference time, it is difficult to achieve satisfaction with the 
real-time requirements of autonomous driving. RESA slices 
the feature maps vertically and horizontally to collect differ-
ent sliced feature maps at different step sizes, enabling each 
pixel to collect global information. However, the lane lines 
do not extend to the entire image boundary; therefore, this 
method has redundant computations that affect the infer-
ence time. This method requires several iterations of the 
loop, which may lead to the loss of information during long 
propagation.

In our study, for the relationship between pixels, inference 
time, and information loss in the propagation process, we 
propose a codec structure based on the attention mechanism. 
First, because pixel-by-pixel classification fails to consider 
the relationship between each pixel and the real-time prob-
lem, we designed a spatial recurrent feature-shift aggregator 
(SPRESA) module with spatial attention to aggregate the 
adjacent pixels and focus on the spatial information near 
the lane lines. Finally, to reduce the probability of losing 
information during long-distance propagation, channel atten-
tion was added between the encoder and the decoder. The 
encoding and decoding modules extract multi-scale seman-
tic information through the channel attention and perform 
feature fusion through a skip connection; thus, the decod-
ing module contains rich spatial information and channel 
information.

Figure 1 shows the architecture of our lane line detec-
tion network, which contains three modules, namely, the 
encoder, SPRESA, and channel attention-guided decoding 
modules, and two branches are obtained: the segmentation 
and existence branches. Further details are presented in 
Sect. 3. The main contributions of our study can be sum-
marized as follows:

We propose a novel lane line detection method based on 
a codec structure with an attention mechanism.

A SPRESA module is proposed to link the spatial rela-
tionships between the pixels and devote more attention to 

the vicinity of the lane lines by spatial attention, reducing 
the inference time and improving the speed.

The decoding part is guided using the channel attention, 
which not only fuses the low-level information of the encod-
ing module with the high-level information of the decoding 
module, but also provides rich lane line information for the 
existence and segmentation of the branch line. It reduces the 
model's misjudgment of lane lines and improves the accu-
racy of the lane line prediction.

We evaluated our method on two popular lane detection 
benchmarks (CULane and TuSimple), achieving novel per-
formances (76.2 F1-measure on CULane; 96.85% accuracy 
on TuSimple). Therefore, it can be used as a strong bench-
mark to facilitate future research on lane line detection.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses related studies. In Sect. 3, we explain our 
methodology in three parts: the encoder module, SPRESA 
module, and decoder module. Section 4 compares the exper-
imental results of our proposed method with those of other 
algorithms and presents a large number of visualization 
results. Finally, Sect. 5 concludes the paper.

2 � Related studies

Lane detection plays an important role in autonomous driv-
ing. Many lane line detection methods have been proposed, 
which can be broadly classified into two categories: tradi-
tional methods and deep learning methods.

2.1 � Traditional method

Traditional lane line detection methods [1, 7, 15, 18, 42, 48] 
typically include the following steps: image preprocessing, 
feature extraction, lane line detection, and lane tracking. The 
main purpose of image preprocessing is to eliminate irrelevant 
information in the image and store useful real information. For 
this step, the image may be enhanced to facilitate the extraction 
of lane information, generate a region of interest (ROI), and 
remove non-lane information. Few studies [3, 6, 48] gener-
ated ROIs by selecting the lower part of the image to reduce 
redundant information, while others [24, 40, 50] used vanish-
ing points. After the ROI is generated, an inverse transmis-
sion transform [8, 19], median filter [51], and finite impulse 
response filters [46] are used to reduce the noise to facilitate 
the extraction of lanes and remove non-lane information. In 
traditional methods, lane lines are usually modeled in the form 
of lines [27], parabolas [22, 47], and hyperbolas [50]. In addi-
tion, lane tracking generally uses the Kalman filter and particle 
filter detection methods [27, 39] for post-processing. However, 
these traditional methods have been developed based on cer-
tain strong assumptions and take specific measures for specific 
problems. When faced with challenging scenarios, such as bad Fig. 1   Simplified network architecture of the proposed method
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weather, bad lighting, and road congestion, they have poor 
generalization ability.

2.2 � Deep learning methods

In recent years, with the development of convolutional neu-
ral networks (CNNs), an increasing number of studies have 
applied deep learning methods to lane line detection [15, 33, 
36], which addresses the challenges faced by the traditional 
methods, including the fine-tuning of the steps in ROI gen-
eration, filtering, and tracking. In deep learning, lane line 
detection is considered a segmentation problem, where the 
input is an image and the output is a segmentation map. Thus, 
it involves dense pixel-by-pixel prediction and is difficult to 
guarantee in real time.

Huval et al. [17] predicted the two endpoints of the local 
line segment in a sliding window using fully convolutional 
network (FCN) regression. VPGNet [23] uses vanishing points 
to assist in the monitoring and positioning of traffic routes. 
Neven et al. [32] proposed LaneNet, which performs detec-
tion in two stages: (i) lane edge proposal generation and (ii) 
lane location. Deeplanes [13] used two horizontally mounted 
downward cameras to estimate the position of the lane point; 
however, because of the orientation problem of the camera, 
this method has significant limitations and cannot fully utilize 
all the information in the scene.

Qin et al. [37] expressed lane detection as a row-based selec-
tion problem. The use of row-based selection reduces the compu-
tational cost of the lane detection tasks. In addition, the self-atten-
tion distillation (SAD) method is used for the lane detection task, 
allowing the model to self-learn with any number of additional 
labels [15]. Wang et al. [45] proposed a multitasking approach 
that considered the localization capability of the lane lines. Its 
main idea was to integrate the semantic information extracted 
by CNNs with the localization capability provided by manual 
features and to predict the vanishing point location.

Zhang et al. [52] used generative adversarial networks with 
a multi-target semantic segmentation approach to detect lane 
lines, which improved the detection accuracy for complex or 
ambiguous lane scenes. Su et al. [41] proposed a structural 
information-guided lane line detection framework, called 
SGNet, that can accurately describe lane lines and classify and 
locate an uncertain number of lane lines. Li [26] used cascaded 
CNNs to perform instance segmentation on the lane bounda-
ries followed by a linear classifier for lane classification.

3 � Proposed method

In this section, we describe the proposed lane line detec-
tion network in detail (Fig. 2). The architecture consists of 
three parts: the encoder module, which is used to extract 

Fig. 2   Overall network architecture, which comprises three parts: 
(i) an encoder module that extracts feature information initially, 
wherein Xe1, Xe2, Xe3, and Xe4 are the extracted low-level features; (ii) 
a SPRESA module that moves the sliced feature maps cyclically in 
the vertical and horizontal directions to aggregate spatial informa-

tion; and (iii) a decoder module that aggregates low-level and high-
level features, wherein Xd1, Xd2, and Xd3 are the high-level features. 
Up_block is an up-sampling block. In the figure, 2 × and 8 × represent 
up-sampling factors of 2 and 8, respectively
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features from the input image; the SPRESA module, which 
moves the sliced feature maps cyclically in the vertical and 
horizontal directions to aggregate spatial information; and 

the decoding part, where the low-level features of the encod-
ing module and the high-level semantic information of the 
decoding module are fused through channel attention. The 
dimension information of each module is shown in Table 1. 
Thus, the decoding module provides richer spatial and chan-
nel feature information for the lane line existence and prob-
ability distribution.

3.1 � Encoder

The encoder backbone uses the common lightweight model, 
ResNet. Taking the CULane dataset using ResNet_50 and 
ResNet_34 as an example, their details are shown in Table 2. 
In this study, we used the ResNet (CULane—ResNet_50, 
TuSimple—ResNet_34) to extract features preliminarily. It 
can be seen from Table 2 that after the input image is pro-
cessed by ResNet_34 and ResNet_50, a feature map with a 
size 1/8 that of the input image is obtained. In the ResNet, 
we use a 1 × 1 convolution to reduce the number of output 
channels to 128. Thereafter, it is restored to the input image 
size via up-sampling. Next, feature maps of different sizes 
are obtained through four operation blocks, which can be 
easily concatenated using the decoder module. Among them, 
the first three operation blocks consist of a convolutional 
layer, a batch normalization and an activation function are 
followed immediately by a max pooling layer, while the last 
operation block is the matching decoding module feature 
map, which includes only one convolutional layer and one 
Dropblock layer [11].

The encoder module is further explained as follows: 
after the initial feature extraction of the input image by 
ResNet, four operation blocks are utilized to further enrich 
the encoding information of the low-level features. Subse-
quently, to avoid the influence of a few abnormal samples 
on the entire model, the feature map after the convolution 

Table 1   Modules comprising the proposed network, along with their 
layer details and dimension information

Layer Output size
Input data

Encoder ResNet
Conv 1 × 1
Up_block
Conv1_block
Max pooling
Conv2_block
Max pooling
Conv3_block
Max pooling
Conv4_block
Dropblock

2048*36*100
128*36*100
64*288*800
32*288*800
32*144*400
64*144*400
64*72*200
128*72*200
128*36*100
128*36*100
128*36*100

SPRESA D0-U0-R0-L0
D1-U1-R1-L1
D2-U2-R2-L2
D3-U3-R3-L3

128*36*100
128*36*100
128*36*100
128*36*100

Decoder Up_block
Channel attention
Conv3_block
Up_block
Channel attention
Conv2_block
Up_block
Channel attention
Conv1_block

128*72*200
128*72*200
128*72*200
64*144*400
64*144*400
64*144*400
32*288*800
32*288*800
32*288*800

Output Segmentation
Conv 1 × 1
Exist
Conv 1 × 1
Average pooling
fully connected
fully connected

5*288*800
5*36*100
5*18*50
4500- > 128
128- > 4

Table 2   Network structure of 
ResNet_34 and ResNet_50

Layer name Output size 34-layer 50-layer

Conv1_block 144 × 400 Conv, 7 × 7, 64, stride 2
Conv2_block 72 × 200 Max pool, 3 × 3, stride 2(

conv, 3 × 3, 64

conv, 3 × 3, 64

)
× 3

⎛⎜⎜⎝

conv, 1 × 1, 64

conv, 3 × 3, 64

conv, 1 × 1, 256

⎞⎟⎟⎠
× 3

Conv3_block 72 × 200
(
conv, 3 × 3, 128

conv, 3 × 3, 128

)
× 4

⎛⎜⎜⎝

conv, 1 × 1, 128

conv, 3 × 3, 128

conv, 1 × 1, 512

⎞⎟⎟⎠
× 4

Conv4_block 36 × 100
(
conv, 3 × 3, 256

conv, 3 × 3, 256

)
× 6

⎛⎜⎜⎝

conv, 1 × 1, 256

conv, 3 × 3, 256

conv, 1 × 1, 1024

⎞⎟⎟⎠
× 6

Conv5_block 36 × 100
(
conv, 3 × 3, 512

conv, 3 × 3, 512

)
× 3

⎛⎜⎜⎝

conv, 1 × 1, 512

conv, 3 × 3, 512

conv, 1 × 1, 2048

⎞⎟⎟⎠
× 3
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operation is normalized (BatchNorm). This can effectively 
prevent the explosion of the gradient and will place part of 
the sample below zero or above zero according to the gra-
dient, which effectively matches the filtering effect of the 

activation function. Our method employs the rectified linear 
unit (ReLU) nonlinear activation, which can significantly 
improve the expression ability of the neural networks in this 
model. Assuming xl as the feature map of layer l, the expres-
sion of the ReLU activation function is depicted in Eq. (1):

i denotes the feature map space dimension; c denotes the 
channel dimension, and l denotes the number of layers to 
which the feature map belongs. After convolution and acti-
vation, the feature map expression is given by Eq. (2):

k is the convolution kernel, fnl is the number of l-layer 
feature maps, and ∗ represents the convolution operation. 
Furthermore, to prevent overfitting problems in the training 
process, the dropout layer is added after activating the func-
tion [41]. Finally, through the processing of the max pooling 
layer, we obtain different scale feature maps that are spliced 
with the decoder module.

(1)
f
(

xli,c
)

= max
(

0, xli,c
)

,

(2)xl
c
= f

(∑
n ∫ fnl

xl−1
n

∗ kn,c

)
Fig. 3   SPRESA module, which transfers information from right to 
left with step lengths of one and two, respectively. The size H × W 
feature map is from the last operation block of the encoding module, 
X0…n-1 are the feature maps obtained by slicing in the vertical direc-
tion. Yellow shading is the spatial attention mechanism

Fig. 4   Spatial attention structure: Xn is the feature map in the vertical 
or horizontal direction; Xm and Xa are the feature maps of max pool-
ing and average pooling, respectively; Xs is the feature map after Xm 

and Xs are concatenated in the channel direction; Xc is the feature map 
after Xs convolution; Xα is spatial attention feature; and XαXn is the 
input of the decoding module

Fig. 5   Channel attention struc-
ture: Xe is the encoder module 
feature map, Xd is the decoder 
module feature map, Xdg/Xeg 
are the feature maps of global 
average pooling, Xda/Xea are the 
feature maps of adaptive convo-
lution, Xds/Xes are the channel 
attention feature maps, Xdd/Xee 
are the feature maps of point-
wise multiplication, and Xde is 
the multidimensional channel 
attention map
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3.2 � SPRESA module

In CNNs, spatial information is lost owing to the convo-
lutional step size and repeated use of the pooling layer. To 
prevent this, researchers [30, 34] increased the receptive 
field size through the deconvolution operation, but this is 
computation-intensive. Zheng et al. [53] therefore proposed 
a RESA module that cyclically moves the slice feature maps 
in the vertical (top to bottom and bottom to top) and hori-
zontal (left to right and right to left) directions, which allows 
each pixel to collect global information. However, for the 
entire image, lane lines only occupy a part of the image 
and do not extend to the image boundary. Therefore, there 
is redundancy in their method. Considering this, we added 
spatial attention to the RESA module and named it SPRESA.

Spatial attention mechanisms can be adapted to aggre-
gate information useful to lane lines. Taking information 
transfer from right to left as an example, the overall struc-
ture is shown in Fig. 3. Each feature map circulates from 
right to left in step sizes of one and two, respectively. At the 
first iteration and step S = 1, Xi can receive the information 
passed from Xi+1 . Because it is a circular movement, the 
features at the tail can receive the feature information from 
the other side, i.e., Xn−1 can receive the feature informa-
tion from X0 . At the second iteration and with step S = 2, Xi 
can receive features from Xi+2 . For example, X0 can receive 
information from X2 at the second iteration, whereas X0 and 
X2 have already received information from X1 and X3 in pre-
vious iterations, respectively. Therefore, now it takes only 
two iterations for X0 to receive information from X1 , X2, and 
X3 . The other iterations are similar to this. Thus, only K 
(Fig. 2) iterations are required for each piece of the feature 
image ( Xi ) to obtain the entire feature image information. In 
addition, we added the spatial attention feature to each mes-
sage delivery, as shown by the yellow shading in Fig. 3. The 
spatial attention structure is illustrated in Fig. 4.

In Fig. 4, the sliced feature map Xn (Fig. 3) is used as the 
input feature map for the module. Firstly, for Xn , max pool-
ing and average pooling are carried out based on the chan-
nel direction to obtain two feature maps Xm and Xa of size 
H × W × 1. Max pooling encodes the most significant part of 
the feature map, whereas average pooling encodes the global 
statistical information. They are then concatenated and 
aggregated into the channel information of a feature map, 
i.e., Xs . Therefore, these two features can be used simultane-
ously to obtain a more effective lane line feature descriptor. 
The next step is to apply a convolution operation (conv 3 × 3) 

to reduce the number of channels to one (H × W × 1), which 
focuses on useful information for the lane lines. Moreover, 
a nonlinear activation function (Sigmoid) is employed after 
the convolutional layer to generate the spatial attention fea-
ture ( X

�
 ), which makes the decision function discriminative. 

Finally, X
�
 is multiplied elementwise with the input feature 

map Xn to generate the input feature map required by the 
decoding module.

3.3 � Decoder

Although the SPRESA module obtains rich spatial informa-
tion, for the lane line marker detection, the information of 
small objects with large variability will be lost in the long-
distance transmission process. Therefore, information inter-
actions between channels are important. In addition, lane 
marker detection is a multi-classification problem; there-
fore, we use multidimensional attention to learn semantic 
information in images. Consequently, we add the channel 
attention between encoding and decoding.

Figure 5 shows the attention module. We use the pro-
cessing of the encoder module as an example to explain 
the attention module. First, a C × H ×W(encode module 
feature maps Xe1 , Xe2 , and Xe3 , as shown in Fig. 2) feature 
map is processed via the global average pooling (GAP) to 
obtain aC × 1 × 1 feature map ( Xeg ). Second, it performs 
adaptive convolution processing to obtain a C × 1 × 1 chan-
nel attention feature map ( Xea ); this allows a layer with a 
larger number of channels to perform more cross-channel 
interactions [44]. Finally, an activation function is added 
to increase the generalization ability, and then the feature 
map Xes is multiplied point-wise with the input feature 
map Xe to generate the HxWxC size feature map ( Xee ). 
The procedure utilized by the decoder module is similar 
to the above procedure. The size function of the adaptive 
convolution kernel is given by Eq. (3):

where C is the number of channels and � and b are set to two 
and one, respectively. There are three identical blocks in 
the decoder, each consisting of a convolutional layer and an 
up-sampling layer that increases the size of the feature map, 
as shown in Fig. 2. The convolutional layer operation is the 
same as that of the encoding module. As shown in Fig. 2, the 
feature map is processed by the SPRESA module, which is 
sequentially convolved and up-sampled to obtain a feature 

(3)k = �(C) =
||||
log2 (C)

�
+

b

�

||||,

Table 3   Details of the 
experimental datasets

Dataset #Frame Train Validation Test Resolution #Lane #Scenarios Environment

TuSimple 6408 3268 358 2782 1280 × 720  ≤ 5 1 Highway
CULane 1,33,235 88,880 9675 34,680 1640 × 590  ≤ 4 9 Urban and highway
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map corresponding to the size of the encoding module. Next, 
the channel attention mechanism is used to process it, which 
is the same as the encoding module, as shown in Fig. 5. 
Finally, the attention maps of the codec channels obtained 
above are fused with a multidimensional attention feature 
map. Consequently, the decoding module can provide abun-
dant channel and spatial information for the subsequent lane 
line existence and segmentation probability map, thereby 
reducing the fault prediction and post-processing of lane 
lines.

4 � Experiments

In this section, we report the evaluation conducted of EDNet 
on two public datasets: TuSimple and CULane. Section 4.1 
outlines the evaluation metric used for each dataset in the offi-
cial evaluation methods. Section 4.2 gives the details of the 
implementation. Section 4.3 shows the evaluation results of 
EDNet; Sect. 4.4 presents an ablation study of the attentional 
mechanism on the inference time, FP, FN, and F1-measure.

4.1 � Datasets

To validate our model, we conducted experiments on two 
widely used benchmark datasets: TuSimple and CULane. 
The CULane dataset was acquired from six different vehicles 
driven by six different drivers on Beijing roads. Over 55 h of 
video was collected, and 1,33,235 frames were extracted. It 
consists of nine different scenes: normal, crowd, night, no line, 
shadow, arrow, dazzle night, curve, and crossroad of urban 
roads. The TuSimple dataset consists of 6408 road images on 
US highways, where the images are under different weather 
conditions. The details of the datasets are presented in Table 3.

The official evaluation metrics differ for the two datasets. 
For the TuSimple dataset, the main evaluation criterion is the 
accuracy rate, defined by the following equation according to 
the average number of correct points:

C
clip

 is the number of correct predictions by the model, and 
S
clip

 is the total number of ground truths. The false negative 
(FN) and false positive (FP) rates are also calculated by the 
following equations:

F
pred

 denotes the number of wrongly predicted lanes; N
pred

 
denotes the number of predicted lanes ;M

pred
 denotes the 

number of missed lanes; and Ngt denotes the number of 
ground-truth lanes.

For the CULane dataset, according to [33], assuming a 
width of 30 pixels for each traffic lane, the intersection-over-
union (IoU) is calculated between the model predictions and 

(4)accuracy =

∑
clip Cclip∑
clip Sclip

(5)FP =

Fpred

Npred

,

(6)FN =

Mpred

Ngt

,

Table 4   Comparison with state-of-the-art results on the TuSimple 
dataset

The optimal results for each indicator is indicated in bold

Method Accuracy FP FN

ResNet-18 [15] 92.69 0.0948 0.0822
ResNet-34 [15] 92.84 0.0918 0.0796
LaneNet [32] 96.38 0.0780 0.0244
EL-GAN [10] 96.39 0.0412 0.0336
FCN-Instance [16] 96.5 0.0851 0.0269
SCNN [33] 96.53 0.0617 0.0180
R-18-SAD [15] 96.02 0.0786 0.0451
R-34-SAD [15] 96.24 0.0712 0.0344
EDNet-34 (Our method) 96.85 0.0390 0.0290

Fig. 6   Visualization results obtained on the TuSimple dataset: (first row) ground truth; (second row) model prediction results
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the ground truth. Furthermore, using the F1-measure as an 
evaluation metric, the expression can be presented as follows:

TP denotes true positive, meaning that the predicted IoU 
is higher than the threshold (0.5), FP denotes false positive, 
and FN denotes false negative.

4.2 � Implementation details

Regarding the processing of the dataset, our method is con-
sistent with that of [15], adjusting the CULane image to 
288 × 800 and the TuSimple image to 368 × 640 . We used 
the SGD optimizer [2] with a momentum of 0.9 and a weight 
decay of 1e-4 to train the network model. The learning rates 
of CULane and TuSimple were set to 2.5e-2 and 2.0e-2, 
respectively. We used the warm-up strategy [12] for the first 
500 batches and then applied a polynomial learning rate 
decay strategy [31] with power set to 0.9. The loss function 
was the same as that of SCNN [33], which consists of the 
segmentation binary cross-entropy loss and existence clas-
sification loss. Considering the label imbalance between the 
background and lane markings, the segmentation loss of the 
background was multiplied by 0.4. For the dataset, training 

(7)F1-measure =
2 × Precision × Recall

Precision + Recall

(8)Precision =
TP

TP + FP
,

(9)Recall =
TP

TP + FN
.

batches and epochs were treated in a similar manner as that 
in [53], with the CULane batch size set to eight and epoch 
to 12, and the TuSimple batch size to eight and epoch to 
150. The model was trained with an NVIDIA 3090 GPU 
(24 GB Memory) on an Ubuntu 20.04 system. All models 
were implemented using PyTorch1.9.

4.3 � Results

To validate the effectiveness of our method, we performed 
extensive comparisons with several state-of-the-art methods. 
For the TuSimple dataset, seven methods were used for com-
parison, namely, Resnet-18 [15], ResNet34 [15], LaneNet 
[32], EL-GAN [10], FCN-Instance [16], SCNN [33], R-18-
SAD [15], and R-34-SAD [15]. We used ResNet34 as our 
backbone and named our method EDNet-34; the results 
are shown in Table 4. Figure 6 shows the partial visualiza-
tion results on the TuSimple dataset. As shown in Table 4, 
EDNet-34 achieved an accuracy of 96.85%. We also ana-
lyzed FP and FN, which yielded competitive performances. 
This means that for small objects with large variability, our 
method can predict more accurately than the other methods.

The CULane dataset was used to compare several 
advanced lane line detection methods, namely, ResNet50 [4], 
Res34-VP [29], SCNN [33], ResNet34-SAD [15], Res34-
Ultra [37], PINet [20], and CurveLane [49]. The training 
and test images used in the above method were the same. 
We used ResNet50 as our backbone and named our method 
EDNet-50. Table 5 shows the results. Figure 7 shows the 
results of the nine scene visualizations for the CULane data-
set. As shown in Table 5, in various scenes of the CULane 
dataset, our method had a competitive advantage over the 
other methods in terms of F1-measure and speed. This 

Table 5   Test results of different methods on the CULane dataset

The optimal results for each indicator is indicated in bold
‘–’ indicates unknown results; for crossroad, only the FP is shown, The bold section shows the optimal results for each indicator

Category Res50 [48] Res34-VP [24] SCNN [28] Res34-SAD [15] Res34-Ultra [33] PINet [35] Curve-
Lane-L 
[50]

EDNet-
50 (our 
method)

Normal 87.4 90.4 90.6 89.9 90.7 90.3 90.7 92.6
Crowded 64.1 69.2 69.7 68.5 70.2 72.3 72.3 74.3
Night 60.6 63.8 66.1 64.6 66.7 67.7 68.2 70.3
No-line 38.1 43.1 43.4 42.2 44.4 49.8 49.4 48.0
Shadow 60.7 62.5 66.9 67.7 69.3 68.4 70.1 74.5
Arrow 79.0 83.5 84.1 83.8 85.7 83.7 85.8 87.4
Hlight 54.1 61.4 58.5 59.9 59.5 66.3 67.7 66.3
Curve 59.8 64.7 64.4 66.0 69.5 65.6 68.4 70.3
Crossroad 2505 2141 1990 1960 2037 1427 1746 1780
Total 66.7 70.9 71.6 70.7 72.3 74.4 74.8 76.2
Runtime (ms) – 26 116  < 51 6 40 – 20.5
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proves the effectiveness of the proposed channel and spa-
tial attention. In addition, we achieved the fastest 48 fps, 
which shows that our proposed architecture incurs a low 
computational cost and can be applied in autonomous driv-
ing systems.

The visualization results in Figs. 6 and 7 show that our 
proposed method can accurately fit lane lines in various sce-
narios. To further verify the feasibility of our algorithm, the 

qualitative results of our algorithm and other algorithms on 
the CULane dataset are shown in Fig. 8. As shown in the 
figure, the Res_50 methods cannot maintain the continu-
ity and smoothness of the lane lines owing to heavy occlu-
sion by other vehicles or strong light interference. Con-
versely, SCNN achieves partial performance improvement 
by passing information between pixel rows and columns, 
but the prediction results are still suboptimal. In Fig. 8, it 
can also be observed that SCNN can have over-predicted or 

Normal

Crowed

Night

No-line

Shadow

Arrow

Hlight

Curve

Cross-
road

Fig. 7   Visualization results of various scenes in the CULane dataset: (first column) original image; (second column) ground truth; (third col-
umn) prediction result
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under-predicted lane lines. This indicates that lane line infor-
mation may be lost during long propagation and multiple 
iterations. In these methods, EDNet-50 passes and aggre-
gates information in the horizontal and vertical directions in 
different steps. In addition, we add spatial attention to allow 
the network to automatically focus on the lane information. 
Consequently, our method is robust overall and can get close 
to the label lane lines in various scenarios.

4.4 � Ablation study

The role of the channel attention mechanism is to assign 
different weights to each channel, allowing the network to 
focus on important features and suppress unimportant fea-
tures. Therefore, channel attention can filter out irrelevant 
information and noise in the low-level features of the encod-
ing module and the high-level semantic information of the 
decoding module. In addition, channel attention can fuse the 
feature information of the two to prevent information from 
being lost during long-distance propagation.

We conducted experiments to determine whether the 
model had channel attention; the results are presented in 
Table 6. Compared with the non-channel attention cases, 
after adding the channel attention, the precision, recall, 
and F1-measure improved. Considering that the RESA 
[53] module has redundant calculations during information 
transmission, we added spatial attention to this module, 
focusing on the information useful to lane lines, and we per-
formed the appropriate experiments. The results are listed in 
Table 7. After adding spatial attention, the model inference 
time decreased. All experiments were set up following the 
implementation details. The above results indicate that the 
proposed method is quite effective.

5 � Conclusion

In this study, we proposed EDNet, a novel encoder–decoder 
architecture based on the attention mechanism for lane 
detection. The encoding module extracts rich low-level 
information from the input image. In addition, we introduced 
the SPRESA module, which aggregates effective spatial 
information with a reduced inference time. To reduce the 
probability of information loss in the transmission process, 
we added channel attention to process the low-level infor-
mation of the encoding module and the feature map of the 
decoding module, respectively. Consequently, the decoding 
module obtains rich spatial and channel information, which 
reduces the false prediction and post-processing of lane line 
detection. Based on the results of extensive experiments con-
ducted, we verified that our proposed method achieved the 
most advanced performance on two popular lane detection 
benchmark datasets (TuSimple and CULane).
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