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Abstract
With the development of deep neural networks, compressing and accelerating deep neural networks without performance 
deterioration has become a research hotspot. Among all kinds of network compression methods, network pruning is one of 
the most effective and popular methods. Inspired by several property-based pruning methods and geometric topology, we 
focus the research of the pruning method on the extraction of feature map information. We predefine a metric, called Topolo-
gyHole, used to describe the feature map and associate it with the importance of the corresponding filter. In the exploration 
experiments, we find out that the average TopologyHole of the feature map for the same filter is relatively stable, regardless 
of the number of image batches the CNNs receive. This phenomenon proves TopologyHole is a data-independent metric and 
valid as a criterion for filter pruning. Through a large number of experiments, we have demonstrated that priorly pruning the 
filters with high-TopologyHole feature maps achieves competitive performance compared to the state-of-the-art. Notably, 
on ImageNet, TopologyHole reduces 45.0% FLOPs by removing 40.9% parameters on ResNet-50 with 75.71% , only a loss 
of 0.44% in top-1 accuracy.
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1 Introduction

In recent years, deep learning technique has been used for 
data analysis in the fields such as computer vision [1, 2] 
and natural language processing [3, 4], achieving unprec-
edented success. Meanwhile, the advantages that Convo-
lutional Neural Networks (CNNs) show in image classi-
fication [5–7], detection [8, 9] and segmentation [10, 11] 
attract more research interests. To improve the fitting ability 
of the models, the structure of the neural networks becomes 
deeper, and the number of parameters is increasing. On the 
one hand, the accuracy of the neural networks for the image 
recognition task is improved. On the other hand, there is 
a growing demand for computing and storage resources 
[12, 13]. The overhead of advanced Graphical Processing 
Unit (GPU) equipment for training and reasoning limits the 
usage of complex models, let alone resource-constrained 
edge devices, such as portable mobile devices and wearable 

devices. Previous studies [14–16] have revealed that there is 
much redundancy in deep networks. Although these redun-
dant parameters ensure the uniformity of model structures, 
such excessive parameters increase the space and time com-
plexity of the networks, which brings more negative impact 
on application than positive impact on accuracy. Therefore, 
various network compression methods have been developed, 
compromising the tradeoffs between redundant parameters, 
running time of the models, and accuracy. 

Generally, the network compression methods include 
parameter quantization [15, 17, 18], knowledge distillation 
[19–21], low-rank approximation [22–24], compact model 
design [25, 26], network pruning [12, 27] and etc. Quantiza-
tion maps the network weights to a smaller range of values 
and storage bits. Knowledge distillation utilizes the knowl-
edge of the teacher network and transfers it to a compact 
distillation model. The low-rank approximation uses matrix 
or tensor decomposition techniques to decompose the origi-
nal convolution filters. Moreover, the compact model design 
aims to develop a specially structured convolution kernel or 
compact convolution computing unit to reduce the compu-
tational complexity of the model.

Network pruning is well employed on mainstream hard-
ware. It aims at cutting off the redundant weights or filters of 
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CNNs, along with their associated computations, and gener-
ating more compact subnetworks [15, 27, 28]. In contrast to 
weight-level pruning, filter-level pruning results in models 
with structured sparsity and only needs the Basic Linear 
Algebra Subprograms (BLAS) library to improve perfor-
mance, which is more flexible in practical implementation. 
In this paper, our research focuses on structured filter prun-
ing. Empirically, we categorize the existing structured filter 
pruning into three groups: property-based pruning, imposed 
scaling factor-based pruning, and propagation-based prun-
ing. Compared with the other two groups of methods, the 
calculation of property-based pruning is more straightfor-
ward with no need for additional constraints and factors, so 
the mainstream filter pruning methods [27, 29–31] mainly 
belong to this group.

However, most property-based pruning methods are 
denoted to establishing the connection between the weights 
of the convolutional layers and the importance of filters 
and prune filters through the smaller-norm-less-important 
criterion. This criterion requires that the deviation of filter 
norms should be significant and the norms of filters to be 
pruned are expected to be absolutely small, i.e., close to 
zero. These two prerequisites greatly limit the effectiveness 
of norm-based methods. In this case, we develop a feature 
map-based pruning method. The feature map is generated 
after the convolutional layer and ReLU layer. It is a one-to-
one correspondence with the filter of the convolutional layer. 
In our opinion, the information of the feature maps better 
represents the importance of the information contained in 

the corresponding filters than other intrinsic properties of 
the pre-trained model, such as the weights of the convo-
lutional layers. By analyzing APoZ [30], the most popular 
pruning method based on feature maps, we find that simply 
calculating the percentage of zero activations of the feature 
map cannot sufficiently represent the importance of the filter 
corresponding to the feature map. We attribute this problem 
to its data-driven scheme and heavily relying on the input 
distribution, which is unstable on effect and not conducive to 
deployment. Instead, a data-independent feature map-based 
filter pruning scheme is more convincing.

To explore the inherent characteristics of feature maps, 
we introduce the concept of geometric topology. Topology 
is the study of properties of geometric figures or spaces that 
remain the same after continuous changes in shape. Genus is 
a scalar used in topology to distinguish between topological 
spaces. In this paper, we propose the TopologyHole method, 
which defines a new metric referring to the genus to evaluate 
the information of the feature map, as shown in Fig. 1. We 
find that according to the definition of TopologyHole, the 
mean value of TopologyHole of the feature map generated 
by the same filter is relatively stable no matter how the data 
for CNN is distributed, as shown in Fig. 2. This phenomenon 
implies that TopologyHole represents implicit information 
of the feature maps, which can be used as the criterion for 
pruning by filters. Based on this, the filters generating fea-
ture maps with high TopologyHole can be removed because 
we confirm that feature maps with high TopologyHole have 
greater sparsity and more redundant information. We have 

Fig. 1  Framework of Topology-
Hole. The left column shows the 
normal pre-trained model infer-
ence process. Each group of 
convolutional layer and ReLU 
activation layer will generate a 
set of feature maps. In the mid-
dle column, we calculate each 
set of feature maps according to 
the definition of TopologyHole, 
sort the feature maps generated 
in the same layer, and remove 
the filters with high Topology-
Hole. In the right column, we 
fine-tune the pruned model to 
recover the influence of pruning 
on the accuracy
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proved that high-TopologyHole feature maps have a low con-
tribution to the model prediction accuracy through many 
experiments.

We conducted many pruning experiments with different 
models, including VGG-16 [13], GoogLeNet [6] and ResNet 
[5], on two benchmark datasets, CIFAR-10 [32] and Ima-
geNet [33]. The results show that our TopologyHole leads 
the state-of-the-art performance better than the existing filter 
pruning methods. We also carry out experiments to show 
that the filters generating feature maps with high Topology-
Hole can be removed more reasonably than those with low 
TopologyHole.

To summarize, our main contributions are:

• We define a novel metric, TopologyHole, to describe the 
amount of information contained in the feature map. As 
a data-independent metric, TopologyHole is friendly to 
deployment because it does not depend on the input data 
distribution.

• Compared with the most popular feature map-based 
pruning method, APoZ, our TopologyHole takes the 
position relation of zero activations in the feature map 
into account, which is more convincing than APoZ.

• Through a large number of experiments, we confirm 
that feature maps with high Topology are less critical to 
preserving accuracy. Thus, the filters generating these 
feature maps can be removed first.

• Extensive experiments demonstrate the efficacy of our 
TopologyHole in making tradeoffs between model com-
plexity and accuracy. Our proposed method achieves 
better performances with similar compression rates in 

network compression over the various state-of-the-art 
[29, 31, 34–38].

The rest of the paper is organized as follows. Section 2 sum-
marizes related works for network compression and classi-
fies them into three groups. Section 3 describes the details of 
the proposed pruning method. The experimental settings and 
results are illustrated and discussed in Sect. 4. In addition, 
Sect. 5 gives a conclusion.

2  Related work

Filter pruning is a structural pruning method that discards 
the whole filters in current convolutional layers. The core of 
the filter pruning method lies on how to quantify the impor-
tance of each filter in the network. Based on the features 
where filter selection strategy extracts evaluation metrics, 
we categorize the existing filter pruning approaches into the 
following three groups: 

(1) Property-based pruning: The filters are pruned by a spe-
cific property of the pre-trained model. Li et al. [27] 
calculated the L1-norm of each filter in the convolu-
tional layers and believed that filters with small norms 
could be pruned first because they were less important. 
He et al. [29] calculated the geometric median of the 
filters within the same layer and pruned filters closest 
to each other. Lin et al. [38] encoded the second-order 
information of pre-trained weights, which enabled 
the representation capacity of pruned networks to be 

Fig. 2  Average TopologyHole of feature maps from different convo-
lutional layers and architectures on CIFAR-10. Specifically, the sub-
titles of the subgraph describe the indexes of feature maps to which 
the extracted TopologyHole belongs, mapped by ReLU after the con-
volutional layer of the models. The abscissa of the subgraph repre-

sents the indices of the feature maps of the current layer, correspond-
ing to the indices of filters of the convolutional layer simultaneously. 
The ordinate is the batches of training images (each batch size is set 
to 128). Different colors represent different TopologyHole numerical 
sizes



642 Journal of Real-Time Image Processing (2022) 19:639–649

1 3

recovered with a simple finetuning procedure. Hu et al. 
[30] pruned filters corresponding to the feature maps 
mapped by ReLU with a high percentage of zero activa-
tions. Lin et al. [31] evaluated the rank of feature maps 
and pruned filters generating low-rank feature maps.

(2) Imposed scaling factor-based pruning: Huang et al. 
first introduced imposed scale factor to scale the out-
puts of specific model structures [34]. Lin et al. [37] 
introduced the idea of generative adversarial learning 
and removed the basic structures, including channels, 
branches, or blocks, by the sparsification of the soft 
mask. Tian et al. [39] introduced a trainable collabora-
tive layer to prune and learn neural networks in one go 
jointly.

(3) Propagation-based pruning: Luo et al. [35] utilized the 
input of the next layer of the convolution layer to guide 
pruning the output channel of the current layer. Yu et al. 
[36] used the proposed propagation algorithm to push 
the importance scores of final responses back layer by 
layer and pruned the filters with the least importance. 
Molchanov et al. [40] defined the filter importance as 
the change of loss caused by removing a specific fil-
ter from the network and used a Taylor expansion to 
approximate it. Lian et al. [41] introduced an evolution-
ary algorithm into the process of searching for the most 
suitable number of pruned filters for every layer.

Discussion The imposed scaling factor-based pruning 
methods inevitably introduce additional computation, and 
the propagation-based pruning methods are always data-
dependent, whose utilizing of training data is computa-
tionally intensive. Therefore, we focus on property-based 
pruning methods. Among the property-based methods, 
traditional smaller-norm-less-important criterion [27] is 
not convincing that two prerequisites limit its usage (men-
tioned in Sect. 1). Considering that the feature maps cor-
respond to the convolutional layer filters, some researchers 
have begun to explore the possibility of pruning according 
to the feature maps. To the best of our knowledge, APoZ 
[30] was the most popular method to prune the network 
through feature maps. We highlight our advantages com-
pared to this approach as follows: (1) based upon extensive 
statistical validations, we empirically demonstrate that the 
mean value of TopologyHole of feature map generated by 
the same filter is relatively stable. Therefore, our Topolo-
gyHole is a data-independent metric that is friendly to 
deployment because it does not depend on the input data 
distribution, unlike APoZ; (2) our TopologyHole considers 
the percentage of zero activations of the feature map like 
APoZ and the position relation of zero activations; (3) the 
experiments demonstrate our TopologyHole is more effec-
tive than APoZ with more FLOPs reduction on CIFAR-10 
shown in Table 4.

The following section of the paper introduces the math-
ematical definition of TopologyHole and its efficacy in filter 
pruning for modern advanced CNN models on two bench-
mark datasets, CIFAR-10 and ImageNet.

3  Methodology

3.1  Preliminaries

We assume a pre-trained CNN network has L convolutional 
layers. Note that a convolutional layer here contains pooling, 
batch normalization and ReLU activation. We use the thop 
library to calculate the FLOPs and the amount of parameters 
of the network. The deep CNN network can be parameter-
ized by WLi =

{

wi
1
,wi

2
,… ,wi

Ni+1

}

∈ ℝ
Ni+1×Ni×Ki×Ki , where i 

denotes the i-th convolutional layer, Ni+1 is the number of 
filters as well as Ni is the number of input channel in Li , and 
Ki represents the kernel size. When the image data is fed into 
the model, each filter wi

j
∈ ℝ

Ni×Ki×Ki outputs a feature map 
oi
j
∈ ℝ

hi×wi , 1 ≤ j ≤ Ni+1 , where hi and wi are the height and 
width of the feature map, respectively.

In the pruning phase, we first determine the number of 
feature maps to be removed by the number of output chan-
nels Ni+1 of the current layer and pruning rate Pi . Then, 
rank the feature maps according to the importance of the 
defined evaluation strategy, and remove the corresponding 
least important Ni+1 × Pi filters. At the same time, the input 
tensor of the Li+1 layer is also smaller, further reducing the 
FLOPs and the number of parameters.

3.2  TopologyHole

The difference between network pruning methods for manu-
ally determining pruning rate lies in the criteria for judg-
ing unimportant filters of each layer. Compared with other 
pruning methods, property-based pruning is more focused 
on a specific property of the pre-trained model, e.g. per-
centage of zero activations or rank of feature maps or Lp
-norm for filters, and prunes the corresponding filters with 
less importance.

We define TopologyHole to measure the information rich-
ness of feature maps:

where ������������(⋅) is the TopologyHole of a feature 
map for input data I. Si

j
 is the measurement (i.e., the number 

of TopologyHole) for the j-th filter of the i-th convolutional 
layer and batch is the number of input images.

(1)Si
j
(I) =

1

batch

batch
∑

num=1

������������

(

oi
j

)

num

,
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We confirm that the filter with a larger TopologyHole 
contains less information. Specifically, the count of Topolo-
gyHole conforms to the following criteria:

• In the feature map matrix of hi × wi size output by the Li 
convolutional layer, the feature cell with weight of 0 will 
be counted as one TopologyHole as shown in Fig. 3- 1 .

• If many feature cells with a weight of 0 are connected, 
they will be collectively counted as one TopologyHole, 
and individual cells are not repeatedly counted, as shown 
in Fig. 3- 2  . Note that diagonals touching cells are not 
considered connected.

• If any of the connected feature cells whose weights are 
all 0 are located in the outermost circle of the feature map 
matrix, the number of TopologyHole is not considered 
for the connected cells as a whole, as shown in Fig. 3- 3
.

Therefore, we conclude that there are two TopologyHoles 
for the two feature maps in Fig. 3 by counting Topology-
Hole using the above three principles.

3.3  Tractability

As we mentioned above, we find that according to the defi-
nition of TopologyHole, the mean value of TopologyHole 
of the feature map generated by the same filter is relatively 
stable no matter how the data given to CNNs is distributed, 
as shown in Fig. 2. Therefore, we can use a small batch of 
image data to calculate the average TopologyHole of each 
feature map.

Fig. 3  TopologyHole Counting Standard and Equivalent Topology 
Structure. The upper and lower feature maps are extracted from the 
same (Conv+ReLU) layer output by the neural network. They have 
different weight distributions, but according to our TopologyHole 

counting standard, they have the same number of Topologyholes, 
which means they are equivalent to the right-center topology struc-
ture with two TopologyHoles
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Algorithm 1 TopologyHole Counter
Require: Feature map oij output by the j-th filter of Li.
Ensure: pointer.
1: for m = 0; m < hi; m++ do
2: for n = 0; n < wi; n++ do
3: if oij (m,n) = 0 then
4: pointer = pointer+ 1.
5: oij (m,n) = pointer.

p = m, q = n
6: while oij (x, y) = 0 and x = p ± 1 and y = q ± 1

do
7: oij (x, y) = pointer.

p = x, q = y
8: end while
9: end if
10: end for
11: end for
12: for num = 1; n ≤ pointer; num ++ do
13: if the feature cell in oij with any weight of 0 is in the

outermost layer of the matrix then
14: pointer = pointer− 1.
15: end if
16: end for

Algorithm 2 TopologyHole Pruning Algorithm
Require: Pre-trained model F with filter set W =

{WLi , 1 ≤ i ≤ L} , training data X , pruning rate Pi.
Ensure: Pruned model F with filter set W .
1: for i = 1; i ≤ L; i++ do
2: Calculate Si

j for each filter by Eq. 1 and Alg. 1.
3: Remove Ni+1 × Pi filters with highest-TopologyHole.
4: end for
5: Initialize F with pre-trained model weights.
6: for epoch = 1; epoch ≤ epochmax; epoch++ do
7: Fine-tune the pruned model F .
8: end for
9: Return F with fine-tuned filter set W .

To illustrate that pruning using TopologyHole is very 
effective, we summarize the TopologyHole counting 
method and TopologyHole pruning process in Algorithm 1 
and Algorithm 2, respectively.

In Algorithm 1, we input the feature map oi
j
 of the j-th 

filter of Li into the TopologyHole counter. The next phase 
is to traverse each pixel of oi

j
 . If its pixel value is not 0, it 

skips and detects the next pixel. On the contrary, if its 
pixel value is 0, the current TopologyHole count will be 
reassigned to it, and p and q are used to store the current 
pixel position m and n, respectively. When the pixel value 
of the four points connected by pixel point (p, q) is 0, the 
pixel value is repeatedly assigned as the current Topolo-
gyHole count value. Simultaneously, extended detection 
and assignment are carried out to the connected pixels of 
pixels with pixel value 0 until all connected pixels with the 
same value of 0 are reassigned with the same 

TopologyHole count value, and then the TopologyHole 
count will be updated, and the next pixel is detected as 
above.

The details of the TopologyHole pruning procedure are 
illustratively explained in Algorithm 2. Before selecting 
pruning filters, the training data X and the pruning rate Pi of 
each layer should be input into the pre-trained full model. 
Then, the TopologyHole of each filter in the same convolu-
tional layer is calculated as SI

j
 by Eq. 1 Algorithm 1. Sort 

{

Si
j
, 1 ≤ j ≤ Ni+1

}

 and remove the Ni+1 × Pi filters with 
highest TopologyHole. Thus, a pruning model inheriting the 
weight of the full pre-trained model is obtained. The preci-
sion loss caused by pruning will be recovered by retraining 
the pruned model with an appropriate number of epochs, and 
the desired pruned model is finally obtained.

4  Experiments

4.1  Experimental settings

Models and dataset To illustrate that our TopologyHole 
pruning method compresses and accelerates the model effec-
tively for both small and large datasets, we choose CIFAR-
10 [32], and ImageNet [33] as two benchmarks. Meanwhile, 
we compare the pruning performance of our method with 
that of state-of-the-art (SOTA) on several mainstream mod-
els, including VGG-16, ResNet-56/110, GoogLeNet on 
CIFAR-10, ResNet-50 on ImageNet.

Implementation details We use Pytorch 1.7.1 to imple-
ment our TopologyHole filter pruning method under Inter(R) 
Core(TM) i7-9700K CPU 3.60 GHz and two NVIDIA RTX 
3090 with 24 GB for GPU processing. Our TopologyHole 
method is a type of one-shot pruning approach, and we 
adopt the Stochastic Gradient Descent algorithm (SGD) 
with an initial learning rate of 0.01 and 0.1, respectively, for 
CIFAR-10 and ImageNet as the optimization function. For 
CIFAR-10, the pruned model is fine-tuned by 300 epochs 
(reducing learning rate in the 150-th and 225-th epoch) for 
ResNet-56/110 and GoogLeNet, and 150 epochs (reducing 
learning rate in the 50-th and 100-th epoch) for VGG-16. 
The batch size, momentum, and weight decay for the above 
four model architectures are set to 256, 0.9, and 0.005, 
respectively. For ImageNet, the pruned model is fine-tuned 
by 90 epochs reducing the learning rate in the 30-th, 60-th 
and 80-th epoch. The batch size and momentum of the Ima-
geNet are the same as those of CIFAR-10, except for weight 
decay set to 0.0001. For a fair and accurate comparison, we 
utilize the built-in function thop.profile to calculate FLOPs 
and Params.

Evaluation metrics For a fair comparison with other 
algorithms, we measure the top-1 accuracy of the pruned 
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model on CIFAR-10 and top-1 and top-5 accuracy on Ima-
geNet. On the other hand, we also calculate the Floating 
point operations (FLOPs), the number of parameters (Par-
ams), and the pruning rate (PR) relative to the full model, to 
evaluate the pruning effectiveness of the different pruning 
criteria. FLOPs represents the computational speed of the 
model, i.e., the time complexity of the network, and Params 
represents the size of the model, i.e., the space complexity 
of the network.

4.2  Comparison on CIFAR‑10

To prove that our proposed TopologyHole filter pruning 
method is suitable for pruning different model architectures 
and shows excellent performance, compression experiments 
are carried out on several models, including ResNet-56/110, 
VGG-16, and GoogLeNet. We report the top-1 accuracy 
of the model pruned by each method. Different pruning 
methods adopt different FLOPs baselines and Params base-
lines. If the baselines in the original papers are different 
from those in this paper, their specific values in the tables 
will be replaced by N/A, while the drop percentages (i.e. 
PR, pruning rate) are retained. If the papers to which the 
methods belong did not have the same evaluation metrics 
as ours, the vacant metrics are also replaced by N/A. The 
results of our proposed method are in bold. All results are 
presented in Tables 1, 2, 3 and 4 on the CIFAR-10 dataset. 
M/B means million/billion, respectively, and the entries are 
sorted according to FLOPs (PR)

ResNet-56 Results for ResNet-56 are presented in Table 1. 
Our TopologyHole removes around 47.4% FLOPs and 42.8% 
parameters while obtaining the top-1 accuracy at 93.76% . 
Compared to 93.26% by the original full model, the accu-
racy is improved by 0.50% . Compared with other property-
based pruning methods, HRank (2020) [31] and Filter-
Sketch (2021) [38], TopologyHole shows an overwhelming 
superiority.

ResNet-110 Table 2 shows that TopologyHole outper-
forms the SOTAs in both accuracy and time complexity 

reduction (i.e., FLOPs reduction). Specifically, with 71.6% 
FLOPs reduction and 68.3% parameters reduction which 
are much more than those of FilterSketch and HRank, 
TopologyHole achieves 93.59% top-1 accuracy, 0.15% 
better than FilterSketch and 0.23% better than HRank. 
Compared with other SOTAs, like FPGM (2019) [29], 
TopologyHole with more FLOPs reduction (59.6% of 
TopologyHole vs. 52.3% of FPGM) obtains 94.12% top-1 
accuracy, 0.38% better than that of FPGM.

VGG-16 Table 3 displays the pruning results of VGG-
16. TopologyHole reduces the FLOPs of VGG-16 by 
58.1% and the parameters by 81.6% while obtaining the 
top-1 accuracy at 93.93% , only losing 0.03% accuracy rela-
tive to the original full model. TopologyHole significantly 
outperforms other SOTAs.

Table 1  Results of ResNet-56 on CIFAR-10

Criterion Top-1% FLOPs (PR) Params (PR)

ResNet-56 93.26 125.49 M(0.0) 0.85 M(0.0)
L1 (2016) [27] 93.06 90.90 M(27.6) 0.73 M(14.1)
HRank (2020) [31] 93.53 90.90 M(27.6) 0.71 M(16.8)
TopologyHole (ours) 94.12 90.35 M(28.0) 0.66 M(22.3)
NISP (2018) [36] 93.01 81.00 M(35.5) 0.49 M(42.4)
GAL (2019) [37] 92.98 78.30 M(37.6) 0.75 M(11.8)
FilterSketch (2021) [38] 93.19 73.36 M(41.5) 0.50 M(41.2)
PBT (2021) [39] 93.12 N/A(43.09) N/A(47.2)
TopologyHole (ours) 93.76 65.94 M(47.4) 0.48 M(42.8)

Table 2  Results of ResNet-110 on CIFAR-10

Criterion Top-1% FLOPs (PR) Params (PR)

ResNet-110 93.50 252.89M(0.0) 1.72M(0.0)
L1 (2016) [27] 93.30 155.00M(38.7) 1.16M(32.6)
GAL (2019) [37] 92.55 130.20M(48.5) 0.95M(44.8)
PBT (2021) [39] 93.84 N/A(49.6) N/A(49.4)
SST (2021) [41] 93.62 106.04M(50.6) N/A
FPGM (2019) [29] 93.74 120.63M(52.3) N/A
HRank (2020) [31] 93.36 105.70M(58.2) 0.70M(59.2)
TopologyHole (ours) 94.12 101.97M(59.6) 0.72M(58.1)
FilterSketch (2021) [38] 93.44 92.84M(63.3) 0.69M(59.9)
TopologyHole (ours) 93.59 71.69M(71.6) 0.54M(68.3)

Table 3  Results of VGG-16 on CIFAR-10

Criterion Top-1% FLOPs (PR) Params (PR)

VGG-16 93.96 313.73M(0.0) 14.98M(0.0)
FPGM (2019) [29] 93.54 N/A(34.2) N/A
L1 (2016) [27] 93.40 206.00M(34.3) 5.40M(64.0)
GAL (2019) [37] 92.03 189.49M(39.6) 3.36M(77.6)
SSS (2018) [34] 93.02 183.13M(41.6) 3.93M(73.8)
HRank (2020) [31] 93.43 145.61M(53.5) 2.51M(82.9)
TopologyHole (ours) 93.93 131.17M(58.1) 2.76M(81.6)

Table 4  Results of GoogLeNet on CIFAR-10

Criterion Top-1% FLOPs (PR) Params (PR)

GoogLeNet 95.05 1.52B(0.0) 6.15M(0.0)
GAL (2019) [37] 93.93 0.94B(38.2) 3.12M(49.3)
APoZ (2016) [30] 92.11 0.76B(50.0) 2.85M(53.7)
HRank (2020) [31] 94.07 0.45B(70.4) 1.86M(69.8)
TopologyHole (ours) 94.89 0.40B(73.7) 2.10M(65.9)
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GoogLeNet For GoogLeNet, as shown in Table 4. Topolo-
gyHole removes 73.7% FLOPs and 65.9% parameters with 
a negligible accuracy drop (94.89% for TopologyHole vs. 
95.05% for the baseline). It is significantly better than APoZ 
(2016) [30] and HRank, which are both pruning based on 
feature maps like our TopologyHole. Especially for APoZ, 
TopologyHole achieves better performance among both 
accuracy and pruning rate (94.89% by TopologyHole vs. 
92.11% by APoZ for accuracy, 73.79% by TopologyHole 
vs. 50.0% by APoZ for FLOPs, 65.9% by TopologyHole vs. 
53.7% by APoZ for Params). It proves that although both our 
TopologyHole and APoZ involve zero activations of feature 
maps, the TopologyHole counting criterion is completely 
different from APoZ (see the details in Sect. 3.2). The Topol-
ogyHole of feature maps can better serve as a discriminative 
property for identifying the redundant filters.

4.3  Comparison on ImageNet

We also explore the performance of our proposed Topol-
ogyHole filter pruning method on the ImageNet dataset 
with ResNet-50, a popular CNN. Comparison of pruning 

ResNet-50 on ImageNet by our TopologyHole and other 
effective pruning criteria are shown in Table 5. We adopt 
top-1 and top-5 accuracy, FLOPs, and parameters reduc-
tion as evaluation metrics. We also report the accuracy 
gap between pruned model and the original full model. 
For FLOPs and parameters, if the baselines in the methods 
original papers are different from those in this paper, their 
specific values in the table will be replaced by N/A, while 
the drop percentages (i.e., PR, pruning rate) are retained. 
If the papers to which the methods belong did not have the 
same evaluation metrics as ours, the vacant metrics are 
also replaced by N/A. The results of our proposed method 
are in bold. M/B means million/billion, respectively, and 
the entries are sorted according to FLOPs (PR). Original 
performance of full ResNet-50 on ImageNet is 76.15% of 
top-1 accuracy and 92.87% of top-5 accuracy with 4.11 bil-
lion FLOPs and 25.55 million of Params. Compared with 
other pruning criteria, our TopologyHole performs better 
in all aspects. Specifically, with 45.0% FLOPs and 40.9% 
Params reduction, our TopologyHole pruning method 
achieves 75.71% top-1 accuracy and 92.66% top-5 accuracy 
while compressing 1.82× of FLOPs and 1.69× of Params.

Table 5  Results of ResNet-50 
on ImageNet

aThe speed up ratio is a theoretical value computed by FLOPs. It is fair to be compared in a same model 
structure

ResNet-50

Criterion Top-1% Gap% Top-5% Gap% FLOPs (PR) Speed upa Params (PR)

Baseline 76.15 – 92.87 – 4.11B(0.0) 1.00× 25.55M(0.0)
SSS-32 (2018) [34] 74.18 −1.97 91.91 −0.96 2.82B(31.0) 1.46× 18.60M(27.0)
He et al. (2017) [28] 72.30 3.85 90.80 −2.07 2.73B(33.6) 2.73× N/A
ThiNet-70 (2017) [35] 72.04 −4.11 90.67 −2.20 N/A (36.8) 1.58× 16.94M(33.7)
FPGM (2019) [29] 75.59 −0.56 92.63 −0.24 N/A(42.2) 1.73× N/A
PBT (2021) [39] 74.80 −1.35 N/A – 2.35B(42.8) 1.74× 13.0M(49.0)
GAL-0.5 (2019) [37] 71.95 −4.20 90.94 −1.93 2.33B(43.0) 1.76× 21.20M(17.0)
SSS-26 (2018) [34] 71.82 −4.33 90.79 −2.08 2.33B(43.0) 1.76× 15.60M(38.8)
HRank-74 (2020) [31] 74.98 −1.17 92.33 −0.54 2.30B(44.0) 1.79× 16.15M(36.8)
TopologyHole (ours) 75.71 − 0.44 92.66 − 0.21 2.26B(45.0) 1.82× 15.09M(40.9)
Taylor (2019) [40] 74.50 −1.65 N/A – 2.25B(45.3) 1.83× 14.2M(44.5)
FilterSketch-0.6 (2021) [38] 74.68 −1.47 92.17 −0.70 2.23B(45.5) 1.84× 14.53M(43.0)
AutoPruner (2020) [42] 74.76 −1.39 92.15 −0.72 N/A(51.2) 2.05× N/A
TopologyHole (ours) 74.96 − 1.19 92.37 − 0.50 1.99B(51.6) 2.07× 13.66M(46.5)
GAL-0.5-joint (2019) [37] 71.80 −4.35 90.82 −2.05 1.84B(55.2) 2.23× 19.31M(24.4)
ThiNet-50 (2017) [35] 71.01 −5.14 90.02 −2.85 N/A(55.8) 2.26× 12.38M(51.6)
GAL-1 (2019) [37] 69.88 −6.27 89.75 −3.12 1.58B(61.6) 2.60× 14.67M(42.6)
HRank-71 (2020) [31] 71.98 −4.17 91.01 −1.86 1.55B(62.3) 2.65× 13.77M(46.1)
TopologyHole (ours) 74.16 − 1.99 91.9 − 0.97 1.52B(63.0) 2.70× 11.05M(56.8)
ThiNet-30 (2017) [35] 68.42 −7.73 88.30 −4.57 N/A(71.5) 3.51× 8.66M(66.1)
GAL-1-joint (2019) [37] 69.31 −6.84 89.12 −3.75 1.11B(73.0) 3.70× 10.21M(60.0)
HRank-69 (2020) [31] 69.10 −7.05 89.58 −3.29 0.98B(76.2) 4.19× 8.27M(67.6)
TopologyHole (ours) 72.11 − 4.04 90.81 − 2.06 0.95B(76.9) 4.33× 8.02M(68.6)
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4.4  Ablation study

We conduct additional ablation studies to analyze further 
the effectiveness and universality of the TopologyHole filter 
pruning method.

Filter selection criteria We conduct some experiments on 
ResNet-56/110 and VGG-16 to demonstrate that it is more 
appropriate to prune off the filters with highest Topology-
Hole than lowest TopologyHole. The TopologyHole pruning 
variants we are comparing include (1) high TopologyHole, 
i.e., pruning filters with the highest TopologyHole, which 
is the principle followed by our TopologyHole filter prun-
ing method; (2) low TopologyHole, i.e., pruning filters with 
lowest TopologyHole. With the same pruning rate of FLOPs 
and Params, the performance of the model obtained by high 
TopologyHole pruning is better than that obtained by low-
TopologyHole pruning, as shown in Fig. 4. To highlight 

the effectiveness of the TopologyHole, we also add seven 
SOTAs. Among them, APoZ (2016) and HRank (2020) are 
feature map-based methods like our TopologyHole, while 
FPGM (2019) and FilterSketch (2021) are other property-
based methods. To compare with the other two groups’ 
structural pruning methods, we also select the latest works to 
compare (GAL (2019) and PBT (2021) for imposed scaling 
factor-based pruning method, SST (2021) for propagation-
based pruning method).

Varying pruning rates To comprehensively understand 
the TopologyHole filter pruning method, we test the accu-
racy of different filter pruning rates for ResNet-56 and the 
accuracies of the pruned models w.r.t. the variety of filter 
pruning rates are shown in Fig. 5. With the filter pruning rate 
increasing, the accuracy of the TopologyHole model first 
rises above the baseline model and then drops approximately 
linearly. It should be noted that when we were drawing this 

Models
ResNet-56 ResNet-110 VGG-16 GoogLeNet

Criteria
Baseline High-TopologyHole(ours) Low-TopologyHole(ours) APoZ(2016)
GAL(2019) FPGM(2019) HRank(2020) SST(2021)
FilterSketch(2021) PBT(2021)

Fig. 4  Comparisons between accuracy and FLOPs (top) and accu-
racy and remained Parames (bottom) with baseline, four network 
architectures (ResNet-56, ResNet-110, VGG-16, GoogLeNet) pruned 

by seven SOTAs, high TopologyHole and low TopologyHole on the 
CIFAR-10 dataset. Top-left has the better performance
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line chart, we set the filter pruning rate of each layer of the 
model to be the same, which is obviously not the optimal 
choice for the pruning rate of each layer, so the accuracies of 
pruned models are not comparable to that shown in Table 1.

5  Conclusion

Inspired by geometric topology, this paper proposes a novel 
network pruning method called TopologyHole filter pruning. 
We predefine a measurement, called TopologyHole, used to 
describe the feature map and associate it with the importance 
of the corresponding filter. First of all, we find out that the 
average TopologyHole of the feature map for the same filter 
is relatively stable, which means TopologyHole is valid as 
a metric for filter pruning. Then, through a large number 
of experiments, we have demonstrated that priorly pruning 
the filters with high-TopologyHole feature maps achieves 
competitive performance compared to the state-of-the-art. 
Specifically, with 45.0% FLOPs and 40.9% parameters reduc-
tion, our TopologyHole pruning method achieves 75.71% 
top-1 accuracy, only 0.44% drop according to the original 
full model, and 92.66% top-5 accuracy while compressing 
1.82× of time complexity and 1.69× of space complexity. 
Therefore, our proposed TopologyHole filter pruning shows 
excellent results in reducing the time and space complexity 
of the network and in reducing the loss of precision of the 
model after pruning.
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