
Vol.:(0123456789)1 3

Journal of Real-Time Image Processing (2022) 19:591–605
https://doi.org/10.1007/s11554-022-01208-0

ORIGINAL RESEARCH PAPER

GUD‑Canny: a real‑time GPU‑based unsupervised and distributed
Canny edge detector

Antonio Fuentes‑Alventosa1 · Juan Gómez‑Luna2 · R. Medina‑Carnicer1

Received: 15 September 2021 / Accepted: 13 February 2022 / Published online: 5 March 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
The Canny algorithm is one of the most commonly used edge detectors due to its superior performance, especially in noisy
environments. Its main limitation is that it is time consuming due to its multistage nature and the use of complex compu-
tational operations, primarily hysteresis thresholding. For this reason, many efficient implementations of the Canny edge
detector have been developed on different accelerating platforms, such as ASICs, FPGAs and GPUs. The two main limita-
tions of the GPU implementations developed to date are the bottleneck caused by the hysteresis process, and the use of fixed
hysteresis thresholds. To overcome these issues, a novel GPU-based unsupervised and distributed Canny edge detector is
proposed in this paper. Experimental evaluation showed that our Canny edge detector fully satisfies real time requirements,
as it only requires 0.35 ms on average to detect edges on 512×512 images, and that it is faster than existing GPU and FPGA
implementations.

Keywords  Edge detection · Canny edge detector · GPU · CUDA · Parallel implementations

1  Introduction

Edge detection is an essential operation in different fields,
such as image processing, computer vision and pattern rec-
ognition. Over the years, many edge detection algorithms
have been proposed, including classical approaches, such as
Roberts [1], Sobel [2], Prewitt [3] and Canny [4] methods, as
well as more recent methods based on soft computing tech-
niques, such as fuzzy logic [5], Artificial Neural Networks
[6], genetic algorithms [7], particle swarm optimization [8],
ant colony optimization [9] and adaptive neuro fuzzy infer-
ence system [10].

The Canny algorithm [4], also known as optimal detec-
tion method, is still one of the most widely used edge

detection techniques due to its superior performance. It con-
sists of the following four stages: (1) noise reduction, (2)
gradient computation, (3) non-maximum suppression, and
(4) hysteresis thresholding. First, the image noise is reduced
by a Gaussian convolution. Next, first derivatives are calcu-
lated in both horizontal ( dx ) and vertical dimensions ( dy ).
From these two images, the gradient magnitude (G) and
direction ( � ) are computed for each pixel by the formulas
G =

√
d2
x
+ d2

y
 and � = tan−1(

dy

dx
) . In the third stage, possible

edges are obtained by suppressing all pixels which are not
local maximums in the gradient direction. In the last stage,
hysteresis thresholding determines which of possible edges
are really edges using two thresholds values, low and high.
First, the set of pixels with G ≥ high and the set of pixels
with G ≤ low are directly classified as edges and non-edges,
respectively. Then, the remaining possible edges (i.e., those
with low < G < high ) are classified as edges if and only if
they are connected (directly or via other possible edges) to
pixels with G ≥ high . In the rest of the paper, the set of pix-
els with low < G < high will be referred to as instability
zone [11], and their classification process as linking process
[11]. Additionally, we define the instability map as a binary
image of the same dimensions as G, in which the value of
pixel (i, j) is 1 if the pixel (i, j) of G belongs to the instability
zone, or 0 otherwise.

 *	 Antonio Fuentes‑Alventosa
	 antonio.fa@gmail.com

	 Juan Gómez‑Luna
	 juang@ethz.ch

	 R. Medina‑Carnicer
	 rmedina@uco.es

1	 Department of Computer Sciences and Numerical Analysis,
University of Córdoba, Córdoba, Spain

2	 Department of Information Technology and Electrical
Engineering, ETH Zürich, Zürich, Switzerland

http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-022-01208-0&domain=pdf

592	 Journal of Real-Time Image Processing (2022) 19:591–605

1 3

The main drawback of the Canny edge detector is that it
is time consuming, due to its high computational complex-
ity. To overcome this limitation, many implementations of
the algorithm have been presented on different accelerat-
ing platforms, such as ASICs [12–14], FPGAs [15–23] and
GPUs [25–32].

There are several ASICs implementations of Deriche fil-
ters, which have been derived from Canny’s criteria. Deriche
[12] presented a network with four transputers that took 6
s to detect edges in a 256 × 256 image, which is far from
real-time requirements. Torres et al. [13] proposed a faster
solution that processed 25 frames/s at 33 MHz, but the area
overhead was increased by the use of Last-In First-Out
(LIFO) stacks in off-chip SRAM memories. Lorca et al. [14]
presented a new design that improved that of [13] by reduc-
ing the memory size and the computation cost by a factor
of two. Nevertheless, the number of clock cycles per pixel
varies with the image size, and the processing time increases
with the size of the image.

Some efforts have been made to accelerate Canny edge
detection using FPGAs [15–23]. The proposals in [15] and
[16] translated the software designs directly into hardware
description languages (Handel-C and VHDL, respectively),
which resulted in timing performance degradation. Gentsos
et al. [17] presented a parallel architecture of simultaneous
4-pixel calculation that reduced the latency of the implemen-
tations of [15] and [16]. He et al. [18] proposed a self-adapt
threshold Canny algorithm to overcome the drawback of
setting the hysteresis thresholds manually in existing hard-
ware implementations. In their method, hysteresis thresholds
are calculated from the histogram of gradient magnitude.
Their algorithm required about 2.5 ms to detect the edges
of a 360×280 image on a FPGA chip EP1C60240C8 (Altera
Cyclone) based platform. Li et al. [19] presented other solu-
tion for self-adapt threshold Canny algorithm, which adopted
a Shifting-LUT-based direction calculation algorithm to
improve the processing speed. The processing time was 5.24
ms for a 512×512 image on a Xilinx’s Virtex-5 FPGA. Peng
et al. [20] proposed an improved high-speed Canny edge
detection algorithm based on FPGA, in which the gradient
is calculated by the second harmonic of the variable param-
eters (SHOVP) to simplify complex arithmetic into logic
operation. The feasibility and effectiveness of the algorithm
was tested on Altera DE2 platform. Abdelgawad et al. [21]
proposed an implementation of Canny algorithm on Zynq
platform using Vivado High Level Synthesis (HLS). The
achieved results showed that the collaboration of CPU and
FPGAs enabled up to a 100x performance improvement. The
CPU utilization dropped down and the frame rate was up to
60 fps for 1280×1024 resolution. Xu at al. [22] presented a
distributed Canny edge detection algorithm that adaptively
computes the edge detection thresholds based on the block
type and the local distribution of the gradients in the image

block. In addition, their method uses a non-uniform gradi-
ent magnitude histogram to compute block-based hysteresis
thresholds. The implementation of the algorithm on a Xilinx
Virtex-5 FPGA platform takes only 0.721 ms (including the
SRAM read/write time and the computation time) to detect
edges of 512×512 images in the USC SIPI database when
clocked at 100 MHz. Sangeetha et al. [23] proposed a cost-
effective robust Canny edge detection algorithm, whose keys
contributions are the following: (1) computation of gradient
magnitude and orientation using approximate method, (2)
block classification techniques, and (3) adaptive threshold
calculation of each block. Results on Xilinx Virtex-5 FPGA
showed that the algorithm requires only 0.672 ms to detect
the edges of 512×512 image when clocked at 100 MHz.

In the area of General Purpose Graphic Processing
Unit (GPGPU), several efficient implementations of the
Canny algorithm have been proposed [25–32]. Luo and
Duraiswami [25] presented the first implementation of the
Canny algorithm on the popular NVIDIA CUDA framework
[33]. They mapped the entire algorithm to the GPU, and
improved previous similar implementations on NVIDIA Cg
[34] and Khronos Group GLSlang [24] that not included the
hysteresis stage. The convolution steps (Gauss and Sobel
filtering) are efficiently implemented using a separable fil-
ter algorithm, similar to the one supplied with the CUDA
toolkit [35]. The gradient magnitude and direction are eas-
ily obtained by calculating the L2 norm and the arctan-
gent, respectively, of the first derivatives on a simple pixel
to thread mapping. The gradient direction of each pixel is
quantized to one of the eight directions corresponding to
the neighboring pixels ( �∕8 + k�∕4 ). Non-maximum sup-
pression is performed on a straightforward way by setting
to 0 the gradient magnitudes that are not local maximums in
the gradient direction. Hysteresis is performed by a kernel
of 16× 16 thread-blocks, each of which processes a separate
16× 16 pixel-block of the gradient along with a one pixel
wide apron around the 16× 16 pixel-block, resulting in a
17× 17 pixel-block. Each thread-block loads its assigned
17× 17 pixel-block to shared memory, and executes a breadth
first search (BFS) algorithm on it to classify the pixels of
the internal 16× 16 pixel-block as edges or non-edges. This
classification is carried out by assigning -2 to the gradient
magnitude, if the pixel is an edge, or 0, otherwise. Once a
thread-block finishes the BFS process, it writes the edge
states of all non-apron pixels in shared memory back into
the gradient magnitude space in global memory. Subsequent
calls to the hysteresis kernel will allow the linking among
pixels that belong to different 16× 16 pixel-blocks, thanks
to the reloading of the updated edge states of apron pix-
els into shared memory. Due to this multi-pass approach,
the implementation speed is dominated by the hysteresis
process. Experimental evaluation showed that it occupies
more than 70% of the total runtime. For testing purposes, the

593Journal of Real-Time Image Processing (2022) 19:591–605	

1 3

hysteresis kernel was called four times per iteration, as no
significant improvement was observed with higher values for
the test images. Experiments showed a significant speedup
against straightforward CPU functions, but a moderate
improvement against multi-core multi-threaded CPU func-
tions taking advantage of special instructions. The measured
execution time for a 512×512 image was 3.40 ms. Ogawa
et al. [26] presented a solution based on the work of Luo and
Duraiswami [25], in which they described an issue in the tra-
versing of all weak edge pixels, and proposed a stack-based
mechanism to fix it. In the hysteresis thresholding stage,
if the pixel assigned to a thread is a strong edge pixel, the
thread uses a stack to traverse the adjacent weak edge pixels,
which are labeled as final edge pixels. Experimental evalu-
ation showed a runtime of 364.389 ms for a 10240×10240
image. The logarithmic image processing (LIP) model is a
robust mathematical framework that is compatible with what
is known about the human visual process [36]. In [27], Palo-
mar et al. presented the implementation of two LIP-Canny
methods, one operating images in LIP space with traditional
operators, and the other operating images in natural space
with modified operators. The work of Palomar et al. [27]
was based on those of Palomares et al. [37] and Luo and
Duraiswami [25]. As in [25], the number of iterations of the
hysteresis kernel was fixed to 4. Experimental evaluation
showed that CUDA implementations are 10–16 times faster
than the corresponding C++ implementations. Moreover,
LIP-Canny using modified operators is slightly faster than
the alternative approach based on classical operators. The
average runtimes for 512×512 images were 26.448 ms and
28.848 ms for the first and second method, respectively.
Lourenço et al. [28] developed a CUDA implementation of
the Canny algorithm for the Insight Segmentation and Regis-
tration Toolkit (ITK) using second-order derivatives (instead
of Sobel filtering [25]) and a hybrid CPU-GPU approach
for the hysteresis stage that closely followed the method
proposed in [25]. Experimental evaluation showed that the
CUDA implementation on three generations of NVIDIA
GPGPUs was between 3.6 and 50 times more faster than the
standard ITK Canny implementation on two CPU models.
The main novelties of the CUDA implementation proposed
by B. M. L. P. Vigil [29] are the application of Otsu method
for automatic calculation of hysteresis thresholds, and the
use of interpolation in the non-maximum suppression step to
improve the quality of edge detection. The hysteresis thresh-
olding is performed by the same hybrid CPU-GPU technique
used in previous works, and, hence, it occupies a consider-
able percentage in the total execution time (more than 50%).
The execution times of the CUDA Canny detector for 512×
512 Lena, Mandrill and Peppers images were 8.49 ms, 9.84
ms and 10.90 ms, respectively. Huang et al. [30] presented
a CUDA implementation on the embedded CPU and GPU
heterogeneous computing platform Jetson TK1 of NVIDIA.

Noise reduction, gradient computation and non-maximum
suppression are efficiently implemented in a similar way to
that of [25]. However, the linking process is replaced by a
simpler schema, which classifies a pixel of the instability
zone as an edge pixel if at least one of its eight neighboring
pixels is an edge pixel. Additionally, the hysteresis thresh-
olds are obtained from the histogram of gradient magnitude.
Experimental evaluation showed that the runtimes for 512×
512 Lena and Peppers images were approximately 3 ms. In
[32], Emrani et al. presented a CUDA implementation of
Canny algorithm in which the main novelty was the replace-
ment of the Luo and Duraiswami’s BFS algorithm [25] with
a more efficient method. The kernel corresponding to this
method checks whether a pixel belongs to the instability
zone or not. If so, it will check its neighboring pixels. If a
strong edge is found, the current pixel is classified as an edge
pixel. A flag in global memory is used to indicate whether
any pixel of the instability zone has been classified as an
edge pixel. The kernel is launched as long as the flag is set.
The execution time of the CUDA Canny detector for a 512×
512 image was 37.35 ms on a GeForce GTX 550 Ti GPU.

As we have just seen, the main bottleneck of GPU-based
implementations of Canny algorithm is the hysteresis step,
due to the need of calling the hysteresis kernel an indeter-
minate number of times (at least 4) executed on host side.
On the other hand, in all implementations, except B. M. L.
P. Vigil’s [29] and Huang et al.’s [30], the hysteresis thresh-
olds are adjusted manually. In this work, we propose a novel
GPU-based implementation of the Canny algorithm on
CUDA that overcomes these limitations. As in [22] and [23],
the image is partitioned into sub-images, and the following
steps are performed on each sub-image in parallel: (1) cal-
culation of the optimal hysteresis thresholds, and (2) hyster-
esis process using the parameters obtained in the previous
step. As each sub-image is processed independently, it is not
necessary the costly hybrid CPU-GPU approach of previ-
ous implementations for hysteresis stage. The calculation of
hysteresis thresholds is carried out with Medina-Carnicer’s
method [11], which, at present, is relevant for unsupervised
edge detection because, since its introduction, it has been
used to find automatically the hysteresis thresholds in many
works [38–51]. Medina-Carnicer’s method [11] outperforms
those used in previous implementations of Canny algorithm
[18, 19, 22, 23, 29], because the first searches the optimal
values of both hysteresis thresholds low and high, while the
latter do not, since they assume a constant ratio low/high.
Experimental evaluation showed that our GPU-based unsu-
pervised and distributed Canny edge detector, which we have
named GUD-Canny, requires only between 0.33 and 0.48
milliseconds to detect edges on 512×512 images, which fully
satisfies real-time requirements and outperforms reported
runtimes of existing FPGA and GPU solutions.

594	 Journal of Real-Time Image Processing (2022) 19:591–605

1 3

The rest of the paper is organized as follows. Section 2
gives a brief overview of Medina-Carnicer’s method. Sec-
tion 3 presents GUD-Canny. Section 4 shows the experimen-
tal evaluation of our solution, and, finally, the main conclu-
sions are stated in Sect. 5.

2 � Medina‑Carnicer’s method
for unsupervised determination
of hysteresis thresholds

2.1 � Background

In [11], Medina-Carnicer et al. presented a novel method to
look for the hysteresis thresholds in an unsupervised way.
Given a set of candidate thresholds pairs, the key idea is to
combine the gradient information with that obtained from
applying the linking process for all the candidate thresholds
pairs. Experimental evaluation showed that the performance
of Medina-Carnicer’s algorithm is better than those of pre-
vious methods [52, 53]. The computational complexity of
Medina-Carnicer’s algorithm [11] is smaller than that of
the solution presented in [53], but bigger than that of the
proposal in [52]. Nevertheless, the approach in [52] only
finds an approximate edge map and it is not able to find the
hysteresis thresholds. The results obtained by Medina-Car-
nicer’s method [11] have been validated only for the Canny
edge detector, but there are no restrictions to apply it to any
other edge detector whose strategy is based on the hysteresis
mechanism.

The main innovations presented in [11] are the following:

1.	 In contrast to previous works [53–56], which are aimed
at directly searching for hysteresis thresholds, it follows
an indirect way, which consists of looking for the insta-
bility zone and then determining the hysteresis thresh-
olds from it.

2.	 Unlike previous proposals [53, 55, 56], which only use
gradient information, it combines the latter with that of
the linking process.

2.2 � Steps summary of Medina‑Carnicer’s method

Let I be an image, G its gradient magnitude after non-maxi-
mum suppression normalized in the interval [0,1], and C a set
of candidate thresholds pairs {(low, high), low, high ∈ (0, 1)}.

Given a hysteresis thresholds pair (low, high), we define
the following edge maps:

•	 Hysteresis map ( Glow,high ), which is obtained by perform-
ing the hysteresis process on G with (low, high).

•	 High map ( Ghigh ), which is the result of thresholding G
with high.

•	 Linking map ( ΔGlow,high ), which is composed exclu-
sively of the edges added by the linking process using
(low, high). Note that ΔGlow,high = Glow,high − Ghigh.

The steps of Medina-Carnicer’s method are the following:

1.	 Calculate a set H of linking maps corresponding to the
candidate thresholds pairs of C.

2.	 Compute the sum SMH of the linking maps.

 In this matrix, the value of each element is the number
of times that the corresponding pixel of G is classified as
edge by the linking process for all the candidate thresh-
olds pairs.

3.	 Calculate the division of SMH by the cardinality of C,
which will be denoted as Prob(SMH) .

 Each element of Prob(SMH) represents the probability
that the corresponding pixel of G is classified as edge
by the linking process.

4.	 Compute the distribution P(F(x)),∀x ∈ (0, 1) , defined as
follows:

where

•	 Probx(SMH) is the binary edge map obtained by thresh-
olding Prob(SMH) with x ∈ (0, 1) . Its elements with value
1 correspond to the pixels of G that have a probability
equal or greater than x of being classified as edges by the
linking process.

•	 |Probx(SMH)| is the number of elements with value 1 in
Probx(SMH).

•	 F(x) = G◦Probx(SMH) , where ◦ is the Hadamard product.
•	 |F(x)| is the number of elements with value x in F(x).

The distribution P(F(x)) represents the probability that a
pixel has gradient level x if it is a pixel with probability
equal or greater than x of being added by the linking process.
It is the combined information used by Medina-Carnicer’s
method.

5. Compute the histogram of Prob(SMH) for the set
D = {x ∈ (0, 1)|P(F(x)) ≠ 0} , which represents the insta-
bility zone. The hysteresis thresholds are the values of D

(1)H = {ΔGlow,high, (low, high) ∈ C}

(2)SMH =
∑

H

(3)Prob(SMH) = SMH∕|C|

(4)P(F(x)) =

{
|F(x)|

|Probx(SMH))|
|Probx(SMH)| > 0

0 |Probx(SMH)| = 0

595Journal of Real-Time Image Processing (2022) 19:591–605	

1 3

corresponding to the first and last local maximums of the
histogram.

The set C is obtained by sampling an interval
[0.01,MAX_HIGH] , where 0.01 < MAX_HIGH ≤ 1.0 . In
[11], Medina-Carnicer et al. showed that two selections of
C that ensure a good performance of their method are those
obtained by sampling the interval [0.01, 0.25] with steps
0.01 and 0.03. Furthermore, the results presented in [53]
indicate that their approach, in general, depends less on the
initial set than the method of Yitzhaky and Peli [56] does.

3 � GPU‑based unsupervised and distributed
Canny edge detector (GUD‑Canny)

In this section, we describe GUD-Canny, our GPU-based
unsupervised and distributed Canny edge detector, which
has been developed using the popular NVIDIA CUDA
framework [33]. In the presented algorithms, the following
notation is employed:

•	 Prefixes d_, s_ and c_ in the names of the variables indi-
cate that they are allocated in global, shared and constant
memory spaces, respectively.

•	 Symbols&, |, ∼ , << and >> are the bitwise operators
AND, OR, NOT, left shift and right shift, respectively.

Algorithm 1 provides a high-level description of GUD-
Canny. As it can be seen, the inputs of our method are the
following. First, a W × H image, which is provided in a vec-
tor of P 8-bit unsigned integers ( d_image ), where P is the
number of pixels. Second, the standard deviation � . Third,
a set of NCTP candidate thresholds pairs, which is supplied
in a vector of float pairs ( c_C ). On the other hand, the output
of GUD-Canny are the edges of the input image, which are
written in a vector of P 8-bit unsigned integers ( d_edges).

Steps 1–3 correspond to the classic first stages of Canny
edge detection. To apply Medina-Carnicers’s method (steps
4 to 7), the non-maximum suppression returns the gradient
magnitude normalized in the interval [0, 1] ( d_G ). The gra-
dient magnitude is partitioned horizontally into NS = W∕32
sub-images of dimension 32 × H , and Medina-Carnicer’s
method [11] is used to calculate an optimal pair of hysteresis
thresholds for each sub-image. Finally, in step 8, the hyster-
esis map is computed for each subimage using its assigned
hysteresis thresholds pair, and written in the output vector
d_edges.

Since the original width of the input image may not be a
multiple of 32, the CUDA function cudaMemcpy2D [57] is

used to copy the input image from host to device memory
adding the necessary padding to each row, and the same
function is called to copy the output edges from device to
host memory.

In the following subsections, each step of GUD-Canny is
described in detail.

3.1 � Gaussian filtering

To reduce the impact of noise, the input image is smoothed
by convolving it with two one-dimensional Gaussian filters
in the horizontal and vertical dimensions.

Each Gaussian filtering is performed by a different CUDA
kernel, in which each output pixel is computed by a dif-
ferent thread. Kernels implementations are similar to those

596	 Journal of Real-Time Image Processing (2022) 19:591–605

1 3

presented in [35], but with the difference that the shared
memory is not used for caching data. Since the hardware
cache system ensures a good performance [57], all read/
write operations are performed directly to global memory.

Each thread initializes each element of the input image
vector used to perform the convolution dot product as fol-
lows. If it corresponds to an existing pixel, i.e., the position
of the pixel is not outside the borders of the image, it is read
from the input image. Otherwise, it is assigned the value
zero.

As in [27], the length of Gaussian filters is variable and
depends on the standard deviation � . Each kernel obtains
the Gaussian filter from a table in constant memory, which
stores the Gaussian filters corresponding to � values between
0.1 and 2.0. The first table entry corresponds to � = 0.1, the
second one to � = 0.2, and so on up to 2.0.

3.2 � Gradient computation

After Gaussian filtering, each gradient tuple (dx, dy) is cal-
culated using the first difference operator (−1, 0, 1) , and the
associated gradient magnitude by the formula

√
d2
x
+ d2

y
 .

The results are written in the output vectors d_grad_x ,
d_grad_y and d_grad_mag , respectively. As in Gaussian
filtering step, all read/write operations are made directly to
global memory, and the border conditions are carefully
checked.

Additionally, to compute the maximum gradient magni-
tude, each thread performs an atomic maximum operation
(using the CUDA function atomicMax [57]) between the
calculated gradient magnitude and a global memory variable
( d_max_grad_mag[0] ), which has been initialized to zero.

3.3 � Non‑maximum suppression

In this step, one kernel computes a new version of gradient
magnitude ( d_G ) by performing non-maximum suppression
and normalization on the gradient magnitude obtained in
the previous stage ( d_grad_mag ). Given a pixel of value p
in d_grad_mag , the value of the corresponding pixel in d_G
is p∕d_max_grad_mag[0] if the pixel is a maximum in the
gradient direction, or zero otherwise. Each pixel of d_G is
computed by a different thread of the kernel.

The method used for maximum suppression is the one
employed in [29], which quantizes gradient direction to one

of the eight directions {�∕8 + k�∕4} , and uses linear inter-
polation to calculate the values of the two neighboring pixels
in the gradient direction.

Global memory operations and border conditions man-
agement are executed as in previous steps.

3.4 � Hysteresis thresholds computation

As we said previously, the gradient magnitude is partitioned
horizontally into NS = W∕32 sub-images, and the method of
Medina-Carnicer is applied on each one in parallel.

Images are processed by dividing them into groups of
32 consecutive pixels in the horizontal dimension, which
will be referred to as regions. The numbers of regions of an
image and of a sub-image will be denoted by NRI and NRS,
respectively. For simplicity, the regions of instability/hys-
teresis/high/linking maps will be referred to as instability/
hysteresis/high/linking regions, respectively.

Each of the steps 4–7 of Algorithm 1 is performed by a
different kernel, whose actions are specified in the following
subsections.

3.4.1 � Calculation of the matrices SMH

Algorithm 2 presents the pseudo code of the kernel calc_
SM_H, which calculates the matrix SMH for each sub-image
of G. The inputs are G, which is provided in a vector of P
32-bit floats ( d_G ), and C, which is supplied in a vector
of NCTP 32-bit float pairs, initialized statically in constant
memory ( c_C ). The output are the NS matrices SMH cor-
responding to the NS sub-images of G, which are written in
a vector of P 32-bit unsigned integers ( d_SM_H ), initial-
ized to 0. Maps regions are represented by 32-bit unsigned
integers, where the i-th bit stores the binary value of the
i-th pixel of the region. Although the gradient regions reads
in step 1 are not coalesced, as CUDA literature [58] [57]
recommends, they satisfy the principle of spatial locality
because each thread reads 32 consecutive elements of d_G ,
which are properly aligned. Therefore, the transparent cache
hierarchy of modern GPU architectures ensures a good per-
formance while reading the gradient regions. On the other
hand, the writes in step 5 are carried out atomically using
the CUDA function atomicAdd [57].

597Journal of Real-Time Image Processing (2022) 19:591–605	

1 3

In step 3, of Algorithm 2 each thread gets its hysteresis
region ( hyst_reg ) by calling the function calc_hyst_map ,
which receives as inputs the high and instability regions
of the calling thread ( high_reg and inst_reg , respectively).
The actions performed by this function are presented in
Algorithm 3. As it can be seen, each thread-block computes
its hysteresis map in a shared memory 32-bit unsigned int
vector ( s_hyst_map ) of size NRS. Each hysteresis region
i is managed by the thread i, and held in the element
s_hyst_map[i].

An alternative way to divide the gradient magnitude into
sub-images is by partitioning it vertically into NS = H∕32
sub-images of dimension W × 32 . In this case, the spatial
locality of accesses to global memory is improved, because
consecutive threads access consecutive regions. On the other
hand, the advantage of the horizontal partition is that the

598	 Journal of Real-Time Image Processing (2022) 19:591–605

1 3

number of operations in the linking process is reduced (step
5 of the function calc_hyst_map). The reason is that it is
only necessary to examine the top and bottom regions; in
the case of a vertical partition, the six remaining neighbor
regions (left, top left, bottom left, right, top right and bottom
right) have also to be taken into account. As will be shown
in Sect. 4, GUD-Canny is slightly faster for sub-images of
dimension 32 × H.

3.4.2 � Calculation of the matrices Prob(SMH)

The matrix Prob(SMH) for each sub-image of G is obtained
by dividing each element of the corresponding matrix SMH
by NCTP. The matrices Prob(SMH) are written in a vector
of P 32-bit floats ( d_Prob_SM_H).

The number of threads of the grid equals to P divided by
4, and each thread i performs the following actions:

1.	 Reads the group i of four consecutive elements from
d_SM_H through one vectorized load.

2.	 Calculates the division of each element by NCTP.
3.	 Writes the four computed float values to the 4-elements

group i of d_Prob_SM_H through one vectorized store.

Vectorized accesses are an important GPU optimization,
because they increase bandwidth and reduce both instruc-
tion count and latency [59].

3.4.3 � Calculation of the distributions P(F(x))
and the histograms of the matrices Prob(SMH)

For each sub-image of G, the distribution P(F(x)) and the
histogram of Prob(SMH) are computed by one kernel for
x ∈ {0.01, 0.02, ...,MAX_HIGH} . The number of x values,
which is MAX_HIGH∕0.01 , will be denoted by NX.

The number of thread-blocks of the grid is NS × NX .
Each thread-block calculates P(F(x)) and the histogram of
Prob(SMH) for one sub-image of G and one x value. The size
of thread-blocks is NRS.

The actions performed by the kernel are shown in Algo-
rithm 4, where div and mod are the quotient and remainder
operators, respectively. The three parallel reductions are effi-
ciently executed using the CUDA function __shfl_down_sync
[57] and fast device memory atomic operations, as described
in [60].

599Journal of Real-Time Image Processing (2022) 19:591–605	

1 3

3.4.4 � Searching of hysteresis thresholds

The hysteresis thresholds searching for each sub-image of
G is performed by the kernel described in Algorithm 5.
The number of warps of the grid is NS, and each warp i
searches for the hysteresis thresholds pair of sub-image i. It
is assumed that NX < 32.

The warp votes are performed by calling the CUDA func-
tion __balloc_sync [57], which, given a predicate, evaluates
it for all threads in the current warp, and returns a 32-bit
binary mask, in which each bit j is set if the predicate evalu-
ates to non-zero for the lane j.

The searches of bits within the masks are performed
efficiently using the CUDA integer intrinsic functions __ffs
and __brev [61]. The first one finds the position of the least
significant bit set to 1 in a 32-bit integer, and the second one
reverses the bit order of a 32-bit unsigned integer.

600	 Journal of Real-Time Image Processing (2022) 19:591–605

1 3

3.5 � Hysteresis thresholding

The hysteresis thresholding is carried out by the kernel pre-
sented in Algorithm 6, which is very similar to Algorithm 2.
The number of thread-blocks of the grid is NS, and the size
of each thread-block is NRS. The i-th thread-block calculates
the hysteresis map corresponding to the i-th sub-image of
G following the same steps of Algorithm 2. Then, the j-th
thread of the thread-block writes the pixels values specified
in its hysteresis mask ( hyst_reg ) to the j-th region of the
corresponding output edges sub-image.

To write the hysteresis region, each thread accesses the
output edges image through a pointer to a structure of 32
8-bit unsigned int members. As in the case of gradient
regions reading, although the accesses to global memory
are not coalesced, they satisfy the principle of spatial local-
ity, and are properly aligned.

4 � Experimental evaluation

To evaluate the performance of GUD-Canny edge detection,
we used the ground truth images of Heath’s dataset [62],
that can be downloaded from ftp://​figme​nt.​csee.​usf.​edu/​
pub/​Edge_​Compa​rison/​images/​resul​ts/. The 28 gray refer-
ence images of this dataset were selected by humans from
a limited set of edge maps, which were obtained using the
Canny edge detector with different values for its parameters.

We utilized the same two candidate thresholds sets
selected in [11], which were those obtained by sampling the
interval [0.01, 0.25] with steps 0.01 and 0.03, and that will
be denoted by C0.01 and C0.03 , respectively.

Our test machine had a 3.50Ghz Intel Core i7-7800X
CPU and 32 GB of RAM. The GPU that we used was a
GeForce RTX 2080 (Turing architecture with compute capa-
bility 7.5), and no optimization flags were utilized in our
implementation.

4.1 � Quality evaluation

In the first experiment, we compared the quality obtained
by applying Medina-Carnicer’s method to the entire W × H
image (classical frame-level approach) with the quality
resulting from executing the same method on each 32× H
sub-image (distributed approach, which is the focusing of
GUD-Canny). Table 1 shows the mean-square errors (MSE)
obtained for sets C0.01 and C0.03 . In each row, for each can-
didate thresholds set, the minimum MSE is highlighted in
bold. As it can be seen, the good performance of Medina-
Carnicer’s method not only remains in the distributed
approach, but it even slightly outperforms that of frame-level
approach. For the set C0.01 , the average MSEs for classical
and distributed approaches were 0.0534 and 0.0498, respec-
tively. In the case of the set C0.03 , the values were 0.0534 and
0.0502, respectively.

On the other hand, it can be observed that there is no
big difference between the quality obtained using C0.01 with
respect to that resulting from utilizing C0.03 , as the average
MSEs are 0.0498 and 0.0502, respectively.

4.2 � Temporal efficiency evaluation

Table 2 presents the GUD-Canny edge detection times for
sets C0.01 and C0.03 . At the end of each column, statistics
(average, minimum and maximum) are presented for all
images, and for those of size 512×512. Additionally, Table 3
shows the statistics of GUD-Canny speedup for C0.03 with
respect to C0.01 . From the presented results, we can see the
following points:

ftp://figment.csee.usf.edu/pub/Edge_Comparison/images/results/
ftp://figment.csee.usf.edu/pub/Edge_Comparison/images/results/

601Journal of Real-Time Image Processing (2022) 19:591–605	

1 3

1.	 GUD-Canny fully satisfies real time requirements, as its
execution times are on average 1.2736 ms and 0.3637 ms
for sets C0.01 and C0.03 , respectively.

2.	 For the set C0.03 , the edge detection times are between
0.2814 and 0.3932 milliseconds for 512×512 images.
Hence, GUD-Canny outperforms the temporal efficiency
of existing GPU and FPGA implementations, like the
solution of Sangeetha et al. [23], whose edge detection
time is 0.672 ms for 512×512 images.

3.	 The speedup obtained using C0.03 instead of C0.01 is sig-
nificant, as its values are between 2.99x and 3.90x. The
reason is that the number of linking maps that have to be
calculated for C0.03 ( 36 × NS ) is much less than that for
C0.01 ( 300 × NS ). This contrasts with the small difference
between the quality of edge maps obtained with these
candidate thresholds sets.

4.3 � Distribution of execution times

Tables 4 and 5 show the statistics (average, minimum and
maximum) of kernels execution time proportions (expressed
as percentages) for sets C0.01 and C0.03.

Unlike the case of existing GPU-based Canny edge detec-
tors, the hysteresis stage is executed efficiently, as its average
time proportions are 2.02% and 7.70% for sets C0.01 and C0.03 ,
respectively.

As expected, due to their higher computational complex-
ity, the most time-consuming operations are the calcula-
tion of matrices SMH (whose average time proportions are
82.38% and 39.39% for sets C0.01 and C0.03 , respectively)
followed by the computation of distributions {P(F(x))} and
histograms of matrices Prob(SMH)(whose average time

Table 1   MSE values for
frame-level Canny edge
detection and distributed
Canny edge detection using
Medina-Carnicer’s method for
unsupervised determination of
hysteresis thresholds

For each image and candidate thresholds set, the minimum MSE is highlighted in bold

Image Frame, C0.01 Dist., C0.01 Frame, C0.03 Dist., C0.03

Airplane (659×409) 0.0095 0.0081 0.0103 0.0071
Banana (512×468) 0.0289 0.0422 0.0310 0.0351
Basket (512×512) 0.0670 0.0603 0.0499 0.0524
Beehive (512×512) 0.0270 0.0284 0.0270 0.0278
Briefcase (577×419) 0.0237 0.0253 0.0269 0.0263
Brush (572×512) 0.0407 0.0243 0.0407 0.0259
Coffeemaker (461×665) 0.0275 0.0277 0.0291 0.0289
Egg (512×512) 0.0522 0.0540 0.0534 0.0550
Elephant (512×456) 0.0523 0.0661 0.0828 0.0727
Feather (512×512) 0.0797 0.0640 0.0643 0.0624
Flower (536×509) 0.0207 0.0260 0.0249 0.0247
Golfcart (548×509) 0.0607 0.0577 0.0914 0.0721
Grater (512×438) 0.0204 0.0210 0.0252 0.0224
Mailbox (512×512) 0.0461 0.0479 0.0531 0.0550
Orange (412×472) 0.0691 0.0679 0.0676 0.0688
Pillow (552×468) 0.0394 0.0360 0.0341 0.0357
Pinecone (512×512) 0.0687 0.0629 0.0603 0.0566
Pitcher (568×419) 0.0165 0.0169 0.0195 0.0188
Pond (512×512) 0.0719 0.0724 0.0778 0.0735
Shopping cart (512×512) 0.1188 0.0761 0.0949 0.0781
Stairs (579×441) 0.0496 0.0498 0.0635 0.0540
Stapler (529×510) 0.0335 0.0373 0.0360 0.0376
Tiger (512×512) 0.1811 0.1376 0.1554 0.1270
Tire (512×512) 0.1018 0.1102 0.1018 0.1105
Traffic Cone (437×604) 0.0768 0.0636 0.0662 0.0617
Trashcan (539×433) 0.0528 0.0521 0.0528 0.0525
Turtle (512×512) 0.0142 0.0145 0.0139 0.0165
Videocamera (577×435) 0.0441 0.0445 0.0420 0.0464
Average 0.0534 0.0498 0.0534 0.0502
Minimum 0.0095 0.0081 0.0103 0.0071
Maximum 0.1811 0.1376 0.1554 0.1270

602	 Journal of Real-Time Image Processing (2022) 19:591–605

1 3

proportions are 7.21% and 24.87% for sets C0.01 and C0.03 ,
respectively).

Figure 1 presents the statistics (average, minimum and
maximum) of the total GPU time proportions correspond-
ing to memory transferences. As it can be seen, the penalty
is moderate because the percentages are less than 12% and
30% for sets C0.01 and C0.03 , respectively.

4.4 � Horizontal partitioning vs. vertical partitioning

Table 6 shows the edge detection times (ms) on 512×512
images using the candidate thresholds C0.03 for sub-images
sizes 32 × H (horizontal partition) and W × 32 (vertical par-
tition). For each image, the minimum execution time is high-
lighted in bold. In all cases, the number of sub-images is 16
and the number of regions per sub-image is 512.

From the presented results, we can see that the execution
times are slightly lower using the horizontal partitioning.
The average speedup is 1.14x. As explained in Sect. 3.4.1,
although the spatial locality of accesses to global memory is
improved using vertical partitioning, the number of opera-
tions in the linking process is reduced if the sub-image size
is 32 × H . Experimental evaluation has shown that the per-
formance improvement due to the second factor is greater
than that of the first.

5 � Conclusions

This work has presented GUD-Canny, a novel GPU-based
unsupervised and distributed implementation of Canny edge
detector. Our solution overcomes the two main limitations
of current Canny algorithm implementations, which are the
bottleneck caused by the hysteresis process, and the use of
fixed hysteresis thresholds.

Given a W × H image, GUD-Canny computes the normal-
ized gradient magnitude, partitions it into 32× H sub-images,
and calculates the optimal pair of hysteresis thresholds for
each sub-image using Medina-Carnicer’s method [11]. Once
the hysteresis thresholds are obtained, instead of running
one costly multipass CPU-GPU hysteresis process on the
entire image, hysteresis thresholdings (one per sub-image,
using its specific hysteresis thresholds) are executed entirely
on GPU, independently and in parallel. Each thread-block
performs the hysteresis process on one sub-image in shared
memory, and represents each pixel of the hysteresis map
with only one bit to optimize the use of the limited space of
shared memory.

Experimental evaluation showed that GUD-Canny only
requires 0.35 ms on average to detect edges on 512×512
images. Hence, it fully satisfies real time constraints, and is
faster than existing GPU and FPGA implementations.

Table 2   Edge detection times (ms) for candidate thresholds sets C0.01
and C0.03

Image C0.01 C0.03

Airplane (659×409) 1.2805 0.3385
Banana (512×468) 1.0715 0.3108
Basket (512×512) 1.2234 0.3612
Beehive (512×512) 1.0518 0.3153
Briefcase (577×419) 1.2838 0.3496
Brush (572×512) 1.4066 0.3853
Coffeemaker (461×665) 2.1042 0.5396
Egg (512×512) 1.0554 0.3325
Elephant (512×456) 1.0943 0.3458
Feather (512×512) 1.3306 0.3607
Flower (536×509) 1.4382 0.3703
Golfcart (548×509) 1.5631 0.4238
Grater (512×438) 1.1136 0.3106
Mailbox (512×512) 1.3599 0.3932
Orange (412×472) 0.9376 0.2671
Pillow (552×468) 1.4201 0.3870
Pinecone (512×512) 1.1283 0.3770
Pitcher (568×419) 1.2057 0.3286
Pond (512×512) 1.2288 0.3480
Shopping cart (512×512) 1.2945 0.3721
Stairs (579×441) 1.4954 0.4707
Stapler (529×510) 1.1602 0.3283
Tiger (512×512) 1.3492 0.3739
Tire (512×512) 1.2050 0.3686
Traffic Cone (437×604) 1.5956 0.4115
Trashcan (539×433) 1.0523 0.3500
Turtle (512×512) 1.0314 0.2814
Videocamera (577×435) 1.1798 0.3833
Average 1.2736 0.3637
Minimum 0.9376 0.2671
Maximum 2.1042 0.5396
Average (512×512) 1.2053 0.3531
Minimum (512×512) 1.0314 0.2814
Maximum (512×512) 1.3599 0.3932

Table 3   Statistics of GUD-Canny speedup for C0.03 with respect to
C0.01

Images Average Minimum Maximum

All 3.50x 2.99x 3.90x
512×512 3.42x 2.99x 3.69x

603Journal of Real-Time Image Processing (2022) 19:591–605	

1 3

References

	 1.	 Roberts., L.: Machine perception of 3-D solids, optical and elec-
tro-optical information processing (1965)

	 2.	 Sobel, I., Feldman., G.: A 3 × 3 isotropic gradient operator for
image processing. a talk at the Stanford Artificial Project in, 271–
272 (1968)

	 3.	 Prewitt, J.M.: Object enhancement and extraction. Pict. Process.
Psychopictorics 10(1), 15–19 (1970)

	 4.	 Canny, J.: A computational approach to edge detection. IEEE
Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986)

	 5.	 Gonzalez, C.I., Melin, P., Castro, J.R., Mendoza, O., Castillo, O.:
An improved sobel edge detection method based on generalized
type-2 fuzzy logic. Soft. Comput. 20(2), 773–784 (2016)

	 6.	 Gunawan, T.S., Yaacob, I.Z., Kartiwi, M., Ismail, N., Za’bah, N.F.,
Mansor, H.: Artificial neural network based fast edge detection
algorithm for mri medical images. Indones. J. Electr. Eng. Com-
put. Sci. 7(1), 123–130 (2017)

	 7.	 ElAraby, W.S., Madian, A.H., Ashour, M.A., Farag, I., Nassef,
M.: Fractional edge detection based on genetic algorithm. In 2017
29th International Conference on Microelectronics (ICM) (pp.
1-4). IEEE (2017, December)

	 8.	 Dagar, N.S., Dahiya, P.K.: Edge detection technique using binary
particle swarm optimization. Procedia Comput. Sci. 167, 1421–
1436 (2020)

	 9.	 Sengupta, S., Mittal, N., Modi, M.: Improved skin lesion edge
detection method using Ant Colony Optimization. Skin Res. Tech-
nol. 25(6), 846–856 (2019)

	10.	 Dhivya, R., Prakash, R.: Edge Detection Using Adaptive-Neuro-
Fuzzy-Interference-System in Remote Sensing Images. J. Comput.
Theor. Nanosci. 15(9–10), 2720–2723 (2018)

	11.	 Medina-Carnicer, R., Munoz-Salinas, R., Yeguas-Bolivar, E.,
Diaz-Mas, L.: A novel method to look for the hysteresis thresholds
for the Canny edge detector. Pattern Recogn. 44(6), 1201–1211
(2011)

	12.	 Deriche, R.: Using Canny’s criteria to derive a recursively imple-
mented optimal edge detector. Int. J. Comput. Vis. 1(2), 167–187
(1987)

	13.	 Torres, L., Robert, M., Bourennane, E., Paindavoine, M.: Imple-
mentation of a recursive real time edge detector using retiming
techniques. In Proceedings of ASP-DAC’95/CHDL’95/VLSI’95
with EDA Technofair (pp. 811-816). IEEE (1995, August)

Table 4   Statistics of kernels execution time proportions for set C0.01

Kernel gauss_x (%) gauss_y (%) calc_grad (%) non_max_
supp (%)

calc_SM_H (%) calc_Prob_
SM_H (%)

calc_PF_
histo (%)

search_thre hyst (%)

Average 1.83 1.96 0.97 2.41 82.38 0.86 7.21 0.36 2.02
Minimum 1.33 1.34 0.69 1.67 79.81 0.53 4.85 0.21 1.50
Maximum 2.80 3.17 1.20 3.21 87.13 1.16 8.81 0.59 2.86

Table 5   Statistics of kernels execution time proportions for set C0.03

Kernel gauss_x (%) gauss_y (%) calc_grad (%) non_max_
supp (%)

calc_SM_H (%) calc_Prob_
SM_H (%)

calc_PF_
histo (%)

search_thre (%) hyst (%)

Average 6.10 6.57 3.25 8.03 39.39 2.90 24.87 1.19 7.70
Minimum 4.57 4.71 2.47 6.25 35.26 2.34 19.14 0.79 4.53
Maximum 8.93 10.17 4.04 10.35 44.57 3.96 29.55 1.48 12.62

9.00%
5.76%

11.44%

24.76%

16.94%

29.72%

Average Minimum Maximum

C0.01 C0.03

Fig. 1   Statistics of memory transferences time proportions for sets
C0.01 and C0.03

Table 6   Edge detection times (ms) for sub-images sizes 32 × H (hori-
zontal partition) and W × 32 (vertical partition)

The candidate thresholds set is C0.03

For each image, the minimum edge detection time is highlighted in
bold

Image 32 × H W × 32

Basket (512×512) 0.3612 0.3914
Beehive (512×512) 0.3153 0.3539
Egg (512×512) 0.3325 0.4000
Feather (512×512) 0.3607 0.4054
Mailbox (512×512) 0.3932 0.4224
Pinecone (512×512) 0.3770 0.3876
Pond (512×512) 0.3480 0.4532
Shopping cart (512×512) 0.3721 0.4282
Tiger (512×512) 0.3739 0.4782
Tire (512×512) 0.3686 0.3922
Turtle (512×512) 0.2814 0.3178
Average 0.3531 0.4028
Minimum 0.2814 0.3178
Maximum 0.3932 0.4782

604	 Journal of Real-Time Image Processing (2022) 19:591–605

1 3

	14.	 Lorca, F.G., Kessal, L., Demigny, D.: Efficient ASIC and FPGA
implementations of IIR filters for real time edge detection. In Pro-
ceedings of International Conference on Image Processing (Vol.
2, pp. 406-409). IEEE (1997, October)

	15.	 Rao, D.V., Venkatesan, M.: An efficient reconfigurable architec-
ture and implementation of edge detection algorithm using Han-
dle-C. In International Conference on Information Technology:
Coding and Computing, 2004. Proceedings. ITCC 2004. (Vol. 2,
pp. 843-847). IEEE (2004, April)

	16.	 Neoh, H.S., Hazanchuk, A.: Adaptive edge detection for real-time
video processing using FPGAs. Global Signal Process. 7(3), 2–3
(2004)

	17.	 Gentsos, C., Sotiropoulou, C.L., Nikolaidis, S., Vassiliadis, N.:
Real-time canny edge detection parallel implementation for
FPGAs. In 2010 17th IEEE International Conference on Electron-
ics, Circuits and Systems (pp. 499-502). IEEE (2010, December)

	18.	 He, W., Yuan, K.: An improved Canny edge detector and its reali-
zation on FPGA. In 2008 7th World Congress on Intelligent Con-
trol and Automation (pp. 6561-6564). Ieee (2008, June)

	19.	 Li, X., Jiang, J., Fan, Q.: An improved real-time hardware archi-
tecture for Canny edge detection based on FPGA. In 2012 Third
International Conference on Intelligent Control and Information
Processing (pp. 445-449). IEEE (2012, July)

	20.	 Peng, F., Lu, X., Lu, H., Shen, S.: An improved high-speed canny
edge detection algorithm and its implementation on FPGA. In
Fourth International Conference on Machine Vision (ICMV
2011): Computer Vision and Image Analysis; Pattern Recogni-
tion and Basic Technologies (Vol. 8350, p. 83501V). International
Society for Optics and Photonics (2012, January)

	21.	 Abdelgawad, H.M., Safar, M., Wahba, A.M.: High level synthesis
of canny edge detection algorithm on Zynq platform. Int. J. Com-
put. Electr. Autom. Control Inf. Eng 9(1), 148–152 (2015)

	22.	 Xu, Q., Varadarajan, S., Chakrabarti, C., Karam, L.J.: A distrib-
uted canny edge detector: algorithm and FPGA implementation.
IEEE Trans. Image Process. 23(7), 2944–2960 (2014)

	23.	 Sangeetha, D., Deepa, P.: FPGA implementation of cost-effective
robust Canny edge detection algorithm. J. Real-Time Image Proc.
16(4), 957–970 (2019)

	24.	 Roodt, Y., Visser, W., Clarke, W.: Image processing on the GPU:
Implementing the Canny edge detection algorithm. In Interna-
tional Symposium of the Pattern Recognition Association of
South Africa (pp. 1-6) (2007, November)

	25.	 Luo, Y., Duraiswami, R.: Canny edge detection on NVIDIA
CUDA. In 2008 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition Workshops (pp. 1-8). IEEE (2008,
June)

	26.	 Ogawa, K., Ito, Y., Nakano, K.: Efficient Canny edge detection
using a GPU. In 2010 First International Conference on Network-
ing and Computing (pp. 279-280). IEEE (2010, November)

	27.	 Palomar, R., Palomares, J.M., Castillo, J.M., Olivares, J., Gómez-
Luna, J.: Parallelizing and optimizing lip-canny using nvidia
cuda. In International Conference on Industrial, Engineering and
Other Applications of Applied Intelligent Systems (pp. 389-398).
Springer, Berlin, Heidelberg (2010, June)

	28.	 Lourenço, L. H., Weingaertner, D., Todt, E.: Efficient implementa-
tion of canny edge detection filter for ITK using CUDA. In 2012
13th Symposium on Computer Systems (pp. 33-40). IEEE (2012,
October)

	29.	 Vigil, B.M.L.P.: 2015, November. Accelerating the Canny edge
detection algorithm with CUDA/GPU, International Congress
COMPUMAT (2015)

	30.	 Huang, Y., Bai, Y., Li, R., Huang, X.: Research of Canny edge
detection algorithm on embedded CPU and GPU heterogene-
ous systems. In 2016 12th International Conference on Natural
Computation, Fuzzy Systems and Knowledge Discovery (ICNC-
FSKD) (pp. 647-651). IEEE (2016, August)

	31.	 Mogale, H.: High Performance Canny Edge Detector using Par-
allel Patterns for Scalability on Modern Multicore Processors.
(2017) arXiv preprint arXiv:​1710.​07745

	32.	 Emrani, Z., Bateni, S., Rabbani, H.: A new parallel approach
for accelerating the gpu-based execution of edge detection algo-
rithms. J. Med. Signals Sens. 7(1), 33 (2017)

	33.	 NVIDIA: CUDA Zone (2021) https://​devel​oper.​nvidia.​com/​categ​
ory/​zone/​cuda-​zone https://developer.nvidia.com/category/zone/
cuda-zone

	34.	 Fung, J.: Computer Vision on the GPU. GPU Gems 2(649–665),
34 (2005)

	35.	 Podlozhnyuk, V.: Image convolution with CUDA. NVIDIA Cor-
poration white paper, June, 2097(3) (2007)

	36.	 Jourlin, M., Pinoli, J.C.: A model for logarithmic image process-
ing. J. Microsc. 149(1), 21–35 (1988)

	37.	 Palomares, J.M., González, J., Ros, E.: Detección de bordes en
imágenes con sombras mediante LIP-Canny. In Memoria del Sim-
posio de Reconocimiento de Formas y Análisis de Imágenes del
I Congreso Nacional de Informática. Granada, España. pp (pp.
71-76) (2005)

	38.	 González-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D.:
A Comparison Study of Some Configurations of the Uninorm
Morphological Edge Detector. In International Conference on
Fuzzy Computation Theory and Applications (Vol. 2, pp. 410-
419). SCITEPRESS (2012, October)

	39.	 González-Hidalgo, M., Massanet, S.: A fuzzy mathematical mor-
phology based on discrete t-norms: fundamentals and applications
to image processing. Soft. Comput. 18(11), 2297–2311 (2014)

	40.	 González-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D.:
A new edge detector based on uninorms. In International Confer-
ence on Information Processing and Management of Uncertainty
in Knowledge-Based Systems (pp. 184-193). Springer, Cham
(2014, July)

	41.	 Gonzalez-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D.:
On the choice of the pair conjunction-implication into the fuzzy
morphological edge detector. IEEE Trans. Fuzzy Syst. 23(4),
872–884 (2014)

	42.	 González-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D.:
On the generalization of the uninorm morphological gradient. In
International Work-Conference on Artificial Neural Networks (pp.
436-449). Springer, Cham (2015, June)

	43.	 González-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D.:
On the pair uninorm-implication in the morphological gradient. In
Computational Intelligence (pp. 183-197). Springer, Cham (2015)

	44.	 Bibiloni, P., González-Hidalgo, M., Massanet, S., Mir, A., Ruiz-
Aguilera, D.: Mayor-torrens t-norms in the fuzzy mathematical
morphology and their applications. In Fuzzy Logic and Informa-
tion Fusion (pp. 201-235). Springer, Cham (2016)

	45.	 González-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D.:
Edge image aggregation method using ordered weighted averag-
ing functions. In 2016 IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE) (pp. 1355-1362). IEEE (2016, July)

	46.	 Bustince, H., Barrenechea, E., Sesma-Sara, M., Lafuente, J.,
Dimuro, G.P., Mesiar, R., Kolesárová, A.: Ordered directionally
monotone functions: justification and application. IEEE Trans.
Fuzzy Syst. 26(4), 2237–2250 (2017)

	47.	 Sun, G., Zhang, A., Ren, J., Ma, J., Wang, P., Zhang, Y., Jia, X.:
Gravitation-based edge detection in hyperspectral images. Remote
Sens. 9(6), 592 (2017)

	48.	 Valero, M.M., Rios, O., Mata, C., Pastor, E., Planas, E.: An inte-
grated approach for tactical monitoring and data-driven spread
forecasting of wildfires. Fire Saf. J. 91, 835–844 (2017)

	49.	 Valero, M.M., Rios, O., Pastor, E., Planas, E.: Automated location
of active fire perimeters in aerial infrared imaging using unsuper-
vised edge detectors. Int. J. Wildland Fire 27(4), 241–256 (2018)

http://arxiv.org/abs/1710.07745
https://developer.nvidia.com/category/zone/cuda-zone
https://developer.nvidia.com/category/zone/cuda-zone

605Journal of Real-Time Image Processing (2022) 19:591–605	

1 3

	50.	 Sussner, P., Carazas, L.C.: An Approach Towards Image Edge
Detection Based on Interval-Valued Fuzzy Mathematical Mor-
phology and Admissible Orders. In 11th Conference of the Euro-
pean Society for Fuzzy Logic and Technology (EUSFLAT 2019)
(pp. 690-697). Atlantis Press (2019, August)

	51.	 Marco-Detchart, C., Bustince, H., Fernandez, J., Mesiar, R.,
Lafuente, J., Barrenechea, E., Pintor, J.M.: Ordered directional
monotonicity in the construction of edge detectors. Fuzzy Sets
and Systems (2020)

	52.	 Medina-Carnicer, R., Madrid-Cuevas, F.J., Muñoz-Salinas, R.,
Carmona-Poyato, A.: Solving the process of hysteresis without
determining the optimal thresholds. Pattern Recogn. 43(4), 1224–
1232 (2010)

	53.	 Medina-Carnicer, R., Carmona-Poyato, A., Muñoz-Salinas, R.,
Madrid-Cuevas, F.J.: Determining hysteresis thresholds for edge
detection by combining the advantages and disadvantages of
thresholding methods. IEEE Trans. Image Process. 19(1), 165–
173 (2009)

	54.	 Medina-Carnicer, R., Madrid-Cuevas, F.J., Carmona-Poyato, A.,
Muñoz-Salinas, R.: On candidates selection for hysteresis thresh-
olds in edge detection. Pattern Recogn. 42(7), 1284–1296 (2009)

	55.	 Hancock, E.R., Kittler, J.: Adaptive estimation of hysteresis
thresholds. In Proceedings. 1991 IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition (pp. 196-201).
IEEE (1991, June)

	56.	 Yitzhaky, Y., Peli, E.: A method for objective edge detection
evaluation and detector parameter selection. IEEE Trans. Pattern
Anal. Mach. Intell. 25(8), 1027–1033 (2003)

	57.	 NVIDIA: CUDA C Programming Guide (2021) https://​docs.​
nvidia.​com/​cuda/​cuda-c-​progr​amming-​guide/​index.​html https://
docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

	58.	 NVIDIA: CUDA C Best Practices Guide (2021) https://​docs.​
nvidia.​com/​cuda/​cuda-c-​best-​pract​ices-​guide/​index.​html https://
docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html

	59.	 Luitjens, J.: “CUDA Pro Tip: Increase Performance with Vec-
torized Memory Access”, (Dec. 2013). https://​devbl​ogs.​nvidia.​
com/​cuda-​pro-​tip-​incre​ase-​perfo​rmance-​with-​vecto​rized-​mem-
ory-​access/https://devblogs.nvidia.com/cuda-pro-tip-increase-
performance-with-vectorized-memory-access/

	60.	 Luitjens, J.: “Faster Parallel Reductions on Kepler”, (Feb.
2014). https://​devel​oper.​nvidia.​com/​blog/​faster-​paral​

lel-​reduc​tions-​kepler/https://developer.nvidia.com/blog/
faster-parallel-reductions-kepler/

	61.	 NVIDIA: CUDA Math API (2021) https://​docs.​nvidia.​com/​cuda/​
cuda-​math-​api/​index.​html https://docs.nvidia.com/cuda/cuda-
math-api/index.html

	62.	 Heath, M.D., Sarkar, S., Sanocki, T., Bowyer, K.W.: A robust
visual method for assessing the relative performance of edge-
detection algorithms. IEEE Trans. Pattern Anal. Mach. Intell.
19(12), 1338–1359 (1997)

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Antonio Fuentes‑Alventosa  received the B.S. and M.S. degrees in Tel-
ecommunication Engineering from the University of Málaga, Spain, in
1999, the B.S. degree in Computer Science from the National Distance
Education University (UNED), Spain, in 2006, and the M.S. degree in
Intelligent Systems from the University of Córdoba, Spain, in 2014.
Since 2001, he is software developer at Aplicaciones Informáticas Pro-
sur in Córdoba, Spain. His research interest is in the parallelization
and optimization of scientific algorithms on GPUs and heterogeneous
systems.

Juan Gómez‑Luna  is a postdoctoral researcher at ETH Zürich. He
received the BS and MS degrees in Telecommunication Engineering
from the University of Sevilla, Spain, in 2001, and the PhD degree in
Computer Science from the University of Córdoba, Spain, in 2012.
Between 2005 and 2017, he was a lecturer at the University of Córdoba.
His research interests focus on Processing-in-Memory, GPUs and het-
erogeneous systems, medical imaging, and bioinformatics.

R. Medina‑Carnicer  received the B.S. degree in Mathematics from
University of Sevilla, Spain, and the Ph.D. degree in Computer Sci-
ence from the Polytechnic University of Madrid, Spain, in 1992. Since
1993, he has been a lecturer of Computer Vision at Cordoba University,
Spain. His research is focused on Edge Detection, 3-D Vision, Aug-
mented Reality and Pattern Recognition.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://devblogs.nvidia.com/cuda-pro-tip-increase-performance-with-vectorized-memory-access/
https://devblogs.nvidia.com/cuda-pro-tip-increase-performance-with-vectorized-memory-access/
https://devblogs.nvidia.com/cuda-pro-tip-increase-performance-with-vectorized-memory-access/
https://developer.nvidia.com/blog/faster-parallel-reductions-kepler/
https://developer.nvidia.com/blog/faster-parallel-reductions-kepler/
https://docs.nvidia.com/cuda/cuda-math-api/index.html
https://docs.nvidia.com/cuda/cuda-math-api/index.html

	GUD-Canny: a real-time GPU-based unsupervised and distributed Canny edge detector
	Abstract
	1 Introduction
	2 Medina-Carnicer’s method for unsupervised determination of hysteresis thresholds
	2.1 Background
	2.2 Steps summary of Medina-Carnicer’s method

	3 GPU-based unsupervised and distributed Canny edge detector (GUD-Canny)
	3.1 Gaussian filtering
	3.2 Gradient computation
	3.3 Non-maximum suppression
	3.4 Hysteresis thresholds computation
	3.4.1 Calculation of the matrices
	3.4.2 Calculation of the matrices
	3.4.3 Calculation of the distributions P(F(x)) and the histograms of the matrices
	3.4.4 Searching of hysteresis thresholds

	3.5 Hysteresis thresholding

	4 Experimental evaluation
	4.1 Quality evaluation
	4.2 Temporal efficiency evaluation
	4.3 Distribution of execution times
	4.4 Horizontal partitioning vs. vertical partitioning

	5 Conclusions
	References

