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Abstract
The Canny algorithm is one of the most commonly used edge detectors due to its superior performance, especially in noisy 
environments. Its main limitation is that it is time consuming due to its multistage nature and the use of complex compu-
tational operations, primarily hysteresis thresholding. For this reason, many efficient implementations of the Canny edge 
detector have been developed on different accelerating platforms, such as ASICs, FPGAs and GPUs. The two main limita-
tions of the GPU implementations developed to date are the bottleneck caused by the hysteresis process, and the use of fixed 
hysteresis thresholds. To overcome these issues, a novel GPU-based unsupervised and distributed Canny edge detector is 
proposed in this paper. Experimental evaluation showed that our Canny edge detector fully satisfies real time requirements, 
as it only requires 0.35 ms on average to detect edges on 512×512 images, and that it is faster than existing GPU and FPGA 
implementations.
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1  Introduction

Edge detection is an essential operation in different fields, 
such as image processing, computer vision and pattern rec-
ognition. Over the years, many edge detection algorithms 
have been proposed, including classical approaches, such as 
Roberts [1], Sobel [2], Prewitt [3] and Canny [4] methods, as 
well as more recent methods based on soft computing tech-
niques, such as fuzzy logic [5], Artificial Neural Networks 
[6], genetic algorithms [7], particle swarm optimization [8], 
ant colony optimization [9] and adaptive neuro fuzzy infer-
ence system [10].

The Canny algorithm [4], also known as optimal detec-
tion method, is still one of the most widely used edge 

detection techniques due to its superior performance. It con-
sists of the following four stages: (1) noise reduction, (2) 
gradient computation, (3) non-maximum suppression, and 
(4) hysteresis thresholding. First, the image noise is reduced 
by a Gaussian convolution. Next, first derivatives are calcu-
lated in both horizontal ( dx ) and vertical dimensions ( dy ). 
From these two images, the gradient magnitude (G) and 
direction ( � ) are computed for each pixel by the formulas 
G =

√
d2
x
+ d2

y
 and � = tan−1(

dy

dx
) . In the third stage, possible 

edges are obtained by suppressing all pixels which are not 
local maximums in the gradient direction. In the last stage, 
hysteresis thresholding determines which of possible edges 
are really edges using two thresholds values, low and high. 
First, the set of pixels with G ≥ high and the set of pixels 
with G ≤ low are directly classified as edges and non-edges, 
respectively. Then, the remaining possible edges (i.e., those 
with low < G < high ) are classified as edges if and only if 
they are connected (directly or via other possible edges) to 
pixels with G ≥ high . In the rest of the paper, the set of pix-
els with low < G < high will be referred to as instability 
zone [11], and their classification process as linking process 
[11]. Additionally, we define the instability map as a binary 
image of the same dimensions as G, in which the value of 
pixel (i, j) is 1 if the pixel (i, j) of G belongs to the instability 
zone, or 0 otherwise.
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The main drawback of the Canny edge detector is that it 
is time consuming, due to its high computational complex-
ity. To overcome this limitation, many implementations of 
the algorithm have been presented on different accelerat-
ing platforms, such as ASICs [12–14], FPGAs [15–23] and 
GPUs [25–32].

There are several ASICs implementations of Deriche fil-
ters, which have been derived from Canny’s criteria. Deriche 
[12] presented a network with four transputers that took 6 
s to detect edges in a 256 × 256 image, which is far from 
real-time requirements. Torres et al. [13] proposed a faster 
solution that processed 25 frames/s at 33 MHz, but the area 
overhead was increased by the use of Last-In First-Out 
(LIFO) stacks in off-chip SRAM memories. Lorca et al. [14] 
presented a new design that improved that of [13] by reduc-
ing the memory size and the computation cost by a factor 
of two. Nevertheless, the number of clock cycles per pixel 
varies with the image size, and the processing time increases 
with the size of the image.

Some efforts have been made to accelerate Canny edge 
detection using FPGAs [15–23]. The proposals in [15] and 
[16] translated the software designs directly into hardware 
description languages (Handel-C and VHDL, respectively), 
which resulted in timing performance degradation. Gentsos 
et al. [17] presented a parallel architecture of simultaneous 
4-pixel calculation that reduced the latency of the implemen-
tations of [15] and [16]. He et al. [18] proposed a self-adapt 
threshold Canny algorithm to overcome the drawback of 
setting the hysteresis thresholds manually in existing hard-
ware implementations. In their method, hysteresis thresholds 
are calculated from the histogram of gradient magnitude. 
Their algorithm required about 2.5 ms to detect the edges 
of a 360×280 image on a FPGA chip EP1C60240C8 (Altera 
Cyclone) based platform. Li et al. [19] presented other solu-
tion for self-adapt threshold Canny algorithm, which adopted 
a Shifting-LUT-based direction calculation algorithm to 
improve the processing speed. The processing time was 5.24 
ms for a 512×512 image on a Xilinx’s Virtex-5 FPGA. Peng 
et al. [20] proposed an improved high-speed Canny edge 
detection algorithm based on FPGA, in which the gradient 
is calculated by the second harmonic of the variable param-
eters (SHOVP) to simplify complex arithmetic into logic 
operation. The feasibility and effectiveness of the algorithm 
was tested on Altera DE2 platform. Abdelgawad et al. [21] 
proposed an implementation of Canny algorithm on Zynq 
platform using Vivado High Level Synthesis (HLS). The 
achieved results showed that the collaboration of CPU and 
FPGAs enabled up to a 100x performance improvement. The 
CPU utilization dropped down and the frame rate was up to 
60 fps for 1280×1024 resolution. Xu at al. [22] presented a 
distributed Canny edge detection algorithm that adaptively 
computes the edge detection thresholds based on the block 
type and the local distribution of the gradients in the image 

block. In addition, their method uses a non-uniform gradi-
ent magnitude histogram to compute block-based hysteresis 
thresholds. The implementation of the algorithm on a Xilinx 
Virtex-5 FPGA platform takes only 0.721 ms (including the 
SRAM read/write time and the computation time) to detect 
edges of 512×512 images in the USC SIPI database when 
clocked at 100 MHz. Sangeetha et al. [23] proposed a cost-
effective robust Canny edge detection algorithm, whose keys 
contributions are the following: (1) computation of gradient 
magnitude and orientation using approximate method, (2) 
block classification techniques, and (3) adaptive threshold 
calculation of each block. Results on Xilinx Virtex-5 FPGA 
showed that the algorithm requires only 0.672 ms to detect 
the edges of 512×512 image when clocked at 100 MHz.

In the area of General Purpose Graphic Processing 
Unit (GPGPU), several efficient implementations of the 
Canny algorithm have been proposed [25–32]. Luo and 
Duraiswami [25] presented the first implementation of the 
Canny algorithm on the popular NVIDIA CUDA framework 
[33]. They mapped the entire algorithm to the GPU, and 
improved previous similar implementations on NVIDIA Cg 
[34] and Khronos Group GLSlang [24] that not included the 
hysteresis stage. The convolution steps (Gauss and Sobel 
filtering) are efficiently implemented using a separable fil-
ter algorithm, similar to the one supplied with the CUDA 
toolkit [35]. The gradient magnitude and direction are eas-
ily obtained by calculating the L2 norm and the arctan-
gent, respectively, of the first derivatives on a simple pixel 
to thread mapping. The gradient direction of each pixel is 
quantized to one of the eight directions corresponding to 
the neighboring pixels ( �∕8 + k�∕4 ). Non-maximum sup-
pression is performed on a straightforward way by setting 
to 0 the gradient magnitudes that are not local maximums in 
the gradient direction. Hysteresis is performed by a kernel 
of 16× 16 thread-blocks, each of which processes a separate 
16× 16 pixel-block of the gradient along with a one pixel 
wide apron around the 16× 16 pixel-block, resulting in a 
17× 17 pixel-block. Each thread-block loads its assigned 
17× 17 pixel-block to shared memory, and executes a breadth 
first search (BFS) algorithm on it to classify the pixels of 
the internal 16× 16 pixel-block as edges or non-edges. This 
classification is carried out by assigning -2 to the gradient 
magnitude, if the pixel is an edge, or 0, otherwise. Once a 
thread-block finishes the BFS process, it writes the edge 
states of all non-apron pixels in shared memory back into 
the gradient magnitude space in global memory. Subsequent 
calls to the hysteresis kernel will allow the linking among 
pixels that belong to different 16× 16 pixel-blocks, thanks 
to the reloading of the updated edge states of apron pix-
els into shared memory. Due to this multi-pass approach, 
the implementation speed is dominated by the hysteresis 
process. Experimental evaluation showed that it occupies 
more than 70% of the total runtime. For testing purposes, the 
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hysteresis kernel was called four times per iteration, as no 
significant improvement was observed with higher values for 
the test images. Experiments showed a significant speedup 
against straightforward CPU functions, but a moderate 
improvement against multi-core multi-threaded CPU func-
tions taking advantage of special instructions. The measured 
execution time for a 512×512 image was 3.40 ms. Ogawa 
et al. [26] presented a solution based on the work of Luo and 
Duraiswami [25], in which they described an issue in the tra-
versing of all weak edge pixels, and proposed a stack-based 
mechanism to fix it. In the hysteresis thresholding stage, 
if the pixel assigned to a thread is a strong edge pixel, the 
thread uses a stack to traverse the adjacent weak edge pixels, 
which are labeled as final edge pixels. Experimental evalu-
ation showed a runtime of 364.389 ms for a 10240×10240 
image. The logarithmic image processing (LIP) model is a 
robust mathematical framework that is compatible with what 
is known about the human visual process [36]. In [27], Palo-
mar et al. presented the implementation of two LIP-Canny 
methods, one operating images in LIP space with traditional 
operators, and the other operating images in natural space 
with modified operators. The work of Palomar et al. [27] 
was based on those of Palomares et al. [37] and Luo and 
Duraiswami [25]. As in [25], the number of iterations of the 
hysteresis kernel was fixed to 4. Experimental evaluation 
showed that CUDA implementations are 10–16 times faster 
than the corresponding C++ implementations. Moreover, 
LIP-Canny using modified operators is slightly faster than 
the alternative approach based on classical operators. The 
average runtimes for 512×512 images were 26.448 ms and 
28.848 ms for the first and second method, respectively. 
Lourenço et al. [28] developed a CUDA implementation of 
the Canny algorithm for the Insight Segmentation and Regis-
tration Toolkit (ITK) using second-order derivatives (instead 
of Sobel filtering [25]) and a hybrid CPU-GPU approach 
for the hysteresis stage that closely followed the method 
proposed in [25]. Experimental evaluation showed that the 
CUDA implementation on three generations of NVIDIA 
GPGPUs was between 3.6 and 50 times more faster than the 
standard ITK Canny implementation on two CPU models. 
The main novelties of the CUDA implementation proposed 
by B. M. L. P. Vigil [29] are the application of Otsu method 
for automatic calculation of hysteresis thresholds, and the 
use of interpolation in the non-maximum suppression step to 
improve the quality of edge detection. The hysteresis thresh-
olding is performed by the same hybrid CPU-GPU technique 
used in previous works, and, hence, it occupies a consider-
able percentage in the total execution time (more than 50%). 
The execution times of the CUDA Canny detector for 512×
512 Lena, Mandrill and Peppers images were 8.49 ms, 9.84 
ms and 10.90 ms, respectively. Huang et al. [30] presented 
a CUDA implementation on the embedded CPU and GPU 
heterogeneous computing platform Jetson TK1 of NVIDIA. 

Noise reduction, gradient computation and non-maximum 
suppression are efficiently implemented in a similar way to 
that of [25]. However, the linking process is replaced by a 
simpler schema, which classifies a pixel of the instability 
zone as an edge pixel if at least one of its eight neighboring 
pixels is an edge pixel. Additionally, the hysteresis thresh-
olds are obtained from the histogram of gradient magnitude. 
Experimental evaluation showed that the runtimes for 512×
512 Lena and Peppers images were approximately 3 ms. In 
[32], Emrani et al. presented a CUDA implementation of 
Canny algorithm in which the main novelty was the replace-
ment of the Luo and Duraiswami’s BFS algorithm [25] with 
a more efficient method. The kernel corresponding to this 
method checks whether a pixel belongs to the instability 
zone or not. If so, it will check its neighboring pixels. If a 
strong edge is found, the current pixel is classified as an edge 
pixel. A flag in global memory is used to indicate whether 
any pixel of the instability zone has been classified as an 
edge pixel. The kernel is launched as long as the flag is set. 
The execution time of the CUDA Canny detector for a 512×
512 image was 37.35 ms on a GeForce GTX 550 Ti GPU.

As we have just seen, the main bottleneck of GPU-based 
implementations of Canny algorithm is the hysteresis step, 
due to the need of calling the hysteresis kernel an indeter-
minate number of times (at least 4) executed on host side. 
On the other hand, in all implementations, except B. M. L. 
P. Vigil’s [29] and Huang et al.’s [30], the hysteresis thresh-
olds are adjusted manually. In this work, we propose a novel 
GPU-based implementation of the Canny algorithm on 
CUDA that overcomes these limitations. As in [22] and [23], 
the image is partitioned into sub-images, and the following 
steps are performed on each sub-image in parallel: (1) cal-
culation of the optimal hysteresis thresholds, and (2) hyster-
esis process using the parameters obtained in the previous 
step. As each sub-image is processed independently, it is not 
necessary the costly hybrid CPU-GPU approach of previ-
ous implementations for hysteresis stage. The calculation of 
hysteresis thresholds is carried out with Medina-Carnicer’s 
method [11], which, at present, is relevant for unsupervised 
edge detection because, since its introduction, it has been 
used to find automatically the hysteresis thresholds in many 
works [38–51]. Medina-Carnicer’s method [11] outperforms 
those used in previous implementations of Canny algorithm 
[18, 19, 22, 23, 29], because the first searches the optimal 
values of both hysteresis thresholds low and high, while the 
latter do not, since they assume a constant ratio low/high. 
Experimental evaluation showed that our GPU-based unsu-
pervised and distributed Canny edge detector, which we have 
named GUD-Canny, requires only between 0.33 and 0.48 
milliseconds to detect edges on 512×512 images, which fully 
satisfies real-time requirements and outperforms reported 
runtimes of existing FPGA and GPU solutions.
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The rest of the paper is organized as follows. Section 2 
gives a brief overview of Medina-Carnicer’s method. Sec-
tion 3 presents GUD-Canny. Section 4 shows the experimen-
tal evaluation of our solution, and, finally, the main conclu-
sions are stated in Sect. 5.

2 � Medina‑Carnicer’s method 
for unsupervised determination 
of hysteresis thresholds

2.1 � Background

In [11], Medina-Carnicer et al. presented a novel method to 
look for the hysteresis thresholds in an unsupervised way. 
Given a set of candidate thresholds pairs, the key idea is to 
combine the gradient information with that obtained from 
applying the linking process for all the candidate thresholds 
pairs. Experimental evaluation showed that the performance 
of Medina-Carnicer’s algorithm is better than those of pre-
vious methods [52, 53]. The computational complexity of 
Medina-Carnicer’s algorithm [11] is smaller than that of 
the solution presented in [53], but bigger than that of the 
proposal in [52]. Nevertheless, the approach in [52] only 
finds an approximate edge map and it is not able to find the 
hysteresis thresholds. The results obtained by Medina-Car-
nicer’s method [11] have been validated only for the Canny 
edge detector, but there are no restrictions to apply it to any 
other edge detector whose strategy is based on the hysteresis 
mechanism.

The main innovations presented in [11] are the following: 

1.	 In contrast to previous works [53–56], which are aimed 
at directly searching for hysteresis thresholds, it follows 
an indirect way, which consists of looking for the insta-
bility zone and then determining the hysteresis thresh-
olds from it.

2.	 Unlike previous proposals [53, 55, 56], which only use 
gradient information, it combines the latter with that of 
the linking process.

2.2 � Steps summary of Medina‑Carnicer’s method

Let I be an image, G its gradient magnitude after non-maxi-
mum suppression normalized in the interval [0,1], and C a set 
of candidate thresholds pairs {(low, high), low, high ∈ (0, 1)}.

Given a hysteresis thresholds pair (low, high), we define 
the following edge maps:

•	 Hysteresis map ( Glow,high ), which is obtained by perform-
ing the hysteresis process on G with (low, high).

•	 High map ( Ghigh ), which is the result of thresholding G 
with high.

•	 Linking map ( ΔGlow,high ), which is composed exclu-
sively of the edges added by the linking process using 
(low, high). Note that ΔGlow,high = Glow,high − Ghigh.

The steps of Medina-Carnicer’s method are the following: 

1.	 Calculate a set H of linking maps corresponding to the 
candidate thresholds pairs of C. 

2.	 Compute the sum SMH of the linking maps. 

 In this matrix, the value of each element is the number 
of times that the corresponding pixel of G is classified as 
edge by the linking process for all the candidate thresh-
olds pairs.

3.	 Calculate the division of SMH by the cardinality of C, 
which will be denoted as Prob(SMH) . 

 Each element of Prob(SMH) represents the probability 
that the corresponding pixel of G is classified as edge 
by the linking process.

4.	 Compute the distribution P(F(x)),∀x ∈ (0, 1) , defined as 
follows: 

where

•	 Probx(SMH) is the binary edge map obtained by thresh-
olding Prob(SMH) with x ∈ (0, 1) . Its elements with value 
1 correspond to the pixels of G that have a probability 
equal or greater than x of being classified as edges by the 
linking process.

•	 |Probx(SMH)| is the number of elements with value 1 in 
Probx(SMH).

•	 F(x) = G◦Probx(SMH) , where ◦ is the Hadamard product.
•	 |F(x)| is the number of elements with value x in F(x).

The distribution P(F(x)) represents the probability that a 
pixel has gradient level x if it is a pixel with probability 
equal or greater than x of being added by the linking process. 
It is the combined information used by Medina-Carnicer’s 
method.

5. Compute the histogram of Prob(SMH) for the set 
D = {x ∈ (0, 1)|P(F(x)) ≠ 0} , which represents the insta-
bility zone. The hysteresis thresholds are the values of D 

(1)H = {ΔGlow,high, (low, high) ∈ C}

(2)SMH =
∑

H

(3)Prob(SMH) = SMH∕|C|

(4)P(F(x)) =

{
|F(x)|

|Probx(SMH ))|
|Probx(SMH)| > 0

0 |Probx(SMH)| = 0



595Journal of Real-Time Image Processing (2022) 19:591–605	

1 3

corresponding to the first and last local maximums of the 
histogram.

The set C is obtained by sampling an interval 
[0.01,MAX_HIGH] , where 0.01 < MAX_HIGH ≤ 1.0 . In 
[11], Medina-Carnicer et al. showed that two selections of 
C that ensure a good performance of their method are those 
obtained by sampling the interval [0.01, 0.25] with steps 
0.01 and 0.03. Furthermore, the results presented in [53] 
indicate that their approach, in general, depends less on the 
initial set than the method of Yitzhaky and Peli [56] does.

3 � GPU‑based unsupervised and distributed 
Canny edge detector (GUD‑Canny)

In this section, we describe GUD-Canny, our GPU-based 
unsupervised and distributed Canny edge detector, which 
has been developed using the popular NVIDIA CUDA 
framework [33]. In the presented algorithms, the following 
notation is employed:

•	 Prefixes d_, s_ and c_ in the names of the variables indi-
cate that they are allocated in global, shared and constant 
memory spaces, respectively.

•	 Symbols&, |, ∼ , << and >> are the bitwise operators 
AND, OR, NOT, left shift and right shift, respectively.

Algorithm 1 provides a high-level description of GUD-
Canny. As it can be seen, the inputs of our method are the 
following. First, a W × H image, which is provided in a vec-
tor of P 8-bit unsigned integers ( d_image ), where P is the 
number of pixels. Second, the standard deviation � . Third, 
a set of NCTP candidate thresholds pairs, which is supplied 
in a vector of float pairs ( c_C ). On the other hand, the output 
of GUD-Canny are the edges of the input image, which are 
written in a vector of P 8-bit unsigned integers ( d_edges).

Steps 1–3 correspond to the classic first stages of Canny 
edge detection. To apply Medina-Carnicers’s method (steps 
4 to 7), the non-maximum suppression returns the gradient 
magnitude normalized in the interval [0, 1] ( d_G ). The gra-
dient magnitude is partitioned horizontally into NS = W∕32 
sub-images of dimension 32 × H , and Medina-Carnicer’s 
method [11] is used to calculate an optimal pair of hysteresis 
thresholds for each sub-image. Finally, in step 8, the hyster-
esis map is computed for each subimage using its assigned 
hysteresis thresholds pair, and written in the output vector 
d_edges.

Since the original width of the input image may not be a 
multiple of 32, the CUDA function cudaMemcpy2D [57] is 

used to copy the input image from host to device memory 
adding the necessary padding to each row, and the same 
function is called to copy the output edges from device to 
host memory.

In the following subsections, each step of GUD-Canny is 
described in detail.

3.1 � Gaussian filtering

To reduce the impact of noise, the input image is smoothed 
by convolving it with two one-dimensional Gaussian filters 
in the horizontal and vertical dimensions.

Each Gaussian filtering is performed by a different CUDA 
kernel, in which each output pixel is computed by a dif-
ferent thread. Kernels implementations are similar to those 
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presented in [35], but with the difference that the shared 
memory is not used for caching data. Since the hardware 
cache system ensures a good performance [57], all read/
write operations are performed directly to global memory.

Each thread initializes each element of the input image 
vector used to perform the convolution dot product as fol-
lows. If it corresponds to an existing pixel, i.e., the position 
of the pixel is not outside the borders of the image, it is read 
from the input image. Otherwise, it is assigned the value 
zero.

As in [27], the length of Gaussian filters is variable and 
depends on the standard deviation � . Each kernel obtains 
the Gaussian filter from a table in constant memory, which 
stores the Gaussian filters corresponding to � values between 
0.1 and 2.0. The first table entry corresponds to � = 0.1, the 
second one to � = 0.2, and so on up to 2.0.

3.2 � Gradient computation

After Gaussian filtering, each gradient tuple (dx, dy) is cal-
culated using the first difference operator (−1, 0, 1) , and the 
associated gradient magnitude by the formula 

√
d2
x
+ d2

y
 . 

The results are written in the output vectors d_grad_x , 
d_grad_y and d_grad_mag , respectively. As in Gaussian 
filtering step, all read/write operations are made directly to 
global memory, and the border conditions are carefully 
checked.

Additionally, to compute the maximum gradient magni-
tude, each thread performs an atomic maximum operation 
(using the CUDA function atomicMax [57]) between the 
calculated gradient magnitude and a global memory variable 
( d_max_grad_mag[0] ), which has been initialized to zero.

3.3 � Non‑maximum suppression

In this step, one kernel computes a new version of gradient 
magnitude ( d_G ) by performing non-maximum suppression 
and normalization on the gradient magnitude obtained in 
the previous stage ( d_grad_mag ). Given a pixel of value p 
in d_grad_mag , the value of the corresponding pixel in d_G 
is p∕d_max_grad_mag[0] if the pixel is a maximum in the 
gradient direction, or zero otherwise. Each pixel of d_G is 
computed by a different thread of the kernel.

The method used for maximum suppression is the one 
employed in [29], which quantizes gradient direction to one 

of the eight directions {�∕8 + k�∕4} , and uses linear inter-
polation to calculate the values of the two neighboring pixels 
in the gradient direction.

Global memory operations and border conditions man-
agement are executed as in previous steps.

3.4 � Hysteresis thresholds computation

As we said previously, the gradient magnitude is partitioned 
horizontally into NS = W∕32 sub-images, and the method of 
Medina-Carnicer is applied on each one in parallel.

Images are processed by dividing them into groups of 
32 consecutive pixels in the horizontal dimension, which 
will be referred to as regions. The numbers of regions of an 
image and of a sub-image will be denoted by NRI and NRS, 
respectively. For simplicity, the regions of instability/hys-
teresis/high/linking maps will be referred to as instability/
hysteresis/high/linking regions, respectively.

Each of the steps 4–7 of Algorithm 1 is performed by a 
different kernel, whose actions are specified in the following 
subsections.

3.4.1 � Calculation of the matrices SMH

Algorithm 2 presents the pseudo code of the kernel calc_
SM_H, which calculates the matrix SMH for each sub-image 
of G. The inputs are G, which is provided in a vector of P 
32-bit floats ( d_G ), and C, which is supplied in a vector 
of NCTP 32-bit float pairs, initialized statically in constant 
memory ( c_C ). The output are the NS matrices SMH cor-
responding to the NS sub-images of G, which are written in 
a vector of P 32-bit unsigned integers ( d_SM_H ), initial-
ized to 0. Maps regions are represented by 32-bit unsigned 
integers, where the i-th bit stores the binary value of the 
i-th pixel of the region. Although the gradient regions reads 
in step 1 are not coalesced, as CUDA literature [58] [57] 
recommends, they satisfy the principle of spatial locality 
because each thread reads 32 consecutive elements of d_G , 
which are properly aligned. Therefore, the transparent cache 
hierarchy of modern GPU architectures ensures a good per-
formance while reading the gradient regions. On the other 
hand, the writes in step 5 are carried out atomically using 
the CUDA function atomicAdd [57].
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In step 3, of Algorithm 2 each thread gets its hysteresis 
region ( hyst_reg ) by calling the function calc_hyst_map , 
which receives as inputs the high and instability regions 
of the calling thread ( high_reg and inst_reg , respectively). 
The actions performed by this function are presented in 
Algorithm 3. As it can be seen, each thread-block computes 
its hysteresis map in a shared memory 32-bit unsigned int 
vector ( s_hyst_map ) of size NRS. Each hysteresis region 
i is managed by the thread i, and held in the element 
s_hyst_map[i].

An alternative way to divide the gradient magnitude into 
sub-images is by partitioning it vertically into NS = H∕32 
sub-images of dimension W × 32 . In this case, the spatial 
locality of accesses to global memory is improved, because 
consecutive threads access consecutive regions. On the other 
hand, the advantage of the horizontal partition is that the 
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number of operations in the linking process is reduced (step 
5 of the function calc_hyst_map). The reason is that it is 
only necessary to examine the top and bottom regions; in 
the case of a vertical partition, the six remaining neighbor 
regions (left, top left, bottom left, right, top right and bottom 
right) have also to be taken into account. As will be shown 
in Sect. 4, GUD-Canny is slightly faster for sub-images of 
dimension 32 × H.

3.4.2 � Calculation of the matrices Prob(SMH)

The matrix Prob(SMH) for each sub-image of G is obtained 
by dividing each element of the corresponding matrix SMH 
by NCTP. The matrices Prob(SMH) are written in a vector 
of P 32-bit floats ( d_Prob_SM_H).

The number of threads of the grid equals to P divided by 
4, and each thread i performs the following actions: 

1.	 Reads the group i of four consecutive elements from 
d_SM_H through one vectorized load.

2.	 Calculates the division of each element by NCTP.
3.	 Writes the four computed float values to the 4-elements 

group i of d_Prob_SM_H through one vectorized store.

Vectorized accesses are an important GPU optimization, 
because they increase bandwidth and reduce both instruc-
tion count and latency [59].

3.4.3 � Calculation of the distributions P(F(x)) 
and the histograms of the matrices Prob(SMH)

For each sub-image of G, the distribution P(F(x)) and the 
histogram of Prob(SMH) are computed by one kernel for 
x ∈ {0.01, 0.02, ...,MAX_HIGH} . The number of x values, 
which is MAX_HIGH∕0.01 , will be denoted by NX.

The number of thread-blocks of the grid is NS × NX . 
Each thread-block calculates P(F(x)) and the histogram of 
Prob(SMH) for one sub-image of G and one x value. The size 
of thread-blocks is NRS.

The actions performed by the kernel are shown in Algo-
rithm 4, where div and mod are the quotient and remainder 
operators, respectively. The three parallel reductions are effi-
ciently executed using the CUDA function __shfl_down_sync 
[57] and fast device memory atomic operations, as described 
in [60].
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3.4.4 � Searching of hysteresis thresholds

The hysteresis thresholds searching for each sub-image of 
G is performed by the kernel described in Algorithm 5. 
The number of warps of the grid is NS, and each warp i 
searches for the hysteresis thresholds pair of sub-image i. It 
is assumed that NX < 32.

The warp votes are performed by calling the CUDA func-
tion __balloc_sync [57], which, given a predicate, evaluates 
it for all threads in the current warp, and returns a 32-bit 
binary mask, in which each bit j is set if the predicate evalu-
ates to non-zero for the lane j.

The searches of bits within the masks are performed 
efficiently using the CUDA integer intrinsic functions __ffs 
and __brev [61]. The first one finds the position of the least 
significant bit set to 1 in a 32-bit integer, and the second one 
reverses the bit order of a 32-bit unsigned integer.
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3.5 � Hysteresis thresholding

The hysteresis thresholding is carried out by the kernel pre-
sented in Algorithm 6, which is very similar to Algorithm 2. 
The number of thread-blocks of the grid is NS, and the size 
of each thread-block is NRS. The i-th thread-block calculates 
the hysteresis map corresponding to the i-th sub-image of 
G following the same steps of Algorithm 2. Then, the j-th 
thread of the thread-block writes the pixels values specified 
in its hysteresis mask ( hyst_reg ) to the j-th region of the 
corresponding output edges sub-image.

To write the hysteresis region, each thread accesses the 
output edges image through a pointer to a structure of 32 
8-bit unsigned int members. As in the case of gradient 
regions reading, although the accesses to global memory 
are not coalesced, they satisfy the principle of spatial local-
ity, and are properly aligned.

4 � Experimental evaluation

To evaluate the performance of GUD-Canny edge detection, 
we used the ground truth images of Heath’s dataset [62], 
that can be downloaded from ftp://​figme​nt.​csee.​usf.​edu/​
pub/​Edge_​Compa​rison/​images/​resul​ts/. The 28 gray refer-
ence images of this dataset were selected by humans from 
a limited set of edge maps, which were obtained using the 
Canny edge detector with different values for its parameters.

We utilized the same two candidate thresholds sets 
selected in [11], which were those obtained by sampling the 
interval [0.01, 0.25] with steps 0.01 and 0.03, and that will 
be denoted by C0.01 and C0.03 , respectively.

Our test machine had a 3.50Ghz Intel Core i7-7800X 
CPU and 32 GB of RAM. The GPU that we used was a 
GeForce RTX 2080 (Turing architecture with compute capa-
bility 7.5), and no optimization flags were utilized in our 
implementation.

4.1 � Quality evaluation

In the first experiment, we compared the quality obtained 
by applying Medina-Carnicer’s method to the entire W × H 
image (classical frame-level approach) with the quality 
resulting from executing the same method on each 32× H 
sub-image (distributed approach, which is the focusing of 
GUD-Canny). Table 1 shows the mean-square errors (MSE) 
obtained for sets C0.01 and C0.03 . In each row, for each can-
didate thresholds set, the minimum MSE is highlighted in 
bold. As it can be seen, the good performance of Medina-
Carnicer’s method not only remains in the distributed 
approach, but it even slightly outperforms that of frame-level 
approach. For the set C0.01 , the average MSEs for classical 
and distributed approaches were 0.0534 and 0.0498, respec-
tively. In the case of the set C0.03 , the values were 0.0534 and 
0.0502, respectively.

On the other hand, it can be observed that there is no 
big difference between the quality obtained using C0.01 with 
respect to that resulting from utilizing C0.03 , as the average 
MSEs are 0.0498 and 0.0502, respectively.

4.2 � Temporal efficiency evaluation

Table 2 presents the GUD-Canny edge detection times for 
sets C0.01 and C0.03 . At the end of each column, statistics 
(average, minimum and maximum) are presented for all 
images, and for those of size 512×512. Additionally, Table 3 
shows the statistics of GUD-Canny speedup for C0.03 with 
respect to C0.01 . From the presented results, we can see the 
following points: 

ftp://figment.csee.usf.edu/pub/Edge_Comparison/images/results/
ftp://figment.csee.usf.edu/pub/Edge_Comparison/images/results/
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1.	 GUD-Canny fully satisfies real time requirements, as its 
execution times are on average 1.2736 ms and 0.3637 ms 
for sets C0.01 and C0.03 , respectively.

2.	 For the set C0.03 , the edge detection times are between 
0.2814 and 0.3932 milliseconds for 512×512 images. 
Hence, GUD-Canny outperforms the temporal efficiency 
of existing GPU and FPGA implementations, like the 
solution of Sangeetha et al. [23], whose edge detection 
time is 0.672 ms for 512×512 images.

3.	 The speedup obtained using C0.03 instead of C0.01 is sig-
nificant, as its values are between 2.99x and 3.90x. The 
reason is that the number of linking maps that have to be 
calculated for C0.03 ( 36 × NS ) is much less than that for 
C0.01 ( 300 × NS ). This contrasts with the small difference 
between the quality of edge maps obtained with these 
candidate thresholds sets.

4.3 � Distribution of execution times

Tables 4 and 5 show the statistics (average, minimum and 
maximum) of kernels execution time proportions (expressed 
as percentages) for sets C0.01 and C0.03.

Unlike the case of existing GPU-based Canny edge detec-
tors, the hysteresis stage is executed efficiently, as its average 
time proportions are 2.02% and 7.70% for sets C0.01 and C0.03 , 
respectively.

As expected, due to their higher computational complex-
ity, the most time-consuming operations are the calcula-
tion of matrices SMH (whose average time proportions are 
82.38% and 39.39% for sets C0.01 and C0.03 , respectively) 
followed by the computation of distributions {P(F(x))} and 
histograms of matrices Prob(SMH)(whose average time 

Table 1   MSE values for 
frame-level Canny edge 
detection and distributed 
Canny edge detection using 
Medina-Carnicer’s method for 
unsupervised determination of 
hysteresis thresholds

For each image and candidate thresholds set, the minimum MSE is highlighted in bold

Image Frame, C0.01 Dist., C0.01 Frame, C0.03 Dist., C0.03

Airplane (659×409) 0.0095 0.0081 0.0103 0.0071
Banana (512×468) 0.0289 0.0422 0.0310 0.0351
Basket (512×512) 0.0670 0.0603 0.0499 0.0524
Beehive (512×512) 0.0270 0.0284 0.0270 0.0278
Briefcase (577×419) 0.0237 0.0253 0.0269 0.0263
Brush (572×512) 0.0407 0.0243 0.0407 0.0259
Coffeemaker (461×665) 0.0275 0.0277 0.0291 0.0289
Egg (512×512) 0.0522 0.0540 0.0534 0.0550
Elephant (512×456) 0.0523 0.0661 0.0828 0.0727
Feather (512×512) 0.0797 0.0640 0.0643 0.0624
Flower (536×509) 0.0207 0.0260 0.0249 0.0247
Golfcart (548×509) 0.0607 0.0577 0.0914 0.0721
Grater (512×438) 0.0204 0.0210 0.0252 0.0224
Mailbox (512×512) 0.0461 0.0479 0.0531 0.0550
Orange (412×472) 0.0691 0.0679 0.0676 0.0688
Pillow (552×468) 0.0394 0.0360 0.0341 0.0357
Pinecone (512×512) 0.0687 0.0629 0.0603 0.0566
Pitcher (568×419) 0.0165 0.0169 0.0195 0.0188
Pond (512×512) 0.0719 0.0724 0.0778 0.0735
Shopping cart (512×512) 0.1188 0.0761 0.0949 0.0781
Stairs (579×441) 0.0496 0.0498 0.0635 0.0540
Stapler (529×510) 0.0335 0.0373 0.0360 0.0376
Tiger (512×512) 0.1811 0.1376 0.1554 0.1270
Tire (512×512) 0.1018 0.1102 0.1018 0.1105
Traffic Cone (437×604) 0.0768 0.0636 0.0662 0.0617
Trashcan (539×433) 0.0528 0.0521 0.0528 0.0525
Turtle (512×512) 0.0142 0.0145 0.0139 0.0165
Videocamera (577×435) 0.0441 0.0445 0.0420 0.0464
Average 0.0534 0.0498 0.0534 0.0502
Minimum 0.0095 0.0081 0.0103 0.0071
Maximum 0.1811 0.1376 0.1554 0.1270
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proportions are 7.21% and 24.87% for sets C0.01 and C0.03 , 
respectively).

Figure 1 presents the statistics (average, minimum and 
maximum) of the total GPU time proportions correspond-
ing to memory transferences. As it can be seen, the penalty 
is moderate because the percentages are less than 12% and 
30% for sets C0.01 and C0.03 , respectively.

4.4 � Horizontal partitioning vs. vertical partitioning

Table 6 shows the edge detection times (ms) on 512×512 
images using the candidate thresholds C0.03 for sub-images 
sizes 32 × H (horizontal partition) and W × 32 (vertical par-
tition). For each image, the minimum execution time is high-
lighted in bold. In all cases, the number of sub-images is 16 
and the number of regions per sub-image is 512.

From the presented results, we can see that the execution 
times are slightly lower using the horizontal partitioning. 
The average speedup is 1.14x. As explained in Sect. 3.4.1, 
although the spatial locality of accesses to global memory is 
improved using vertical partitioning, the number of opera-
tions in the linking process is reduced if the sub-image size 
is 32 × H . Experimental evaluation has shown that the per-
formance improvement due to the second factor is greater 
than that of the first.

5 � Conclusions

This work has presented GUD-Canny, a novel GPU-based 
unsupervised and distributed implementation of Canny edge 
detector. Our solution overcomes the two main limitations 
of current Canny algorithm implementations, which are the 
bottleneck caused by the hysteresis process, and the use of 
fixed hysteresis thresholds.

Given a W × H image, GUD-Canny computes the normal-
ized gradient magnitude, partitions it into 32× H sub-images, 
and calculates the optimal pair of hysteresis thresholds for 
each sub-image using Medina-Carnicer’s method [11]. Once 
the hysteresis thresholds are obtained, instead of running 
one costly multipass CPU-GPU hysteresis process on the 
entire image, hysteresis thresholdings (one per sub-image, 
using its specific hysteresis thresholds) are executed entirely 
on GPU, independently and in parallel. Each thread-block 
performs the hysteresis process on one sub-image in shared 
memory, and represents each pixel of the hysteresis map 
with only one bit to optimize the use of the limited space of 
shared memory.

Experimental evaluation showed that GUD-Canny only 
requires 0.35 ms on average to detect edges on 512×512 
images. Hence, it fully satisfies real time constraints, and is 
faster than existing GPU and FPGA implementations.

Table 2   Edge detection times (ms) for candidate thresholds sets C0.01 
and C0.03

Image C0.01 C0.03

Airplane (659×409) 1.2805 0.3385
Banana (512×468) 1.0715 0.3108
Basket (512×512) 1.2234 0.3612
Beehive (512×512) 1.0518 0.3153
Briefcase (577×419) 1.2838 0.3496
Brush (572×512) 1.4066 0.3853
Coffeemaker (461×665) 2.1042 0.5396
Egg (512×512) 1.0554 0.3325
Elephant (512×456) 1.0943 0.3458
Feather (512×512) 1.3306 0.3607
Flower (536×509) 1.4382 0.3703
Golfcart (548×509) 1.5631 0.4238
Grater (512×438) 1.1136 0.3106
Mailbox (512×512) 1.3599 0.3932
Orange (412×472) 0.9376 0.2671
Pillow (552×468) 1.4201 0.3870
Pinecone (512×512) 1.1283 0.3770
Pitcher (568×419) 1.2057 0.3286
Pond (512×512) 1.2288 0.3480
Shopping cart (512×512) 1.2945 0.3721
Stairs (579×441) 1.4954 0.4707
Stapler (529×510) 1.1602 0.3283
Tiger (512×512) 1.3492 0.3739
Tire (512×512) 1.2050 0.3686
Traffic Cone (437×604) 1.5956 0.4115
Trashcan (539×433) 1.0523 0.3500
Turtle (512×512) 1.0314 0.2814
Videocamera (577×435) 1.1798 0.3833
Average 1.2736 0.3637
Minimum 0.9376 0.2671
Maximum 2.1042 0.5396
Average (512×512) 1.2053 0.3531
Minimum (512×512) 1.0314 0.2814
Maximum (512×512) 1.3599 0.3932

Table 3   Statistics of GUD-Canny speedup for C0.03 with respect to 
C0.01

Images Average Minimum Maximum

All 3.50x 2.99x 3.90x
512×512 3.42x 2.99x 3.69x
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