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Abstract
Object tracking is a key component of machine vision system and getting much attention in different walk of life. Recently, 
correlation filters have been successfully applied to visual tracking. However, how to design effective features and deal with 
model drifts remain open issues for online tracking. This paper tackles these challenges by proposing a real-time correlation 
tracking algorithm (RCT) based on two ideas. First, we propose a method to fuse features to more naturally describe the gradi-
ent and color information of the tracked object, and introduce the fused feature into a background-aware correlation filter to 
obtain the response map. Second, we present a novel strategy to significantly reduce noise in the response map and therefore 
ease the problem of model drift. Systematic comparative evaluations performed over multiple tracking benchmarks demon-
strate the efficacy of the proposed approach. The results show that the proposed RCT significantly improves the performance 
compared to the baseline tracker while still maintaining a real-time tracking speed of 26 fps in MATLAB implementation.

Keywords  Visual tracking · Real-time tracking · Correlation filter · Fused feature · Model drift

1  Introduction

Visual tracking plays an active role in a wide range of appli-
cations, including surveillance systems, driverless vehicles, 
robotics, human–computer interaction and so on. The task 
of object tracking involves estimating the states (positions 

and scales) of the target in subsequent frames, with initial 
state given in the first frame. Recent years have witnessed 
significant developments in visual tracking, where an enor-
mous amount of research effort has gone into tasks such 
as short-term single-object tracking. However, many chal-
lenges remain, such as target deformation, rotation, scale 
variation, occlusion, and imbalanced training samples [3]. 
Furthermore, object tracking is usually only a single compo-
nent in a complete machine vision system, thus the real-time 
capabilities of tracking algorithms are of paramount impor-
tance for the whole pipeline to work online. Nevertheless, 
the current top-ranking trackers are mostly based on deep 
learning technology and are neither memory-efficient nor 
real-time capable.

Correlation filters have recently been introduced for 
visual tracking and have been shown to achieve high speed 
as well as robust performance. Thanks to the learning of a 
correlation operator which is formulated as a ridge prob-
lem can be accelerated by fast Fourier transform (FFT) in 
the frequency domain, the correlation filter-based trackers 
(CFTs) can perform real-time tracking. In general, extract-
ing powerful features is extremely crucial for CFTs. Gradi-
ent [16], color [4, 12], and deep features [24, 32] which 
extracted from convolutional neural networks (CNNs) 
are widely used in CFTs. However, how to best utilize 
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different features jointly for real-time tracking remains an 
open issue. There is another tough problem for most CFTs, 
that is the trackers cannot maintain tracking robustness in 
the subsequent frames once the model drift occurs. Model 
drift means that the object appearance model gradually 
drifts away from the object due to the accumulated errors 
during online tracking. Existing works [17, 18, 20] have 
aimed to prevent model drift through modifying the train-
ing strategy rather than improving the underlying model-
based predictions themselves.

In this paper, we propose a robust correlation track-
ing method (RCT) via the exploitation of feature fusion 
and reliable response. A fused feature herein describes 
the gradient and color information conjunctively in a more 
natural way as compared to existing approaches [21, 22] 
which directly concatenates features together. The novel 
fused feature is then embedded into a correlation filter 
that is background-aware (in the sense that the filter is 
capable of learning from real, negative examples densely 
extracted from the background). For alleviating the model 
drift issue, an adaptive optimization strategy is introduced 
to remove the untrusted part of the response map that is 
caused by deformation or other challenging factors, so as 
to improve the predictions by obtaining and manipulating a 
more reliable response map which leading to an enhanced 
tracking result. The flowchart of the proposed approach is 
shown in Fig. 1.

We evaluate the proposed tracker on the OTB [29, 30] 
and Temple-Color [23] datasets. The results demonstrate 
that our method obtains a very competitive accuracy level 
in comparison with the state-of-the-art trackers, but does 
so with a real-time tracking speed of 26 fps on a standard 
desk-top CPU.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the related works, and Sect. 3 describes the 
details of the proposed approach. Experiments and analysis 
are conducted in Sects. 4, and 5 concludes this study.

2 � Related works

We discuss correlation filter-based tracking methods closely 
related to this work in this section. For the other visual 
tracking approaches, readers are referred to comprehensive 
review [19, 26, 29].

2.1 � Feature representation in correlation tracking

Bolme et  al. [5] proposed one of the seminal correla-
tion tracking methods based on the minimum output sum 
of squared errors (MOSSE), which can perform online 
tracking at an astonishing tracking speed of ∼700 fps. In 
MOSSE, raw pixels are directly used for tracking. Unfor-
tunately, noises brought by raw images extremely limit its 

Fig. 1   Flowchart of the proposed approach. The operator ⊙ is the Hadamard (element-wise) product
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tracking performance. Over the years, gradient and color 
features have been successfully applied in CFTs. The ker-
nelized correlation filter tracker (KCF) [16] employs the 
famous histogram of oriented gradient (HOG) [8] feature to 
improve the accuracy of the tracker. Also, color features like 
color names (CN) [12] and global color histogram [4] are 
investigated to reinforce color-video tracking for CFTs. Li 
et al. [22] proposed a scale adaptive with multiple features 
tracker (SAMF), which fuses HOG and CN within correla-
tion tracking framework, to further boost the tracking perfor-
mance. After recognizing the success of deep learning on a 
wide range of visual-recognition tasks, a number of tracking 
methods based on deep features and correlation filters have 
been developed [24, 32]. For instance, Ma et al. [24] utilized 
hierarchical CNN features to exploit semantic information of 
the target object with a state-of-the-art performance. How-
ever, extracting CNN features from each frame, and training 
or updating correlation filters with high dimensions is com-
putationally expensive. Therefore for correlation tracking, 
such an approach often leads to poor real-time performance.

2.2 � Robustness to model drift

Model drifts lead to inaccurate model-based predictions. 
In addressing this problem, Kalal et al. [18] proposed an 
approach that decomposed the ultimate task of tracking 
into subtasks of tracking, learning and detection (TLD), 
where tracking and detection reinforce each other. Zhang 
et  al. [31] introduced the fuzzy logic [2] to alleviate 
model drift by formulating tracking as a fuzzy classifica-
tion problem. Inspired by the KCF and TLD trackers, Li 
et al. [20] proposed a scale adaptive kernelized correla-
tion filter tracker, termed as SKCF, which estimates an 
accurate scale and models the distribution of correlation 
response with Gaussian constraint during the process of 
re-detection. However, the circulant shifted samples in 
such CFTs suffer from periodic repetitions on boundary 
positions, thereby leading to model drift and significantly 
degrading the tracking performance. Spatial regulariza-
tion methods have since been suggested to alleviate the 
unwanted boundary effects. For example, using the alter-
nating direction method of multipliers (ADMM) [6], 
Galoogahi et al. [14] resolved a constrained optimization 
problem for single-channel filters. Somewhat differently, 
the SRDCF formulation [10] allows correlation filters to 
be trained on a significantly larger set of negative training 
samples, without corrupting the positive samples, where a 
spatial regularization component is introduced to the train-
ing process to penalize the correlation filter coefficients in 
relation to their spatial location. Recently, Varfolomieiev 
et al. [27] combines the channel-independent calculation 
with the spatial regularization to suppress the background 
filter component. Unlike previous CFTs, in which negative 

examples are restricted to circular shifted patches, BACF 
[13] utilizes a correlation filter whose spatial size is much 
smaller than that of the training samples; real negative 
training examples, densely extracted from the background 
are utilized. To avoid drifting for real-time UAV tracking, 
Huang et al. [17] tried to repress aberrances during the 
training phase.

Compared with the existing methods, our proposed 
tracker has several merits. First, while RCT may be viewed 
as an (improved) approximation to the work of [13] on mul-
tiple training samples, the filter works more efficiently owing 
to the use of a more reliable response map. Second, with the 
introduction of fused features, the RCT tracker can learn 
more robust features than the previous work, thereby leading 
to superior tracking performance.

3 � Proposed approach

We aim to develop a robust tracking algorithm that is adap-
tive to significant changes without being prone to drift-
ing. We first propose a fused feature mechanism which 
describes the gradient and color information in an integrated 
way. Then, a background-aware correlation filter based on 
the exploitation of fused features is designed to obtain a 
response map. Furthermore, the mask obtained according 
to the value of the response map will be multiplied with a 
given original image to form a more reliable response map, 
which help alleviate possible model drifts.

3.1 � Multi‑channel fused features

Inspired by the duplicity theory of vision [15], we construct 
a more natural feature representation to fuse different types 
of features. In our setting, instead of concatenating the color 
and gradient features directly, we first transform the original 
image patch into HSV (Hue, Saturation, Value) color space, 
which is based more upon how colors are organized and con-
ceptualized in human vision. In such a color space, bright-
ness and colorfulness are absolute measures, which usually 
describe the spectral distribution of light entering the eye. 
Benefiting from this, our fused feature performs robust to 
the illumination variation. Secondly, HOG gradient informa-
tion is extracted from each channel of the HSV color space, 
separately. Finally, all the HOG features are concatenated to 
form our proposed fused feature, in the form of a 93-dimen-
sional matrix. Hence, for terminology, we think of the output 
feature as the combination of fused-(input)-features or, as a 
(singular) fused feature. Without losing generality and for 
conciseness, we term the resultant feature descriptor a fused 
feature.
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3.2 � Correlation tracking through fused feature

In this subsection, we introduce our fused feature into back-
ground-aware correlation filter [13] to construct a better corre-
lation tracking framework. We utilize a correlation filter with a 
spatial size which is smaller than the size of training examples 
to reduce the boundary effects. Denote xk as the fused feature 
vector of a cardinality xk ∈ ℝ

T , respectively. We consider 
y ∈ ℝ

T as the desired correlation output corresponding to a 
given sample xk . A correlation filter w with the dimensionality 
of D (where T >> D ) is then learned by solving the following 
minimization problem as that:

where � is a regularization parameter, P is a binary matrix, 
and Pxk[��j] generates all circular shifts of size D from the 
entire image patch over all j = [0,… , T − 1] steps. The 
transpose operator ⊤ on a complex vector or matrix gives 
the conjugate transpose.

Note that the Eq. (1) can be readily transformed into fre-
quency domain in order to improve the computational effi-
ciency. We introduce ĝ = [ĝT

1
,… , ĝT

K
]T as an auxiliary vari-

able. The trained filter in the frequency domain will be written 
as:

(1)E(w) =

T∑

j=1

||yj −
K∑

k=1

w⊤

k
Pxk[𝛥𝜏j]||2 + 𝜆

K∑

k=1

||wk||22,

(2)
E(w, ĝ) = ��ŷ − X̂ĝ��2

2
+ 𝜆��w��2

2
,

s.t. ĝ =
√
T(FP⊤ ⊗ IK)w

where X̂ is denoted by X̂ = [diag(x̂1)
⊤,… , diag(x̂K)

⊤]⊤ , IK 
is the K × K identity matrix, and ⊗ denotes the Kronecker 
product. In particular, Â represents the FFT of a signal A, 
where F is the orthonormal T × T  matrix of complex basis 
vectors, mapping any T-dimensional vectorized signal to its 
Fourier domain.

By directly employing the augmented Lagrangian method 
(ALM) [13], we can solve Eq. (2) and obtain the required 
correlation filter ĝ(f−1) , where f is the current frame number.

3.3 � Object location by reliable response

Representing the response value of every pixel, the response 
map r(f ) in frame f can be computed by applying the filter 
ĝ(f−1) that has been updated in the previous frame as:

where ⊙ denotes the Hadamard product, and F−1 is the 
inverse FFT (IFFT) transform.

Due to the challenges typically faced in performing real-
world tracking tasks, such as deformation and rotation, the 
similarity between the target and modeling template may 
be decreased, leading to great risk of model drift or locat-
ing mistakenly. Therefore, the response map r obtained by 
Eq. (3) can be regarded as an original (coarse) response. 
How to remove a lot of potentially misleading redundant 
information (responses to similar objects) contained in 

(3)r(f ) = F
−1

(
K∑

k=1

x̂
(f )

k
⊙ ĝ

(f−1)

k

)
,

Fig. 2   Object location by our reliable response map. We improve the predictions by manipulating the reliable response map which is obtained by 
merging a coarse-to-fine mask, leading to an enhanced tracking result
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the original response map then? As shown in Fig. 2, when 
noise exists, the position with the maximum value in the 
response map does not necessarily correspond to the real tar-
get. In this case, simply taking the position with the highest 
response as the target position is rather unreliable. Through 
a large number of experiments, empirically we find that the 
response peak of the real target often changes gradually, 
while the response peak of the disturbed object is usually 
very steep and looks very abrupt. Accordingly, in order to 
exclude the anomalies, we first try to identify the target pro-
posals which are associated with a relatively high value in 
the response map. In order to achieve this goal, we exploit 
a threshold � , which divides the response map r(f ) into two 
parts. The pixels with a gray value greater than � belong to 
the target proposal set A and the remaining ones are deemed 
to attribute to the background part B. The number of pixels 
contained in the two parts is represented with NA,� and NB,� 
respectively. We vary � from 0 to 255, each time, NA,� and 
NB,� are counted to calculate the ratio of the target proposals 
in the patch, which is denoted as Q(f )

�  , f is the frame index, 
such that:

Repeat Eq. (4) until the difference between the Q(f )
�  and Q(1) 

(initial ratio of the target area in the patch) is less than the 
error range threshold � as:

When Eq. (5) is satisfied, the grey value of pixels in the set A 
is reset to 255, while each of the rest pixels is set to 0. From 
this, a number of connected domains are obtained. Then, 
any connected domain whose pixel area is less than a fixed 
threshold � is deleted to form the fine mask matrix M(f ) . By 
merging M(f ) with the original response map r(f ) , the reli-
able response map r̃(f ) results. Finally the position with the 
maximum value in the reliable response map r̃(f ) is treated 
and recognized as the target location.

3.4 � Model updating and scale estimation

To obtain a robust approximation, at frame f, we use an 
online updating strategy which is formulated as:

where x̂(f )
model

 and x̂(f−1)
model

 represent the newly updated template 
model and old one respectively, � is the learning rate.

In order to be adaptable to any change of the scale of a 
target, the filter is applied on multiple resolutions of the 
searching area where tracking takes place [22]. This returns 

(4)Q(f )
�

=
N

(f )

A,�

N
(f )

A,�
+ N

(f )

B,�

.

(5)|Q(f )
𝛼

− Q(1)| < 𝛽.

(6)x̂
(f )

model
= (1 − 𝜂)x̂

(f−1)

model
+ 𝜂x̂(f ),

S correlation outputs with different scales, where S is the 
number of scales. The scale with the maximum correlation 
output is used to update the object location and the subse-
quent scale. To sum up, Algorithm 1 recapitulates the whole 
method.

Algorithm 1: Tracking algorithm
Data: Frames If , initial target location p1 ( f

means the number of the current frame)
Result: Target location pf

1 repeat
2 Crop an image region from If at the last location

and extract its fused-feature vector xf ;
3 Compute the optimum correlation filter (via Eq (2))

and obtain the original response map;
4 Construct the mask to yield a reliable response map;
5 Detect the target location pf via the reliable

response map;
6 Estimate the scale of the target and update the

tracking model (as summarized in Sect. 3.4);
7 until end of video sequence.

4 � Experimental results

In order to present an objective evaluation regarding the per-
formance of the proposed approach, we examine our RCT 
tracker on three standard datasets, including OTB50 [30], 
OTB100 [29], and Temple-Color128 (TC128) [23]. Both 
the general capability and the special scenarios-handling 
ability are tested. The experiments are performed in Matlab 
R2016b on an Intel i7 3.0GHz CPU with 16G RAM. In all 
the experiments carried out, we use the same parameter val-
ues for all image sequences. We employ HOG features with 
4 × 4 cells to obtain the fused feature. The regularization 
factor is empirically set to 0.001 and the number of scales 
is set to 5 with a scale-step of 1.01. A 2D Gaussian function 
with bandwidth of 

√
wh∕16 is used to define the correlation 

output for an object of size [h, w]. The learning rate � of the 
correlation filter is 0.013. The pixel area threshold � is set to 
105, and the error range � is set to be within 0.07.

We compare our tracker with a range of excellent trackers, 
including: BACF [13], ECO_HC [9], ARCF [17], AutoTrack 
[21], KCC [28], Staple_CA [25], MCPF [32], SRDCFdecon 
[11], BIT [7]. Different metrics may be used for evaluation 
depending on preferred perspectives, amongst which one-
pass evaluation (OPE) is arguably the most commonly used 
evaluation method. OPE runs a tracker on each sequence 
once: it initializes a tracker using the ground truth object 
state in the first frame, and reports the average precision or 
success rate of all subsequent results. Having recognized 
this, OPE is also used herein to comparatively evaluate 
the present work. Center location error (CLE) is obtained 
through the Euclidean distance between the center of the 
groundtruth and estimated bounding box. Overlap precision 
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(OP) is computed as the fraction of frames in the sequence 
where the intersection-over-union (IOU) overlap between 
the groundtruth box and the tracker prediction is higher than 
a threshold, and area under curve (AUC) score is the average 
of the success rates corresponding to the sampled OP thresh-
olds. The trackers are ranked by the distance precision (DP) 
score with a CLE threshold of 20 pixels in the precision 
plots, and by the AUC score depicted by the success plots.

4.1 � Evaluation on OTB datasets

We implement the one-pass experiment on the OTB bench-
mark datasets. Figure 3 shows the precision and success 
plots on OTB50 and OTB100, respectively. The DP and 
AUC scores of all compared trackers are shown in the leg-
end. Overall, the RCT tracker performs well on these two 

evaluation metrics. It ranks the first in the success plots and 
second in the precision plots among all competing algo-
rithms. Our RCT approach employs the “background-aware” 
mechanism from the BACF tracker, but achieves a remark-
able gain on the baseline. BIT is a tracker that extracts 
low-level biologically-inspired features while imitating an 
advanced learning mechanism to combine generative and 
discriminative models for target location. Our RCT improves 
on BIT by 15.72% in terms of AUC score on OTB50, and by 
14.52% on OTB100. This testifies to the extraordinary per-
formance of the fused features embedded in the correlation 
tracking framework. ECO_HC is a famous correlation filter-
based tracking algorithm, our method also obtains superior 
results than ECO_HC in both of the DP and AUC scores. 
Note that the MCPF tracker outperforms RCT by 2.66% on 
OTB50, and 2.65% on OTB100 in terms of DP scores, yet 

Fig. 3   Results of the proposed tracker and other compared trackers on OTB dataset
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its AUC scores are lower than our tracker with 1.99% and 
1.62% respectively.

4.2 � Evaluation on TC128 dataset

TC128 is a comprehensive color-video tracking benchmark. 
The results of ten trackers on the 128 sequences are sum-
marized in Fig. 4. As can be seen from these results, for 
both of the precision plots and success plots, our tracker 
obtains the third place and performs reliably. Compared to 
baseline BACF, RCT has a significant advantage of 4.48% 
in DP score and 4.07% in AUC score, which is in light of 
the robust fused features and reliable response. MCPF uti-
lizes deep features which is extracted from the pre-trained 
convolutional neural network and obtains the first place in 
terms of DP score. Due to an adaptive decontamination of 
the training set and a conservative model update strategy, 

ECO_HC also performs better than RCT and ranks the first 
in terms of AUC score on this dataset.

For further overall comparison, in Table 1, we sum-
marize the AUC scores of all compared trackers from the 
experimental results on the three datasets. It shows that our 
RCT tracker achieves the highest AUC score of 59.21% on 
average, outperforms all handcrafted features-based track-
ers and, including even MCPF, which utilizes deep features 
(and hence involves substantially more computation). More-
over, our approach just uses the simple BACF as baseline, 
it should be noticed that ECO_HC can further enhance its 
performance with our framework.

4.3 � Attribute‑based performance

As in the OTB datasets, all the image sequences are anno-
tated with 11 attributes which cover various challenging 
factors in visual tracking, including scale variation (SV), 
occlusion (OCC), illumination variation (IV), motion blur 
(MB), deformation (DEF), fast motion (FM), out-of-plane 
rotation (OPR), background clutters (BC), out-of-view (OV), 
in-plane rotation (IPR) and low resolution (LR). Figure 5 
shows the results of six representative attributes (FM, IV, 
MB, OCC, OPR and SV) over the OTB50 benchmark to tes-
tify the excellent attribute-performance of our RCT tracker 
in terms of AUC scores. It shows that the proposed method 
performs robustly against other state-of-the-art trackers in 
most challenging scenes.

Figure 6 shows a qualitative comparison of our method 
with several state-of-the-art trackers including MCPF, 
ECO_HC, BACF and ARCF in challenging situations. The 
example frames are from the DragonBaby, Soccer and Rubix 
sequences, respectively. Obviously, our approach performs 

Table 1   AUC scores of the proposed trackers versus other state-of-art 
trackers

Trackers
AUC scores (%)

OTB50 OTB100 TC128 Average

BACF 57.39 62.03 49.56 56.33
ECO HC 57.17 62.49 54.69 58.10
AutoTrack 52.83 58.69 52.16 54.56
ARCF 55.50 60.66 51.94 56.03
KCC 51.12 56.46 49.00 52.19

Staple CA 54.21 59.83 50.55 54.86
MCPF 57.69 62.70 54.06 58.15

SRDCFdecon 55.23 61.97 48.21 55.14
BIT 43.96 49.80 44.93 46.23
RCT 59.68 64.32 53.63 59.21

The first, second and third best methods are shown in color (the red 
ranks first, green means second and blue means third)

Fig. 4   Results of proposed tracker and other compared trackers on TC128 dataset
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Fig. 5   Results of proposed tracker and other compared trackers on annotated challenging attributes

Fig. 6   Tracking results of RCT in qualitative comparison with state-of-the-art algorithms
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well as compared to the others. Sequences with fast motions 
(DragonBaby), illumination variations (Soccer), scale vari-
ations (Rubix), in-plane and out-of-plane rotations (Drag-
onBaby, Soccer, Rubix) can be successfully tackled by our 
method without model drifts. Videos with motion blurs 
(DragonBaby, Soccer) and occlusions (Soccer) also benefit 
from our strategy of reliable response. It should be noted 
that for the DragonBaby and Rubix sequences, only our RCT 
tracker still keep estimating both the position and scale of 
the target accurately. To sum up, the proposed tracking algo-
rithm can perform robustly in various tracking scenes and 
alleviate model drifts effectively.

4.4 � Real‑time performance

In addition to robust demands in challenging scenes, real-
time performance is another essential requirement for online 
visual tracking. We present the tracking speed comparison 
over the OTB50 benchmark by the average FPS in Table 2. 
It can be shown that the ARCF, SRDCFdecon, MCPF track-
ers (<25 fps) cannot meet the real-time requirement. They 
generally need to solve a complicated model formulation 
or extract deep features with a time-consuming procedure, 
which may limit their use in many real-time applications. On 
Intel core i7-9700 hardware environment, our RCT tracker 
operates at a real-time speed of 26.45 fps without using 
multi-threading or GPU. The tracking speed can be further 
improved by optimizing the code. Even so, RCT runs more 
than 50 times faster as compared to MCPF, which operates 
on an high-end NVIDIA GTX 1080Ti GPU with a measured 
tracking speed of 0.51 fps.

To verified the real-time performance and effectiveness 
of key components in our tracker, we also report the com-
parison results of the average tracking speed and DP/AUC 
scores over the OTB50 benchmark in Table 3. The basic 
notions are as follows: (1) ‘Baseline’ denotes the original 
BACF; (2) ‘Baseline+FF’ means the baseline tracker with 
our fused features; (3) ‘Baseline+RR’ stands for the baseline 

tracker with the designed scheme of reliable response; (4) 
‘Baseline+FF+RR’ is our final tracker RCT. From Table 3, 
we can see that both of the two modules operate efficiently 
without degrading the real-time performance of the baseline 
tracker. Further, they contribute to the substantial improve-
ment on tracking accuracy over the baseline method.

5 � Conclusion

In this paper, we have proposed a real-time correlation 
filter-based tracking method via the use of multi-channel 
fused features and reliable response maps. The correlation 
filter that utilizes multi-channel fused features leads to a 
significant improvement in tracking performance while 
dealing with challenging factors such as illumination vari-
ation and rotation. We have also proposed a novel strategy 
to obtain a more reliable response map, thereby locating 
the target through it. This allows our tracker to reduce the 
probability of incorrect locating when target occlusion and 
motion blur exist severely, so as to achieve the effect of sup-
pressing model drift. Comparative experimental investiga-
tions have proven, both quantitatively and qualitatively that 
our approach has comparable performance with that of the 
state-of-the-art tracking methods. In particular, the pro-
posed approach achieves a significant improvement in over-
all tracking performance compared to the baseline BACF. 
Meanwhile, our tracker is still able to maintain a real-time 
tracking speed of 26 fps. Our method still has shortcomings 
to be improved. For example, our tracker can not confirm 
staple tracking when facing long-term occlusion. Future 
work will involve investigating more powerful fused features 
with low dimension and more efficient tracking framework 
to deal with long-term occlusions for real-time applications. 
Besides, our method can be generalized to other areas of 
computer vision, such as human appellative [1].

Acknowledgements  This work was supported in part by the National 
Natural Science Foundation of China under Grant 61871460; in part 
by the Shaanxi Provincial Key Research and Development Program 
under Grant 2020KW-003; in part by the Natural Science Foundation 
of Guangxi under Grant 2019GXNSFBA245056; and in part by the 
Sêr Cymru II Strategic Partner Acceleration Award Programme, U.K., 
under Grant 80761-AU201.

Table 2   Tracking speed comparison over OTB50 benchmark

Trackers Average fps Real-time

BACF 47.19 Y
ECO_HC 65.02 Y
AutoTrack 64.82 Y
ARCF 14.27 N
KCC 100.92 Y
Staple_CA 59.94 Y
MCPF 0.51 N
SRDCFdecon 5.68 N
BIT 85.53 Y
RCT​ 26.45 Y

Table 3   Tracking performance comparison of the proposed tracker 
and its key components over OTB50 benchmark

Trackers Average fps DP/AUC scores

Baseline 47.19 77.11/57.39
Baseline + FF 31.24 78.35/58.59
Baseline + RR 36.99 77.98/57.69
Baseline + FF + RR 26.45 80.50/59.68
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