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Abstract
Fractal image compression is a lossy compression technique based on the iterative function system, which can be used to 
reduce the storage space and increase the speed of data transmission. The main disadvantage of fractal image compression 
is the high computational cost of the encoding step, compared with the popular image compression based on discrete cosine 
transform. The aim of this paper is the development of parallel implementations of fractal image compression using quadtree 
partition. We develop two parallel implementations: the first one uses task parallelism over a multi-core system and the sec-
ond uses dynamic parallelism over a GPU architecture. We show performance comparisons of the parallel implementations 
using standard images to compare the capabilities of these parallel architectures. The proposed parallel implementations 
achieve speedups over the serial implementation of approximately 15× using the multi-core CPU and 25× using the GPU.

Keywords  Fractal image compression · Quadtree · Task parallelism · Dynamic parallelism · Multi-core · GPU

1  Introduction

In the field of information technology, a huge amount of data 
has been generated. The data growth rate is much higher 
than the growth rate of technologies [1]. Digital image com-
pression has generated different techniques to this challenge 
of having efficient ways to store and transmit information. 
These techniques are essential in most real-time applications 
like television broadcasting, satellite imagery, geographical 
information systems, flight simulators, video conferencing, 
graphics, digital libraries, among others [1–3].

The compression techniques can be divided into two 
groups: preserving or lossless, which permits error-free 
data reconstruction in the decompress step, and lossy com-
pression, which does not preserve information completely 
[4]. The fractal image compression is classified into lossy 
compression techniques. The first practical fractal image 
compression algorithm based on a partitioned iterated func-
tion system (PIFS) was reported by A. Jacquin in 1992 [5]. 
Fractal image compression is an active area of research due 

to high compression ratios and high quality in the decom-
pressed image. The main disadvantage is the high compu-
tational cost on the encoding step, which has a complexity 
order O(M4) for an image of size M ×M pixels [6]. Thus, the 
development of parallel implementations has been interest-
ing, where it is possible to use different architectures such 
as multi-core CPU, FPGAs, and GPUs [7–9].

In [10], a parallel algorithm for the fractal compression 
using quadtree is proposed, following a master–slave strat-
egy and reaching a speedup of 1.80× with input images of 
size 512 × 512 pixels in a multi-core system. The four parti-
tions of the input image are assigned to the available slave 
processors. A range is compared with a set of non-overlap-
ping domains for each processor to find the least root-mean-
square error. If this least error is less than certain tolerance, 
the range block returns to the master processor to compute 
the fractal transform and store the compression data. Else-
where, the recursive partition and assignment of blocks to 
available processors is performed.

In [11], a parallelization algorithm using OpenMP is 
proposed, considering the Jacquin’s fractal compression 
scheme. The input image is partitioned in a fixed number 
of non-overlapping range blocks. Therefore, two loops go 
through the partitions. They parallelize the first for loop that 
runs through the partitions horizontally. For each partition, a 
domain block is found that is very similar to the range block. 
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Finally, when all threads have finished, the best-matched 
mapping parameters are saved. Their parallel implementa-
tion reached a speedup of almost 6× using a multi-core sys-
tem with four physical cores at 2.33 GHz, for an image of 
size 512 × 512 pixels.

In [12], an approach to parallelize the Jacquin’s fractal 
compression scheme over GPU using CUDA is proposed. 
They consider each range and domain block as correspond-
ing to a block of threads on the CUDA model. Thus, they 
parallelize the for loops that go through the range blocks 
launching a set of thread blocks, the computations inside the 
for loops that go through the domain blocks are executed in 
parallel for each pixel value, and the reduction instructions 
like summation and averaging are done using a standard 
parallel reduction of CUDA programming. Their parallel 
implementation reaches a speedup of 10.75× using an image 
of size 512 × 512 pixels.

In [2], a fractal compression algorithm is implemented 
using a GPU cluster. They perform the fractal compression 
at different quadtree levels, using the fixed sizes of 4 × 4 , 
8 × 8 , 16 × 16 , and 32 × 32 pixels for the range blocks. The 
program is executed on a GPU cluster with 24 GPUs, using 
the dynamic allocation with circulating pipeline processing 
as topology, where one of the GPUs is the master and the 
rest are slaves. The master sends the range blocks in a circu-
lated way through a pipeline that traverses through the slave 
nodes. Each slave node contains a set of domain blocks, 
and thus, each range is matched with the domains. Once a 
match is found, the range leaves the pipeline. If no match 
is obtained, the master node subdivides the range into four 
sub-blocks, these sub-blocks are sent to the slave nodes, and 
the process of matching continues through the pipeline. This 
approach reaches a speedup of almost 14×.

Recently, in [9], a parallel version of the Fisher classifi-
cation scheme using CUDA is proposed. They linearize the 
quadtree structure to launch kernels for nodes of the quadtree 
at the same time. Unlike the sequential algorithm where the 
decision of dividing the range block into sub-blocks is given 
by the comparison of the root-mean-square error with tol-
erance, in this parallel implementation, all range blocks at 
each level of the quadtree are taken into account to compute 
the best matching with the domain blocks. Thus, all results 
of the range blocks are stored in the memory, subsequently 
parsed, and saved in the compression data. The parallel 
implementation reaches a speedup of 4.9× with images of 
size 1024 × 1024 pixels.

In this work, we propose the use of task and dynamic 
parallelism to build parallel implementations of fractal 
image compression using quadtree partition. To the best of 
our knowledge, these strategies have not been taken into 
account in the previous works. We use OpenMP for multi-
thread programming on the multi-core CPU, while we use 
CUDA programming on the GPU. Unlike the multi-core 

implementations reported in [10, 11], we use the ���� 
directive of OpenMP for parallelizing the units of work that 
are dynamically generated through the quadtree structure. 
Unlike the GPU implementations reported in [2, 9, 12], we 
use the dynamic parallelism extension of CUDA program-
ming with streams to parallelize the recursive quadtree 
procedure.

This paper aims to compare the capabilities of the task 
parallelism in a multi-core CPU and the dynamic parallel-
ism in a GPU. The outline of this paper is as follows. In 
Sect. 2, we present the mathematical background of fractal 
image compression. In Sect. 3, we describe the fractal image 
compression algorithm. In Sect. 4, we present the parallel 
implementations for multi-core CPU and GPU architectures. 
The experimental results are present in Sect. 5, and our con-
clusions are given in Sect. 6.

2 � Mathematical background

The fractal image compression consists in repeating the 
method of the iterated function system that defines the 
Hutchinson operator, which is used to generate fractals (see 
[13]), but in a more general setting, using now a partitioned 
iterated function system. Let I = [0, 1] and let us denote 
I2 = I × I , I3 = I × I × I . An image can be modeled as a 
function z = f (x, y) that gives the grey level at each point 
(x, y). Because real images are finite in extent, we take the 
domain of f as I2 and its range as I. On the other hand, a 
function f ∶ I2 → I can be considered an image of infinite 
resolution. The graph of a function f ∶ I2 → I is the subset 
of ℝ3 given by gra(f ) = {(x, y, f (x, y)) ∶ (x, y) ∈ I2}.

Formally, the function is different from its graph, but 
both contain the same information; thus, we will not dis-
tinguish between the function and its graph. Consider the 
space F ∶= {f ∶ I2 → I} of images defined as the graphs 
of measurable functions over I2 with values in I. Let 
R1, ...,RN , D1, ...,DN be subsets of I2 , which we call ranges 
and domains, respectively, consider a familiy of mappings 
vi ∶ I3 → I3 , i = 1, ...,N , and define wi ∶ Di × I → I3 as the 
restriction of vi on Di × I , i.e., wi = vi|Di×I

 . Suppose that wi 
takes values in Ri × I . Since each mapping wi sends subsets 
of Di × I into subsets of Ri × I and gra(g|Di

) ⊂ Di × I for each 
g ∈ F , then we can define wi(g)(x, y) ∶= wi

(
x, y, g(x, y)

)
 , for 

each g ∈ F and (x, y) ∈ Di . Thus, wi(g) turns out to be an 
image in F restricted to the range Ri . We say that the collec-
tion w1, ...,wN tile I2 if it satisfies that 

⋃N

i=1
wi(g) ∈ F , for 

each g ∈ F . From now on, we suppose that the collection 
wi , i = 1, ..,N , tile I2 , which implies that 

⋃N

i=1
Ri = I2 and 

Ri ∩ Rj = � , for i ≠ j.
Given a metric space X, a mapping W ∶ X → X is contrac-

tive if there exists s ∈ [0, 1) , such that d(W(f ),W(g)) ≤ s(f , g) 
for every f , g ∈ X . The number s is called the Lipschitz 
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constant of W. The Banach Contraction Principle states that if 
X is complete and W is contractive, then there exists a unique 
xW ∈ X , such that W(xW ) = xW . The element xW is called 
the fixed point or the attractor of W. Furthermore, for any 
g ∈ X , the sequence (W (n)(g))∞

n=1
 formed by the iterations of g 

under W converges to xW . Finally, under the hypothesis of the 
Banach Contraction Principle, the Collage Theorem states that 
d(f , xW ) ≤ (1 − s)−1 d(f ,W(f )) , for every f ∈ X.

A mapping w ∶ ℝ
3
→ ℝ

3 is called z-contractive if 
there exists s ∈ (0, 1) satisfying the following condition: 
for every x, y, z1, z2 ∈ ℝ , with w(x, y, z1) = (x�, y�, z�

1
) and 

w(x, y, z2) = (x�, y�, z�
2
) , we have that

and, furthermore, x′ and y′ are independent of z1 and z2 . Now, 
we will define the operator that will encode our image. For 
each i = 1, ...,N , suppose that wi ∶ Di × I → I3 is z-contrac-
tive and define the operator W ∶ F → F by

Since w1, ...,wN tile I2 , we have that the operator W is well 
defined. Since wi ∶ Di × I → I3 is z-contractive, then W is 
a contractive operator defined in the metric space 

(
F, dsup

)
 , 

where dsup(f , g) = sup(x,y)∈I2 |f (x, y) − g(x, y)| . On the other 
hand, it is well known that the metric space 

(
F, dsup

)
 is com-

plete. Therefore, by the Banach Contraction Principle, we 
have that there exists a unique fixed point xW ∈ F of W, i.e., 
W(xW ) = xW . Moreover, if we iterate any image g ∈ F by W, 
we have that the sequence 

(
W (n)(g)

)∞
n=1

 formed by the iterates 
converges to xW.

The operator W is inspired by the Hutchinson operator 
used to generate fractals. What if wi is not z-contractive for 
some i? To answer this question, recall that a generalization 
of the Banach Contraction Principle states that if W is even-
tually contractive, i.e., if for some M ∈ ℕ , the Mth iterate 
W (M) is contractive, then W has a unique fixed point and 
W (n)(g) → xW for every g ∈ F . Notice that W (M) is composed 
of a union of compositions of the form wi1

◦⋯◦wiM
 ; thus, if 

there are enough contractive functions wij
 , then the composi-

tions will also be contractive, since the contractive mappings 
eventually dominate the non-contractive ones, and thus, W 
will be eventually contractive.

Let f be a fixed image; according to Fisher’s work [13], 
the compression problem is to find a collection of maps w1 , 
w2 , ..., wN , with W = ∪N

i=1
wi and f = xW . The transforma-

tions wi are of the form

d(z�
1
, z�

2
) ≤ s d(z1, z2),

W(g) =

N⋃
i=1

wi(g), for each g ∈ F.

(1)wi

⎡⎢⎢⎣

x

y

z

⎤⎥⎥⎦
=

⎡⎢⎢⎣

ai bi 0

ci di 0

0 0 si

⎤⎥⎥⎦

⎡⎢⎢⎣

x

y

z

⎤⎥⎥⎦
+

⎡⎢⎢⎣

ei
fi
oi

⎤⎥⎥⎦
.

We seek a partition of f into pieces, to which the transforma-
tions w are applied to obtain f.

If we take ai, bi, ci, di, si ∈ (0, 1) , then the functions 
wi ∶ Di × I → I3 , 1 = 1, ...,N  fulfill the hypotheses men-
tioned above and form a partitioned iterated function 
system. Recall that given a metric space X and Ei ⊂ X  , 
i = 1, ...,N  , a partitioned iterated function system (PIFS) 
is a finite collection of contractive mappings ui ∶ Ei → X , 
for each i = 1, ...,N .

In general, the images do not contain parts that can be 
transformed to fit exactly somewhere else in the original 
image. What is expected is to find another image f � = xW 
with a root-mean-square distance drms(f �, f ) small. Then, 
we seek a transformation W whose fixed point is closed to f

Thus, it is sufficient to minimize

which means to find the ranges Ri and corresponding 
domains Di with maps wi.

To compare Ri with Di , Di is subsampled to create a 
square D̃i with the same size as Ri . Given two squares con-
taining m pixel intensities, a1, ..., am from D̃i and b1, ..., bm 
from Ri , the contrast s and brightness o parameters are 
computed minimizing the following error function:

The minimum of � is obtained when the partial derivatives 
with respect to s and o are zero; this generates the following 
system of two equations with two unknowns:

where ΓD
1
=
∑m

j=1
aj , ΓD

2
=
∑m

j=1
a2
j
 , ΓR

1
=
∑m

j=1
bj and 

ΓDR =
∑m

j=1
ajbj . Solving this system of equations, we have 

that

and

Then, the error function can be computed as follows:

(2)f ≈ f � = W(f �) = W(f ) = w1(f ) ∪ w2(f ) ∪ ...wN(f ).

(3)drms(f ∩ (Ri × I),wi(f )) i = 1, ...,N,

(4)� =
1

m

m∑
j

(saj + o − bj)
2.

(5)
(
ΓD
2

ΓD
1

ΓD
1

m

)(
s

o

)
=

(
ΓRD

ΓR
1

)
,

(6)s =
mΓDR − ΓD

1
ΓR
1

mΓD
2
− (ΓD

1
)2

(7)o =
1

m
(ΓR

1
− sΓD

1
).
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with ΓR
2
=
∑m

j=1
b2
j
 and the rms error is equal to 

√
� . If the 

determinant of the system matrix is zero, then s = 0 and 
o =

1

m
ΓR
1
.

According to the above, if si < 1 for every i, then each wi 
is z-contractive and, therefore, there exists a unique xW ∈ F , 
such that W(xW ) = xW and W (n)(g) → xW , n → ∞ , for every 
g ∈ F . By construction, f ≈ W(f ) , and the Collage Theo-
rem guarantees that f ≈ xW . On the other hand, if si ≥ 1 for 
some i, but there are enough numbers sj < 1 , then W may 
be eventually contractive, and thus, we would also have the 
existence of a fixed point xW and the convergence of the 
iterates to xW . As we mentioned, it is safer to take si < 1 to 
ensure contractivity of W, but experiments show that taking 
si < 1.2 is safe and results in encodings as good as those of 
taking si < 1 . Therefore, we will not impose conditions on si.

There are three types of domain libraries D1 , D2 , and 
D3 . These are selected as sub-squares of the image, equally 
spaced vertically and horizontally, depending on parameter 
l. D1 has a lattice whose spacing is the domain size divided 
by l, i.e., it has more small domains than large, this is the 
domain library used by Jacquin in [5]. D2 has a lattice as D1 
but with the opposite spacing-size relationship, i.e., it has 
more large domains than small. D3 has a lattice with fixed 
spacing equal l, i.e., it has approximately the same number of 
domains in each level of the quadtree, where R is compared.

The domain-range comparison step is very compu-
tationally intensive. Fisher in [13] uses a classification 
scheme to minimize the number of domains compared with 
a range. Before the quadtree procedure, all the domains in 
some domain libraries are classified, and only domains 
with the same classification are compared with the range. 
The idea of using a classification scheme was developed 
independently in [5, 14]. The Fisher classification scheme 
divides a square sub-image into upper left, upper right, 
lower left, and lower right quadrants numbered sequen-
tially. On each quadrant, values proportional to the average 
and variance are computed as follows:

where ri
1
, ..., ri

n
 are the pixel values in the quadrants 

i = 1, 2, 3, 4 . The Ai are ordered in one of the following three 
major classes:

(8)
� =

1

m
[ΓR

2
+ s(sΓD

2
− 2ΓDR + 2oΓD

1
)

+o(mo − 2ΓD
1
)],

(9)Ai =

n∑
j=1

ri
j
, Vi =

n∑
j=1

(ri
j
)2 − A2

i
,

(10)

A1 ≥ A2 ≥ A3 ≥ A4,

A1 ≥ A2 ≥ A4 ≥ A3,

A1 ≥ A4 ≥ A2 ≥ A3.

Next, there are 24 ways to order the values Vi in each major 
class; thus, there are 3 × 24 = 72 classes in all. If the scaling 
value si is negative, the orderings in the classes are rear-
ranged. Therefore, each domain is classified in two orienta-
tions: positive si and negative si.

3 � Fractal image compression algorithm 
using quadtree partition

Algorithms 1 and 2 show the main procedures of the fractal 
image compression method reported in [13], which uses a 
quadtree structure. A quadtree is a hierarchical spatial tree 
data structure based on the principle of recursive decomposi-
tion of space [15]. In an image, each node of the tree repre-
sents a partition of the image and contains four children or 
sub-squares, corresponding to the four quadrants of the parti-
tion. The root of the tree is the input image, and the leaves 
are the sub-squares constructed before a condition is reached 
through the tree, such as the minimum size of the sub-square.

First, the input image f of size M ×M is downsampling 
with the average of 2 × 2 pixel groups (see Algorithm 1), 
considering four locations which are the combination of 
odd and even addresses (x, y). Thus, four domain images 
g = {g1, g2, g3, g4} of size M∕2 ×M∕2 are obtained. The 
downsampling procedure avoids the repeated computation 
of averaging 2 × 2 pixel groups from the image f.

Next, for each level i in the quadtree from ���_� to ���_� , 
and for each domain location (x, y) from a domain pool Dp cor-
responding to the level i, a sub-square D of size M′ from the 
domain images g at corresponding position (x, y) is obtained, 
where M′ is the size of the sub-squares at level i − 1 . D is clas-
sified in some of the 72 classes, obtaining also the ΓD

1
 and ΓD

2
 

values, which are added to a list LD in the corresponding class c.
The following step is the quadtree recursive procedure (see 

Algorithm 2), which considers the whole image as a partition 
the first time that is called. If the depth level d of the quadtree 
is less than ���_� , then the quadtree procedure is called itself 
in four different ways, corresponding to the four equal-sized 
sub-squares in which the partition can be divided. It is done 
recursively until d is equal to the ���_� . Then, a sub-square R 
is obtained from the image f at position (x, y) with size M ×M ; 
note that x, y, and M values depend on the level d of the quadtree. 
Next, R is classified and compared with domains that belong 
to the same class, computing the best root-mean-square error 
( ����_���).

If the ����_��� is greater than a tolerance ��� and d is 
less than the maximum level ���_� , then R is subdivided 
into four quadrants, calling four times the recursive quadtree 
procedure. In another case, there are two possibilities. In the 
first one, there is a domain D which is similar to R with a 
����_��� less than or equal to ��� . In the second one, the 
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level d has reached the maximum level ���_� , and therefore, 
it is no longer possible to divide R. In both possibilities, R is 
covered by D, and the compression data are saved.

To increase the compression, Fisher uses the following bit 
allocation scheme. One bit is used at each quadtree level to 
denote a further recursion ( save(Cd, 1) ) or not ( save(Cd, 0) ). 
At the maximum depth ( d = ���_� ), this bit is not used, 
since no further partitions are possible. Five bits are used 
to store the scaling and seven for the offset ( save(Cd, s, o) ). 
The number of bits needed to store the domain index 
���_� depends on the number of domains of each level, 
while only three bits are used to store the orientation or 
symmetric operation �_�� of the domain-range mapping 
( save(Cd, �_��, ���_�) ). However, when the scaling value 
is zero, the domain index is irrelevant, and therefore the 
orientation information. 

Algorithm 1 Fractal image compression algorithm.
Input: Input image f of size M × M , tolerance tol, min d,

max d.
Output: Compression data Cd.
1: [g] = downsampling(f)
2: for i = min d to max d do
3: for (x, y) from domains with size M ′ of Dp(i) do
4: [D] = subsquare(g, x, y,M ′)
5: [c, ΓD

1 , ΓD
2 ] = classify(D)

6: Add ΓD
1 , ΓD

2 to list LD(c)
7: end for
8: end for
9: quadtree(0, 0,M, 0)

Algorithm 2 Quadtree compression algorithm.
1: procedure quadtree(x, y,M, d)
2: if d < min d then
3: quadtree(x, y,M/2, d+ 1)
4: quadtree(x+M/2, y,M/2, d+ 1)
5: quadtree(x, y +M/2,M/2, d+ 1)
6: quadtree(x+M/2, y +M/2,M/2, d+ 1)
7: return
8: end if
9: [R] = subsquare(f, x, y,M)
10: [c, ΓR

1 , ΓR
2 ] = classify(R)

11: [best rms, s op, s, o] = compare(R,ΓR
1 , ΓR

2 , g, LD(c))
12: if (best rms > tol) && (d < max d) then
13: save(Cd, 1)
14: quadtree(x, y,M/2, d+ 1)
15: quadtree(x+M/2, y,M/2, d+ 1)
16: quadtree(x, y +M/2,M/2, d+ 1)
17: quadtree(x+M/2, y +M/2,M/2, d+ 1)
18: else
19: if d < max d then
20: save(Cd, 0)
21: end if
22: save(Cd, s, o)
23: if s �= 0 then
24: save(Cd, s op, idx D)
25: end if
26: end if
27: end procedure

4 � Parallel implementation

We develop two implementations in C/C++ of the sequen-
tial fractal image compression algorithm. The first one 
uses a multi-core CPU and the second one uses a GPU. We 
use OpenMP for multi-thread programming on the multi-
core CPU system, while on the GPU architecture, we use 
CUDA programming version 11.2. We also use the open 
computer vision library OpenCV version 4.5 [16] only for 
reading and writing images. We compile our programs 
using � + + for the sequential and multi-core versions and 
using ���� for the GPU version. In both cases, we add the 
flag −�� to the compiler, which enables optimizations for 
speed, including automatic vectorization using the CPU 
processors [17].

In both implementations, we use OpenMP with loop-level 
parallelism for the downsampling of the input image f and 
the classification of the domains (see Algorithm 1). On the 
other hand, for the quadtree procedure (see Algorithm 2), 
which is the computationally heaviest part of the fractal 
image compression, we use OpenMP with task parallel-
ism and CUDA with dynamic parallelism. In the follow-
ing subsections, we describe the implementation of these 
procedures.

4.1 � OpenMP with loop‑level parallelism

OpenMP is an application programming interface (API) 
for shared memory parallel programming in a multi-core 
CPU architecture [18]. Thus, OpenMP is suitable for sys-
tems in which each thread or process can access all avail-
able memory. OpenMP provides a set of directives or prag-
mas used to specify parallel regions. Among other things, 
these directives efficiently manage threads inside parallel 
regions and distribute for loops in parallel.

We parallelize the downsampling of the input image f 
and the classification of the domains using the directives 
shown in the Listing 1. 

Listing 1 Pragma directives of OpenMP to parallelize the
downsampling and classification procedures

#pragma omp parallel for private() \
firstprivate() num_threads(N_T)

The directive #������ ��� �������� opens a paral-
lel region and, with the ��� directive, parallelizes the for 
loop. The use of this directive is limited to those kinds of 
loops where the number of iterations can be determined. 
The loop must have an integer counter variable whose 
value is incremented (or decremented) by a fixed amount 
at each iteration until some bound is reached [19]. Thus, 
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OpenMP can distribute the iterations to the team of threads 
launched and produces a result consistent with the corre-
sponding sequential for loop [20].

In shared-memory programs, the individual threads 
have private and shared memory. Communication is 
accomplished through shared variables. Inside the parallel 
region, all variables are shared by default for all threads; 
then, we use only the ������� directive to declare private 
variables for each thread. We also use the ������������ 
directive to declare private variables for each thread, 
which are initialized with the value that they have before 
entering the parallel region. Additionally, we use the direc-
tive ���_�������(�_�) to specify the number of threads 
�_� to be launched in our program.

4.2 � OpenMP with task parallelism

OpenMP may execute the different tasks at different 
points in time, based on the availability of cores and their 
execution. The ���� directive was initially introduced in 
OpenMP standard version 3.0 for expressing irregular 
parallelism and for parallelizing units of work that are 
dynamically generated [21]. OpenMP performs two activi-
ties related to tasks, the packing to create a structure that 
describes a task entity and the execution to assign a task 
to a thread. The task directive allows the decoupling of 
these activities; thus, the tasks can be dynamically created, 
nested, and queued for later execution [20].

We add the directives shown in the Listing 2 to the first 
call of the quadtree procedure (see Algorithm 1). The first 
directive opens a parallel region launching N_T threads. 
The single directive specifies that the quadtree procedure 
is executed by one thread only. The �������� directive is 
a barrier, which ensures that the tasks inside the quadtree 
procedure have been completed. 

Listing 2 Pragma directives of OpenMP for the first call to
the quadtree procedure

#pragma omp parallel num_threads(N_T)
#pragma omp single
quadtree(0,0,M,0)
#pragma omp taskwait

We parallelize the recursive calls of the quadtree pro-
cedure using the ���� directive as shown in the Listing 3. 
With the ���� directive, we assign to each available thread 
a task or quadtree procedure corresponding to one of the 
four quadrants of the partition. In this way, each task will 
have four child tasks. By default, when a task is created, this 

is tied to one thread, and the same thread will execute that 
task from the beginning to the end. Due to the number of 
comparisons between a range and the domains can be dif-
ferent for each task, some threads will finish their task faster 
than others. Thus, we add the ������ clause, which allows 
that idle threads to continue creating new tasks within tasks 
started by other threads obtaining a better load balancing. 

Listing 3 Pragma directives of OpenMP to parallelize the
recursive calls to the quadtree procedure

#pragma omp task firstprivate(x,y,M,d) untied
quadtree(x,y,M/2,d+1)
#pragma omp task firstprivate(x,y,M,d) untied
quadtree(x+M/2,y,M/2,d+1)
#pragma omp task firstprivate(x,y,M,d) untied
quadtree(x,y+M/2,M/2,d+1)
#pragma omp task firstprivate(x,y,M,d) untied
quadtree(x+M/2,y+M/2,M/2,d+1)

4.3 � CUDA with dynamic parallelism

CUDA (compute unified device architecture) is an exten-
sion to the C language that contains a set of instructions 
for parallel computing in a GPU. The host processor 
spawns multi-thread tasks (kernels) onto the GPU device, 
which has its internal scheduler that allocates the kernels 
to whatever available GPU hardware [22]. The GPU is 
used for general-purpose computation; it contains multi-
ple transistors for the arithmetic logic unit, based on the 
single instruction and multiple threads (SIMT) program-
ming model, which is exploited when multiple data are 
managed from a single parallel instruction, similar to the 
single instruction multiple data (SIMD) model [23].

Dynamic parallelism extends the CUDA program-
ming model, which allows a kernel to create a new grid of 
thread blocks launching new kernels. It is only supported 
by GPUs of compute capability of 3.5 and higher [24]. 
With a single level of parallelism, the recursive algorithms 
needed to be implemented with multiple kernel launches, 
increasing the burden on the host, amount of host–device 
communication, and total execution time. However, with 
the dynamic parallelism support, the algorithms that 
dynamically discover new work can launch new kernels 
without burdening the host [25].

We create a kernel quadtree procedure using dynamic 
parallelism. This kernel is called at the first time as shown 
in Listing 4, launching only a thread-block with a thread 
<<< �, � >>> , without dynamic shared memory and using 
the NULL stream. When a stream is not specified in the 



397Journal of Real-Time Image Processing (2022) 19:391–402	

1 3

call to a kernel function, the default NULL stream in the 
block is used by all threads. Thus, all kernels launched in 
the same block will be serialized even if different threads 
launched them [25]. 

Listing 4 First call to the kernel quadtree procedure to ex-
ecute it in the GPU

quadtree<<<1,1>>>(0,0,M,0)

Inside this kernel quadtree procedure, four child kernels 
are called in a recursive way, as shown in Listing 5 using 
four streams. Both named and unnamed (NULL) streams 
can be used in dynamic parallelism. The scope of a stream 
is private to the block in which the stream was created. 
Streams created on the host have undefined behavior when 
used within any kernel, just as streams created by a parent 
grid have undefined behavior if used within a child grid. 
An unlimited number of named streams are supported per 
block, but the maximum concurrency supported by the 
GPU is limited. If more streams are created than can sup-
port concurrent execution, some of these may serialize 
[25].

With the �������������������������() API and the 
��������������������� flag, we create the four streams 
that can run concurrently and perform no implicit synchro-
nization with the NULL stream. Each level of the kernel 
quadtree procedure can be considered as a new nesting 
level. The maximum nesting depth is limited in hardware 
to 24 [25]. 

Listing 5 Recursive calls to the kernel quadtree procedure
to execute them in the GPU

cudaStream_t st_1, st_2, st_3, st_4;
cudaStreamCreateWithFlags(&st_1,

cudaStreamNonBlocking);
cudaStreamCreateWithFlags(&st_2,

cudaStreamNonBlocking);
cudaStreamCreateWithFlags(&st_3,

cudaStreamNonBlocking);
cudaStreamCreateWithFlags(&st_4,

cudaStreamNonBlocking);
quadtree<<<1,1,0,st_1>>>(x,y,M/2,d+1)
quadtree<<<1,1,0,st_2>>>(x+M/2,y,M/2,d+1)
quadtree<<<1,1,0,st_3>>>(x,y+M/2,M/2,d+1)
quadtree<<<1,1,0,st_4>>>(x+M/2,y+M/2,M/2,d+1)
cudaStreamDestroy(st_1);
cudaStreamDestroy(st_2);
cudaStreamDestroy(st_3);
cudaStreamDestroy(st_4);

To improve the performance of the kernel quadtree pro-
cedure, we launch a fixed number of threads per block ( ��� ) 

for all kernel children as shown in Listing 6. In this way, the 
number of comparisons between a range and the domains is 
divided by the ��� , and each thread performs its compari-
son set in parallel. The rest of the instructions shown in the 
Algorithm 2 are assigned only to one thread. 

Listing 6 Recursive call to the kernel quadtree procedure to
execute it in the GPU launching TPB threads per block

quadtree<<<1,TPB,0,st_#>>>(x,y,M/2,d+1)

5 � Experimental results

The experiments were executed on an Alienware laptop and 
a server. The laptop has an Intel(R) Core(TM) i7-4720HQ 
CPU with a clock speed of 2.60 GHz, Windows 10 Pro (64-
bits), 8 hyper-threading cores, 16 GB RAM; and a video card 
Nvidia GeForce GTX 980M with a clock speed of 1.13 GHz, 
and compute capability of 5.2. On the other hand, the server 
has an Intel(R) Core(TM) i9-9920X CPU with a clock speed 
of 3.50 GHz, Ubuntu 20.04 (64-bits), 24 hyper-threading 
cores, 64 GB RAM; and a video card Nvidia TITAN RTX 
with a clock speed of 1.77 GHz, and compute capability of 
7.5. We develop our sequential and parallel implementa-
tions using 32-bit floating-point data (float precision). The 
standard images used in our experiments are available in [26, 
27]. In all of our experiments, we execute the sequential and 
parallel implementations 20 times, reporting the mean of the 
processing time.

The program returns a compressed file that contains the 
necessary information to decompress the image. We com-
pute the number of bits of information stored per pixel 
(bpp), dividing the size of the compressed file in bits by 
the size of the image. The lower the value of bpp, the bet-
ter the compression ratio. With the decompressed image, 
we compute the peak signal-to-noise ratio (PSNR), and 
structural similarity (SSIM) quality measures [28]. PSNR 
is expressed in a logarithmic decibel scale (dB), while the 
SSIM is a decimal value in the range [−1, 1] . The higher 
the value of both measures, the better the quality of the 
decompressed image.

We compare our results with those reported in other 
works to evaluate the consistency of our implementation. 
Table 1 shows the results of some implementations of the 
fractal image compression (FIC) based on quadtree parti-
tion (QP), using four standard images of size 256 × 256 
pixels. The results of the FIC with Fisher’s classification 
(FICQP), nonlinear affine map-based on FIC (FICQP-
NAM), FIC using upper bound on scaling parameter 
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(FICQP-UBSP), FIC with adaptive QP and nonlinear aff-
ine map (FIC-AQP-NAM), and the fast affine transform-
based FIC (FICQP-FAT) were reported in recent work 
in [29]. For our FICQP implementations, we show the 
result obtained using the three types of domain libraries 
and fixing l = 1 in the Alienware laptop. To obtain results 
similar to those of the other implementations, we fix the 
parameters ���_� = 5 and ���_� = 7 that correspond to 
compare domains with ranges of size from 8 × 8 to 2 × 2 
pixels, while we use a different value of the parameter 
��� for each image, ��� = 15 for Peppers, ��� = 24 for 
Boat, ��� = 18 for Cameraman, and ��� = 27 for Baboon. 
Both in our sequential version and our parallel versions, 
we obtain the same results.

In general, the best results in our implementations are 
obtained with the D3 library; however, the processing time 
is higher than with the other two libraries. Note that with 
l = 1 , the domains in the sets D1 and D2 consist of non-
overlapping sub-squares of the image, while the domains 
in the set D3 are overlapping sub-squares which have a 
stride of a pixel between them. Thus, the D3 library has 
more domains than the other libraries, allowing to obtain 
a better result in exchange for a longer processing time. 
Table 2 shows the processing time in seconds and speedup 
of our sequential and parallel implementations using the 
D3 library and the images of size 256 × 256 pixels with the 
same parameters used above. The speedup is computed 
by dividing the sequential or serial program’s processing 

time by the parallel program’s processing time [18]. For 
our multi-core implementation, we launch �_� = {2, 4, 8} 
threads, since the Alienware laptop has 8 hyper-threading 
cores available. For our GPU implementation, we have two 
versions. The first one uses streams (ST), and the second 
uses ST and 32 threads per block (ST-32). We consider 
the times of memory copies between the CPU and the 
GPU to compute the processing time. Note that the multi-
core implementation has the best performance obtaining 
speedups from 2.25× with two cores (2C) to 6.06× with 
eight cores (8C), while with the GPU, although there 
is an improvement using the ST-32 with respect to the 
ST version, the processing time is higher than the serial 
execution.

In a computer like the Alienware laptop, the operative 
system frequently uses the GPU for rendering the graphi-
cal user interface (GUI) to the display. If a GPU appli-
cation has a large processing time, the GUI can become 
unresponsive, resulting in a “freeze”. Thus, the operative 
system has a GPU watchdog daemon, which kills GPU 
activities that run for longer than a certain time limit 
(around 3 s in our Alienware laptop) [30]. On the other 
hand, the server has no GUI; thus, the kernel functions 
can take a large processing time in the GPU. In this way, 
we perform experiments in the server using images of 
512 × 512 and 1024 × 1024 pixels to show the performance 
of the parallel implementations in large images.

Table 1   Number of bits of 
information stored per pixel 
(bpp), and quality measures 
for fractal image compression 
methods based on quadtree 
partition, using images of size 
256 × 256 pixels

Methods bpp|PSNR|SSIM

Peppers Boat Cameraman Baboon

FICQP 1.026|30.21|0.806 1.119|25.70|0.683 1.278|28.76|0.772 1.383|21.04|0.581
FICQP-NAM 1.034|31.82|0.854 1.112|26.45|0.693 1.295|27.86|0.749 1.391|21.39|0.601
FICQP-UBSP 1.026|30.20|0.805 1.119|25.71|0.683 1.278|28.72|0.775 1.383|21.02|0.581
FIC-AQP-NAM 1.011|32.11|0.863 1.098|26.68|0.725 1.249|27.97|0.762 1.363|21.86|0.601
FIQ-QP-FAT 1.026|30.20|0.805 1.119|25.68|0.682 1.278|28.75|0.773 1.383|21.02|0.580
FICQP-D

1
1.016|30.58|0.846 1.016|26.01|0.715 1.083|29.91|0.841 1.375|22.56|0.563

FICQP-D
2

0.858|30.11|0.858 0.889|25.84|0.747 0.942|29.19|0.854 1.227|22.57|0.589
FICQP-D

3
0.792|30.99|0.872 0.804|26.23|0.775 0.882|30.11|0.871 1.006|22.59|0.606

Table 2   Processing time 
(seconds) and speedup of 
our sequential and parallel 
implementations in the 
Alienware laptop, using the 
D

3
 library and images of size 

256 × 256 pixels

Images Serial Multi-core CPU (time|speedup) GPU (time|speedup)

time 2C 4C 8C ST ST-32

Peppers 0.94 0.42|2.25 0.22|4.26 0.16|6.06 2.05|0.46 1.28|0.74
Boat 0.81 0.35|2.29 0.21|3.80 0.15|5.41 1.90|0.42 1.22|0.66
Cameraman 0.85 0.36|2.34 0.23|3.75 0.16|5.28 1.93|0.44 1.19|0.72
Baboon 0.80 0.34|2.36 0.21|3.79 0.15|5.33 1.82|0.44 1.08|0.75
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Figure 1 shows the resultant quadtree partitions and the 
decompressed images of our FICQP implementation using 
the D3 library. The first row shows the original images: 
Boat and Baboon of 512 × 512 pixels; Male and Airport of 
1024 × 1024 pixels. We fix the parameters ���_� = 4 and 
���_� = 8 that correspond to compare domains with ranges 
of size from 32 × 32 to 2 × 2 pixels for Boat and Baboon 
images; and ranges of size from 64 × 64 to 4 × 4 pixels for 
Male and Airport images. The second and third rows show 
the resultant quadtree partitions and decompressed images 
fixing the parameter ��� = 20 , while the fourth and fifth 
rows show the resultant quadtree partitions and decom-
pressed images fixing the parameter ��� = 5 . The processing 

time of the sequential implementation, bpp, PSNR, and 
SSIM are shown in Table 3. We obtain the same results of 
the bpp, PSNR, and SSIM for our parallel implementations. 
Note that with a small value of parameter ��� , the quadtree 
partition has more small squares than bigger, which causes 
that the processing time, bpp, PSNR, and SSIM are higher. 
Furthermore, the processing time between images with the 
same size for a fixed ��� can be different; for example, in the 
Baboon and Airport images, there are more textured regions 
than in the Boat and Man images, respectively, which causes 
that there are more small squares in the Baboon and Airport 
images and the processing time is higher than in the Boat 
and Man images. Although the compression ratio is higher 

Fig. 1   Fractal image compres-
sion with quadtree partition 
using large images. Original 
images (first row). Resultant 
quadtree partitions and decom-
pressed images with ��� = 20 
(second and third rows). 
Resultant quadtree partitions 
and decompressed images with 
��� = 5 (fourth and fifth rows)



400	 Journal of Real-Time Image Processing (2022) 19:391–402

1 3

when we use ��� = 20 , there are some details of the original 
images that are missing in the decompressed images, such 
as the sea region of the Boat image, the Baboon whiskers, 
the Man’s hat, and some lines in the ground of the Airport 
image. Therefore, depending on the application, there must 
be a trade-off between the desired compression ratio and the 
quality of the resultant decompressed image.

Table 4 shows the processing time in seconds of our 
sequential and parallel implementations using the multi-core 
CPU (from 2C to 24C), and the GPU with ST and a differ-
ent number of TPB (from 32 to 512) for large images, with 
��� = 20 and ��� = 5 . We fix the parameters ���_� = 4 , 
���_� = 8 , and we use the D3 library. With these processing 
times, we compute the speedups shown in Fig. 2. The pro-
cessing times with ��� = 20 are smaller than with ��� = 5 
due to that there are a fewer number of ranges in the quadtree 
partition (see Fig. 1). Note that the speedup is higher when 
there are a bigger number of ranges in the quadtree partition. 
When ��� = 20 , the processing times and speedups using 
the multi-core CPU with 24C are better than those obtained 
using GPU with ST, ST-32, and ST-128. However, when we 
use the GPU with ST-512 for the Airport image, we obtain a 
speedup of 10.43× , which is better than the speedup of 9.53× 
obtained by the multi-core CPU. On the other hand, when 
��� = 5 , the processing times and speedups using the GPU 
with ST are better than those obtained using multi-core CPU 
with 2C; this behavior is noted with the processing times of 

ST-32, ST-128, and ST-512 compared with the 8C, 12C, and 
24C, respectively. The best processing times and speedups 
are reached with the GPU ST-512, obtaining a speedup of 
24.45× for the Baboon image.

6 � Conclusions

In this paper, we presented new parallel implementations 
of fractal image compression using quadtree partition, with 
task parallelism over a multi-core CPU and dynamic par-
allelism over a GPU. We presented the compression and 
decompression results from standard images of 256 × 256 , 
512 × 512 , and 1024 × 1024 pixels, considering the process-
ing time, number of bits of information stored per pixel, and 
two quality measures.

The parallel implementation based on dynamic parallel-
ism outperforms the speedup of the task parallelism, reach-
ing the best speedups with our GPU ST-512 version. The 
best speedup with multi-core is approximately 15× , while 
with the GPU, the best speedup is approximately 25× . We 
observed that the speedup of our parallel implementations is 
higher when the quadtree partition has more small squares 
than bigger. The GPU implementation was improved by 
launching a set of threads per block inside each stream 
assigned to a recursive kernel function to parallelize the 
comparisons between a range and a set of domains.

Table 3   Processing time (seconds), number of bits of information stored per pixel (bpp), and quality measures for our FICQP implementation 
using the D

3
 library and large images in the server

��� Time|bpp|PSNR|SSIM

Boat (512 × 512) Baboon (512 × 512) Male (1024 × 1024) Airport (1024 × 1024)

20 5.85|0.207|25.38|0.621 7.52|0.452|23.71|0.559 101.81|0.110|24.30|0.560 144.61|0.194|24.70|0.552
15 8.15|0.368|27.59|0.697 11.18|0.863|26.70|0.718 150.36|0.232|26.99|0.660 212.76|0.395|27.42|0.655
10 13.40|0.772|31.30|0.807 18.75|1.522|30.85|0.855 223.36|0.483|30.46|0.775 317.04|0.806|30.12|0.763
5 30.12|2.149|36.99|0.917 50.12|3.820|38.49|0.963 397.02|1.153|35.19|0.903 515.08|1.693|33.28|0.899

Table 4   Processing time in seconds of our sequential and parallel implementations in the server, using the D
3
 library for large images

Tol. Images Serial Multi-core CPU GPU

time 2C 4C 6C 8C 12C 24C ST ST-32 ST-128 ST-512

20 Boat (5122) 5.85 3.21 1.97 1.40 1.18 0.98 0.82 3.32 2.12 1.18 1.16
Baboon (5122) 7.52 4.00 2.37 1.67 1.38 1.11 0.91 4.21 2.24 1.29 1.18
Male (10242) 101.81 55.72 33.39 23.50 19.40 15.82 12.89 44.79 21.69 15.20 12.94
Airport (10242) 144.61 76.53 44.09 30.84 24.79 19.65 15.18 53.96 24.27 17.33 13.87

5 Boat (5122) 30.12 14.97 8.04 5.52 4.21 3.12 2.23 11.55 3.39 2.03 1.74
Baboon (5122) 50.12 24.64 13.01 8.87 6.71 4.88 3.45 17.40 3.75 2.45 2.05
Male (10242) 397.02 199.33 107.17 75.59 56.42 42.35 28.48 128.83 44.81 29.54 21.79
Airport (10242) 515.08 257.11 136.31 96.29 70.99 52.82 34.67 151.99 50.79 34.64 24.98
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We plan to apply and adapt these parallel implementa-
tions to compress color images and video as future work.
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