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Abstract
Dense disparity map extraction is one of the most active research areas in computer vision. It tries to recover three-dimen-
sional information from a stereo image pair. A large variety of algorithms has been developed to solve stereo matching prob-
lems. This paper proposes a new stereo matching algorithm, capable of generating the disparity map in real-time and with 
high accuracy. A novel stereo matching approach is based on per-pixel difference adjustment for the absolute differences, 
gradient matching and rank transform. The selected cost metrics are aggregated using guided filter. The disparity calculation 
is performed using dynamic programming with self-adjusting and adaptive penalties to improve disparity map accuracy. Our 
approach exploits mean-shift image segmentation and refinement technique to reach higher accuracy. In addition, a parallel 
high-performance graphics hardware based on Compute Unified Device Architecture is used to implement this method. Our 
algorithm runs at 36 frames per second on 640 × 480 video with 64 disparity levels. Over 707 million disparity evaluations 
per second (MDE/s) are achieved in our current implementation. In terms of accuracy and runtime, our algorithm ranks the 
third place on Middlebury stereo benchmark in quarter resolution up to the submitting.

Keywords Absolute difference · Rank transform · Guided filter · Dynamic programming · Penalty parameter · CUDA

1 Introduction

In recent years, various evolutions have been made in the 
field of image processing and computer vision. Stereo is 
one of the most popular topics in computer vision. It is fun-
damental for many applications such as video surveillance, 
robotic surgery, obstacle detection and autonomous vehicles. 
The identification of the correct matching pixels between 
two rectified images and the disparity map extraction are the 
principal purposes of the stereo matching step. Although, 
the development of stereo matching algorithm requires 
the understanding of some problems such as occlusion, 
noise and repetitive texture. A wide variety of algorithms 
have been developed to solve these problems using global 

optimization approaches, Patch-based image synthesis meth-
ods and convolutional neural network [1–3].

This paper focuses on the stereo matching process and 
proposes an accurate cost matching function. Similar to the 
combined cost measurements developed in Refs. [4–6], the 
proposed cost function is based on the Absolute Difference 
(AD), the Gradient Matching (GM) and the Rank Transform 
(RT). At first, we introduce the means-shift and the stereo 
images are initially segmented. The resulting cost volume 
is aggregated using Guided Filter (GF). Thanks to its edge 
preservation property and its fast implementation, GF allow 
us to generate a smooth disparity map, as discussed in Refs. 
[7, 8].

In addition, this work proposes an adaptive version of 
Dynamic Programming (DP) for disparity calculation and 
optimization. To further improve the accuracy, this paper 
presents a DP with self-adjusting and adaptive penalty val-
ues instead of single penalty implemented in Refs. [9–11]. 
Finally, the stereo process is finished by a refinement tech-
nique in the goal to remove noise and correct outliers.

In the recent years, the real-time has become a reality 
through the complexity reduction of the calculation and 
the use of graphics hardware. In our work, we present a 
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GPU (Graphics Processing Units) implementation based on 
CUDA (Compute Unified Device Architecture) language to 
implement the suggested method. In this paper, a fast and 
accurate stereo matching algorithm is proposed and the most 
significant contributions are as follows:

• The proposed method acquires a final cost volume using 
three types of cost metrics: AD, GM and RT. In addition, 
this algorithm exploits mean-shift segmentation in the 
cost calculation step. All these functions are employed 
to obtain accurate results.

• This approach proposes a dynamic programming with 
self adjusting and adaptive penalties. This method inte-
grates the inter-scanline and intra-scanline consistency 
constraints to increase the matching accuracy and out-
performs other optimization approaches.

• This work exploits the graphics hardware to achieve real-
time performance. The proposed algorithm is evaluated 
on Middlebury stereo benchmark. It ranks among the fast 
and accurate methods in Middlebury evaluation table.

This paper is organized as follows: After reviewing the 
related work in Sect.  2, our stereo matching method is 
detailed in Sect. 3. While the GPU CUDA implementa-
tion of our algorithm is presented in Sect. 4. In Sect. 5, we 
evaluate our approach on Middlebury dataset and we report 
experimental results. Finally, some conclusions are given 
in Sect. 6.

2  Related works

According to the taxonomy [12], stereo algorithms generally 
perform four basic steps: cost calculation, cost aggregation, 
disparity calculation and disparity refinement. The stereo 
studies have developed many approaches to realize each 
stage. The most common matching costs include absolute 
difference or block matching calculated over fixed or adap-
tive windows [1, 2, 5, 13]. The failure on discontinuities 
areas and sensitivity to the lighting variation are the main 
limitation of these techniques. The image gradient magni-
tude is also taken to calculate the similarity between the 
stereo pair [1]. A simple comparison of light intensities over 
windows is not always enough. Therefore, the use of non-
parametric transformations as Census Transform (CT) and 
RT is desired. According to the works [1, 14, 15], CT and 
RT perform comparably to correlation and difference met-
rics and they are more robust against the lighting variations. 
Nevertheless, the robustness of these transforms is kept with 
a relatively large kernel size.

All of these matching costs have strengths and weak-
nesses. So, some studies have been devoted to combining 

the strengths of multiple methods to achieve better perfor-
mance. Mei et al. [16] combined AD with CT for computing 
the initial matching cost. While the cost volume in Ref. [7] is 
obtained by the combination of AD and GM. In the work of 
Hamzah et al. [6], the global cost matching is based on the 
combination of three cost functions: AD, GM and CT. While 
Kordelas et al. [17] use RGB information, CT and Scale-
Invariant Feature Transform in cost calculation step. These 
well-combined cost measurements achieve their goals and 
perform better than the single one. We adopt this combined 
cost strategy in this work. To obtain our global cost match-
ing, we combine AD, GM and RT. In addition, the means-
shift segmentation is used in cost calculation step to reduce 
the effect of lighting variations as implemented in Ref. [17].

Moreover, numerous techniques for cost aggregation 
step are used. Most aggregation functions can be classi-
fied into window-based method [9, 18], segment-tree-based 
method [19] and filter-based method [7, 10, 20]. A sum-
mation of the matching cost is calculated for each pixel 
over the support region to remove the possible influence 
of noise. Yoon and Kweon [13] use an adaptive weights 
between the neighboring pixel and the center pixel in 
a fixed window. But this method is prone to difficulties 
within textureless regions. Edge-preserving filters as Bilat-
eral Filter (BF) and GF are utilized in this step. BF gives 
acceptable results but it is computationally expensive as 
implemented in Refs. [10, 21]. To solve the computational 
limitation of BF, Rhemann et al. [7] adopted the GF into 
cost aggregation. An adaptive GF is presented by Zhu et al. 
[20]. Also, an iterative GF is implemented in Ref. [6]. 
Recently, Wu et al. [22] propose fusing adaptive support 
weights, where the cost is aggregated using segment-tree-
based method and GF. But this method is identified by its 
computational complexity. As realized in many real-time 
algorithms [8, 23], we exploit GF to aggregate our global 
cost matching.

The disparity calculation for local methods is performed 
using Winner Take-All (WTA) algorithm. Besides from 
local methods, efficient global stereo methods are also stud-
ied. Among the optimization approach, the dynamic pro-
gramming is employed in many real-time stereo works. In 
the works of Wang et al. [10], GPU implementation of BF 
and DP achieves 192 fps with 340 × 240 input images and 
16 disparity levels. While, Hallek et al. [9] present a stereo 
algorithm based on Fourier descriptor and DP whose imple-
mentation achieves about 93 MDE/s.

Traditional DP optimizes the matching cost on a scan-
line by scanline without enforcing inter-line consistency 
constraint. To address this limitation, Veksler [24] intro-
duces the tree structure and optimize the global cost func-
tion defined on a 2D. An important parameter is usually 
used for DP named smoothness penalty. This parameter is 
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assigned empirically and defines the penalty of the change 
in the disparity value between neighboring pixels [9, 11]. 
In similar works based on Semi Global Matching (SGM), 
some studies evaluate the performance of the penalty func-
tions as realized in Ref. [25]. Recently, Karkalou et al. [26] 
present SGM with a Self-Adjusting Penalties (SGM-SAP) 
witch outperforms the classic SGM version [27]. In the 
goal to increase the matching accuracy, an improved DP 
is developed. As implemented in SGM-SAP work, we pre-
sent a generic algorithm based on self-adjusting penalty 
parameter for DP.

The runtime is considered as an important metric for 
evaluating the stereo algorithms. Many works are interested 
in runtime reduction. To reach real-time performance, the 
Field Programmable Gate Array (FPGA) [28, 29] or the 
GPU implementation [9, 18, 30] are used. While many real-
time approaches focus on reducing the complexity associ-
ated with matching and aggregation costs, at the expense of 
decreased matching accuracy. In this paper, we use NVIDIA 
GeForce RTX 2070 and we exploit the RTX 2070s com-
puting capabilities to obtain a highly accurate results that 
maintains real-time performance.

3   Matching algorithm

Similar to a basic stereo matching development, the pro-
posed approach involves the same steps in the taxonomy 
[12]. Figure 1 shows the block diagram of the proposed 
algorithm and the main steps are detailed in the following 
sections.

3.1  Mean‑shift segmentation

The first step in the proposed method is to decompose the 
stereo pair image into regions of homogeneous color or 
gray-scale. The mean-shift segmentation is one of popular 
methods applied to image segmentation. It is exploited by 
numerous stereo matching algorithms [17, 31] in various 
ways, since it assists to acquire disparity map with a high 
accuracy. In this work, left and right images are initially 
segmented into non-overlapping regions using a state of the 
art mean-shift segmentation, which relies on color and edge 
information. More details about means-shift segmentation 
are found in Ref. [32]. The main advantage of the mean-shift 
segmentation is based on the fact that edge information is 
incorporated as well. In segmented image, pixels that belong 
to the same mean-shift segment have an individual label and 
their mean color value is computed. Figure 2 shows the left 
image of “Teddy” stereo pair and its mean-sift segmenta-
tion map.

The segmented maps of the left and right images are cal-
culated once and then they are used in the following steps.

3.2  Cost matching function

The new proposed cost function contains three terms. It 
is the combination of three per-pixel difference measure-
ments with adjustment element: Absolute Difference (AD) 
for color, Gradient Matching (GM) and Rank Transform 
(RT). Each term will be more detailed below:

The absolute difference is detailed and implemented in 
Ref. [5]. This cost function has taken into account the dif-
ference intensity for three channels. It is characterized by 
its rapidity and its simplicity during the implementation. 
The limitation of this cost function matching is the high 
distortions in low textured regions. The work presented in 
this paper proposes a method which is able to minimize 

Fig. 1  Diagram block of our approach
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these errors. The new proposed cost function introduces a 
coefficient � to balance the absolute difference and gradi-
ent matching cost. The color absolute difference is noted 
AD(p, d) in Eq. (1). It presents the intensity difference 
between two color pixels at left and right images denoted 
Il and Ir , respectively.

Knowing that p is color pixel at location (x, y) in the refer-
ence image and d presents the disparity value. While r, g 
and b are the three color channels. The color absolute dif-
ference is thresholded using �AD . The threshold �AD defines 
the truncated value as used by Refs. [5, 6] to increase the 
robustness against the illumination changes. In Eq. (2), we 
give the condition for the use of AD:

Meanwhile, to determine the gradient matching cost the 
components of the gradient from each image are initially 
computed. The gradient value in horizontal direction Gx and 
vertical direction Gy are calculated. Fundamentally, Gx and 
Gy are given by Eqs. (3) and (4), where A = [1 0 − 1] and 
AT is the transpose of A.

The image I is either the left or right stereo image, while ∗ 
defines the convolution operation. The gradient magnitude 
G is given by Eq. (5):
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(2)AD(p, d) =

{
�AD if AD(p, d) ≥ �AD
AD(p, d) otherwise

(3)Gx = A ∗ I

(4)Gy = AT
∗ I

The modulus of gradient operator in Eq. (5) is applied for 
left and right images to give respectively Gl and Gr . The 
absolute difference between gradient images for a pixel p is 
denoted GM(p, d), where d is the disparity level. The gradi-
ent difference is given by Eq. (6):

The final gradient cost is given by Eq. (7), where �GM is the 
threshold or truncated value of GM.

Now, the per-pixel difference adjustment is applied for color 
and gradient distances. The costs AD(p, d) and GM(p, d) are 
combined to obtain costcg(p, d) . This function is presented 
by Eq. (8). The term � is used to balance color and gradient 
measures as realized in Refs. [5, 6].

In this paper, we try to make our cost matching function 
more robust against illumination variations. A non-para-
metric local transform is added to the initial cost function 
costcg(p, d) . This work adopts the rank transform, one of the 
old functions used on stereo matching. It is introduced by 
Ref. [15] and given by Eq. (9), where W represents square 
window.

The intensity value of the central pixel is noted by I(p). 
While I(p�) is the intensity of the neighboring pixel and � 
represents a comparison operator. The rank transform pro-
duces the sum of comparison between intensity of central 
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(6)GM(p, d) = ||Gl(p) − Gr(p − d)||

(7)GM(p, d) =

{
�GM if GM(p, d) ≥ �GM
GM(p, d) otherwise

(8)costcg(p, d) = �AD(p, d) + (1 − �)GM(p, d)

(9)RT(p) =
∑

p�∈W

�
(
I(p), I

(
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Fig. 2  Mean-shift segmentation 
“Teddy” image
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pixel and the intensity of neighboring within a small win-
dow. This comparison gives 1 if I(p) > I(p�) and 0 otherwise. 
In stereo matching, the rank transform is calculated for left 
and right images to get RTl and RTr . The absolute differ-
ence between RTl and RTr is computed to obtain the rank 
distance as presented in Eq. (10). The final cost based on 
rank information costrt(p, d) is given by Eq. (11), where �RT 
is the threshold value of costrt.

For integrated similarity matching cost, we apply a robust 
cost function including three measurements. The exponen-
tial function has the advantage of mapping the values of a 
measure in the range of [0, 1] and the final matching cost 
function is given by Eq. (12).

The used measurements with different ranges are initially 
scaled into the same range and then they are combined. The 
global cost matching C(p, d) uses normalized cost function 
as realized in Refs. [6, 17].

3.3  Cost aggregation

The cost aggregation is a basic step for stereo matching 
problem. This step allows us to minimize the matching 
uncertainties and reduce noise. In this paper, we employ 
guided filter to aggregate the initial cost volume C(p, d) 
for many reasons:

• GF has a linear execution time which is independent of 
the filter size and basically depends on the image size.

• GF has an edge preservation property and its applica-
tion for cost volume gives a good quality results.

• Based on box filter a real-time implementation of GF 
can be achieved.

As its name indicates, the guided filter used guidance image. 
The initial left or right images are used as reference or 
guidance image during filtering process. The kernel func-
tion of GF for the image I is defined by Eq. (13), where w 
indicates to the pixel number in the support window wk . 
While k denotes the central pixel, q represents the set of the 
neighboring pixels in the used window. Knowing that � is a 
smoothness parameter, � and � define respectively the mean 
and variance of the intensity values on the reference image.

(10)costrt(p, d) =
||RTl(p) − RTr(p − d)||

(11)costrt(p, d) =

{
�RT if costrt(p, d) ≥ �RT
costrt(p, d) otherwise

(12)C(p, d) = 2 − exp(−costcg(p, d)) − exp(−costrt(p, d))

The result of filtering process gives us the aggregated cost 
function CA(p, d) as presented in Eq. (14):

The image M(p, d) is the input filtering image. While 
GFp,q(I) is the weight of guided filter using left image as 
guidance image.

3.4  Disparity computation and optimization

For global methods, the disparity calculation is performed 
using energy optimization approaches. These methods are 
based on the smoothness assumption, meaning that the scene 
is locally smooth except for object boundaries and the neigh-
boring pixels should have very similar disparities. Thus, 
the optimization approaches make explicit the smoothness 
assumptions and minimize the global matching function that 
contains data and smoothness terms as indicated in Eq. (15). 
The term Edata(d) is the matching cost and Esmooth encodes 
the smooth assumption.

The dynamic programming algorithm can efficiently han-
dle this class of problems. It exploits the smoothness and 
the ordering constraints to optimize matching cost between 
two scanlines. DP is applied on the aggregated cost volume 
CA(x, y, d), where x and y present the coordinates of the 
pixel p. DP contains two main steps: a step for constructing 
the cost matrix Mh(x, d) for each line y and a step in which 
pairs of corresponding pixels are selected by searching the 
optimal path. The Mh dimensions are W × Dmax , where W 
and Dmax represent the image width and the maximal dis-
parity. After Mh calculation, the best path can be found by 
back-tracking. The optimal path assigns a disparity value for 
each pixel in the scanline y. To generate the full disparity 
map the DP process is repeated over all the scanlines. The 
calculation of Mh is given by Eq. (16), where � presents the 
penalty of the change in the disparity value between neigh-
boring pixels.

The penalty parameter � is the only variable used during the 
application of DP. It has an important influence on the dis-
parity map accuracy. A small value of � can produce a noise 
and discontinuities regions on disparity map while a big 
value of � can remove the object boundary and gives poor 
results in areas that contain discontinuities. Figure 3 shows 

(13)GFp,q(I) =
1

||W2||

∑

p∈wk

(
1 +

(Ip − �k)(Iq − �k)

�2
k
+ �

)

(14)CA(p, d) = GFp,q(I)M(p, d)

(15)E(d) = Edata(d) + Esmooth(d)

(16)
Mh(x, d) = CA(x, d) +min(� +Mh(x − 1, d − 1),

Mh(x − 1, d), � +Mh(x, d + 1))
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the effect of penalty value on results quality. The test is done 
based on two images of Middlebury dataset knowing that the 
costs are scaled in the range of [0,1]. From Fig. 3, one may 
notice that the disparity map accuracy depends the penalty 
value. Also, this figure indicates that minimum errors for the 
two images are obtained using different penalty values. The 
suitable penalties for “Teddy” and “Tsukuba” are �0 and �1 
as marked in the curves. Therefore, the suitable penalty is 
not the same for all images in the same dataset.

DP-based algorithms use single and constant value of 
penalty. This parameter is empirically determined as real-
ized in Refs. [11, 24, 33]. It is fixed once and then used for 
all images in the dataset. In a similar works, the algorithm 
of Ref. [25] evaluates the performance of different penalty 
functions. Besides, Karkalou et al. [26] define SGM algo-
rithm with self adjusting penalties, where the penalty val-
ues are extracted from Disparity Space Image (DSI). On the 
other hand, the algorithm of DP on tree [24] indicates that 
the smoothness penalty for assigning disparities dp and dq to 
the pixels p and q is inversely proportional to the absolute 
value of the intensity difference |I(p) − I(q)| . Moreover, the 
penalty parameter is employed to penalize abrupt disparity 
changes when a depth discontinuity is unlikely. In the same 
stereo pair there is always a lighting variations and discon-
tinuity areas according to image content. So, an adaptive 
penalty which varies from one line to another is required. 
The idea is to find a function which produces a vector of 
penalties for each stereo pair. Based on the works [24–26], 
the proposed penalty function is shown in Eq. (19). It gives 
a set of penalties by varying y from 1 to H. Where H is 
the number of lines in the image. In Eq. (17), we define 
Smin from the aggregated cost volume CA(x, y, d), where 1 
and Dmax present respectively the minimum and the maxi-
mum disparity values. Equation (18) calculates the distance 
between a pixel of interest p and its neighbours q. Id meas-
ures the discontinuity in the gradient image I.

For each line, the average value of the columns in Smin is 
devised by the maximum value per all columns in the image 
Id . W is the image width used to normalize the result. From 
one line to another the penalty varies smoothly according to 
the costs and the discontinuities of the processed line. Dur-
ing DP process, for each scanline y we calculate the matrix 
Mh in Eq. (16) using �v(y) instead of constant � . Then, the 
optimal path is determined to assign the disparity for each 
position in this scanline.

3.5  Disparity refinement

At this stage, the obtained disparity map contains noise and 
unmatched pixels due to repetitive texture and occlusion. 
Therefore, post treatment step is required to improve the 
results. This step concatenates several consecutive processes 
which are invalid disparity detection, fill-in invalid disparity 
value and Weighted Median Filter (WMF). The first process 
for disparity refinement is the detection of invalid dispar-
ity and unmatched pixels in the disparity map. This stage 
is performed using Left-Right (LR) consistency checking 
process as implemented in Refs. [5, 9, 17]. The main of this 
process is to detect problematic areas, especially outliers in 
occluded regions and depth discontinuities. The LR consist-
ency checking process is done from left reference dispar-
ity map that coincides with the right disparity map. The 
set of inconsistent pixels between the two disparity maps 
are marked as invalid disparity. LR consistency checking 
process is calculated based on the Eq. (20). where DLR rep-
resents the left reference disparity map. It is obtained using 
left image as a reference image and the matching process is 
performed from the left to the right image. While DRL is the 
right side disparity map, calculated using right image as a 
reference image.

After unmatched pixels detection, the fill-in invalid dispar-
ity process is necessary. The invalid pixel on the disparity 
map is replaced with a nearest valid value. Knowing that, 
this valid value exists on the same line or on the starting 
line. The disparity map d(p) is filled according to the condi-
tions indicated in the Eq. (21). In this equation, d(p − i) and 
d(p + j) represent the location of the first valid disparity on 
the left and right side respectively.

(17)Smin(x, y) = min
d=1∶Dmax

(CA(x, y, d))

(18)Id(p) =|I(p) − I(q)|

(19)�v(y) =
(

∑
x Smin(y, x))∕W

max
x=1∶W

(Id(x, y))

(20)||DLR(p) − DRL(p − DLR(p))
|| ≤ 1

Fig. 3  The penalty effect on the disparity map accuracy
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The next step is the filtering process based on weighted 
median filter. WMF is used in different works for dispar-
ity refinement as Refs. [6, 34]. This filter is performed to 
remove the remaining noise and for smooths the hole-filled 
disparity map. The principle of the weighted median filter 
is to replace the central pixel over window by a weighted 
median value of its neighbors. Over square window, the 
weight of each pixel can be determined using both color and 
spatial distances between this pixel and neighboring pixels. 
The weighted filter median performs edge-preserving filters 
many times based on the weighted histograms. In this work, 
we based on the fast implementation of the weighted median 
filter [35].

4  Implementation on graphics hardware

In recent years, the graphic processors have become 
powerful tools for massively parallel intensive comput-
ing. Generally, they are employed for several applica-
tions including image processing and computer vision. In 
November 2007, NVIDIA Corporation introduced CUDA, 
which is a parallel computing architecture and a comple-
mentary application programming interface that enables 
fast development of massively parallel applications. The 
GPU CUDA implementation is characterized by faster 
processing compared to power CPU. We adopt the prede-
fined functions and existing libraries on CUDA to obtain 
an efficient description for each stereo matching step and 
consequently high-performance implementation for com-
plete algorithm.

On the other hand, the cost aggregation step using filter-
ing process is computationally expensive and many works 
focus on reducing the complexity associated with this step as 
Refs. [8, 10, 18]. The GPU implementations of these algo-
rithms achieve their goals and yield real-time performance. 
In addition, our approach is based on DP to calculate the 
matching between two scanlines. DP’s scanline-independent 
computational structure allows us to easily take advantage 
of the manycore architectures of GPUs. For these reasons, 
we estimated that GPU implementation can be an efficient 
solution. Our stereo model relied on CUDA language for 
parallel treatment contains four fundamental steps:

• Loading input images: Transfer the stereo pair images 
from the CPU to the GPU memory (Host to Device).

• Thread Allocation: Fix the threads number of the calcula-
tion grid such that each thread can perform its processing 
on a pixel template.

(21)d(p) =

{
d(p − i) if d(p − i) ≤ (d(p + j)

d(p + j) otherwise

• Parallel processing: Realize parallel processing provided 
by kernel functions. These functions are executed N 
times using the N threads defined in the previous step.

• Presentation of the results: Transfer the result from the 
device to the host memory ( Device to Host ) and visual-
ize the obtained disparity map.

After fixing necessary threads and blocks number and load-
ing the stereo pair image in the memory of the device, all 
processes of our approach are performed with kernel func-
tions. These functions are executed in parallel by multiple 
threads. In the proposed stereo matching algorithm, the 
organization of the kernel functions is indicated in Fig. 4. 
This figure presents our algorithm implementation on the 
GPU while explaining the transactions between CPU, GPU 
and vice versa.

Initially, we start with cost calculation kernel which 
returns the cost volume V(x, y, d) computed by Eq. (12). 
The first step is to allocate memories for the input images 
and output cost volume V. The used images are segmented 
left and right images ( Il, Ir ), the two gradient images ( Gl,Gr ) 
and the rank transform of the two images ( RTl,RTr ). Then, 
we calculate the color distance and gradient matching 
noted respectively by C0 and C1. These two variables are 
performed by Eqs. (2) and (4) using the threshold �AD and 
�GM . The variable C3 is associated with rank distance, it is 
obtained by applying absolute difference between RTl and 
RTr as indicated in Eq. (11). The result of the combination 

Fig. 4  Partition of our stereo matching algorithm
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of these variables gives us the matching cost of the pixel p 
and it is stored in the output V.

To treat all pixels, the grid size is ( W

BX
 , H
BX

) , where H and 
W are the height and width of the image. The size of the 
block of threads is (BX × BX) , where BX is equal to 32. For 
each disparity value d, the cost function of each pixel p 
at location (x, y) in reference image to pixel p at location 
(x − d, y) in target image is computed. Instead of process-
ing pixel by pixel, this kernel performs the matching cost 
for all pixels in reference image to all pixels shifted by d 
in target image. Details of the cost calculation kernel are 
given by Algorithm 1 using left image as reference images. 

The second kernel function is dedicated to perform the 
cost aggregation step. It is realized using GF. This filter 
is already described in Sect. 3.3. Generally, GF uses a 
guidance image I to filter a guided image f. In our work, 
the guidance image is the grayscale left image, while the 
guided image is a slice (x, y) of the cost volume. Theo-
retically, GF weights are given by Eq. (13). An inherent 
advantage of GF indicated in Ref. [36] is that the weights 
can be computed with some linear operations, which can 
be decomposed into a series of box filters with windows 
radius r. GF can be computed in O(N) time, where N is 
the number of image pixels. Moreover, we do not need to 
implement the box filtering manually since two libraries 
OpenCV of Intel and NPP of Nvidia already have offered. 
To aggregate our cost matching, we start by extract P(x, y) 
from V(x, y, d) at fixed disparity d. Then, we follow the 
steps of the filtering process detailed by Algorithm 2 to 
obtain filtered image img_out . We note that the function 

boxf is box filter, � is a smoothness parameter and r pre-
sents a guided filter radius.

The next kernel function is devoted to disparity compu-
tation and optimization based on DP with automatic esti-
mation of adaptive penalties. This optimization approach 
is characterized by its parallelism and the matching of 
each line can be calculated independently. The main of 
DP kernel function is to compute matrix cost Mh and find 
the minimum cost path. In our approach, we start by cal-
culating the vector of penalties �v as given by Eq. (19). 
The matrix Mh for scanline y is computed by replacing � 
with �v(y) in Eq. (16). Inspired by the works [9, 10, 37], 
for each scanline y, we construct Mh and also the matrix A 
which contains the minimum cost index. The two matrices 
have Dmax ×W  entries, where Dmax is the disparity range 
and W is the image width. We traverse Mh from left to 
right position by updating the entries in Mh and A. After 
the rightmost column is filled, the optimum path can be 
extracted from A. The DP process for a scanline y is given 
by Algorithm 3.

In this work, we adopt the kernel developed by Ref. 
[11] to calculate each scanline disparity. The inputs of 
DP kernel are the aggregated cost volume V and the vec-
tor of penalties �v . The size size of the block of threads 
is (1 × BX).
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5  Experimental results

The computational complexity of our stereo matching 
approach and the runtime are discussed in the following. For 
the experiment, The used graphics card is NVIDIA GeForce 
RTX 2070, equipped with 2304 CUDA cores running at 1.4 
GHz. It is connected with Intel Core i7-3770M based CPU 
with a clock speed 3.4 GHz. Our algorithm is evaluated on 
versions 2 and 3 of Middlebury benchmark are respectively 
represented by MV2 and MV3. This dataset is used as facto 
standard for comparing and ranking the stereo matching 
algorithms according to their performance. For Middlebury 
benchmark, the stereo methods are assessed by the average 
of bad pixels given by Eq. (22), where Dx is the obtained 

disparity map, GTx is the ground truth and � presents the 
disparity tolerance.

In this section, we start by evaluating the performance of 
our approach based on DP with self-adjusting and adaptive 
penalties and compare it with other optimization methods. 
Figure 5 shows the disparity maps of some images on Mid-
dlebury benchmark using our approach, WTA, dynamic 
programming with constant penalty value (DP) and SGM. 
While Fig. 6 indicates the percentage of the errors in the 
non-occluded regions.

We note that WTA generally gives the biggest errors. 
This implies that the use of an optimization approach (DP 
or SGM) improves the results. Furthermore, our proposed 
approach gives us the smallest errors for all images and out-
performs DP and SGM.

In MV2, the stereo algorithms are ranked according to 
their accuracy using different values of the disparity toler-
ance. This dataset contains only 4 stereo pairs (Tsukuba, 
Venus, Teddy and cones) with different disparity levels. We 
calculate the average of the errors for all stereo pairs on 
MV2 (Avg). We note the average errors in non-occluded 
region by Avg Non-occ. Avg All and Avg Disc denote the 
average of absolute errors and the average of depth discon-
tinuities errors respectively. These measures are computed 
for a threshold � = 1 . The evaluation results on MV2 are 
shown in Table 1.

This table confirms that our method outperforms recent 
methods ranked in the evaluation table of MV2. Among 
these methods, we find the method of two step global 

(22)bp =
∑

x

||Dx − GTx
|| > 𝛿

Fig. 5  Obtained disparity maps 
using our approach and other 
optimization techniques
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optimization TSGO [38], CostFilter [7] based on AD and 
GM costs aggregated by guided filter and the method that 
use adaptive guided filtering [23]. Moreover, the proposed 
method improves upon the average percentage of bad pixels 
by 4.5% and 1.87% using the optimized DP [37] and IDR 
[18] respectively.

The database MV3 contains 30 pairs (15 for training 
and 15 pairs for test) with full, half and quarter resolution. 
The maximal disparity of quarter resolution (up to 750 × 
500) can reach 200. In this dataset, the error is calculated 
using 2 masks: all and non-occluded. Several other met-
rics are added as total time per second (time), the average 
absolute errors in non-occluded regions (Avg nonocc), aver-
age absolute errors in all regions (Avg all). We compare 
our method against other relevant stereo algorithms listed 
in the evaluation table of MV3 and summarize the results 
in Table 2. The metric Time/MP presents the time normal-
ized by number of pixels (s/megapixels). While Time/GD is 
the time normalized by number of disparity hypotheses (s/
(gigapixels ∗ ndisp)).

Table 2 shows that our method takes 0.04 s and produces 
an average absolute errors in non-occluded regions equal to 

5.24%. This table indicates that our approach is more accu-
rate and faster than IGF [6], LS-ELAS [40], ISM [42] and 
MSMD-ROB [3]. Also, our method outperforms in terms 
of accuracy ReS2tAC [43] and the work of a multi-block 
matching on GPU [30]. But these algorithms are more faster 
than our approach. The proposed stereo matching framework 
generates slightly less accurate results than DDL [41] and 
FASW [22], but it is more fast than these works.

Another evaluation in terms of both speed and accu-
racy is made to compare the suggested method with recent 
real-time algorithms. We tested our approach on images 
with a resolution 640 × 480 pixels and 64 disparity levels. 
The used metrics are the average percentage of bad pix-
els, the number of the frames per second noted (FPS) and 
the number of millions of disparity per second (MDE/s). 
The results are shown in Table 3, where the second col-
umn contains the image size and maximal disparity value 

Fig. 6  Percentage of the errors 
on some images of Middlebury 
dataset

Table 1  Quantitative evaluation of our method on MV2

Method Threshold � = 1

Avg non_occ Avg all Avg disc Avg

Our approach 1.80 5.00 6.20 4.33
CostFilter [7] 2.64 5.57 8.42 5.55
IDR [18] 3.24 6.36 8.99 6.20
AdaptiveGF [23] 2.2 5.36 7.23 4.98
OptimizedDP [37] 4.25 9.04 13.2 8.83
TSGO [38] 2.06 3.9 6.2 4.06
CCRADAR [39] 2.17 4.91 7.17 4.75

Table 2  Accuracy and speed on MV3

Method Avg nonocc Avg all Time (s) Time/MP Time/GD

Our approach 5.24 8.74 0.04 0.13 1.61
MSMD-ROB 

[3]
6.46 9.20 0.74 2.37 32

IGF [6] 6.39 9.49 79.2 261 3253
IDR [18] 5.33 8.57 0.34 0.27 0.82
FASW [22] 5.12 8.47 51.8 161 1962
MBM [30] 6.28 10.1 0.01 0.01 0.02
LS-ELAS 

[40]
9.66 12.9 2.47 0.50 1.86

DDL [41] 5.18 8.49 70.9 222 2597
ISM [42] 6.45 9.65 15.1 46.3 550
ReS2tAC 

[43]
7.55 13.9 0.13 0.41 5.61

FADNet [44] 6.01 6.16 0.60 0.49 1.69
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( Dmax ). The application of the proposed method on the 
used images takes 27.7 ms. So, our approach can achieve 
36 frames per second. It is more accurate and faster than 
many DP-based algorithms as SGFD [9], BF-DP [10] and 
RealTimeGPU [33]. Table 3 indicates that our method out-
performs Hosni [8] based on guided filter, IDR [18] and 
FastBilateral [21] in terms of both speed and accuracy.

In terms of speed, there are so fast algorithms as [45], 
this work runs at 40 FPS for 1436 × 992 pixels images 
with 145 disparity values. But its error rate on MV3 using 
threshold equal to 2 (Bad 2.0) is 32.82%. According to 
our evaluation, the same error rate is 27.1%. So, our work 
remains more accurate.

We evaluate our proposed method on MV3 testing data-
set. Some obtained results are displayed in Fig. 7. Smooth 
disparity maps are produced as indicated in last column 
of the figure. The second column presents the left stereo 

image and the first column gives the image size, the maxi-
mal disparity value and the execution time (ms).

6  Conclusions

This paper presents a novel approach for real-time stereo 
matching with high accuracy. For disparity calculation step, 
this work defines a novel method of optimization aiming at 
the self-adjustment of adaptive penalty values for dynamic 
programming applicable for any image pair. This is obtained 
by the automatic estimation of the penalties vector through 
a simple process with low computational requirements, 
relying on the gradient images difference and the Dispar-
ity Space Image. The proposed stereo matching algorithm 
is evaluated on versions 2 and 3 of the Middlebury stereo 
benchmark. The results indicate that the suggested approach 
outperforms the classic version of dynamic programming, 
the algorithm of the two-step energy minimization, semi 
global matching and other existing methods.

Furthermore, we present an implementation of our 
method on graphics hardware using CUDA to reduce the 
execution time. We exploit CUDA parallel computing 
architecture to implement the proposed algorithm. The 
implementation results show that our approach can achieve 
real-time performance. In addition, they confirm that the 
proposed method outperforms many real-time algorithms 
in terms of accuracy and runtime.
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