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Abstract
In this paper, we present a parallel implementation of a fixed-point algorithm for finding the solution of the total variation 
model for phase demodulation. The total variation model is efficient in estimating discontinuous phase maps, background 
illumination, and amplitude modulation from a single fringe pattern. The implementations include execution in a multi-core 
CPU and a GPU using OpenMP and CUDA, respectively. We show performance comparisons of the parallel implementa-
tions with 64-bit and 32-bit precision floating-point numbers using synthetic and real experimental data. Results show that 
our parallel implementations achieve speedups over the serial implementation of 9x for multi-core CPU and 103x for GPU.

Keywords Fringe analysis · Total variation · Multi-core · GPU

1 Introduction

Fringe analysis is a widely used technique in optical metrol-
ogy to recover physical quantities such as displacement, 
strain, surface profile, and refractive index from interfero-
grams. Interferograms are two-dimensional recordings 
made by a digital camera of interference patterns. Encoded 
in the interference fringes or bands of the interferogram is 
the shape of the wavefront [13]. Fringe analysis is then the 
extraction of the quantitative measurement data from either 
a single fringe pattern or a collection of them [25]. Fringe 
analysis consists of one or two processes: phase demodula-
tion and phase unwrapping [30].

The mathematical model of a fringe pattern is given by

where I(x, y) is the image intensity, a = a(x, y) is the back-
ground illumination, b = b(x, y) is the amplitude modulation, 
� = �(x, y) is the phase, and � = �(x, y) is the spatial carrier 
frequency. The main task of fringe analysis algorithms is to 
recover the phase term � , and in some cases, the background 

illumination and amplitude modulation as well. That is an 
inverse problem, because only the fringe pattern I(x, y) and 
sometimes the carrier frequency � are known.

In the last years, many techniques have appeared for the 
solution to the problem mentioned above. They depend on 
obtaining one or more fringe patterns from the experiments. 
For instance, phase-shifting techniques recover the phase 
map � by acquiring a collection of fringe patterns shifted 
one from another by a certain amount [32]. The phase dif-
ference between two consecutive fringe patterns is usually 
a constant term [1, 8, 15, 29, 30].

Among the variety of techniques for demodulating the 
phase map using a single fringe pattern, Takeda’s method 
was one of the first to be proposed. This method is based 
on the Fourier transform and considers the phase map as a 
continuous and smooth function [33]. In recent years, some 
papers appeared with solutions based on regularized Bayes-
ian estimation costs. Regularization uses a priori information 
to impose restrictions on the estimated solution. The success 
rate of these techniques at recovering the phase term � from 
highly noisy patterns is high; however, their numerical solu-
tion is usually quite expensive [18, 21, 28]. An extensive 
review of these methods is available in [30] and references 
therein.

All demodulation methods described above fail to recover 
discontinuous or piece-wise phase maps. Up to our knowl-
edge, there are very few methods reported in the literature 
capable of recovering these kinds of phase maps [2, 3, 9, 17, 
31, 36]. One of them, based on a regularized cost function, 

(1)I(x, y) = a(x, y) + b(x, y) cos(�(x, y) + �(x, y)),
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uses a second-order edge-preserving potential [9]; another 
is based on wavelets using total variation (TV) regulariza-
tion [36]. The rest are based on variational formulations 
using either TV or mean curvature regularization [20, 26]. 
Except for the reference [31], these methods estimate the 
phase term, the background illumination, and the amplitude 
modulation from a single fringe pattern. We remark that 
all methods described in this paragraph report serial reali-
zations for their models. Consequently, their running CPU 
times are much slower than the parallel implementation of 
our model presented here.

For a model to succeed in the transition from applied 
research to industrial applications, a reliable and fast numer-
ical realization of the model needs to be available. Despite 
the accurate recovery of the phase term, the computational 
times reported in the demodulation techniques discussed 
above show the need to provide them with fast computa-
tional solvers. In this work, we address this issue for the TV 
model by introducing a very quickly parallel realization of 
this model based on the fixed-point algorithm introduced in 
[17] and whose convergence was proved in [3].

Other methods for solving the model in [17] are a very 
slow gradient descent algorithm and a recently published 
augmented Lagrangian algorithm [16]. The realization of 
both algorithms is serial hence slower than the parallel one 
introduced here.

The outline of this paper is as follows. In Sect. 2, we 
review shortly the TV model. In Sect. 3, we review the fixed-
point algorithm. In Sect. 4, we present the parallel realiza-
tion for multi-core CPU and GPU architectures. The experi-
mental results on both synthetic and experimental data are 
presented in Sect. 5 and our conclusions are given in Sect. 6.

2  Total variation based model

The TV model presented in [17] amounts to solving the fol-
lowing problem:

where

where Ω ⊆ ℝ
2 , g = g(x, y) is the acquired fringe pattern, and 

�a, �b, �� are positive regularization parameters.
Due to the total variation regularization, this model can 

recover sharp phase-transitions, background illumination, 
and amplitude modulation.

(2)argmin
a,b,�

TV = TV(a, b,�,� , g),

(3)
TV ≡ �Ω

(I − g)2dΩ +
1

�a �Ω

|∇a|dΩ

+
1

�b �Ω

|∇b|dΩ +
1

�� �Ω

|∇�|dΩ,

The solution of (2) is obtained by numerically solving 
the following set of second-order nonlinear Euler–Lagrange 
equations, one for each variable:

with c� = cos(� + �) , s� = sin(� + �) , and boundary 
conditions

where � denotes the unit outer normal vector to the boundary.

3  The fixed‑point algorithm

In this work, we focus on developing a parallel realization of 
a fixed-point algorithm framework for solving each partial 
differential equation (PDE) presented in (4–6). This algo-
rithm introduced in [3] is convergent for any initial guess, 
and its structure is suitable for parallelization. We proceed 
to review the fixed-point algorithm.

To solve each PDE, an algorithm of the form (for general 
u)

is constructed, where L = L(u) is a linearized operator given 
by

and

Therefore, given an arbitrary initial guess, each fixed-point 
algorithm constructs a convergent sequence of solutions of 
the type {uk}k≥1 . Note that L is a linear operator that in (4) 

(4)−∇ ⋅

∇a

|∇a| + �a(a + bc� − g) = 0,

(5)−∇ ⋅

∇b

|∇b| + �b(a + bc� − g)c� = 0,

(6)−∇ ⋅

∇�

|∇�| + ��(a + bc� − g)(−bs�) = 0

(7)�a

��
= 0,

�b

��
= 0,

��

��
= 0,

(8)L(uk)uk+1 = f k

L =

⎧⎪⎨⎪⎩

−∇ ⋅

∇

�∇ak� + �aI in (4)

−∇ ⋅

∇

�∇bk� + �bc
2
�k

in (5)

−∇ ⋅

∇�k

�∇�k� + ��b
2s2

�k
in (6)

f k =

⎧⎪⎨⎪⎩

�a(−b
kc�k + g) in (4)

�b(−a
k + g)c�k in (5)

−��s�k (−akbk + gbk−

(bk)2(c�k − s�k�k)) in (6).
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and (5) is obtained by lagging the nonlinear diffusion coeffi-
cients at every k-iteration and in (6) using the Taylor expan-
sion of first order of the cosine function. The linear system 
(8) does not need to be solved very accurately, and few itera-
tions of any sparse linear solver suffice. The operator L has 
some nice properties; it is symmetric, positive definite, and 
diagonally dominant for a and b, even though it is only semi-
positive definite and weakly diagonally dominant for �.

4  Parallel implementation

We develop two parallel implementations in C/C++ of the 
serial phase demodulation algorithm (see Algorithm 1): 
the first one uses a multiple core system (here referred to 
as multi-core CPU) and the second one uses a GPU-based 
architecture. We use OpenMP for multi-thread program-
ming on the multi-core CPU system, while on the GPU 
architecture, we use CUDA programming. We also use 
the open computer vision library OpenCV [12] and the 
high-performance vector mathematics library Blitz++ 
[34] in both implementations: OpenCV only for reading 
and writing images, and Blitz++ for array management in 
the multi-core CPU.

We now proceed to descr ibe the discretiza-
tion scheme for the PDEs. For this purpose, let 
Ω = [0, n] × [0,m] be a continuous domain and let (hx, hy) 
represent a vector of finite mesh sizes. Then, the dis-
crete domain Ωh can be defined as Ωh = Ω ∩ Gh , where 
Gh = {(x, y) ∶ x = xi = ihx, y = yj = jhy;i, j ∈ ℤ} is an infi-
nite grid. Take u as an n × m array where each entry ui,j 
for i = 1, ..., n and j = 1, ...,m is the discrete value of the 
continuous variable on the grid Ωh at some point (x, y). In 
what follows, we use u to represent any of the variables 
a, b, or �.

Algorithm 1 evaluates the TV functional in (3), the 
boundary conditions (BC), and the Gauss–Seidel (GS) 
method in an iterative way, until the normalized error 
Q between previous and current solutions is less than a 
given threshold value � or the maximum number of itera-
tions MaxIter is achieved. The procedure in Algorithm 2 
computes the value of (3) by approximating the gradient 
operator ∇ui,j as follows:

The BC procedure computes the Neumann boundary condi-
tions with the following equations:

(9)∇ui,j =

(
ui+1,j − ui,j

hx
,
ui,j+1 − ui,j

hy

)
.

for i = 1, ..., n and j = 1, ...,m.
Let �i,j = [ui+1,j, ui−1,j, ui,j+1, ui,j−1] be a column vector 

containing the four neighbors of u and let

be the corresponding vector of regularized nonlinear terms 
approximated by

where 𝛽 > 0 is a small parameter to avoid division by zero, 
and

are the derivatives approximated by finite differences. In 
our simulations and without loss of generality, we consid-
ered the spatial step sizes to be equal in both directions, 
that is, h = hx = hy . For the regularization parameters, it was 
enough to select them all equal, i.e., � = �a = �b = ��.

The GS procedure shown in Algorithm 3 computes an 
approximate solution of a, b, and � using the GS method 
with red-black ordering. The update of each variable is as 
follows:

where all the terms in the right hand are evaluated at the qth 
iteration, and

For computing the normalized error Q, we use

(10)
ui,1 =ui,2, ui,m = ui,m−1,

u1,j =u2,j, un,j = un−1,j,

�i,j = [w1,w2,w3,w4]

=

[
1

|∇ui+1,j|� ,
1

|∇ui−1,j|� ,
1

|∇ui,j+1|� ,
1

|∇ui,j−1|�
]

(11)|∇ui+1,j|� = |∇ui,j+1|� =
√

(u1
x
)2 + (u1

y
)2 + �,

(12)|∇ui−1,j|� =
√

(u2
x
)2 + (u2

y
)2 + �,

(13)|∇ui,j−1|� =
√

(u3
x
)2 + (u3

y
)2 + �,

u1
x
=(ui+1,j − ui,j)∕hx, u

1
y
= (ui,j+1 − ui,j)∕hy,

u2
x
=(ui,j − ui−1,j)∕hx, u

2
y
= (ui−1,j+1 − ui−1,j)∕hy,

u3
x
=(ui+1,j−1 − ui,j)∕hx, u

3
y
= (ui,j − ui,j−1)∕hy

(14)u
q+1

i,j
=

�
T
i,j
�i,j + fi,j

Di,j + 2w1 + w2 + w4

,

Di,j =

⎧
⎪⎨⎪⎩

� in (4)

�c2
�i,j

in (5)

�b2
i,j
s2
�i,j

in (6).
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as reported in [19, 24]. This equation defines a relative error 
without considering physical dimensions. The Q values live 
in the interval [0, 1], with Q approaching zero, while z1 and 
z2 get closer to each other.

For the TV and Q evaluations, we need a parallel reduc-
tion procedure [4, 5] to compute the corresponding sum. For 
the BC procedure, only assignment statements are necessary, 
and they are independent of each other. In both implemen-
tations, serial and parallel, we use Gauss–Seidel with red-
black ordering; thus, our serial and parallel results are the 
same. The following subsections describe the implementa-
tion of these procedures. 

(15)Q(z1, z2) = ‖z1 − z2‖∕(‖z1‖ + ‖z2‖),

4.1  OpenMP implementation

OpenMP is an API for shared-memory parallel program-
ming in a multi-core CPU architecture [23]. Thus, OpenMP 
is suitable for systems in which each thread or process 
can access all available memory. OpenMP provides a set 
of directives or pragmas used to specify parallel regions. 
Among other things, these directives are efficient to manage 
threads inside parallel regions and to distribute for loops in 
parallel.

For the TV and Q evaluations, we use the directive 
#������ ��� �������� ��� ���������(+ ∶ ���) . For the 
BC procedure, we use the directive #������ ��� �������� 
��� . In the Gauss–Seidel algorithm with red-black order-
ing [7], the pixels are considered red or black following a 
chessboard pattern. We consider a pixel r = (i, j) red if i + j is 
even and black if i + j is odd (see Algorithm 3). Then, when 
the red pixels are updated in the for loop, they only need the 
black pixel values and vice versa. This reordering aims to 
get an equivalent equation system in which there are more 
independent computations [27], resulting in efficient parallel 
implementations of the GS.

The directive #������ ��� �������� opens a parallel 
region and with the ��� directive, parallelizes the for loop. 
In shared-memory programs, the individual threads have pri-
vate and shared memory. Communication is accomplished 
through shared variables. Inside the #������ ��� ��� , all 
variables are shared by default for all threads; then, we use 
only the ������� directive to declare private variables for 
each thread.

Additionally, we use the directive ��� �������(��) to 
specify the number of threads �� to be launched in our 
program.
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4.2  CUDA implementation

CUDA (compute unified device architecture) is an exten-
sion to the C language that contains a set of instructions for 
parallel computing in a GPU. The host processor spawns 
multi-thread tasks (Kernels) onto the GPU device, which has 
its internal scheduler that will then allocate the kernels to 
whatever GPU hardware is present [6]. The GPU is used for 
general-purpose computation; it contains multiple transistors 
for the arithmetic logic unit, based on the single instruction 
and multiple threads (SIMT) programming model, which 
is exploited when multiple data are managed from a single 
parallel instruction, similar to the single instruction multiple 
data (SIMD) model [5, 14].

Following the conventional programming model in 
GPU, once a0, b0,�0,� , g are allocated in the CPU mem-
ory, we reserve their corresponding memory space in the 
GPU device. Then, these variables are loaded in the GPU 
device from the CPU through a memory copy process. In our 
program, we define four main kernel functions for the TV, 
BC, GS, and Q procedures. For the TV and Q procedures, 
we implemented a parallel reduction with dynamic shared 
memory and the interleaved pair strategy [5]. Hence, the 
size of the array is divided into thread blocks; in each thread 
block, a partial sum is computed using shared memory; then, 
these partial sums are copied back to the CPU memory and 
summed in the CPU. Note that the last sum is computed in 
parallel in the multi-core CPU.

Another way to implement the reduction of the partial 
sum is using the atomic function ��������� . This func-
tion reads a value from some address in global or shared 
memory, adds a number to it, and writes the result in the 
same address; no other thread can access that address until 
the operation is complete. In this way, we avoid the memory 
copy of the partial sums using only the GPU for all process-
ing. A consideration to take into account is that ��������� 
is only supported by Nvidia GPUs of computing capability 6 
and higher when 64-bit floating-point data are used (see the 
atomic functions section in [22] for more details).

5  Experimental results

The experiments were executed on a server with Intel(R) 
Xeon(R) Gold 5222 CPU 3.80 GHz, Ubuntu 18.04 (64-bits), 
16 hyper-threading cores, 48GB RAM, and a video card 
Nvidia Quadro RTX 8000 with compute capability 7.5. We 
fix the parameters � = 10 , MaxIter = 5 × 105 , and � = 10−7 . 
For the GS procedure, only a few iterations � are used as 
recommended in [3]; thus, we fix � = 4 . We develop two 
versions of our serial and parallel implementations, one ver-
sion using 64-bit floating-point data (double precision) and 
the other using 32-bit floating-point data (float precision).

We note that similar models for demodulating dis-
continuous maps [2, 9] are only equipped with gradient 
descent algorithms with serial realizations. Therefore, 
their running times are very slow compared with those 
obtained with our parallel algorithm. For instance, in [17], 
it was reported a processing time of 800 s to solve the 
problem of Fig. 2 for an image of size 250 × 250 pixels 
using the model in [9], while a processing time of 144 sec-
onds was reported for the same problem also using a gradi-
ent descent algorithm for the TV model [17]. We ran our 
parallel algorithm for the same problem obtaining a pro-
cessing time at least ten times faster than the one reported 
in [17]. We remark that serial gradient descent algorithms 
do not scale well with the size of the images, while our 
parallel algorithm does. Furthermore, the computational 
realization of the model in [2] is even slower, being that a 
fourth-order and highly nonlinear PDE has to be solved.

In our experiments, Fig. 1 shows the number of itera-
tions, processing time in seconds, and normalized error Q 
between the desired phase � and the estimated phase �∗ 
of our parallel phase demodulation implementation with 
double precision. As is shown there, we ran the GPU simu-
lations for different values of � and image sizes. We can 
see that � = 10−4 is a good compromise between process-
ing time and precision; we use this value for the rest of our 
synthetic experiments.

Figure  2 shows a result of our phase demodulation 
method with double precision using synthetic data. The 
images have a size of 240 × 320 pixels. The first row shows 
the spatial carrier frequency � , the fringe pattern g, and 
the desired phase to estimate � , respectively. The second 
row shows the initial value of background illumination a0 , 
amplitude modulation b0 , and phase estimation �0 at itera-
tion k = 0 . The third row shows the optimal estimations a∗ , 
b∗ , and �∗ . We obtain a normalized error Q(�,�∗) = 0.0279.

The speedup of a parallel program is defined as

where Ts is the processing time of serial program and Tp is 
the processing time of parallel program [23].

Figure 3 shows the speedup of our parallel implemen-
tation using the multi-core CPU with double precision, 
launching from NT = 2 to NT = 32 threads. The server has 
16 hyper-threading cores, and then, each physical core is 
divided into two virtual or logical cores, sharing resources 
such as the instruction pointers, integer registers, float-
ing-point registers, scheduling queues, caches, and execu-
tion units. The performance of a parallel implementation 
declines provided a virtual-core monopolizes some critical 
resources such as the floating-point registers or the caches. 
Increasing the performance of a parallel implementation 

(16)S =
Ts

Tp
,
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is fundamentally an optimization problem, which is very 
difficult due to different memory hierarchies between plat-
forms and the variation of core connection on a single 
processor [11]. We achieve the best speedup in our parallel 
implementation when launching NT = 16 threads for the 
different image sizes, while for NT > 16 , the performance 
declines.

Figure 4 shows the speedup of our parallel implementa-
tion using the GPU with double precision. In our parallel 
GPU implementation, we split the reduction process into 
two sums. The first one is executed in the GPU, and the sec-
ond one can be executed in parallel in the CPU. We launch 
from NT = 2 to NT = 32 threads in our multi-core CPU; note 
that the speedup is almost constant for NT <= 16 and has 
a small decline for NT > 16 . We can see that it is enough 
to use only NT = 2 threads to obtain the best performance, 
demonstrating that the more demanding process is computed 
in the GPU.

Tables 1, 2, 3, and 4 show a comparative performance 
of our serial and parallel implementations with double and 
float precision respectively, for different image sizes of our 
synthetic data. The processing time is measured from the 
start of Algorithm 1 until it terminates, which means that 
we are considering both the processor work and the memory 
transfer time between the CPU and the GPU. We execute 
the parallel implementations 20 times in each experiment, 
reporting the mean and standard deviation of the number of 
iterations k, the processing time, and the normalized error 
Q. We can see that our implementations using GPU have 
the shortest times.

When floating-point arithmetic is used, the rounding 
errors can lead to unexpected results. There are calculations 
with real numbers that produce quantities that are not exactly 
represented in float or double precision [10]. Rounding 
modes for basic operations, including subtraction, multipli-
cation, and division, are specified in the IEEE-754 standard; 
the most frequently used is the round-to-nearest mode [35]. 
In the results of our implementations using double precision 
(see Tables 1 and 2), we obtain the same number of itera-
tions and the same normalized error to 12 decimal places.

The TV and Q procedures of our algorithm need to 
compute a summation of all elements of an array of the 
size of the image to be processed; this operation may 
propagate rounding errors as can be seen in Tables 3 and 
4, where we use float precision. Note that the number of 
iterations is different concerning each implementation. It 
is important to note that the serial-float implementation 
does not scale linearly with the size of the images. We 
expect the algorithm to get a better speedup for larger 
size images than that one for smaller ones. Table 3 shows 

Fig. 1  Number of iterations, processing time, and normalized error of 
our parallel phase demodulation method, for different values of � and 
different image sizes
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that this is not true for the image of size 1920 × 2560 , for 
which the speedup is inferior to the one obtained for the 
image of size 960 × 1280 . If we ignore this result, then the 
normalized errors are the same to four decimal places for 
all our implementations using float precision. They are the 
same to three decimal places taken into account the results 

with double precision. However, even when we consider 
the result of the serial implementation for an image of size 
1920 × 2560 , the normalized error is the same as rounding 
to two decimal places for all implementations with a float 
or double precision, which is not bad for the quality of the 
recovered phase map.

Fig. 2  Phase demodulation 
using synthetic data
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Fig. 3  Evaluation of speedups of parallel phase demodulation algo-
rithm, using the multi-core CPU from 2 to 32 threads for different 
image sizes
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Fig. 4  Evaluation of speedups of parallel phase demodulation algo-
rithm, using a GPU and the multi-core CPU from 2 to 32 threads for 
different image sizes
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On the other hand, the results of our GPU − 2C imple-
mentation with float precision (see Table 4) show that the 
number of iterations and normalized errors have zero stand-
ard deviation. They are the same in each execution for each 
size of the image. That is indeed a requirement in a deter-
ministic algorithm.

To compare our parallel implementations, Figs. 5 and 
6 show the speedup of each implementation for different 

image sizes using double and float precision, respectively. 
For the case of the multi-core CPU, we launch from NT = 2 
to NT = 20 threads, while for the case of GPU − 2C , we 
launch only NT = 2 threads in the CPU, and for the case 
of GPU − atom , we use the ��������� function to avoid 
some memory copies between CPU and GPU. Note that 
GPU implementations have almost the same speedup level 
in each of our experiments, achieving the best performance 

Table 1  Number of iterations, processing time (seconds), and normalized error Q of our serial and multi-core CPU implementations using dou-
ble precision

Size of image Serial Multi-core CPU – 16C

Iter. Time(s) Q Iter. Time(s) Q

240 × 320 1095 15.98 0.0278956108250142 1095 2.24 ± 0.02 0.0278956108250159
480 × 640 2510 159.08 0.0263059900148534 2510 21.63 ± 0.25 0.0263059900148562
960 × 1280 6031 1663.94 0.0306234524498726 6031 274.61 ± 4.25 0.0306234524498944
1920 × 2560 14526 17459.06 0.0376542821313397 14526 2921.45 ± 100.52 0.0376542821314670

Table 2  Number of iterations, processing time (seconds), and normalized error Q of our GPU implementations using double precision

Size of image GPU  –  2C GPU  –  atomicAdd

Iter. Time(s) Q Iter. Time(s) Q

240 × 320 1095 0.60 ± 0.02 0.0278956108250159 1095 0.60 ± 0.02 0.0278956108250159
480 × 640 2510 3.91 ± 0.02 0.0263059900148565 2510 3.87 ± 0.02 0.0263059900148565
960 × 1280 6031 32.86 ± 0.03 0.0306234524498950 6031 32.23 ± 0.02 0.0306234524498951
1920 × 2560 14526 308.02 ± 0.32 0.0376542821314705 14526 304.15 ± 0.35 0.0376542821314704

Table 3  Number of iterations, processing time (seconds), and normalized error Q of our serial and multi-core CPU implementations using float 
precision

Size of image Serial Multi-core CPU  –  16C

Iter. Time(s) Q Iter. Time(s) Q

240 × 320 1032 13.63 0.0279578808695077 1055 ± 8 1.69 ± 0.13 0.027935 ± 6.10e−6
480 × 640 2283 117.59 0.0263535343110561 2365 ± 18 13.38 ± 0.17 0.026329 ± 3.72e−6
960 × 1280 5435 1179.32 0.0307095143944025 5559 ± 46 138.81 ± 1.36 0.030689 ± 9.26e−6
1920 × 2560 9079 8242.48 0.0429241806268692 13045 ± 79 1415.15 ± 10.10 0.037793 ± 1.28e−5

Table 4  Number of iterations, processing time (seconds), and normalized error Q of our GPU implementations using float precision

Size of
image

GPU – 2C GPU – atomicAdd

Iter. Time(s) Q Iter. Time(s) Q

240 × 320 1075 0.23 ± 0.08 0.0279189944267272 1079 ± 6 0.24 ± 0.09 0.027916 ± 4.41e−06
480 × 640 2460 1.53 ± 0.08 0.0263126417994499 2432 ± 21 1.52 ± 0.07 0.026316 ± 3.24e−06
960 × 1280 5766 11.89 ± 0.07 0.0306537337601184 5561 ± 63 11.41 ± 0.18 0.030690 ± 1.37e−05
1920 × 2560 13341 107.82 ± 0.12 0.0377521179616451 13153 ± 159 104.49 ± 1.25 0.037780 ± 2.54e−05
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for all image sizes. The advantage of GPU − atom is that all 
computations are realized in the GPU. Thus, other programs 
can be running in the CPU without compromising perfor-
mance. For the multi-core CPU implementation, the speedup 
goes from S = 2 to S = 7 , and for the GPU implementations, 
it goes from S = 25 to S = 58 using double precision; while 
using float precision for multi-core CPU implementation, the 

speedup goes from S = 4 to S = 9 , and for the GPU imple-
mentations, it goes from S = 57 to S = 103.

The first row in Fig. 7 shows the results of our par-
allel phase demodulation method with double and float 
precision when using real experimental data. The pre-
sented data consist of two images ( �  and g) of size 
480 × 640 pixels. The second row shows the results with 
� = 10 and � = 10−4 (the same parameters as those used 
for the synthetic data experiments); the algorithm takes 
k = 16269 iterations, 880.84 s in serial version and 24.68 
s in GPU − 2C version with double precision, and takes 
k = 13402 iterations and 7.96 s in GPU − 2C version with 
float precision. The third row shows the results when using 
� = 2 and � = 10−7 ; here, the algorithm takes k = 45173 
iterations, 2446.78 s in the serial version and 68.58 s in 
the GPU − 2C version with double precision, and takes 
k = 41455 iterations and 23.25 s in the GPU − 2C ver-
sion with float precision. Qualitatively, we can see that the 
results using double and float precision are very similar, 
even when the algorithm converges at a different number 
of iterations.

6  Conclusions

In this paper, we presented parallel implementations of the 
fixed-point algorithm for solving the total variation phase 
demodulation model. We presented results from synthetic 
and real experiments in a server with 16 hyper-threading 
cores and a GPU.

The multi-core CPU implementation achieves the best 
speedup (9x) using 16 threads. The two GPU versions of 
our implementations ( GPU − 2C and GPU − atom ) obtain 
almost the same speedup. That outperforms the speed of 
the multi-core CPU implementations. In general, the GPU 
implementations achieve a speedup of up to 103x over the 
serial implementation.

The results show that the parallel implementations con-
verge and obtain the same number of iterations and nor-
malized error to 12 decimal places when we use double 
precision. In contrast, due to the propagation of rounding 
errors, we obtain a different number of iterations when 
using float precision; however, the resultant normalized 
errors of our parallel implementations with float precision 
are the same to three decimal places as that for double 
precision. Qualitatively, the estimated phases are very 
similar.

As future work, we intend to explore the usage of multi-
grid algorithms to speed the algorithm even further.
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