
Vol.:(0123456789)1 3

Journal of Real-Time Image Processing (2021) 18:2441–2451
https://doi.org/10.1007/s11554-021-01129-4

ORIGINAL RESEARCH PAPER

Parallel algorithm for fringe pattern demodulation

Francisco J. Hernandez‑Lopez1 · Ricardo Legarda‑Sáenz2 · Carlos Brito‑Loeza2

Received: 26 September 2020 / Accepted: 12 May 2021 / Published online: 8 June 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
In this paper, we present a parallel implementation of a fixed-point algorithm for finding the solution of the total variation
model for phase demodulation. The total variation model is efficient in estimating discontinuous phase maps, background
illumination, and amplitude modulation from a single fringe pattern. The implementations include execution in a multi-core
CPU and a GPU using OpenMP and CUDA, respectively. We show performance comparisons of the parallel implementa-
tions with 64-bit and 32-bit precision floating-point numbers using synthetic and real experimental data. Results show that
our parallel implementations achieve speedups over the serial implementation of 9x for multi-core CPU and 103x for GPU.

Keywords Fringe analysis · Total variation · Multi-core · GPU

1 Introduction

Fringe analysis is a widely used technique in optical metrol-
ogy to recover physical quantities such as displacement,
strain, surface profile, and refractive index from interfero-
grams. Interferograms are two-dimensional recordings
made by a digital camera of interference patterns. Encoded
in the interference fringes or bands of the interferogram is
the shape of the wavefront [13]. Fringe analysis is then the
extraction of the quantitative measurement data from either
a single fringe pattern or a collection of them [25]. Fringe
analysis consists of one or two processes: phase demodula-
tion and phase unwrapping [30].

The mathematical model of a fringe pattern is given by

where I(x, y) is the image intensity, a = a(x, y) is the back-
ground illumination, b = b(x, y) is the amplitude modulation,
� = �(x, y) is the phase, and � = �(x, y) is the spatial carrier
frequency. The main task of fringe analysis algorithms is to
recover the phase term � , and in some cases, the background

illumination and amplitude modulation as well. That is an
inverse problem, because only the fringe pattern I(x, y) and
sometimes the carrier frequency � are known.

In the last years, many techniques have appeared for the
solution to the problem mentioned above. They depend on
obtaining one or more fringe patterns from the experiments.
For instance, phase-shifting techniques recover the phase
map � by acquiring a collection of fringe patterns shifted
one from another by a certain amount [32]. The phase dif-
ference between two consecutive fringe patterns is usually
a constant term [1, 8, 15, 29, 30].

Among the variety of techniques for demodulating the
phase map using a single fringe pattern, Takeda’s method
was one of the first to be proposed. This method is based
on the Fourier transform and considers the phase map as a
continuous and smooth function [33]. In recent years, some
papers appeared with solutions based on regularized Bayes-
ian estimation costs. Regularization uses a priori information
to impose restrictions on the estimated solution. The success
rate of these techniques at recovering the phase term � from
highly noisy patterns is high; however, their numerical solu-
tion is usually quite expensive [18, 21, 28]. An extensive
review of these methods is available in [30] and references
therein.

All demodulation methods described above fail to recover
discontinuous or piece-wise phase maps. Up to our knowl-
edge, there are very few methods reported in the literature
capable of recovering these kinds of phase maps [2, 3, 9, 17,
31, 36]. One of them, based on a regularized cost function,

(1)I(x, y) = a(x, y) + b(x, y) cos(�(x, y) + �(x, y)),

 * Francisco J. Hernandez-Lopez
 fcoj23@cimat.mx

1 CONACYT – Centro de Investigación en Matemáticas
A.C., CIMAT Unidad Mérida, PCTY , Sierra Papacal,
97302 Mérida, YUC , Mexico

2 CLIR at Facultad de Matemáticas, Universidad Autónoma de
Yucatán, Mérida, YUC , Mexico

http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-021-01129-4&domain=pdf

2442 Journal of Real-Time Image Processing (2021) 18:2441–2451

1 3

uses a second-order edge-preserving potential [9]; another
is based on wavelets using total variation (TV) regulariza-
tion [36]. The rest are based on variational formulations
using either TV or mean curvature regularization [20, 26].
Except for the reference [31], these methods estimate the
phase term, the background illumination, and the amplitude
modulation from a single fringe pattern. We remark that
all methods described in this paragraph report serial reali-
zations for their models. Consequently, their running CPU
times are much slower than the parallel implementation of
our model presented here.

For a model to succeed in the transition from applied
research to industrial applications, a reliable and fast numer-
ical realization of the model needs to be available. Despite
the accurate recovery of the phase term, the computational
times reported in the demodulation techniques discussed
above show the need to provide them with fast computa-
tional solvers. In this work, we address this issue for the TV
model by introducing a very quickly parallel realization of
this model based on the fixed-point algorithm introduced in
[17] and whose convergence was proved in [3].

Other methods for solving the model in [17] are a very
slow gradient descent algorithm and a recently published
augmented Lagrangian algorithm [16]. The realization of
both algorithms is serial hence slower than the parallel one
introduced here.

The outline of this paper is as follows. In Sect. 2, we
review shortly the TV model. In Sect. 3, we review the fixed-
point algorithm. In Sect. 4, we present the parallel realiza-
tion for multi-core CPU and GPU architectures. The experi-
mental results on both synthetic and experimental data are
presented in Sect. 5 and our conclusions are given in Sect. 6.

2 Total variation based model

The TV model presented in [17] amounts to solving the fol-
lowing problem:

where

where Ω ⊆ ℝ
2 , g = g(x, y) is the acquired fringe pattern, and

�a, �b, �� are positive regularization parameters.
Due to the total variation regularization, this model can

recover sharp phase-transitions, background illumination,
and amplitude modulation.

(2)argmin
a,b,�

TV = TV(a, b,�,� , g),

(3)
TV ≡ �Ω

(I − g)2dΩ +
1

�a �Ω

|∇a|dΩ

+
1

�b �Ω

|∇b|dΩ +
1

�� �Ω

|∇�|dΩ,

The solution of (2) is obtained by numerically solving
the following set of second-order nonlinear Euler–Lagrange
equations, one for each variable:

with c� = cos(� + �) , s� = sin(� + �) , and boundary
conditions

where � denotes the unit outer normal vector to the boundary.

3 The fixed‑point algorithm

In this work, we focus on developing a parallel realization of
a fixed-point algorithm framework for solving each partial
differential equation (PDE) presented in (4–6). This algo-
rithm introduced in [3] is convergent for any initial guess,
and its structure is suitable for parallelization. We proceed
to review the fixed-point algorithm.

To solve each PDE, an algorithm of the form (for general
u)

is constructed, where L = L(u) is a linearized operator given
by

and

Therefore, given an arbitrary initial guess, each fixed-point
algorithm constructs a convergent sequence of solutions of
the type {uk}k≥1 . Note that L is a linear operator that in (4)

(4)−∇ ⋅

∇a

|∇a| + �a(a + bc� − g) = 0,

(5)−∇ ⋅

∇b

|∇b| + �b(a + bc� − g)c� = 0,

(6)−∇ ⋅

∇�

|∇�| + ��(a + bc� − g)(−bs�) = 0

(7)�a

��
= 0,

�b

��
= 0,

��

��
= 0,

(8)L(uk)uk+1 = f k

L =

⎧⎪⎨⎪⎩

−∇ ⋅

∇

�∇ak� + �aI in (4)

−∇ ⋅

∇

�∇bk� + �bc
2
�k

in (5)

−∇ ⋅

∇�k

�∇�k� + ��b
2s2

�k
in (6)

f k =

⎧⎪⎨⎪⎩

�a(−b
kc�k + g) in (4)

�b(−a
k + g)c�k in (5)

−��s�k (−akbk + gbk−

(bk)2(c�k − s�k�k)) in (6).

2443Journal of Real-Time Image Processing (2021) 18:2441–2451

1 3

and (5) is obtained by lagging the nonlinear diffusion coeffi-
cients at every k-iteration and in (6) using the Taylor expan-
sion of first order of the cosine function. The linear system
(8) does not need to be solved very accurately, and few itera-
tions of any sparse linear solver suffice. The operator L has
some nice properties; it is symmetric, positive definite, and
diagonally dominant for a and b, even though it is only semi-
positive definite and weakly diagonally dominant for �.

4 Parallel implementation

We develop two parallel implementations in C/C++ of the
serial phase demodulation algorithm (see Algorithm 1):
the first one uses a multiple core system (here referred to
as multi-core CPU) and the second one uses a GPU-based
architecture. We use OpenMP for multi-thread program-
ming on the multi-core CPU system, while on the GPU
architecture, we use CUDA programming. We also use
the open computer vision library OpenCV [12] and the
high-performance vector mathematics library Blitz++
[34] in both implementations: OpenCV only for reading
and writing images, and Blitz++ for array management in
the multi-core CPU.

We now proceed to descr ibe the discretiza-
tion scheme for the PDEs. For this purpose, let
Ω = [0, n] × [0,m] be a continuous domain and let (hx, hy)
represent a vector of finite mesh sizes. Then, the dis-
crete domain Ωh can be defined as Ωh = Ω ∩ Gh , where
Gh = {(x, y) ∶ x = xi = ihx, y = yj = jhy;i, j ∈ ℤ} is an infi-
nite grid. Take u as an n × m array where each entry ui,j
for i = 1, ..., n and j = 1, ...,m is the discrete value of the
continuous variable on the grid Ωh at some point (x, y). In
what follows, we use u to represent any of the variables
a, b, or �.

Algorithm 1 evaluates the TV functional in (3), the
boundary conditions (BC), and the Gauss–Seidel (GS)
method in an iterative way, until the normalized error
Q between previous and current solutions is less than a
given threshold value � or the maximum number of itera-
tions MaxIter is achieved. The procedure in Algorithm 2
computes the value of (3) by approximating the gradient
operator ∇ui,j as follows:

The BC procedure computes the Neumann boundary condi-
tions with the following equations:

(9)∇ui,j =

(
ui+1,j − ui,j

hx
,
ui,j+1 − ui,j

hy

)
.

for i = 1, ..., n and j = 1, ...,m.
Let �i,j = [ui+1,j, ui−1,j, ui,j+1, ui,j−1] be a column vector

containing the four neighbors of u and let

be the corresponding vector of regularized nonlinear terms
approximated by

where 𝛽 > 0 is a small parameter to avoid division by zero,
and

are the derivatives approximated by finite differences. In
our simulations and without loss of generality, we consid-
ered the spatial step sizes to be equal in both directions,
that is, h = hx = hy . For the regularization parameters, it was
enough to select them all equal, i.e., � = �a = �b = ��.

The GS procedure shown in Algorithm 3 computes an
approximate solution of a, b, and � using the GS method
with red-black ordering. The update of each variable is as
follows:

where all the terms in the right hand are evaluated at the qth
iteration, and

For computing the normalized error Q, we use

(10)
ui,1 =ui,2, ui,m = ui,m−1,

u1,j =u2,j, un,j = un−1,j,

�i,j = [w1,w2,w3,w4]

=

[
1

|∇ui+1,j|� ,
1

|∇ui−1,j|� ,
1

|∇ui,j+1|� ,
1

|∇ui,j−1|�
]

(11)|∇ui+1,j|� = |∇ui,j+1|� =
√

(u1
x
)2 + (u1

y
)2 + �,

(12)|∇ui−1,j|� =
√

(u2
x
)2 + (u2

y
)2 + �,

(13)|∇ui,j−1|� =
√

(u3
x
)2 + (u3

y
)2 + �,

u1
x
=(ui+1,j − ui,j)∕hx, u

1
y
= (ui,j+1 − ui,j)∕hy,

u2
x
=(ui,j − ui−1,j)∕hx, u

2
y
= (ui−1,j+1 − ui−1,j)∕hy,

u3
x
=(ui+1,j−1 − ui,j)∕hx, u

3
y
= (ui,j − ui,j−1)∕hy

(14)u
q+1

i,j
=

�
T
i,j
�i,j + fi,j

Di,j + 2w1 + w2 + w4

,

Di,j =

⎧
⎪⎨⎪⎩

� in (4)

�c2
�i,j

in (5)

�b2
i,j
s2
�i,j

in (6).

2444 Journal of Real-Time Image Processing (2021) 18:2441–2451

1 3

as reported in [19, 24]. This equation defines a relative error
without considering physical dimensions. The Q values live
in the interval [0, 1], with Q approaching zero, while z1 and
z2 get closer to each other.

For the TV and Q evaluations, we need a parallel reduc-
tion procedure [4, 5] to compute the corresponding sum. For
the BC procedure, only assignment statements are necessary,
and they are independent of each other. In both implemen-
tations, serial and parallel, we use Gauss–Seidel with red-
black ordering; thus, our serial and parallel results are the
same. The following subsections describe the implementa-
tion of these procedures.

(15)Q(z1, z2) = ‖z1 − z2‖∕(‖z1‖ + ‖z2‖),

4.1 OpenMP implementation

OpenMP is an API for shared-memory parallel program-
ming in a multi-core CPU architecture [23]. Thus, OpenMP
is suitable for systems in which each thread or process
can access all available memory. OpenMP provides a set
of directives or pragmas used to specify parallel regions.
Among other things, these directives are efficient to manage
threads inside parallel regions and to distribute for loops in
parallel.

For the TV and Q evaluations, we use the directive
#������ ��� �������� ��� ���������(+ ∶ ���) . For the
BC procedure, we use the directive #������ ��� ��������
��� . In the Gauss–Seidel algorithm with red-black order-
ing [7], the pixels are considered red or black following a
chessboard pattern. We consider a pixel r = (i, j) red if i + j is
even and black if i + j is odd (see Algorithm 3). Then, when
the red pixels are updated in the for loop, they only need the
black pixel values and vice versa. This reordering aims to
get an equivalent equation system in which there are more
independent computations [27], resulting in efficient parallel
implementations of the GS.

The directive #������ ��� �������� opens a parallel
region and with the ��� directive, parallelizes the for loop.
In shared-memory programs, the individual threads have pri-
vate and shared memory. Communication is accomplished
through shared variables. Inside the #������ ��� ��� , all
variables are shared by default for all threads; then, we use
only the ������� directive to declare private variables for
each thread.

Additionally, we use the directive ��� �������(��) to
specify the number of threads �� to be launched in our
program.

2445Journal of Real-Time Image Processing (2021) 18:2441–2451

1 3

4.2 CUDA implementation

CUDA (compute unified device architecture) is an exten-
sion to the C language that contains a set of instructions for
parallel computing in a GPU. The host processor spawns
multi-thread tasks (Kernels) onto the GPU device, which has
its internal scheduler that will then allocate the kernels to
whatever GPU hardware is present [6]. The GPU is used for
general-purpose computation; it contains multiple transistors
for the arithmetic logic unit, based on the single instruction
and multiple threads (SIMT) programming model, which
is exploited when multiple data are managed from a single
parallel instruction, similar to the single instruction multiple
data (SIMD) model [5, 14].

Following the conventional programming model in
GPU, once a0, b0,�0,� , g are allocated in the CPU mem-
ory, we reserve their corresponding memory space in the
GPU device. Then, these variables are loaded in the GPU
device from the CPU through a memory copy process. In our
program, we define four main kernel functions for the TV,
BC, GS, and Q procedures. For the TV and Q procedures,
we implemented a parallel reduction with dynamic shared
memory and the interleaved pair strategy [5]. Hence, the
size of the array is divided into thread blocks; in each thread
block, a partial sum is computed using shared memory; then,
these partial sums are copied back to the CPU memory and
summed in the CPU. Note that the last sum is computed in
parallel in the multi-core CPU.

Another way to implement the reduction of the partial
sum is using the atomic function ��������� . This func-
tion reads a value from some address in global or shared
memory, adds a number to it, and writes the result in the
same address; no other thread can access that address until
the operation is complete. In this way, we avoid the memory
copy of the partial sums using only the GPU for all process-
ing. A consideration to take into account is that ���������
is only supported by Nvidia GPUs of computing capability 6
and higher when 64-bit floating-point data are used (see the
atomic functions section in [22] for more details).

5 Experimental results

The experiments were executed on a server with Intel(R)
Xeon(R) Gold 5222 CPU 3.80 GHz, Ubuntu 18.04 (64-bits),
16 hyper-threading cores, 48GB RAM, and a video card
Nvidia Quadro RTX 8000 with compute capability 7.5. We
fix the parameters � = 10 , MaxIter = 5 × 105 , and � = 10−7 .
For the GS procedure, only a few iterations � are used as
recommended in [3]; thus, we fix � = 4 . We develop two
versions of our serial and parallel implementations, one ver-
sion using 64-bit floating-point data (double precision) and
the other using 32-bit floating-point data (float precision).

We note that similar models for demodulating dis-
continuous maps [2, 9] are only equipped with gradient
descent algorithms with serial realizations. Therefore,
their running times are very slow compared with those
obtained with our parallel algorithm. For instance, in [17],
it was reported a processing time of 800 s to solve the
problem of Fig. 2 for an image of size 250 × 250 pixels
using the model in [9], while a processing time of 144 sec-
onds was reported for the same problem also using a gradi-
ent descent algorithm for the TV model [17]. We ran our
parallel algorithm for the same problem obtaining a pro-
cessing time at least ten times faster than the one reported
in [17]. We remark that serial gradient descent algorithms
do not scale well with the size of the images, while our
parallel algorithm does. Furthermore, the computational
realization of the model in [2] is even slower, being that a
fourth-order and highly nonlinear PDE has to be solved.

In our experiments, Fig. 1 shows the number of itera-
tions, processing time in seconds, and normalized error Q
between the desired phase � and the estimated phase �∗
of our parallel phase demodulation implementation with
double precision. As is shown there, we ran the GPU simu-
lations for different values of � and image sizes. We can
see that � = 10−4 is a good compromise between process-
ing time and precision; we use this value for the rest of our
synthetic experiments.

Figure 2 shows a result of our phase demodulation
method with double precision using synthetic data. The
images have a size of 240 × 320 pixels. The first row shows
the spatial carrier frequency � , the fringe pattern g, and
the desired phase to estimate � , respectively. The second
row shows the initial value of background illumination a0 ,
amplitude modulation b0 , and phase estimation �0 at itera-
tion k = 0 . The third row shows the optimal estimations a∗ ,
b∗ , and �∗ . We obtain a normalized error Q(�,�∗) = 0.0279.

The speedup of a parallel program is defined as

where Ts is the processing time of serial program and Tp is
the processing time of parallel program [23].

Figure 3 shows the speedup of our parallel implemen-
tation using the multi-core CPU with double precision,
launching from NT = 2 to NT = 32 threads. The server has
16 hyper-threading cores, and then, each physical core is
divided into two virtual or logical cores, sharing resources
such as the instruction pointers, integer registers, float-
ing-point registers, scheduling queues, caches, and execu-
tion units. The performance of a parallel implementation
declines provided a virtual-core monopolizes some critical
resources such as the floating-point registers or the caches.
Increasing the performance of a parallel implementation

(16)S =
Ts

Tp
,

2446 Journal of Real-Time Image Processing (2021) 18:2441–2451

1 3

is fundamentally an optimization problem, which is very
difficult due to different memory hierarchies between plat-
forms and the variation of core connection on a single
processor [11]. We achieve the best speedup in our parallel
implementation when launching NT = 16 threads for the
different image sizes, while for NT > 16 , the performance
declines.

Figure 4 shows the speedup of our parallel implementa-
tion using the GPU with double precision. In our parallel
GPU implementation, we split the reduction process into
two sums. The first one is executed in the GPU, and the sec-
ond one can be executed in parallel in the CPU. We launch
from NT = 2 to NT = 32 threads in our multi-core CPU; note
that the speedup is almost constant for NT <= 16 and has
a small decline for NT > 16 . We can see that it is enough
to use only NT = 2 threads to obtain the best performance,
demonstrating that the more demanding process is computed
in the GPU.

Tables 1, 2, 3, and 4 show a comparative performance
of our serial and parallel implementations with double and
float precision respectively, for different image sizes of our
synthetic data. The processing time is measured from the
start of Algorithm 1 until it terminates, which means that
we are considering both the processor work and the memory
transfer time between the CPU and the GPU. We execute
the parallel implementations 20 times in each experiment,
reporting the mean and standard deviation of the number of
iterations k, the processing time, and the normalized error
Q. We can see that our implementations using GPU have
the shortest times.

When floating-point arithmetic is used, the rounding
errors can lead to unexpected results. There are calculations
with real numbers that produce quantities that are not exactly
represented in float or double precision [10]. Rounding
modes for basic operations, including subtraction, multipli-
cation, and division, are specified in the IEEE-754 standard;
the most frequently used is the round-to-nearest mode [35].
In the results of our implementations using double precision
(see Tables 1 and 2), we obtain the same number of itera-
tions and the same normalized error to 12 decimal places.

The TV and Q procedures of our algorithm need to
compute a summation of all elements of an array of the
size of the image to be processed; this operation may
propagate rounding errors as can be seen in Tables 3 and
4, where we use float precision. Note that the number of
iterations is different concerning each implementation. It
is important to note that the serial-float implementation
does not scale linearly with the size of the images. We
expect the algorithm to get a better speedup for larger
size images than that one for smaller ones. Table 3 shows

Fig. 1 Number of iterations, processing time, and normalized error of
our parallel phase demodulation method, for different values of � and
different image sizes

2447Journal of Real-Time Image Processing (2021) 18:2441–2451

1 3

that this is not true for the image of size 1920 × 2560 , for
which the speedup is inferior to the one obtained for the
image of size 960 × 1280 . If we ignore this result, then the
normalized errors are the same to four decimal places for
all our implementations using float precision. They are the
same to three decimal places taken into account the results

with double precision. However, even when we consider
the result of the serial implementation for an image of size
1920 × 2560 , the normalized error is the same as rounding
to two decimal places for all implementations with a float
or double precision, which is not bad for the quality of the
recovered phase map.

Fig. 2 Phase demodulation
using synthetic data

2 4 8 12 16 20 24 28 32
Number of threads

0

2

4

6

8

10

Sp
ee

du
p

 240 320
 480 640
 960 1280
 1920 2560

Fig. 3 Evaluation of speedups of parallel phase demodulation algo-
rithm, using the multi-core CPU from 2 to 32 threads for different
image sizes

2 4 8 12 16 20 24 28 32
Number of threads

0

10

20

30

40

50

60

70

80

90

Sp
ee

du
p

 240 320
 480 640
 960 1280
 1920 2560

Fig. 4 Evaluation of speedups of parallel phase demodulation algo-
rithm, using a GPU and the multi-core CPU from 2 to 32 threads for
different image sizes

2448 Journal of Real-Time Image Processing (2021) 18:2441–2451

1 3

On the other hand, the results of our GPU − 2C imple-
mentation with float precision (see Table 4) show that the
number of iterations and normalized errors have zero stand-
ard deviation. They are the same in each execution for each
size of the image. That is indeed a requirement in a deter-
ministic algorithm.

To compare our parallel implementations, Figs. 5 and
6 show the speedup of each implementation for different

image sizes using double and float precision, respectively.
For the case of the multi-core CPU, we launch from NT = 2
to NT = 20 threads, while for the case of GPU − 2C , we
launch only NT = 2 threads in the CPU, and for the case
of GPU − atom , we use the ��������� function to avoid
some memory copies between CPU and GPU. Note that
GPU implementations have almost the same speedup level
in each of our experiments, achieving the best performance

Table 1 Number of iterations, processing time (seconds), and normalized error Q of our serial and multi-core CPU implementations using dou-
ble precision

Size of image Serial Multi-core CPU – 16C

Iter. Time(s) Q Iter. Time(s) Q

240 × 320 1095 15.98 0.0278956108250142 1095 2.24 ± 0.02 0.0278956108250159
480 × 640 2510 159.08 0.0263059900148534 2510 21.63 ± 0.25 0.0263059900148562
960 × 1280 6031 1663.94 0.0306234524498726 6031 274.61 ± 4.25 0.0306234524498944
1920 × 2560 14526 17459.06 0.0376542821313397 14526 2921.45 ± 100.52 0.0376542821314670

Table 2 Number of iterations, processing time (seconds), and normalized error Q of our GPU implementations using double precision

Size of image GPU – 2C GPU – atomicAdd

Iter. Time(s) Q Iter. Time(s) Q

240 × 320 1095 0.60 ± 0.02 0.0278956108250159 1095 0.60 ± 0.02 0.0278956108250159
480 × 640 2510 3.91 ± 0.02 0.0263059900148565 2510 3.87 ± 0.02 0.0263059900148565
960 × 1280 6031 32.86 ± 0.03 0.0306234524498950 6031 32.23 ± 0.02 0.0306234524498951
1920 × 2560 14526 308.02 ± 0.32 0.0376542821314705 14526 304.15 ± 0.35 0.0376542821314704

Table 3 Number of iterations, processing time (seconds), and normalized error Q of our serial and multi-core CPU implementations using float
precision

Size of image Serial Multi-core CPU – 16C

Iter. Time(s) Q Iter. Time(s) Q

240 × 320 1032 13.63 0.0279578808695077 1055 ± 8 1.69 ± 0.13 0.027935 ± 6.10e−6
480 × 640 2283 117.59 0.0263535343110561 2365 ± 18 13.38 ± 0.17 0.026329 ± 3.72e−6
960 × 1280 5435 1179.32 0.0307095143944025 5559 ± 46 138.81 ± 1.36 0.030689 ± 9.26e−6
1920 × 2560 9079 8242.48 0.0429241806268692 13045 ± 79 1415.15 ± 10.10 0.037793 ± 1.28e−5

Table 4 Number of iterations, processing time (seconds), and normalized error Q of our GPU implementations using float precision

Size of
image

GPU – 2C GPU – atomicAdd

Iter. Time(s) Q Iter. Time(s) Q

240 × 320 1075 0.23 ± 0.08 0.0279189944267272 1079 ± 6 0.24 ± 0.09 0.027916 ± 4.41e−06
480 × 640 2460 1.53 ± 0.08 0.0263126417994499 2432 ± 21 1.52 ± 0.07 0.026316 ± 3.24e−06
960 × 1280 5766 11.89 ± 0.07 0.0306537337601184 5561 ± 63 11.41 ± 0.18 0.030690 ± 1.37e−05
1920 × 2560 13341 107.82 ± 0.12 0.0377521179616451 13153 ± 159 104.49 ± 1.25 0.037780 ± 2.54e−05

2449Journal of Real-Time Image Processing (2021) 18:2441–2451

1 3

for all image sizes. The advantage of GPU − atom is that all
computations are realized in the GPU. Thus, other programs
can be running in the CPU without compromising perfor-
mance. For the multi-core CPU implementation, the speedup
goes from S = 2 to S = 7 , and for the GPU implementations,
it goes from S = 25 to S = 58 using double precision; while
using float precision for multi-core CPU implementation, the

speedup goes from S = 4 to S = 9 , and for the GPU imple-
mentations, it goes from S = 57 to S = 103.

The first row in Fig. 7 shows the results of our par-
allel phase demodulation method with double and float
precision when using real experimental data. The pre-
sented data consist of two images (� and g) of size
480 × 640 pixels. The second row shows the results with
� = 10 and � = 10−4 (the same parameters as those used
for the synthetic data experiments); the algorithm takes
k = 16269 iterations, 880.84 s in serial version and 24.68
s in GPU − 2C version with double precision, and takes
k = 13402 iterations and 7.96 s in GPU − 2C version with
float precision. The third row shows the results when using
� = 2 and � = 10−7 ; here, the algorithm takes k = 45173
iterations, 2446.78 s in the serial version and 68.58 s in
the GPU − 2C version with double precision, and takes
k = 41455 iterations and 23.25 s in the GPU − 2C ver-
sion with float precision. Qualitatively, we can see that the
results using double and float precision are very similar,
even when the algorithm converges at a different number
of iterations.

6 Conclusions

In this paper, we presented parallel implementations of the
fixed-point algorithm for solving the total variation phase
demodulation model. We presented results from synthetic
and real experiments in a server with 16 hyper-threading
cores and a GPU.

The multi-core CPU implementation achieves the best
speedup (9x) using 16 threads. The two GPU versions of
our implementations (GPU − 2C and GPU − atom) obtain
almost the same speedup. That outperforms the speed of
the multi-core CPU implementations. In general, the GPU
implementations achieve a speedup of up to 103x over the
serial implementation.

The results show that the parallel implementations con-
verge and obtain the same number of iterations and nor-
malized error to 12 decimal places when we use double
precision. In contrast, due to the propagation of rounding
errors, we obtain a different number of iterations when
using float precision; however, the resultant normalized
errors of our parallel implementations with float precision
are the same to three decimal places as that for double
precision. Qualitatively, the estimated phases are very
similar.

As future work, we intend to explore the usage of multi-
grid algorithms to speed the algorithm even further.

2C 4C 8C 12
C

16
C

20
C

GPU-2C

GPU-at
om

Processors

0

10

20

30

40

50

60
Sp

ee
du

p
 240 320
 480 640
 960 1280
 1920 2560

Fig. 5 Evaluation of speedups of parallel phase demodulation algo-
rithm, using the multi-core CPU (from 2 to 20C), GPU with 2C, and
the GPU with ��������� for different image sizes and double preci-
sion

2C 4C 8C 12
C

16
C

20
C

GPU-2C

GPU-at
om

Processors

0

20

40

60

80

100

Sp
ee

du
p

 240 320
 480 640
 960 1280
 1920 2560

Fig. 6 Evaluation of speedups of parallel phase demodulation algo-
rithm, using the multi-core CPU (from 2 to 20C), GPU with 2C, and
the GPU with ��������� for different image sizes and float precision

2450 Journal of Real-Time Image Processing (2021) 18:2441–2451

1 3

Acknowledgements Authors acknowledge the support from “Labora-
torio de Supercómputo del Bajío” through the Grant Number 300832
from CONACyT.

References

 1. Ayubi, G.A., Duarte, I., Perciante, C.D., Flores, J.L., Ferrari, J.A.:
Phase-step retrieval for tunable phase-shifting algorithms. Opt.
Commun. 405(June), 334–342 (2017). https:// doi. org/ 10. 1016/j.
optcom. 2017. 08. 045

 2. Brito-Loeza, C., Legarda-Saenz, R., Espinosa-Romero, A., Mar-
tin-Gonzalez, A.: A mean curvature regularized based model for
demodulating phase maps from fringe patterns. Commun. Com-
put. Phys. 24(1), 27–43 (2018). https:// doi. org/ 10. 4208/ cicp.
OA- 2017- 0109

 3. Brito-Loeza, C., Legarda-Saenz, R., Martin-Gonzalez, A.: A fast
algorithm for a total variation based phase demodulation model.
Numer. Methods Partial Differ. Equ. 36(3), 617–636 (2020)

 4. Chapman, B., Jost, G., Van Der Pas, R.: Using OpenMP: Port-
able Shared Memory Parallel Programming, vol. 10. MIT Press,
Cambridge (2008)

 5. Cheng, J., Grossman, M., McKercher, T.: Professional CUDA C
Programming. Wiley, Indianapolis, Indiana (2014). https:// www.
books. google. com. mx/ books? id_ Z7rnA EACAAJ

 6. Cook, S.: CUDA Programming: A Developer’s Guide to Parallel
Computing with GPUs, 1st edn. Morgan Kaufmann Publishers
Inc., San Francisco, CA (2012)

 7. Demmel, J.W.: Applied Numerical Linear Algebra. Society for
Industrial and Applied Mathematics, Philadelphia, PA (1997)

 8. Flores, V.H., Reyes-Figueroa, A., Carrillo-Delgado, C., Rivera,
M.: Two-step phase shifting algorithms: where are we? Opt. Laser
Technol. 126(January), 106105 (2020). https:// doi. org/ 10. 1016/j.
optla stec. 2020. 106105

 9. Galvan, C., Rivera, M.: Second-order robust regularization cost
function for detecting and reconstructing phase discontinuities.
Appl. Opt. 45(2), 353–359 (2006). https:// doi. org/ 10. 1364/ AO.
45. 000353

 10. Goldberg, D.: What every computer scientist should know about
floating-point arithmetic. ACM Comput. Surv. (CSUR) 23(1),
5–48 (1991)

 11. Hwu, W.M., Keutzer, K., Mattson, T.G.: The concurrency chal-
lenge. IEEE Des. Test. Comput. 25(4), 312–320 (2008). https://
doi. org/ 10. 1109/ MDT. 2008. 110

 12. Itseez: OpenCV. Website (2020). http:// opencv. org//. Accessed 24
Sept 2020

 13. Karpinsky, N., Zhang, S.: High-resolution, real-time 3d imaging
with fringe analysis. J. Real Time Image Process. 7(1), 55–66
(2012)

 14. Kirk, D.B., Wen-Mei, W.H.: Programming Massively Parallel
Processors: A Hands-on Approach (Applications of GPU Com-
puting Series), 1st edn. Morgan Kaufmann, Burlington, MA, USA
(2010).

 15. Kulkarni, R., Rastogi, P.: Two-step phase demodulation algorithm
based on quadratic phase parameter estimation using state space
analysis. Opt. Lasers Eng. 110(April), 41–46 (2018). https:// doi.
org/ 10. 1016/j. optla seng. 2018. 05. 012

 16. Legarda-Saenz, R., Brito-Loeza, C.: Augmented lagrangian
method for a total variation-based model for demodulating phase

Fig. 7 Phase demodulation using real experimental data

https://doi.org/10.1016/j.optcom.2017.08.045
https://doi.org/10.1016/j.optcom.2017.08.045
https://doi.org/10.4208/cicp.OA-2017-0109
https://doi.org/10.4208/cicp.OA-2017-0109
https://www.books.google.com.mx/books?id_Z7rnAEACAAJ
https://www.books.google.com.mx/books?id_Z7rnAEACAAJ
https://doi.org/10.1016/j.optlastec.2020.106105
https://doi.org/10.1016/j.optlastec.2020.106105
https://doi.org/10.1364/AO.45.000353
https://doi.org/10.1364/AO.45.000353
https://doi.org/10.1109/MDT.2008.110
https://doi.org/10.1109/MDT.2008.110
http://opencv.org//
https://doi.org/10.1016/j.optlaseng.2018.05.012
https://doi.org/10.1016/j.optlaseng.2018.05.012

2451Journal of Real-Time Image Processing (2021) 18:2441–2451

1 3

discontinuities. J. Algorithm Comput. Technol. 14, 1–8 (2020).
https:// doi. org/ 10. 1177/ 17483 02620 941413

 17. Legarda-Saenz, R., Brito-Loeza, C., Espinosa-Romero, A.: Total
variation regularization cost function for demodulating phase dis-
continuities. Appl. Opt. 53(11), 2297–2301 (2014)

 18. Legarda-Saenz, R., Osten, W., Juptner, W.P.: Improvement of the
regularized phase tracking technique for the processing of non-
normalized fringe patterns. Appl. Opt. 41(26), 5519–5526 (2002).
https:// doi. org/ 10. 1364/ AO. 41. 005519

 19. Legarda-Saenz, R., Tellez Quinones, A., Brito-Loeza, C., Espi-
nosa-Romero, A.: Variational phase recovering without phase
unwrapping in phase-shifting interferometry. Int. J. Comput.
Math. 96(6), 1217–1229 (2019)

 20. Vese, L.A., Le Guyader, C.: Variational Methods in Image Pro-
cessing, 1st edn. Chapman and Hall/CRC, Abingdon, UK (2015)

 21. Marroquin, J.L., Rivera, M., Botello, S., Rodriguez-Vera, R.,
Servin, M.: Regularization methods for processing fringe-pat-
tern images. Appl. Opt. 38(5), 788–794 (1999). https:// doi. org/
10. 1364/ AO. 38. 000788

 22. NVIDIA Corporation: CUDA C++ Programming Guide. Website
(2020). https:// docs. nvidia. com/ cuda/ cuda-c- progr amming- guide/
index. html. Accessed 24 Sept 2020

 23. Pacheco, P.: An Introduction to Parallel Programming, 1st edn.
Morgan Kaufmann Publishers Inc., San Francisco, CA (2011)

 24. Perlin, M., Bustamante, M.D.: A robust quantitative comparison
criterion of two signals based on the sobolev norm of their differ-
ence. J. Eng. Math. 101(1), 115–124 (2016)

 25. Rajshekhar, G., Rastogi, P.: Fringe analysis: premise and per-
spectives. Opt. Lasers Eng. 50(8), iii–x (2012). https:// doi. org/
10. 1016/j. optla seng. 2012. 04. 006

 26. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based
noise removal algorithms. Phys. D 60(1–4), 259–268 (1992).
https:// doi. org/ 10. 1016/ 0167- 2789(92) 90242-F

 27. Rünnger, G., Rauber, T.: Parallel Programming: for Multicore
and Cluster Systems, 2nd edn. Springer-Verlag, Berlin Heidelberg
(2013)

 28. Servin, M., Marroquin, J.L., Cuevas, F.J.: Fringe-follower regu-
larized phase tracker for demodulation of closed-fringe interfero-
grams. J. Opt. Soc. Am. A 18(3), 689–695 (2001). https:// doi. org/
10. 1364/ JOSAA. 18. 000689

 29. Servin, M., Padilla, M., Choque, I., Ordones, S.: Phase-stepping
algorithms for synchronous demodulation of nonlinear phase-
shifted fringes. Opt. Express 27(4), 5824 (2019). https:// doi. org/
10. 1364/ OE. 27. 005824

 30. Servin, M., Quiroga, J.A., Padilla, M.: Fringe Pattern Analysis for
Optical Metrology: Theory, Algorithms, and Applications. Wiley-
VCH, Weinheim (2014)

 31. Singh, M., Khare, K.: Single-shot interferogram analysis for
accurate reconstruction of step phase objects. J. Opt. Soc. Am. A
34(3), 349 (2017). https:// doi. org/ 10. 1364/ JOSAA. 34. 000349

 32. Surrel, Y.: Fringe Analysis. In: P.K. Rastogi (ed.) Photomechanics,
Topics in Applied Physics, vol. 77, pp. 55–102. Springer, Berlin,
Heidelberg (2000). https:// doi. org/ 10. 1007/3- 540- 48800-6_3

 33. Takeda, M., Ina, H., Kobayashi, S.: Fourier-transform method of
fringe-pattern analysis for computer-based topography and inter-
ferometry. J. Opt. Soc. Am. 72(1), 156 (1982). https:// doi. org/ 10.
1364/ JOSA. 72. 000156

 34. Veldhuizen, T.L.: Arrays in blitz++. In: Caromel, D., Oldehoeft,
R.R., Tholburn, M. (eds.) Computing in Object-Oriented Parallel
Environments, pp. 223–230. Springer, Berlin, Heidelberg (1998)

 35. Whitehead, N., Fit-Florea, A.: Precision & performance: Floating
point and IEEE 754 compliance for NVIDIA GPUs. Technical
report, rn (A+ B) 21(1), 18749–19424 (2011)

 36. Zhu, X., Tang, C., Li, B., Sun, C., Wang, L.: Phase retrieval from
single frame projection fringe pattern with variational image
decomposition. Opt. Lasers Eng. 59, 25–33 (2014). https:// doi.
org/ 10. 1016/j. optla seng. 2014. 03. 002

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Francisco J. Hernandez‑Lopez received the B.E. degree in computer
systems engineering from the Instituto Tecnológico de San Luis Potosí,
México, in 2005. He received the M.Sc. and D.Sc. degrees in Computer
Science from the Centro de Investigación en Matemáticas (CIMAT),
México, in 2009 and 2014 respectively. Since 2014, he is in the Com-
puter Science Department at the CIMAT, Mérida, México. His main
interests are in the area of computer vision, machine learning and in
the development of efficient algorithms using parallel computing for
the processing and analysis of video sequences. He is fellow of the
National System of Researchers (SNI) of the Mexican Government.

Ricardo Legarda‑Sáenz received his MSc degree in electronic engi-
neering (computation) from the Instituto Tecnológico de Chihuahua
(México) in 1997, and his PhD in optics from the Centro de Investiga-
ciones en Óptica (México) in 2000. Since 2004, he has been a professor
at Universidad Autónoma de Yucatán, México. His current interests are
image processing applied to fringe pattern analysis.

Carlos Brito‑Loeza received a Ph.D. degree in mathematics from the
University of Liverpool, U.K. He is currently a professor at the Faculty
of Mathematics in the Universidad Autónoma de Yucatán, México
where he is part of the computational learning and imaging research
group. His research interests are on variational modeling and PDE
based methods with applications to different imaging and learning
problems. He also works on developing efficient numerical solvers for
a diversity of scientific computing applications.

https://doi.org/10.1177/1748302620941413
https://doi.org/10.1364/AO.41.005519
https://doi.org/10.1364/AO.38.000788
https://doi.org/10.1364/AO.38.000788
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://doi.org/10.1016/j.optlaseng.2012.04.006
https://doi.org/10.1016/j.optlaseng.2012.04.006
https://doi.org/10.1016/0167-2789(92)90242-F
https://doi.org/10.1364/JOSAA.18.000689
https://doi.org/10.1364/JOSAA.18.000689
https://doi.org/10.1364/OE.27.005824
https://doi.org/10.1364/OE.27.005824
https://doi.org/10.1364/JOSAA.34.000349
https://doi.org/10.1007/3-540-48800-6_3
https://doi.org/10.1364/JOSA.72.000156
https://doi.org/10.1364/JOSA.72.000156
https://doi.org/10.1016/j.optlaseng.2014.03.002
https://doi.org/10.1016/j.optlaseng.2014.03.002

	Parallel algorithm for fringe pattern demodulation
	Abstract
	1 Introduction
	2 Total variation based model
	3 The fixed-point algorithm
	4 Parallel implementation
	4.1 OpenMP implementation
	4.2 CUDA implementation

	5 Experimental results
	6 Conclusions
	Acknowledgements
	References

