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Abstract
Background subtraction is a substantially important video processing task that aims at separating the foreground from a 
video to make the post-processing tasks efficient and relatively easier. Until now, several different techniques have been 
proposed for this task, but most of them cannot perform well for the videos having variations in both the foreground and 
the background. In this paper, a novel background subtraction technique is proposed that aims at progressively fitting a 
particular subspace for the background that is obtained from L

1
-low-rank matrix factorization using the cyclic weighted 

median algorithm and a certain distribution of a mixture of Gaussian of noise for the foreground. The expectation maximi-
zation algorithm is applied to optimize the Gaussian mixture model. Furthermore, to eliminate the camera jitter effects, the 
affine transformation operator is involved to align the successive frames. Finally, the effectiveness of the proposed method 
is augmented using a subsampling technique that can accelerate the proposed method to execute on an average more than 
250 frames per second while maintaining good performance in terms of accuracy. The performance of the proposed method 
is compared with other state-of-the-art methods and it was concluded that the proposed method performs well in terms of 
F-measure and computational complexity.

Keywords  Background subtraction · Cyclic weighted median (CWM)algorithm · Low-rank matrix factorization (LRMF) · 
Gaussian mixture model(GMM) · Expectation maximization (EM)algorithm

1  Introduction

With the recent advances in the domain of computer vision 
and the development of digital inexpensive cameras, the 
need for both indoor and outdoor video surveillance sys-
tems has been stimulated. Video processing is a substan-
tially important branch of image processing and computer 
vision focused on extracting information from real scene 
videos. Among several other video processing techniques, 
background subtraction has attained great importance as a 
developing research area, during the past few years [1–4]. 
Background subtraction aims at dividing the pixels of each 
frame of a video into two complementary sets, i.e., the 
background pixels corresponding to the stationary part of 
the frame and the foreground ones that correspond to the 
moving part. This makes the subsequent post-processing 
tasks efficient and relatively easier. This makes the subse-
quent post-processing tasks efficient and relatively easier. 
Most of the background subtraction techniques aim at 
choosing such algorithms and task scheduling methods 
that make the real-time processing of videos efficient and 
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accurate [1]. Furthermore, processing a high-resolution 
video stream efficiently is also a challenging task [2]. 
Recently, techniques are being proposed that focus on 
limiting the number of historical frames and thus mak-
ing the background subtraction process suitable for the 
real-time implementation [3]. Background subtraction is 
a widely used technique that finds its application particu-
larly in surveillance videos, object detection and tracking 
[5], detection of urban traffic [6], long-term monitoring 
of a scene [7], video compression [8], etc. Some critical 
challenges faced in the implementation of a background 
subtraction method are: 

	 i.	 Selection of the initial frames.
	 ii.	 Development of a model for Background.
	 iii.	 Selection of an effective threshold for the classification 

of pixels.
	 iv.	 Updating process for the Background or the threshold 

or both.

Nowadays, the amount of videos obtained from surveil-
lance cameras disseminated throughout the world is 
increasing dramatically. These continuously evolving 
videos not only made the evaluation of the background 
subtraction for these videos crucial but also generated an 
urge to build some real-time techniques to manage this 
increasing video data.

Recently, multiple background subtraction methods 
have been developed [9, 10] that gradually updates the 
low-rank structure underlying the background by con-
sidering one frame at a time incrementally, thus decreas-
ing the computation time. These methods can effectively 
carry out background subtraction for real-time videos by 

significantly speeding up the calculations performed for 
this task. However, there are still some evident defects in 
these techniques when employed for real-time videos. On 
one hand, these approaches mostly neglect the dynamic 
jitters of the camera including rotation, scaling, and illu-
mination changes that occur frequently in the real life, 
while assuming that the background possesses a low-rank 
structure. On the other hand, most of the current methods 
make use of a fixed loss term for their models such as 
L1 or L2 norm losses. These loss terms make an implicit 
assumption for the noises, i.e., the foreground part of the 
videos, by considering them to have a fixed probability 
distribution such as Laplacian or Gaussian. Although, in 
real scenarios, there are always dramatic variations in the 
foreground over time, therefore, this assumption for noise 
to have a fixed probability distribution deviates from real 
scenarios. In some cases, multiple modalities of noises 
are contained in the foreground, as shown in Fig. 1. Such 
cases require taking into account more complex models 
for noise. In practice, neglecting such an essential intuition 
about the diversity in the foreground of a video does not 
allow the current methods to be robust against the noise 
variations that occur in the real-time videos.

The organization of the rest of the paper is as follows: 
In Sect. 2, a brief review of various already existing back-
ground subtraction methods is given. Section 3 covers the 
proposed methodology and the related algorithms. In Sect. 4, 
the results acquired by exploiting the proposed algorithm on 
various video datasets are explained. Finally, the conclusion 
of the proposed work is given in Sect. 5.

Fig. 1   Background subtraction 
results for a bootstrap sequence 
[12]. The first row contains the 
original frame, noise, and the 
background extracted by [12] 
(in left-to-right direction). The 
second row contains three noise 
components that correspond to 
the foreground, i.e., the moving 
object, its shadow, and certain 
feeble camera noise
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2 � Related work

Over the last couple of years, various research studies have 
been presented on background subtraction due to which it 
has attained great importance as a developing research 
area [13–16]. Some of these recent studies have been as 
referenced for the development of the proposed model. 
Gaussian parameter compression techniques [14] as well 
as combination of Mixture of Gaussian (MoG) and com-
pressive sensing (CS) [16] are recently being used. Fur-
thermore, parallel implementation strategies for algo-
rithms are also being utilized for object detection in 
UAV-sourced videos [15]. As described earlier, back-
ground subtraction is a widely used technique particularly 
in surveillance videos, object tracking and detection, traffic 
or crowd monitoring, etc. where the main focus is to sepa-
rate the moving objects, i.e., foreground from the station-
ary background [17]. However, the detection of moving 
objects in videos or other applications is yet a challenging 
task owing to several issues such as shadow, varying illu-
mination, occlusion, background motion, camera jitter, as 
well as several different types of ambiguities like atmos-
pheric disturbances or noise, object overlapping outliers, 
etc. [18]. To overcome these challenges, statistical models 
are the most effective ones. Statistical models may be non-
parametric or parametric. Some of the most commonly 
applied non-parametric methods are the Kernel Density 
Estimation (KDE) and Eigenvalue Decomposition, but 
these methods have an extensive memory requirement, as 
well as a high computational complexity [19]. Conversely, 
parametric statistical models depend on the use of statisti-
cal distributions for background modeling. One of the 
most popular statistical models is finite GMM, capable of 
coping with slight illumination changes as well as moving 
background with small repetitive motion [19]. As with 
non-parametric methods, parametric methods have their 
limitations such as the learning parameters need to be set 
automatically, have to cope with complex dynamic back-
ground, have to dissociate shadows from object, etc. [19]. 
To accommodate these challenges and overcome the afore-
mentioned limitations, [20] proposed an improvised ver-
sion of GMM for the detection of moving objects. It uses 
the Gaussian elements for modeling the intensity values 
of a block of pixels and compensates for the learning rate 
limitation using a dynamic learning rate. Considering the 
pixel block, rather than a single pixel value, reduced the 
computation time almost four times, keeping the perfor-
mance nearly similar to earlier methods [20]. Recently, 
matrix decomposition methods, for instance, Robust Prin-
cipal Component Analysis (RPCA), have become an effi-
cient framework for background subtraction. These meth-
ods aim to decompose a matrix into low-rank (for 

background) and sparse (for foreground) components. 
However, in some scenarios, as the size of input data 
increases and because of the absence of sparsity con-
straints, these methods show weak performance as they 
cannot handle the real-time challenges, resulting in inac-
curate foreground areas. To address the aforementioned 
problem, an online single unified optimization framework 
for simultaneous detection of the foreground as well as 
learning of background is proposed in [21]. This method 
has better performance, as it provides a more reliable and 
efficient low-rank component, but it cannot be used for 
moving cameras. Although RPCA provides a good frame-
work for background subtraction, it still has a very high 
computational complexity and huge memory requirements 
because of its batch optimization. To solve this issue, 
online RPCA (OR-(PCA) [22] is developed which can pro-
cess such high-dimensional data through stochastic man-
ners. However, the sparse component obtained by OR-PCA 
cannot always handle numerous background modeling 
challenges, which degrades the performance of the system. 
To overcome these challenges, [23] presented a multi-
feature based OR-PCA scheme. Integration of multiple 
features into OR-PCA not only augments the quality of 
detected foreground but also enhances the quantitative 
performance of this technique, as compared to single fea-
ture OR-PCA and RPCA through PCP-based methods [23]. 
However, when OR-PCA is applied to real sequences 
which have dynamically changing background, the perfor-
mance of OR-PCA is also reduced. Therefore, there is a 
need for enhancement in OR-PCA to cope up with the 
increased complexity and variety of videos. In [24], an 
online algorithm built on Incremental Nonnegative Matrix 
Factorization (INMF) is presented, which resolves the 
problems encountered in OR-PCA using non-negative and 
structured sparsity constraints. In complex scenes, this 
algorithm reduces the number of missed and false detec-
tion. Subspace Learning methods such as Matrix Comple-
tion (MC) and RPCA have been explored and attained 
significant attention during the last few years [12, 25]. 
These methods are based on low-rank modeling and are 
meant to reduce the dimensionality in a very-high-dimen-
sional space. Unfortunately, there are some prevalent chal-
lenges with most of the conventional matrix decomposi-
tion algorithms based on MC and RPCA. First, these 
methods use batch processing; second, for each iteration 
of the optimization process, all the frames have to be 
accessed. As a result, they have an extensive memory 
requirement and are computationally inefficient. The 
method proposed in [26] considers the sequence of images 
as constructed from a low-rank matrix for background and 
a dynamic tree-structured sparse matrix for the foreground. 
It solves the decomposition by the use of approximated 
RPCA which is extended to make it capable of handling 
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camera motion. This method decreases the complexity, 
requires less time for computation, and does not require 
huge memory for larger videos. Similarly, to estimate a 
robust background model, in [25], a robust spatiotemporal 
low-rank matrix completion (SLMC) algorithm is pre-
sented for dynamic videos. In the proposed method, spec-
tral graphs are regularized for encoding spatiotemporal 
constraints. Furthermore, SLMC algorithm is extended to 
Spatiotemporal RPCA (SRPCA) with dynamic frames 
extraction. Together, these algorithms make the process 
robust and accurate but in SRPCA as both the foreground 
and background are optimized at the same time, the com-
putational time is increased. Furthermore, impressive 
achievements in deep learning have enthused the research-
ers to apply deep neural networks for the task of back-
ground subtraction [27–29]. Usually, in a CNN, some of 
the essential information may be lost by the first convolu-
tion layer and is not available for the bottom layers of 
CNN, thus limiting its performance in multiple feature 
extracting. To overcome this limitation, in [27], a CNN 
combining multi-scale representation is studied and a 
multi-scale fully convolutional network architecture is pro-
posed for background subtraction that takes advantage of 
multiple layer features. Similarly, in [28], a background 
subtraction method based on depth data in SBM-RGBD is 
proposed that is capable of achieving more accurate results 
than the traditional methods. The major difference between 
the depth data and traditional data is the distance informa-
tion provided by the depth sensors. In this method, the 
impact of edge noise and absent pixels is reduced by 
applying a preprocessing method. Mostly, the current 
available CNN-based foreground methods make use of 2-D 
CNN, and hence, they fail to account for the temporal fea-
tures present in the image sequences. These temporal fea-
tures are beneficial in improving the performance of IR 
foreground detection, because the IR images lack rich 
spatial features. To solve this problem, a background sub-
traction method based on the 3-D convolutional network 
is proposed in [29] named as MFC3-D (multi-scale 3-D 
Fully Convolutional Network). The proposed network can 
effectively learn the deep and hierarchical multi-scale 
spatial-temporal features, hence, can perform well for fore-
ground detection in IR videos. Although these deep learn-
ing-based algorithms have a better performance, their 
drawback is that they are increasingly dependent on costly 
hardware resources owing to the demanding training pro-
cess. Because of the restricted computational resources 
and high real-time demands, these approaches are not real-
istic for visual surveillance. Moreover, mostly, the deep 
learning-based algorithms are supervised algorithms 
which means that they need a ground truth to train the 
model. These ground truths are constructed by either a 
human expert or by other unsupervised background 

subtraction methods. However, the background subtraction 
methods for video surveillance have to be unsupervised. 
Thus, the CNN-based background subtraction methods 
may not be much useful when it comes to practical appli-
cations. Considering the pros and cons of all the tech-
niques reviewed in the literature survey, in this work, we 
have proposed atechnique that is computationally efficient 
and has improved accuracy in terms of detected back-
ground and foreground, with less number of false 
detections.

To mitigate the limitations of existing techniques, an 
innovative technique for background subtraction has been 
proposed in this paper. The proposed technique progres-
sively fits a particular subspace for the background that is 
obtained from L1-low-rank matrix factorization (LRMF) 
using cyclic weighted median (CWM) and a certain dis-
tribution of a mixture of Gaussian (MoG) of noise for the 
foreground. This fit is achieved by regularization of the 
background and foreground information that is acquired 
from the preceding frames. In comparison to the conven-
tional methods that used a fixed noise distribution for all the 
frames of the video, a separate MoG distribution is used to 
model the noise or foreground for each frame of the video.
The expectation maximization (EM) algorithm is applied to 
optimize the Gaussian mixture model (GMM). To eliminate 
the camera jitter effects, the affine transformation operator 
is involved that acts to align the successive frames. Finally, 
the effectiveness of the proposed method is augmented using 
a subsampling technique that can accelerate the proposed 
method to execute on an average more than 250 frames per 
second while maintaining good performance in accuracy.

3 � Proposed methodology

In this section, the proposed algorithm for background sub-
traction is presented in detail. The gist of the proposed work 
is that for each new video frame xt , the aim is to progres-
sively fit a particular subspace for the background that is 
obtained from L1-LRMF and a certain MoG distribution of 
noise for the foreground. This fit is achieved by regulariza-
tion of the background and foreground information that is 
acquired from the preceding frames.

3.1 � LRMF to obtain background subspace

Low-rank matrix factorization is considered to be a signifi-
cantly important technique in data science. The main idea of 
matrix factorization is that sometimes the data contain latent 
structures by uncovering which a compressed representation 
of the data can be obtained. Matrix factorization provides 
a unified method for dimensionality reduction, matrix com-
pletion, and clustering by factorization of the original data 
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matrix into low-rank matrices. The L1-norm LRMF prob-
lem can be formulated as follows. Let X be the video data 
matrix, such that X= ( x1 , x2 , ..., xn ) where X ∈  Rd×n , d is the 
dimensionality, and n is the number of data. Each column 
of X, i.e., xi  represents a video frame having d-dimension. 
The missing entries in the matrix X are represented by an 
indicator matrix W, where W ∈ Rd×n . The elements of W 
i.e wij  are taken in such a way that it is zero when the cor-
responding element is missing and one otherwise [30].

Given X and W, it is possible to formulate a general 
LRMF problem [31] as

where U and V denote the basis and coefficient matrices 
respectively. Furthermore, U = [ u1 , u2,..., uk ], V = [ v1 , v2,...,  
vk ]  and U ∈ Rd×r  and V ∈ Rn×r ,  with r <<  min(d,n) and ⊙  
denotes the Hadamard product, i.e., component- wise multi-
plication, different from the common matrix product. Here, 
r <<  min(d,n) basically indicates the property of low rank 
of U VT .  Under the framework of Maximum-Likelihood 
Estimation (MLE), Eq. (1) can also be understood as

where ūi  is the ith row vector of U, v̄j  is the jth  row vector 
of V, and eij  is the noise element embedded in xij.

To make the proposed model robust to complex noises 
present in the real-time videos, it is possible to better model 
the term eij  as a parametric probability distribution. Among 
other probability distributions, MoG possess a strong capa-
bility to approximate to general distributions [31]; there-
fore, it is selected here to adapt flexibly to the real cases. In 
particular, it is assumed that each video frame xij  follows:

For Eq. (1), unfortunately, it is somehow difficult to solve 
the L1-norm minimization because of two reasons. On one 
hand, its optimization is non-convex which generally makes 
the finding of a global minimum a bit difficult, and in case 
of missing entries, it is even proven to be an NP-hard prob-
lem [32]. On the other hand, standard optimization tools 
can hardly find an effective closed-form iteration formula 
[33], because L1-norm minimization is non-smooth. In the 
proposed technique, we have made use of the simple cyclic 
coordinate descent algorithm [34] which shows outstanding 
performance on L1-norm LRMF.

The core idea of the cyclic coordinate descent algorithm 
is to break the fundamental complex minimization problem 
into a sequence of simple elementary subproblems. Each of 
these subproblems, having only one scalar parameter, is then 
recursively optimized. Being convex optimization problems, 

(1)min
�,�||�⊙ (� − ��

T )||L1 ,

(2)xij = (ūi)
T v̄j + eij,

(3)xij ∼

K∑

k=1

𝜋kN(xij|(ūij)T v̄j, 𝜎k2.

each of them can be readily solved using a weighted median 
filter, which eliminates the need for time-consuming inner 
loops for numerical optimization. Moreover, the recursive 
employment of weighted median filter makes the method 
more robust to the missing entries as well as the outliers to 
a large extent.

3.2 � CWM algorithm for solving L
1
‑norm LRMF 

problem

The main idea of CWM algorithm to solve the minimization 
in Eq. (1) is to apply recursively the weighted median filter 
[35] to update each element of U = [ u1 , u2,..., uk ],  V = [ v1 , 
v2,..., vk ],  such that U∈ Rd×r  and V ∈  Rn×r . The algorithm 
can be described by the following steps:

Step 1 To update each element vij  of V where (i=1,...,k) 
and ( j=1,...,n), the weighted median filter is applied cycli-
cally while keeping all other components of U and V fixed. 
This is done by solving

where wj  represents to the jth  column vector of W and ei
j
  

represents the jth  column vector of Ei  defined as 

Step 2 In the next step, apply cyclically the weighted median 
filter for updating each element uij of U keeping all other 
components of U and V fixed. This can be done by solving 
the following minimization problem.

where �̃j  represents to the jth  row vector of W and ẽi
j
  rep-

resents the jth  row vector of Ei .
The factorized matrices U and V can be recursively 

updated via iterative implementation of the above proce-
dures till the fulfilment of the termination condition.

In step 1 of the algorithm, the initial values of U and 
V are obtained from PCA [37], performed prior to the L1
-LRMF. For the termination condition of step 4, as in the 
iteration process, the objective function of Eq. 1 is decreas-
ing monotonically; therefore, the algorithm terminates either 
when the rate of updating U and V is below some predeter-
mined threshold or when the maximum number of iterations 
has been reached.

3.2.1 � GMM for foreground modeling

In the proposed technique, as discussed earlier, rather than 
using a fixed distribution of noise for all the frames in a 
video, noise or foreground eij of each frame is modeled as a 

(4)vij
∗ = argminvij ||�j ⊙ ej

i − �j ⊙ �ivij||L1 ,

(5)�i = � −
∑

j≠i

�i�
T
j
.

(6)uij
∗ = argminuij ||�̃j ⊙ �̃

i
j
− �̃j ⊙ �iuij||L1

,
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separate MoG distribution, that is regularized by a penalty 
to enforce its parameters close to those estimated from the 
preceding frames. This penalty may also be reformulated as 
the conjugate prior for MoG of the current frame, by encod-
ing the knowledge of noise learned previously. As the MoG 
can effectively approximate an extensive range of distribu-
tions, the proposed method is capable of finely adapting to 
the variations in the foreground, even for the noises having 
complex dynamic structures. The expectation maximization 
(EM) algorithm is then used to iteratively approximates the 
maximum likelihood (ML) estimates of the mixture model 
parameters. One very useful property of the EM algorithm is 
that for each subsequent iteration, the maximum likelihood 
of the data increases strictly, which implies that it is guar-
anteed to approach a saddle point or local maximum. The 
EM algorithm, as the name suggests, essentially involves 
two steps. The first step being the E-step or Expectation step 
and the second step being the M-step or Maximization step. 
Iterative repetition of these two steps until convergence of 
the algorithm gives the maximum-likelihood estimate. The 
following steps explain the working of the EM algorithm. 

	 i.	 Initialize the model parameters, that is, means �k , 
covariances 

∑
k , and the mixture weights �k where 

k = 1, 2, ...,K . Estimate the initial value of log-like-
lihood.

	 ii.	 After initialization, the second step is the expectation 
step. In this step, using the current parameters, the 
responsibilities are evaluated as 

 where �ikt corresponds to the latent (hidden) variable 
for the kth Gaussian,xt

i
 denotes the ith pixel of the 

newly coming frame xt.
	 iii.	 The next step is the maximization step. This step 

involves the recalculation of the model parameters �k
,�2

k
 , and v̄ using the currently obtained values. This 

recalculation is done using the following equations: 

 where N̄ =d ; N̄k=
∑d

i=1
 � t
ik

 ; 𝜋̄k=
N̄k

N̄
 ;

		    𝜎k
2= 1

N̄k

 
∑d

i=1
 ( � t

ik
 ( xt

i
-(ūi)T v̄)2);

		    N=Nt−1+N̄ and Nk=N
t−1
k

+N̄k

(7)𝛾ik
t =

𝜋kN(xi
t�(ūi)T v̄, 𝜎k2)

∑K

k=1
𝜋kN(xi

t�(ūi)T v̄, 𝜎k2)
,

(8)𝜋k = 𝜋k
t−1 −

N̄

N
(𝜋k

t−1 − 𝜋̄k),

(9)𝜎k
2 = 𝜎k

t−12 −
N̄k

Nk

(𝜎k
t−12 − 𝜎k

2),

(10)v̄ = (ŪTdiag(wt)2Ū)−1UTdiag(wt)2xt,

	 iv.	 Finally, evaluate the log-likelihood [12] 

 where Π ={ �k}k=1 K If either the parameters or the 
log-likelihood has converged, it means that the desired 
results have been achieved, if not, then return to step 2 
and iterate until convergence. After the convergence of 
the EM algorithm, the fitted model obtained is utilized 
to update the current subspace �t using the updating 
rules [12] defined as follows: 

 where �̄i
t and �̄i

t denote the model variables that are 
used as background prior. �̄i

t represents a semi-defi-
nite matrix which makes it easy to learn the subspace 
U. wt

i
 represents ith element of indicator matrix W, 

defined as wt
i
=
�

∑K

k=1

� t
ik

2�2
k

 and � controls the strength 

of the priors. Its value is set in such a way that allows 
the subspace to slightly lean to the current frame. In 
the proposed work, it is set to 0.98.

4 � Performance evaluation

For the performance evaluation of the proposed technique, 
we conducted background subtraction experiments on three 
different datasets selected from the Li dataset1 which have 
static as well as dynamic backgrounds, i.e. 

	 i.	 Airport video without camera jitter effect.
	 ii.	 An unaligned face with different illuminations.
	 iii.	 Synthetically transformed airport video with camera 

jitter effect.

All these experiments were implemented on a computer 
with Intel Core m3 CPU and 8GB RAM and Windows10 
operating system. The proposed work is implemented on 
MATLAB R2015.

(11)

ln p(�|�,�,�,�) =

N∑

n=1

{
K∑

k=1

𝜋kN(xij|(ūi)T v̄j, 𝜎k2)
}

,

(12)�i
t = �̄i

t
�̄i

t
,

(13)�̄i
t
=

1

𝜌

(
�̄i

t−1
−

wi
t2�̄i

t−1
v̄t(v̄t)T�̄i

t−1

𝜌 + wi
t2(v̄t)TĀi

t−1
v̄t

)
,

(14)�̄i
t
= 𝜌�̄i

t−1
+ wi

t2xi
tv̄t,

1  http://​www.​chang​edete​ction.​net/.

http://www.changedetection.net/
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4.1 � Quantitative evaluation

The quantitative metrics used to assess the performance is 
F-measure which is expressed as

Recall is a measure that tells how many of the true posi-
tives are identified correctly, whereas precision tells us that 
out of all the positive classifications, how many are actually 
correct. In Eq. (15), precision and recall are estimated as 
follows:

where Sf  is the support set for the foreground estimated from 
the proposed method and Sgt is the set of ground truth.

The quantitative analysis is performed by comparing 
the results obtained by proposed technique and OMoGMF 

(15)F-measure = 2 ×
Precision × Recall

Precision + Recall
.

(16)Precision =
|Sf ∩ Sgt|

|Sf |
,

(17)Recall =
|Sf ∩ Sgt|
|Sgt|

,

method proposed in [12]. This comparison of F-Measure 
is shown in Tables 1 and 2, respectively. In Table 1, this 
comparison is made for airport dataset without jitter effect, 
whereas in Table 2, comparison is done for airport dataset 
with jitter effect. It can be seen that in both cases, our 
proposed technique performs best. For qualitative com-
parison, we have compared the proposed technique with 
four already existing techniques. In these experiments, we 
have taken into account the two major problems that were 

Fig. 2   Airport dataset: from left to right OMoGMF [12], DECOLOR [40], PRMF [41], LRMF-CWM. First row: Original frame; second row: 
background; third row: foreground

Table 1   Comparison of F-Measure for airport dataset without jitter 
effect

Dataset OMoGMF 
[12]

DECOLOR 
[40]

PRMF [41] Proposed

Airport 
(without jit-
ter effect)

61.9 63.98 65.87 64.1

Table 2   Comparison of F-Measure for airport dataset with jitter effect

Dataset OMoGMF [12] t-GRASTA [43] Proposed

Airport (jitter effect) 76.1 66.24 77.4
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not solved in the existing literature, i.e., the dynamic back-
ground such as illumination changes, waving trees, ripples 
in water, etc., and the camera jitter effects like translation, 
rotation, scaling, or a combination of all these, thereby 
making proposed technique more robust for dynamic back-
ground changes. Figure 2 illustrates the acquired results 
by comparing it with three different already existing tech-
niques, i.e., OMoGMF [12], DECOLOR [40], and PRMF 
[41].

To demonstrate the effectiveness of the proposed tech-
nique for the camera jitter effects, we took the same Air-
port sequence, but this time, it has camera jitter effects in 
it. Each successive frame is either rotated or translated by 
a certain amount as compared to the previous frame. The 
results of applying the proposed technique, OMoGMF [12] 
and t-GRASTA [43] on such a video sequence are presented 
in Fig. 3. Under certain low-rank assumption, it is possible 
to reconstruct a larger low-rank matrix from a fewer number 
of its entries [38]. Stimulated by some previous efforts [39] 
on this issue, the efficiency of the proposed method is further 
improved by appending the subsampling technique as used 
in [12]. The introduction of a subsampling technique can 
accelerate the execution process to, on average, more than 
250 frames per second. Furthermore, this add on does not 
affect the accuracy of the proposed method, i.e., a good per-
formance in accuracy is maintained. In these experiments, 
the subsampling rate is 0.01. The results obtained using the 

subsampling technique on the three video sequences are 
illustrated in Fig. 4.

To show the effectiveness of our proposed alignment 
approach using affine transformation, we have tested the pro-
posed approach for aligning the frames of “Dummy” dataset 
shown in Fig. 5. This dataset contains multiple images that 
are not only misaligned but also suffer from illumination 
variation and block occlusion. The results obtained by apply-
ing the proposed technique and those proposed in [42, 43] 
and [12] are shown in Fig. 5. It can be seen that in some 
images, the face has become enlarged during the alignment 
process. Furthermore, there are darker images which means 
that the effect of illumination variation has not been removed 
effectively. In the proposed technique, it can be seen that the 
image alignment is improved and the illumination variation 
has been minimized.

4.2 � Computational complexity

The computational complexity of the proposed technique is 
reduced as compared to the other state-of-the-art methods 
used for background subtraction. This is basically due to the 
CWM method that we have employed for the LRMF using 
L1-norm. If we take n and d as the size and dimensional-
ity of the input data matrix, respectively, then, for the pro-
posed method, the computational complexity is of the order 
O(d+n), whereas that of other state-of-the-art algorithms 

Fig. 3   Airport dataset with jitter 
effect. First row: misaligned 
frame; second row: aligned 
frame; third row: background; 
fourth row: foreground
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is O(dn) [36]. A comparison of computational time of 
our proposed algorithm with that of OMoGMF [12] algo-
rithm is made in Table 3 and Table 4. It can be seen from 
Table 3, the computation time of the proposed technique is 
lessened as compared to the OMoGMF method [12]. The 

computational time for the Airport dataset is reduced from 
14.288 to 13.884 s, from 0.9968 to 0.8636 s for the Dummy 
dataset and from 14.866 to 13.288 s for the airport dataset 
with camera jitter effects. To further enhance the efficiency 
of the proposed technique, subsampling is embedded into the 
calculation. The subsampling rate is taken to be 0.01, i.e., 
1%. This can accelerate the method to execute on an aver-
age of more than 250 frames per second while maintaining 
a good performance accuracy. Similarly, from Table 4, it is 
obvious that the proposed technique has reduced compu-
tation time as compared to OMoGMF [12] even with the 
subsampling technique.

5 � Conclusion

In this paper, a technique has been proposed which aims at 
making background subtraction available for real-time vid-
eos both in terms of speed and accuracy. It gradually fits a 
specific subspace for the background that is obtained from 
L1-LRMF using CWM and a certain MoG distribution of 
noise for the foreground. This fit is achieved by regulariza-
tion of the background and foreground information that is 
acquired from the preceding frames. As opposed to con-
ventional methods which used a fixed distribution of noise 

Fig. 4   For the Airport dataset, using subsampling rate=0.01. a and b are without jitter effect, whereas c and d are with jitter effect

Table 3   Comparison of the computational time (in seconds) of 
OMoGMF [12] and proposed technique (without subsampling)

Techniques Without subsampling

OMoGMF [12] Proposed Airport Dummy Airport 
(jitter 
effect)

14.288 0.9968 14.866
13.884 0.8636 13.288

Table 4   Comparison of the computational time (in seconds) of 
OMoGMF [12] and proposed technique (with subsampling)

Techniques With subsampling

OMoGMF [12] Proposed Airport Dummy Airport 
(jitter 
effect)

2.712 0.544 3.232
1.890 0.204 2.246
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for all frames in a video, in this technique, a separate MoG 
distribution is utilized to model the noise or foreground for 
each frame of the video. The EM algorithm is used for the 
optimization of GMM. To eliminate the camera jitter effects, 
the affine transformation operator is involved that acts to 
align the successive frames. The efficiency of the proposed 
method is augmented using a subsampling technique that 
can accelerate the proposed method to execute on an average 

more than 250 frames per second while maintaining good 
performance in accuracy.
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