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Abstract
Automatic video surveillance in public crowded places has been an active research area for security purposes. Traditional 
approaches try to solve the crowd behavior recognition task using a sequential two-stage pipeline as low-level feature extrac-
tion and classification. Lately, deep learning has shown promising results in comparison to traditional methods by extracting 
high-level representation and solving the problem in an end-to-end pipeline. In this paper, we investigate a deep architecture 
for crowd event recognition to detect seven behavior categories in PETS2009 event recognition dataset. More especially, we 
apply an integrated handcrafted and Conv-LSTM-AE method with optical flow images as input to extract a high-level repre-
sentation of data and conduct classification. After achieving a latent representation of input optical flow image sequences in 
the bottleneck of autoencoder(AE), the architecture is split into two separate branches, one as AE decoder and the other as 
the classifier. The proposed architecture is jointly trained for representation and classification by defining two different losses. 
The experimental results in comparison to the state-of-the-art methods demonstrate that our algorithm can be promising for 
real-time event recognition and achieves a better performance in calculated metrics.

Keywords Crowd behavior recognition · Deep learning · PETS2009 dataset · CONV-LSTM-AE

1 Introduction

Currently, the study of crowd behavior in public places has 
been one of the interesting topics for crowd safety. As a huge 
number of CCTV cameras have been installed in crowded 
places for video surveillance, human-based detection of 
potentially dangerous situations may probably cause a high-
risk errors. Therefore, research attention is towards auto-
matic surveillance. Generally, crowd behavior analysis can 
be classified into three broad categories: crowd counting, 
anomaly detection, and behavior recognition. To perform 
crowd behavior analysis, video signals should be analyzed 
both spatially and temporally. Generally, crowd behav-
ior recognition can be done through three main category 
approaches Holistic, Object-based, and hybrid methods [1]. 
Holistic methods [2] consider the scene as a single entity 

instead of targeting an individual’s behavior. So the main 
focus will be the extraction of low/medium level attributes 
such as optical flow fields or spatio-temporal patch-based 
features. Object-based methods [3] consider the crowd as 
an aggregation of several individuals and rely on detection 
and tracking of persons. The crowd behaviors are inferred 
by analyzing extracted trajectories. Due to challenges 
such as occlusion, for the large number of human beings 
in the scene, these methods will encounter some difficul-
ties. Hybrid methods take advantages of both holistic and 
object-based methods. Most previous researches investigated 
extracting low-level features from the appearance or/and 
from the motion of the scene and subsequently applied vari-
ous classifiers based on the task in hand and the extracted 
attributes. Recently the successful emergence of deep neu-
ral networks has persuaded researchers to employ various 
deep architectures to make progress in their researches. In 
this paper, we investigate the application of a deep learning 
technique to recognize different crowd behaviors happening 
in the scene captured by a video camera. We will evaluate 
our proposed architecture on PETS2009 crowd video dataset 
[4, 5]. PETS2009 S3- HL Event Recognition is one of the 
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well-known datasets in this domain which consists of seven 
crowd events defined as follows: 

1. Walk:crowd moving at low speed(w.r.t a threshold).
2. Run:crowd moving at high speed(w.r.t a threshold).
3. Evacuation:rapidly dispersing crowd, moving in differ-

ent directions. Attributes such as direction and crowd 
density would be helpful to recognize this event.

4. Split:localised movement of people within a crowd away 
from a given panic situation.

5. Merge:formation of a crowd of individuals, through 
convergence from multiple directions. Crowd density 
and the distance between the principal directions are 
significant features to discriminate this event

6. Dispersion:cohesive crowd splitting into two or more 
entities (multiple diverging flows).

7. Loitering: the static appearance of a crowd in the scenes 
with a little fluctuation.

The contribution of our work is as follows: 

 I We propose an integrated handcrafted and deep archi-
tecture for the classification of seven crowd behaviors 
by extracting optical flow images and autoencoder 
features calculated on the sequence of optical flow 
images. More specially, we propose CONV-LSTM-
AE architecture together with global average pooling 
(GAP) layer, where instead of raw frames the input is 
volume of OF images.

 II We also apply a new training strategy by integrat-
ing two different losses in our proposed one-input-
two-output architecture. In other words, training is 
jointly done to achieve high-level representation and 
classification. The high-level feature representation 
is attained in AE bottleneck and classification is 
obtained in one output branch of the architecture.

Our proposed architecture takes advantages of three com-
mon blocks in deep learning, namely convolution, LSTM 
and autoencoder. Moreover, extracting motion-based hand-
crafted features to use as input for CONV-LSTM-AE help 
to emphasize on motion. single input multiple output archi-
tecture will also help saving time for feature extraction 
and classification. We evaluate our proposed method with 
respect to common metrics in classification such as confu-
sion matrix, precision, recall, F1-score, accuracy, and Dice 
Score. Also, time complexity of our proposed approach is 
investigated for real-time computation. Experimental results 
shows comparable performance of our proposed algorithm 
in comparison to previous approaches.

The remainder of the paper is organized as follows: in 
Sect. 2, we present related works on crowd behavior analy-
sis. Our proposed deep learning architecture is introduced 

in Sect. 3. A detailed evaluation of our work is followed in 
Sect. 4. Finally, we conclude and make a suggestion for pos-
sible future works in Sect. 5.

2  Related work

When it comes to the crowd analysis as a subdomain prob-
lem of video analysis, both spatial and temporal information 
should be considered to boost performance. Hence, most 
researches in this area get involved with the extraction of vis-
ual features from the spatial domain [6–8] or consider short-
term or long-term dynamic features through regular motion 
patterns [9–13]. There have been also some approaches that 
jointly consider spatio-temporal features. In [14], a dynamic 
texture model was used to represent holistic motion flow 
in the video crowd. In [15], low-level color, texture, and 
shape features were extracted followed by multi-layer per-
ceptron classifiers per event. Benabbas et al. [16] used both 
direction and magnitude of optical flow vectors to model 
the global motion of the scene. They applied a region-based 
segmentation to group local blocks based on the similarity 
in motion direction and speed. They detected crowd events, 
such as walk, run, merge, split, dispersion, and evacuation by 
comparing these motion patterns against the learned mod-
els. Concatenation of three histograms extracted from local 
density, speed, and flow direction were employed in [9, 10] 
for crowd representation.

Briassouli et al. [17] applied the Fourier transform for 
modeling random crowd motion without optical flow estima-
tion, parametric modeling, or extensive training. Real-time 
locally/globally detection of dynamic changes was achieved 
through statistical CUSUM method [18]. Mehran et al. [19] 
proposed social force model (SFM) for the detection of 
abnormal behaviors in crowds by considering interaction 
forces between pedestrians. Combination of social force 
graph and streak flow [20] attributes were proposed in [21] 
to capture the global spatiotemporal changes as well as the 
local motion of crowd video. Histograms of motion direction 
alongside an indication of motion speed [22] and histogram 
of oriented tracklets [23] was investigated for recognizing 
abnormal situations in crowded scenes. A combination of 
streakline based on fluid mechanics and a high-accurate vari-
ational optical flow model was proposed in [24] for crowd 
behavior identification.

The high-dimensional signal property, makes the low-
dimensional embedding techniques promising for compu-
tational complexity purposes [11, 25]. There are linear and 
nonlinear methods for this purpose. Linear PCA and nonlin-
ear ISOMAP, MDS, and AutoEncoder(AE) [26] to name a 
few. In [11], a combination of ISOMAP on texture features 
and SVM was applied for event recognition. A manifold 
learning algorithm with temporal constraints was proposed 
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in [25] to embed video signal to accurately reduce the data 
dimensions and preserve spatial–temporal content of the 
video. Video trajectory in the manifold space was also used 
for recognition.

In contrast to previous particle flow-based methods, [27] 
discussed group level representation of crowd. By cluster-
ing particle trajectories and group formation, they connect 
nodes in each group as a trajectory graph and at the high 
level, a bag of trajectory graph (BoTG) as a global feature of 
the scene clip was extracted. Three informative features are 
graph structure, group attribute and dynamic motion encode 
the graph. Delaunay triangulation was employed in [28] 
to approximate neighborhood interactions on an evolving 
crowd graph constructed from tracklets as nodes to extract 
various mid-level representations. Rao et al. [29] proposed a 
probabilistic detection framework of crowd events based on 
Riemannian manifolds on optical flow. A robust and effec-
tive spatio-temporal viscous fluid field was proposed in [30] 
to investigate appearance and interaction among pedestrians 
and thereby model crowd motion patterns. Stability analy-
sis for dynamical systems was also proposed for identifying 
five crowd behaviors as bottlenecks, fountainheads, lanes, 
arches, and blocking in visual scenes, without the need for 
object detection, tracking, or training [31]. Linear approxi-
mation of the dynamical system provides behavior analysis 
through the Jacobian matrix. To consider long-term tempo-
ral sequences and compensate the imperfect effect of camera 
motion, an improved dense trajectory was employed in [32]. 
HOG and MBH features were extracted along the L length 
dense trajectory and one-vs-rest linear classifier was trained 
for modeling the events. Shuaibu [33] proposed a novel 
spatio-temporal dictionary learning-based sparse coding 
representation with k-means SVD for robust classification 
of crowd behaviors. In [34], the combination of optical flow 
and spatio-temporal methods was utilized for crowd analy-
sis. Flow fields in spatio-temporal elements were considered 
as 2D distribution parameterizing by Mixture of Gaussian, 
To initialize the mixture model, they applied K-means, and 
to optimize the model, they applied EM. Then, a conditional 
random field was learned for classification.

To sum up, traditional crowd analysis, constitute up of 
two separate stages: low or mid-level feature engineering

and model learning

where I is the input visual data (either 2D or 3D), A is fea-
tures extracted from I, � is the model parameters, g is the 
chosen classifier and y is the predicted class label.

However, recently deep learning (DL) has become 
the turning point of researches in the machine learning 

(1)A = f (I)

(2)y = g(A, �)

domain, and computer vision as well. In comparison to 
traditional ML, DL considers the whole process in one 
unique stage:

where G acts as both hierarchical level feature extractor 
and classifier. Supervised deep learning algorithms, act as a 
function approximation through a given training set where 
backpropagation is used within the network to estimate the 
weights. After the successful emergence of deep learning 
for image analysis, investigations around its performance 
on video signals embarked. Both spatial and temporal 
information of video contains useful features for the task 
at hand. Several researches tried to take into account the 
temporal information in addition to spatial information 
[35–45]. Karpathy et al. [36] investigated operating CNN to 
both individual video frames and stack of frames and dis-
cussed the effect of temporal data at different fusion levels. 
Three-dimensional CNN was introduced in [37] for action 
recognition, where feature extraction is performed through 
3D convolution to capture simultaneously both spatial and 
temporal information, which suffer from large number of 
parameters tuning in comparison to 2D CNN. Simonyan 
et al. [39] proposed two stream architecture which was dis-
criminately trained on still frames and stack of optical flow 
frames, combining them at a higher level, resulted in com-
petitive extracted features in comparison to the state-of-the-
art hand-crafted features.

Meanwhile, [38] and [45] investigated the power of 
two streams for crowd anomaly detection. Wei et al. [38] 
employed fully convolutional neural networks (FCN), 
instead of CNN with fully connected layer in original 
framework [39]. FCNs were pre-trained on ImageNet to 
facilitate the weight updating procedure with fewer param-
eters. Then output feature maps from FCN were used to 
compute the abnormal coefficient for each frame. In [45], 
a two-stream residual network (TSRN) was proposed to 
aggregate appearance and motion features where motion 
stream was generated from three scene-independent 
motion maps: collectiveness, stability, and conflict. In 
[46], the combination of neural network and traditional 
statistical classification approaches were investigated and 
resulted in better accuracies. Wang, L et al. [12] combined 
the advantages of deep learning and traditional methods 
for video representation. In particular, they learned dis-
criminative convolutional feature maps followed by tra-
jectory constrained pooling to aggregate convolutional 
features into more effective descriptors. Combination of 
corner optical flow and CNN [13], Combination of track-
lets and DBN [47], and combination of tracklets/trajec-
tories with CNN and LSTM [48] were also investigated 
and have been used for crowd event recognition. Zhuang 

(3)y = G(I, �)
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et al. [49] proposed an end-to-end deep architecture, con-
volutional DLSTM (ConvDLSTM), for crowd analysis. 
ConvDLSTM is comprised of GoogleNet Inception V3 
CNN and stacked differential long short-term memory 
(LSTM) with raw image sequence as the input. Applica-
tion of unsupervised learning for crowds has been studied 
in [50, 51]. Erfani et al. [50], proposed a hybrid model of 
DBN for dimensionally reduction and one-class SVM for 
detection. Chong et al [51] trained a deep pipeline consist-
ing of Convolution and Convolutional LSTM to extract 
both spatial and temporal information. At the middle of the 
pipeline, they achieved to a low-dimensional representa-
tion of input signals. They argued that ConvLSTM layer 
preserves the advantages of FC-LSTM, and is suitable for 
spatiotemporal data.

Recently, a kernel-based relevance analysis was proposed 
in [52] for social behavior recognition consisting of a feature 
ranking based on centered kernel alignment and a classifi-
cation stage to perform the behavior prediction. Deng et al 
[53], considered video-based crowd behavior recognition 
as a multi-label classification task with imbalanced sam-
ples issue and tackled it by proposing a classider based on 
associative subspace. Crowd psychology was investigated 
for predicting crowd behaviors in [54] and determining nine 
diverse crowd behaviors. The approach was a combination of 
two cognitive deep learning frameworks and a psychological 
fuzzy computational model.

A bidirectional recurrent prediction model with a seman-
tic aware attention mechanism was proposed in [55] to 
explore the spatio-temporal features and semantic relations 
between attributes. The ConvLSTM was introduced for 
feature representation to capture the spatio-temporal struc-
ture of crowd videos and facilitate visual attention. Then, a 
bidirectional recurrent attention module was proposed for 
sequential attribute prediction by associating each subcat-
egory attributes to corresponding semantic-related regions 
iteratively.

A comprehensive survey of convolution neural network 
based methods for crowd behaviour analysis was studied in 
[56] with various topics of optimization methods, architec-
tures, temporal dimension considerations, etc.

There have been significant researches about anomaly 
detection using deep learning and auto-encoders [57]. Since 
anomaly detection can be thought of as outlier detection, AE 
can be employed to find those signals whose reconstruc-
tion errors have a high difference w.r.t the input signal as an 
anomaly. Crowd event detection however is thought of as 
multi-class classification. To apply auto-encoders for multi-
class cases, one can establish several AE architectures same 
as the count of the classes, and evaluate the reconstruction 
error per AE to decide on the type of events. But it may be 
time-consuming. In this paper, we investigate a deep archi-
tecture for this multiclass classification problem.

3  Proposed approach

An illustration of our proposed architecture for crowd 
behavior recognition is shown in Fig. 1. It has two main 
stages: Preprocessing and deep Conv-LSTM-AE architec-
ture, which are discussed in the following.

Preprocessing In this paper, we evaluate our proposed 
architecture for crowd event recognition on PETS2009 
dataset. At first, we resize the original frames to square 
smaller frames for reducing computation complexity and 
making them in appropriate size as the input for our deep 
architecture. Also, we convert the colored images to gray-
scale since we believe that it is not a significant attribute 
in color for recognition. Besides, we normalize the frame 
intensity from [0–255] to [0–1]. Motion between neighbor 
frames is estimated through Farneback optical flow [58] 
method. We chose Farneback OF since it is more robust 
to noise than the other basic optical flow approaches. We 
consider dense optical flow estimation to calculate the 
motion for each pixel of the images. Then, we take the 
magnitude of OF images. As the optical flow computes 
only the motion between two consecutive frames, to take 
into account a bit longer period of motion, we consider 
concatenation of T OF magnitude images (which is cal-
culated from T + 1 consecutive original frames). Then, 
these short-term sequences of OF images are employed 
as the input to a deep neural network architecture at the 
subsequent stage.

Conv-LSTM-AE architecture Our deep learning struc-
ture takes advantage of three types of deep networks. First, 
as the state-of-the-art network design for vision tasks is 
CNN, we utilize convolutional layers to preserve spatial 
information. Due to the shared layers in CNN, very few 
parameters should be tuned in comparison to a fully con-
nected network. Second, since we are dealing with video 
signals captured by high-resolution cameras, the actual 
data size is very large. Therefore, dimensional reduction 
techniques can help us to come up with this challenge. 
Auto-encoder (AE) will be used for compressing the input 
volumes to a much lower representation. Indeed, AE is 
generally used as an unsupervised approach, with the same 
inputs and outputs, and aims at extracting principal hid-
den information through minimizing reconstruction error 
between input and output. Pure AE is trained to learn an 
identity function through nonlinear transformations. The 
bottleneck layer in AE also gives a suitable feature rep-
resentation. It has been largely used for anomaly detec-
tion as we mentioned in Sect. 2. One way to utilize it for 
classification purposes is to learn encoder and decoder 
weights of AE in end-to-end training, then throw away 
the decoder part and train it again in a supervised way 
by dense layer with softmax activation function or any 
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other classic classifier such as SVM, decision trees, etc. 
We will use the latent representation with a dense layer for 
classification. Third, since we deal with time sequence sig-
nals, the RNN scheme could be beneficial. Here, we apply 
LSTM to cope with vanishing or exploding gradients prob-
lems. In particular, we utilize convolutional LSTM to take 
advantage of both convolutional and recurrent networks. 
In contrast to the original LSTM, which uses a fully con-
nected layer, in ConvLSTM [59], convolution operation is 
applied which results in fewer parameters. The formulation 
of ConvLSTM can be summarized as follows:

where, it, ft,Ct,W(Wf ,i,C), bt, ht, ot are defined as input vector, 
forget gate, cell state, Trainable weight matrices bias, hidden 
state and output vector at time t, respectively. � is a nonlinear 
activation function. Symbol ⊗ denotes Hadamard product. 
Images are fed into the network and the weights for each 
connection replaced to convolution filters. The pseudo-code 
for our proposed approach is shown in Algorithm 1. 

(4)

ft =𝜎(Wf × [ht−1, xt,Ct−1] + bf )

it =𝜎(Wi × [ht−1, xt,Ct−1] + bi)

Ĉt =tanh(WC × [ht−1, xt] + bC)

Ct =ft ⊗ Ct−1 + it ⊗ Ĉt

ot =𝜎(Wo × [ht−1, xt,Ct−1] + bo

ht =ot ⊗ tanh(Ct)

Algorithm 1 Pseudo code for event recognition
1: procedure Detect event for frame i(state)
2: split dataset to train and test set
3: for each Frame fi do
4: calculate OF between fi and fi−1 as OFi

5: calculate OF magnitude as OFmag
i

6: stack OF mag images OFmag
i−T : OFmag

i as OF clip
i

7: for training set as the number of epoches do
8: initialize network parameters
9: Input batches of OF clip

i to ConvLSTMAE(Fig 1)
10: Train to Min MSE and categorical cross-entropy
11: Save the Model and Parameters
12: for test set do
13: Input OF clip

i in Test Set
14: pass it through the network
15: compute Max Prob of 7 classes for OF clip

i as pre-
dicted label for frame fi

16: Return Metrics on test data

In contrast to the CNN framework, where step by step 
we enlarge the number of filters and generate feature maps, 
to have a more powerful model in capturing more features, 
first we reduce the number of filters up to latent layer repre-
sentation, and afterward like a mirror, we increase it again. 
Instead of throwing away the decoder part and training 
the network again for classification purposes, we split the 
architecture from the latent representation layer and append 

Fig. 1  Proposed architecture for crowd event recognition. Input to the 
structure is a sequence of five optical flow images. After a series of 
layers and producing latent representation of the input, at the bottle-

neck, there will be two separate branches, the top for making classifi-
cation and the bottom for input reconstruction. The network is trained 
jointly
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a new branch for multiclass classification. Therefore, we 
will have a single-input-two-outputs architecture that could 
be jointly trained by hybrid supervised and unsupervised 
regimes. In other words, reconstruction of input is conducted 
unsupervised to get a high-level feature representation at the 
bottleneck of AE in one branch, and classification is done 
supervisedly through provided ground truth labels by dense 
layer with Softmax activation layer in the other branch. One 
of the outputs will be trained to reconstruct the input sig-
nal, the other will be trained for classification. We integrate 
two losses for training our two-branched network, i.e. mean 
square error and categorical cross-entropy. Since classifica-
tion is more important to us, we consider a higher value for 
the weight of the classification loss.

where Xi, X̂i, yi,C(Xi) show input clip, reconstructed input 
clip, output label and predicted class label for frame i, 
respectively. w1 and w2 are the weights we defined for two 
losses (w2 > w1) . Jointly training the network will result in 
less computational time. We target to detect seven crowd 
events in PETS2009. If our purpose was just to detect three 
events of walking, running, and loitering, since the most 
important feature is related to the speed, the correspond-
ing features would be extracted just from OF between two 
adjacent frames. However, we more aim at the recognition of 
some events like dispersion, evacuation, splitting, and merg-
ing, so a longer time window should be considered instead of 
just two frames. Therefore, we input a sequence of T frames 
in our proposed architecture. To capture both spatial and 
temporal features, we choose ConvLTSM [60].

3.1  Real‑time design

Here we analyze the processing time complexity of our 
proposed approach. Since our method is an integration of 
handcrafted optical flow computation and a deep architec-
ture, the processing time of these two parts should be added. 
We applied Farneback OF method, however, there are also 
other real-time OF computation methods in the literature. 
The evaluation of processing time for deep architectures 
is considered in two different stages: training time, which 
includes forward and backward pass, and testing time, which 
only consists of forwarding pass through trained parameters. 

(5)Loss = w1

∑

i

(Xi − X̂i)
2 − w2

∑

i

(yi logC(Xi)),

Suppose T is frame rate of input images. The algorithm is 
said to be real-time if feature extraction time, TFE , and for-
warding pass through deep architecture, TrmFF satisfied the 
following equation:

4  Experimental results

We chose PETS2009 dataset [4] for our experimental analy-
sis. PETS dataset has been proposed for various crowd anal-
ysis tasks such as people counting, density estimation, event 
recognition, and so on in outdoor scenarios. Here, we assess 
our proposed approach on S3 HL sequences in PETS2009, 
which were provided for analyzing crowd event recognition. 
This dataset is comprised of four video sequences captured 
at the following time-stamps 14:16, 14:27, 14:31, and 14:33. 
Each sequence has been captured from four different views. 
Figure 2 shows a sample frame captured from four views. 
Some sequences are composed of 2 video clips, this is the 
case of 14:16, 14:27, and 14:33, which results totally in 
seven video sequences [10]. The durations of these seven 
videos are given in Table 1. The crowd events to be recog-
nized are walking, running, formation (merging), splitting, 
evacuation, dispersion, and loitering. It should be mentioned 
that not all the previous methods tried to detect all these 
seven events. Some authors did not consider ’loitering’ event 
(like [10, 14, 32]). As mentioned, ’loitering’ corresponds to 
a scene where pedestrians are standing with a little fluctua-
tion between them. We also considered this event to achieve 
more accuracy in the detection of different kinds of classes, 
and to make our labeled dataset a bit larger. Moreover, we 

(6)TrmFE + TrmFF < 1∕T .

Fig. 2  Sample frame 26 from 4 
different views

Table 1  Frame numbers for each video clip

Sequence name First frame Last frame

14:16-a 0 107
14:16-b 108 222
14:27-a 0 184
14:27-b 185 333
14:31 0 130
14:33-a 0 310
14:33-b 311 377
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used k-fold cross-validation to partly overcome the small 
size of the dataset ( k = 5 ). Figure 3 depicts seven classes 
of crowd events in different frames. We manually annotated 
the frames based on the definition in Sect. 1 as brought in 
Table 2.

The original size of the video frames is 768 × 576 . After 
resizing original frames to 256 × 256 , grayscale transforma-
tion, and normalization, Farneback optical flow method was 
applied to each of 28 = (7video clips) × (4views) sequences 
to densely estimate OF vector for each pixel. We took the 
magnitude of OF and created a sequence of OF images. 
After that, for each OF image at time t, we created a T length 
clip consisting of a sequence of t − T  to t OF images. We 
considered T = 5 as compared to [51] with T = 10 . This 
smaller value for T is sufficient for recognizing events. 
Moreover, small T reduces the computational complexity 
of the algorithm. The label for the clip was defined accord-
ing to the label for frame t. This process was done through 
all the sequences.

We considered 70/30 percent of data as training/testing 
set and 20% of training data for validation to tune network 
hyperparameters. Our deep learning architecture is the con-
catenation of layers as shown in Fig. 1.

In contrast to [49] whose input is a stack of raw frames, 
here we entered stack of OF frames to the network, since 
the events we are going to detect have high information 
on motion images. Besides, we added an extra layer in 
the bottleneck of the network proposed by [51], to get a 
smaller latent representation and reduce the number of 
parameters. Instead of flattening the bottleneck represen-
tation into the vector before dense layer, we apply global 

average pooling to reduce the number of parameters. We 
considered the unites in this dense layer as small as possi-
ble (20). Subsequently, a dense layer with seven units and 
a softmax activation function was used for classification. 
In Softmax function, the highest probability between the 
seven units outputs, shows the event label.

The numbers of Epochs and batch size are set to 50 
and 16 respectively. Small size of the batch was chosen 
to avoid getting out of RAM. Early stopping and drop-
out(20%) was used as regularization. As the main pur-
pose of our proposed approach is classification, we fixed 
w2 = 1 for categorical cross entropy loss, and changed w1 
for mean square error (MSE) loss to see how it affected 
the performance (minimum overall loss) which resulted 
in chosen w1 = 0.25 We conducted our experiments using 
Keras framework on Google Colab Tesla K80 GPU. The 
results of the proposed approach were evaluated through 
different metrics namely, precision, recall, F1-score, con-
fusion matrix, and time complexity of the algorithm.

Confusion matrix is shown in Table 3. Confusion matrix 
is defined from TP,TN,FP, and FN numbers. Meanwhile, 
TP shows the number of correct predictions. From Table 3 
we can see that all of the events can be predicted with true 
positive (TP) values more than 88%. The best previous 
results were reported by [29] in which TP is as low as 86%.

We show precision, recall and F1-score metrics at once 
in Table 4. Precision is defined as the number of true posi-
tives divided by the number of true positives plus the num-
ber of false positives.Recall is defined as the number of 
true positives divided by the number of true positives plus 
the number of false negatives. Precision PRi and Recall 
RCi for multiclass classification are calculated as follows:

Fig. 3  Sample frames for each event. Respectively from left to right: walk, run, split, merge, evacuation, dispersion, loitering

Table 2  Manual ground truth for video frames on PETS2009 event recognition dataset

Events seq.14:16-a seq.14:16-b seq.14:27-a seq.14:27-b seq.14:31 seq.14:33-a seq.14:33-b

Walking [0–35] [108–162] – – [0–47] [151–188], [289–310] –
Running [36–107] [163–222] – – – – –
Evacuation – – — – - – [334–377]
Dispersion — – [96–144] [271–303] – – –
Formation(Merge) – – – – – [0–150] –
Splitting — – – – [48–130] – –
Loitering – – [0–95], [145–184] [185–270], [304—333] – [189–288] [311–333]
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where PRi and RCi are precision and recall for class i respec-
tively. Mii are diagonal elements of Confusion matrix that 
show the number of true positive for class i.

F1-score is another measure of the test’s accuracy. It consid-
ers both precision and recall, by computing harmonic mean 
between them as the following formula. Here we define this 
measure for each event i as F1i.

(7)PRi =
Mii

∑

j
Mji

(8)RCi =
Mii

∑

j
Mij

,

From Table 4, we can see that for all events except walk-
ing, our proposed algorithm results in the best precision. 
Also, the best result for F1-score has been achieved by the 
proposed method for all events except walk and dispersion.

In another evaluation, we computed the average accuracy 
between all classes. Accuracy can be defined as the total 
number of correct predictions divided by the total number 
of samples in a test set. It is defined as follows for multiclass 
classification:

  

(9)F1i = 2.
PRi × RCi

PRi + RCi

.

(10)Accuracy =

∑

i Mii
∑

i,j Mij

,

Table 3  Confusion matrix For 
crowd event recognition using 
PETS2009 dataset

The bold values are the best performance achieved by the methods

Walk Run Evacuation Dispersion Merge Split Loitering

Walk 96.08 3.35 0 0 0 0 0.55
Run 4.45 94.26 0 0 0 0 1.27
Evacuation 0 2.00 96 0 2.00 0 0
Dispersion 0 0 0 88.57 0 0 11.43
Merge 0 0 0 0 98.89 0 1.10
Split 7.4 0 0 0 0 92.59 0
Loitering 0.2 0 0.4 .6 0 0 98.80

Table 4  Comparison of 
precision, recall and F1-score 
metrics for different approaches

 Our proposed approach beats the state of the art methods 
The bold values are the best performance achieved by the methods

Events Measure Holistic [14] Random for-
est [16]

Motion pat-
tern [16]

OF manifold 
[29]

Proposed 
approach

Walk Precision
Recall
F1-score

0.87 0.96
0.99
0.97

0.97
0.96
0.96

0.73
0.92
0.81

0.89
0.96
0.93

Run Precision
Recall
F1-score

0.75 0.86
0.68
0.75

0.75
0.81
0.77

0.93
0.84
0.89

0.94
0.94
0.94

Evacuation Precision
Recall
F1-score

0.94 0.83
1.0
0.90

0.69
0.82
0.74

0.85
0.84
0.85

 1.00
0.96
0.98

Dispersion Precision
Recall
F1-score

0.8 0.58
0.48
0.52

0.67
0.45
0.53

0.94
0.98
0.96

0.99
0.89
0.94

Merge Precision
Recall
F1-score

0.68 0.65
0.46
0.53

0.59
0.45
0.51

0.92
0.98
0.9

0.98
0.99
0.99

Split Precision
Recall
F1-score

0.74 0.73
0.92
0.81

0.47
0.47
0.47

0.93
0.95
0.94

1.
0.93
0.96

Loitering Precision
Recall
F1-score

–
–
–

–
–
–

0.48
0.85
0.61

-
–
–

0.87
0.99
0.93
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We should note that accuracy is not a suitable metric 
when dealing with imbalanced data as we have encoun-
tered in PETS2009 crowd dataset. Better evaluation can be 
done through precision, recall, and F1-sore. The proposed 
approach’s accuracy has been computed and compared with 
that of some previous methods in Table 5. Accuracy was 
compared with reported values in [14, 25, 27, 29, 32]. It can 
be interpreted from this Table that among all the previous 
methods, the approach based on dense trajectory [32] has 
the highest accuracy. The high amount of accuracy in this 
method is due to the application of trajectory attributes in 
the classification phase. All of these methods used low or 
mid-level features. Our deep architecture can learn high-
level features through series of layers and has achieved a 
new state-of-the-art accuracy of 96.07%.

Besides, we calculated dice score,

where k is indicator for events. The results shown in Table 6 
which indicate high performance of our proposed method.

(11)Dicek =
2TPk

2TPk + FPk + FNk

,

4.1  Real‑time evaluation

Finally, to show the real-time aspect of our proposed 
approach, we evaluated the test time complexity and com-
pared it with the previous researches which claims online 
recognition. Deep learning architecture, although taking 
much time for training due to large number of parameters’ 
tuning, at test time acts as real-time, since the test sample 
just needs to pass through some sequential layers whose 
weights have been set at the training stage. As mentioned in 
Sect. 3.1, whole test processing time for a test image is the 
integration of OF computation and its forward processing. 
Farneback OF takes 0.04 s for a pair of images to calculate 
(25 frames per second). Besides, our proposed algorithm 
can process a test OF image through DL architecture within 
30 milliseconds per frame (33 frames per second). The time 
for calculation of optical flow images can be negligible 
through the application of real time optical flow methods. 
Therefore, overall processing a test frame happens at 14 fps 
rate, which can be considered as real-time since PETS2009 
frame rate is 7 fps [4]. Figure 4 shows the time complex-
ity of our algorithm. Benabbas et al. [16], reported a time 
complexity of four frames per second. They used two classi-
fiers (random forest) to detect two categories of events(walk/
run) and (split/merge/dispersion/evacuation/loitering). The 

Table 5  Comparison of 
accuracy metric for different 
approaches

The bold values are the best performance achieved by the methods

Method Holistic [14] Video
manifold [25]

BoTG [27] OF manifold [29] Dense
trajectory [32]

Proposed
approach

Accuracy 81.0% 90.0% 90.0% 91.2% 93.0% 96.07%

Table 6  Comparison of dice 
metric for different events

Event Walk Run Evacuation Dispersion Merge Split Loitering

Dice score 0.92 0.94 0.97 0.93 0.98 0.96 0.92 %

Fig. 4  Time complexity evalu-
ation for a test frame in second 
for PETS2009 dataset
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application of two separate classifiers needs more time for 
learning, so it is time-consuming. They argued in their paper 
that holisic approach [14] is slower. Overall, our deep archi-
tectures do not need to do time-consuming background sub-
traction, object detection, and tracking and in this way, they 
are time efficient in test time.

5  Conclusion and future works

In this paper, we investigated the application of a deep learn-
ing architecture for crowd behavior analysis to recognize 
seven events as walk, run, evacuation, dispersion, merge, 
split, and loitering. The proposed Conv-LSTM-AE tech-
nique achieves higher performance than the previous hand-
crafted-based methods both in accuracy, confusion matrix, 
precision, recall, and F1-measure. Experimental results on 
PETS2009 crowd event recognition approved the success of 
the proposed architecture.

Despite the rapidly growing success in the image domain, 
the scarcity of labeled video data has decreased the slope of 
the growth of Deep learning for visual sequences. New regu-
larization methods can partly compensate for these deficien-
cies. The application of multitask learning [61], few-shot 
learning, and self-supervised learning for other large-scale 
datasets such as WWW crowd datasets [61], can be studied 
in future.
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