
Vol.:(0123456789)1 3

Journal of Real-Time Image Processing (2021) 18:967–981 
https://doi.org/10.1007/s11554-020-01058-8

ORIGINAL RESEARCH PAPER

Fast background subtraction with adaptive block learning using 
expectation value suitable for real‑time moving object detection

Vince Jebryl Montero1 · Woo‑Young Jung1 · Yong‑Jin Jeong1

Received: 11 April 2019 / Accepted: 2 December 2020 / Published online: 4 January 2021 
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021

Abstract
This paper presents a method of moving object detection through a fast background subtraction technique suitable for real-
time performance in wide range of platforms. An intermittent background update using adaptive blocks individually calculates 
the learning rate through expected difference values. Then, coupled with a fast background subtraction process, the design 
achieves fast throughput with well-rounded performance. To compensate for the lagging effects of intermittent background 
update, an adaptation bias is devised to improve precision and recall metrics. Experiments show a versatile performance in 
varying scenes with overall results better than conventional techniques. The proposed method achieved a fast execution speed 
of up to 56 fps in PC using Full HD video. It also achieved 655 fps and 83 fps in PC and ARM core-embedded platform, 
respectively, using the minimum input resolution of 320 × 240. Overall, it is suitable for real-time performance applications.
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1  Introduction

In modern surveillance systems, cameras are often equipped 
with capabilities to gather visual cues and useful informa-
tion from their surroundings. Such capabilities are used for 
a wide range of applications and most commonly in moving 
object detection. A very affordable way of doing so is by 
analysis of video sequences [1]. Currently, foreground or 
moving object is detected by three main methods: frame-
differencing method, background subtraction method, and 
optical flow method. Each has their respective advantages 
and disadvantages [2]. However, the background subtraction 
method offers a more robust solution to different variations 
in the scene and environmental changes. The very basic idea 
is to generate an accurate background model that contains 
the stationary part of the scene and incoming frames are 
compared by getting the absolute difference. Then, a thresh-
olding operation is applied to estimate the foreground object 
[3]. Ideally, the background is perceived to be static and 
foreground objects are segmented straightforwardly. Unfor-
tunately, in practical situations, the background changes 

overtime. With this in mind, an adaptive background model 
is used to incorporate different changes in the scene into 
account.

Background modeling and foreground estimation are 
the core components of this process. But, the accuracy and 
method of foreground estimation depends heavily on how 
the background that is modeled and its behavior, how it is 
initialized, and how the background is updated over time 
[4]. Several existing methods are proposed in this literature 
in recent years. Each with their offered applicability, pros 
and, cons. Modern background subtraction methods can be 
classified into one of the six categories based on how the 
background is modeled. Namely, statistical model, codebook 
based, model by sampling, rigid model, supervised machine-
learning based, and hybrid model.

Statistical models are one of the most popular methods in 
background modeling. It is dominated by two main sub-cat-
egories, parametric and non-parametric models. Parametric 
models uses Gaussian Mixture Models (GMM). It models 
each pixel’s intensity distribution by summation of weighted 
Gaussian distributions. Moreover, each Gaussian distribu-
tions are ordered based on the weights and variances where 
they are updated overtime. This method is popularized by 
the early works proposed by Stauffer and Grimson [5] and 
Zivkovic’s adaption [6]. Over the years, this method became 
more prominent and regarded as the mainstream method in 
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background subtraction. Due to this, several methods such as 
[7] and [8] are proposed to improve the classical approach. 
An adaptive block-based scheme is proposed in [9]. While, 
[1, 10] and [11] proposed more innovative methods such as 
color invariants and texture discrimination through wavelets, 
respectively, to further improve accuracy based on proba-
bilistic concept. One of the strengths of GMM is it allows 
multi-modal modeling. Where, multiple range of pixel 
value probability density can be associated in a single pixel 
location. As a result, it can model complex and non-static 
backgrounds.

The later of the two sub-categories, non-parametric 
statistical model uses kernel density estimation (KDE). It 
is based on the early works of Elgammal et al. [12] and 
Zivkovic’s adaption [13]. Further innovation proposed in 
[14] which extends the concept to spatio-temporal modeling. 
It estimates each pixel’s probability density using a kernel 
function from recent N samples over time. It improves two 
main issues in parametric models, dependency in tunable 
parameters and wide assumption in the models. This results 
to a more accurate background model that can quickly adapt 
to changes in the background. Since it uses N samples, this 
method is memory consuming. Although statistical models 
are flexible to different scenes, it is weak to outliers caused 
by noise or sudden dynamic changes.

Background models based on codebook offers feature-
based models. Each pixel location is represented by code-
book, compressed features (codewords) from a long image 
sequence (training sequence). Conceived from the early 
work of Kim et al. [15] to address some inherent issues in 
statistical models. Recent works in [16] and [17] which pro-
posed multilayer codebook model and codeword spreading, 
respectively, found to be robust against dynamic and illumi-
nation changes. Codebook models are capable of modeling 
changes in the background over long period of time with 
limited memory. However, the update mechanism of code-
book only updates previous codewords and does not cre-
ate a new one. This can problematic if permanent structural 
changes are introduced in the background. In addition, the 
background model created from a training sequence contain-
ing clustered scenes would suffer from defective regions.

Sampling-based background models can be thought 
as an alternative method to statistical models. Instead of 
using probability density model derived on recent back-
ground values, it keeps these values for a sample consen-
sus. These stored values are used to predict if a new pixel 
is either a background or foreground based on consen-
sus mechanism. Early work from [18] uses past samples 
to a linear predictor and make probabilistic predictions. 
Recent state-of-the-art methods, [19–21], and [4] proposed 
background bank of multiple background models, weight 
samples, spatio-temporal sample consensus, and Euclid-
ian sample consensus respectively proved to deliver more 

accurate results than statistical models. But, it is likely 
to suffer from memory limitations and faces trade-off 
between latency and accuracy based on the number of 
stored samples.

Rigid models are the earliest and simplest conceived 
method of background modeling. The background model 
is assumed as a reference frame where the input frame 
is directly compared from it based on a threshold mech-
anism. It is initialized and updated by observing static 
values from frame to frame. Although simple, recent 
innovative works proved to produce more accurate results 
than classic statistical models. Proposals include entropy 
evaluation based on sum of absolute differences to update 
the model [3], a seeded block-based scheme [22] and a 
pseudo-random scheme of block update for UHD process-
ing [23]. Due to its simplicity, it provides fast and memory 
efficient implementation as such used in [24] for surveil-
lance video coding. However, rigid models does not offer 
flexibility, in which they might have low performance on 
special cases.

Supervised machine-learning based on deep-learning 
models are a recent innovation brought by advancements 
in computer science. As such, recent state-of-the-art 
works proposed in [25] based on multiscale feature triplet 
convolution, [26] proposed a semi-supervised multilayer 
of self-organizing map, [27] based on convolution with 
multiscale feature, and [28] based on Bayesian genera-
tive adversarial network (GAN) which dominated the top 
results in change detection dataset [29]. However, due to 
its supervised nature, such method can only be used in 
special applications with sufficient amount of labeled data. 
Not to mention the needed high-end hardware require-
ments for practical speed performance.

Hybrid models offer more flexibility than all mentioned 
categories. It combines two or more background modeling 
or change detection concepts that takes advantage of indi-
vidual attributes. Recent works include a novel spatio-
temporal flux tensor combined with split Gaussian models 
[30], frame differencing combined with GMM [2], and the 
state-of-the-art method that exploits genetic programming 
to select and combine many of the best existing algorithms 
[31]. It can result in high accuracy to different scenarios 
depending on the combined methods. The only disadvan-
tage to hybrid models is the complexity and increase in 
compute requirements as the number of combined methods 
increases.

This paper presents Fast Background Subtraction with 
Adaptive Block Learning (FBS-ABL) using expectation 
value suitable for real-time performance in a wide range of 
platform. The following section discusses about the motiva-
tion and design basis (Sect. 2), and the details (Sect. 3) of 
the proposed methods. Section 4 presents the experimental 
results and Sect. 5 concludes the paper.
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2 � Motivation and design basis

2.1 � Motivation

In this paper, a method for fast and “portable” background 
subtraction method with well-rounded performance is 
proposed. The portability of the design allows real-time 
performance in a wide range of computing platforms. 
Computing platforms which include high-end multi-core 
PCs, low-cost computers, embedded computing, accel-
erator assisted computing (FPGAs and GPUs), and low-
cost systems. It is motivated by the fact that product and 
application designs are specifically engineered to meet the 
demands of the target market. General home surveillance 
may require low-cost implementations while high-end 
surveillance puts more computing capabilities at a higher 
price. It is trivial to say that low-complexity design offers 
economical option for price reduction. But, this leads us to 
the question, “why do we want a low-complexity design to 
run on high-end systems?” Lately, there are rapid advance-
ments in the field of deep learning. Especially to machine 
vision where surveillance methods are getting smarter. The 
main advantage for such design is it allows fast acquisition 
of meaningful region proposals as input to deep-learning 
models. In addition, most of the computation resources 
can be allocated to speed-up deep-learning tasks. This 
eventually leads to more efficient performance in intel-
ligent surveillance systems.

To achieve fast and well-rounded performance, this 
paper presents some innovations incorporated to the clas-
sical approach (rigid modeling) of background subtraction. 
The following are: an intermittent background update cou-
pled with adaptation bias (compensation mechanism) and 
an adaptive block-based learning rate based on expected 
intensity difference. The following, Sect. 2.2 discusses the 
design basis of incorporating these innovations. While, 
Sects. 3.1–3.9 describe the details of the proposed method.

2.2 � Design basis

The proposed method is based on rigid modeling in which 
a simple top-level structure (Fig. 1) and block-level mod-
ules following the classical approach is used. As discussed 
in Sect. 1, rigid models can offer efficient designs. The 
process flow is kept simple yet effective to avoid a lot of 
overheads which may affect execution time. There are cer-
tain trade-offs that must be realized to achieve high-speed 
execution time. Instead of utilizing multiple image chan-
nels and attributes (texture, color invariants, intensity, and 
pixel probability), grayscale or intensity model is used to 
model the background. This would simplify the probability 

model over a single channel whose discrete values can 
only range from 0 to 255. This is apparent in the method 
proposed in [3] that would simplify probability distribu-
tion over a single block. Although using only the intensity 
model might lower the accuracy to camouflaged objects 
but on general scenes, fully camouflaged objects are rare. 
Even if part of the object is camouflaged, still significant 
parts can be detected. It would be enough for a surveil-
lance camera to detect activities in the scene.

To further increase computation efficiency, the background 
model is not necessarily updated too often (intermittent mod-
eling). As it would be a waste of compute resource since there 
will be no significant changes in the scene during few consecu-
tive frames [22]. Background subtraction and foreground mask 
generation on the other hand are performed for every input 
frame (Fig. 1). A background update delay is introduced where 
the background model is updated for every d other frames as 
seen in Fig. 1. The value of the update delay as adapted from 
[22] is dependent on the scalar value of the input frame rate 
(fmr). The value of the update delay d = 2∕3 × fmr is found 
suitable based on experimental tests.

A block-based approach is used to model the background 
(Sect. 3.3). It decreases the number of individual parameters 
for evaluation and update unlike in pixel-based methods. This 
has the advantage of faster computing time and ignoring small 
noises. However, it might have a disadvantage over small back-
ground changes. An adaptive update per block that depends 
on the expected intensity difference between the input frame 
and the background model is applied (Sect. 3.5). In contrast 
to non-adaptive update that if there is a large intensity differ-
ence then it will also have a large effect in that block. While, a 
smaller intensity difference will have little effect. The adaptive 
update aims to equalize the effect of gaps in intensity differ-
ences which implies that a larger intensity difference will have 
almost the same effect with the smaller ones.

Then, a pixel-based update is applied following each 
block parameter to ensure smooth transition, minimizing 
false pixels in the locality. Slower background update is a 
disadvantage of the intermittent modeling which induces 
several false positives (adaptation ghosts) and false nega-
tives. To compensate for such effect, an accumulative record 
of the past updates is kept (Delta Record). Then, an array is 
generated based on that record (Epsilon Array) which is sub-
tracted from the input frame together with the background 
upon generating the difference image (Sects. 3.4, 3.5).

3 � Proposed method

3.1 � System overview

The proposed method as depicted in Fig. 1 is composed of 
four main modules, namely background scene initialization 
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(BSI), background modeling (BGM), background subtrac-
tion (BGS), and foreground mask generation (FMG). The 
system takes an input from the video sequence then per-
forms the processes to estimate the foreground object from 
the static background. The initial background is provided 
by the BSI. Then, the background model is updated only 
every d other frames while BGS and FMG is performed at 
every input frame. During background modeling, aside from 
updating the background model, a foreground correction fac-
tor is also generated (Epsilon Array, Sect. 3.7). The Epsilon 
Array is taken into account during BGS which reduces false 
positives while improving the foreground estimate.

3.2 � Background scene initialization (BSI)

The background scene initialization is executed only once 
before the main background subtraction process begins. 
In practice, BSI can be done at a timely manner (hourly 

and every nth hour) because the background model can be 
diluted with the accumulated small noises during back-
ground adaptation. The BSI takes N initial frames from the 
video sequence to generate the initial background model. 
The proposed method adapts the BSI from [3] based on the 
sum of absolute differences (SAD). The computational effi-
ciency and accuracy of SAD based method is more emi-
nent than methods based on mean and median of frames. A 
block-based approach is proposed in [3] to divide each input 
frame into w × w blocks. Then, SAD with the next frame 
is computed for each block. The SAD(i,j)(A|B) with w × w 
pixel block inputs A(i,j) and B(i,j) with block coordinates (i, j) 
is evaluated as follows:

(1)SAD
(i,j)(A|B) =

w∑

x=1

w∑

y=1

|||A
(i,j)(x, y) − B(i,j)(x, y)

|||,

Fig. 1   Overview of the top-level 
flow of the proposed method
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where (x, y) denotes the pixel coordinates at block (i, j) of 
the input image. In this context, A is the current frame (Ft) 
and B is the next frame (Ft+1). The value w = 16 was chosen. 
Experimentation suggests that smaller value of w tends to 
accumulate noise from small objects while a larger value of 
w accumulates noise from larger objects. The value of w is 
chosen to balance the effects of both small and large objects 
in the scene. The initial background is then generated by 
combining the blocks that has the minimum value of SAD.

3.3 � Background modeling (BGM)

The background modeling process is divided into two parts, 
the block evaluation, and block update with Delta Record 
update and Epsilon Array generation (Fig. 2). In the evalu-
ation phase, the background image is divided into w × w 
blocks where it aims to determine which blocks are to be 
updated. The block size w is set at 16 to balance the sensi-
tivity from both small and large objects following the same 
reasoning in Sect. 3.2. During the update phase, eligible 
blocks are updated pixel-wise following an adaptive learn-
ing rate. The learning rate is calculated per block allowing 
different regions to adapt with local intensities. The Epsilon 
Array is generated during the adaption phase from the Delta 
Record; details will be explained in Sect. 3.6. Its utilization 
during BGS (Sect. 3.8) improves the foreground estimate as 
mentioned in Sect. 3.1.

3.4 � Block evaluation phase

The evaluation process for each block is determined by the 
inequality described as follows:

where Bt is the current background, Ft is the current frame 
and Ft-d is the historic frame. The probability threshold (ρ) 
is set at ρ = 0.50 so that the block will neither be biased as a 
foreground nor assumed as background. Lowering the value 
of ρ increases the chance of blocks to be updated more often 
while a higher value results in the opposite effect. Therefore, 
in consequence, significantly changing the value of ρ causes 
sporadic false positives and negatives especially to regions 
with intermittent object motions and high intensity contrast. 
If the inequality holds true, that means a high probability of 
long-term change is occurring at that block (static region).

3.5 � Block update phase

The background model is updated following the condi-
tional statement:

where in Eq. (3), the “value > ρ” indicates the block evalu-
ation, Bt+1 and Bt are the updated and current backgrounds, 
respectively, with their associated block coordinates (i, j). 
Equation (4) specifies the pixel-wise update of pixels (x, y) 
at a certain block ( U(i,j) ) from Bt where Ft is the current input 
frame and �(i,j) is adaptive learning rate.

The adaptive learning rate is calculated based on the 
intensity difference between the blocks B(i,j)

t  and F(i,j)
t  . The 

formula for �(i,j) is described as follows:

where n = 8 that corresponds to 8 bit gray value, m and c 
are hyper-parameters with relationship m = c − 0.01 . The 
value of c is experimentally set at c = 0.11 . Tuning its value 
biases �(i,j) , increasing or decreasing the base learning rate 
for the background update. The set value of c allows slower 
background update but not too slow for midway recovery. 
So in effect, its value should just be right to improve true 
positives while lowering false positives.

(2)
|||SAD

(i,j)(Bt|Ft) − SAD
(i,j)(Ft−d|Ft)

|||
SAD

(i,j)(Bt|Ft)
> 𝜌,

(3)B
(i,j)

t+1
=

{
U(i,j), if value > 𝜌

B
(i,j)
t , else

,

(4)U(i,j)(x, y) = (1 − �(i,j))B
(i,j)
t (x, y) + �(i,j)F

(i,j)
t (x, y),

(5)�(i,j) = �

(
−m

E(i,j)

2n − 1
+ c

)
,

Fig. 2   Illustration of the background modeling process
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The expected intensity difference ( E(i,j) ) and the beta (β) 
multiplier are described in following equations:

where in Eq. (6), the value of w is the block size equal to 16. 
The expected intensity difference between blocks B(i,j)

t  and 
F
(i,j)
t  is the mean of their absolute difference with respect 

to the block size. The beta multiplier in Eq. (7) checks for 
global changes like the change in illumination. Experimen-
tations suggest that the global change threshold T = 20 is 
strongly suitable to detect significant changes at 65% of 
the total number of blocks denoted by MN. The value of β 
increases �i,j by eightfold when a global change is detected 
and accelerates the update process. Given the value of c in 
Eq. (5), the maximum value of �i,j when E(i,j) = 0 is 0.88. 
The value of 8 is chosen; it rapidly updates the block while 
not saturating it. If the block update is saturated, it takes 
longer time to adapt back in the case of intermittent illumi-
nation changes.

3.6 � Delta Record update

The Delta Record (δ) holds the record of the accumulated 
absolute value of every pixel-wise update in each block. It 
is used in generating the Epsilon Array (ε) in which during 
BGS will induce an adaptation bias. This will cause moving 
objects that stopped moving to adapt slower in the background 
while adaptation will be faster for objects that remained static 
then starts to move again (Fig. 3). This improves the accuracy 

(6)E(i,j) =
SAD

(i,j)
(
Bt|Ft

)

w2
,

(7)𝛽 =

�
8, if

�∑M

i=0

∑N

j=0
E(i,j)

��
0.65MN > T

1, else
,

of the system. Updating of the delta record is only done on 
blocks which the evaluation process holds true (“value > ρ”). 
The update of the Delta Record is described as follows:

where the value of �(i,j)
t+1

(x, y) is reset to 0 at every pixel (x, 
y) whenever E(i,j) falls below the hard threshold (τ) else it is 
updated. The value of the threshold is the same with hard 
threshold used at FMG described in Sect. 3.9. The value of 
�
(i,j)

t+1
(x, y) is also reset to 0 on these conditions, when its value 

is greater than 28 − 1 and whenever the conditions for global 
change holds true ( � = 8).

3.7 � Epsilon Array generation

The Epsilon Array counteracts the effect of slow background 
update by acting as a counter weight providing adaptation bias 
during BGS (Sect. 3.8). In [9], an adaptive learning rate based 
on block neighborhood is proposed to induce the same adapta-
tion bias to counter changes in motion state. But, this is a more 
expensive method because each block also needs to keep track 
of neighboring blocks. To generate the Epsilon Array (ε) from 
δ, the relationship is described as follows:

(8)D(i,j)(x, y) = �(i,j)
(
B
(i,j)
t (x, y) − F

(i,j)
t (x, y)

)
,

(9)𝛿
(i,j)

t+1
(x, y) =

{
𝛿
(i,j)
t (x, y) + ||D(i,j)(x, y)|| , if E(i,j) > 𝜏

0 , else
,

(10)�
(i,j)

0
= u

(
E(i,j)

2n − 1

)
+ v,

(11)𝜇(i,j) =

{
1 , if 𝜇

(i,j)

0
> 1

𝜇
(i,j)

0
, else

,

Fig. 3   Comparison between 
background-to-foreground adap-
tion without adaptation bias and 
with adaptation bias in winter 
driveway, [29]. Initially, the car 
on the left is static for a long 
time, then it started moving and 
maneuvered as depicted above. 
a Initial position of the car 
(left). b Car on the left transi-
tion. c Final position of the car 
(current frame). d Ground truth 
on image in c. e Output without 
adaptation bias. f Output with 
adaptation bias



973Journal of Real-Time Image Processing (2021) 18:967–981	

1 3

where in Eq. (10), n = 8 represents gray value and the slope 
u = 1.275 which is derived from the x coordinate cutoff point 
of 2∕3 × (28 − 1) at �0 = 1 and the hyper-parameter v = 0.15 . 
The value of v biases the adaptive weight �(i,j) , therefore, 
controlling the amount of counteractive effect of ε on the 
output. Drastic change in the value of v may lead to poor 
suppression of false negatives. On the other hand, �(i,j) is the 
stabilizing factor of �(i,j) as �(i,j)

t+1
 accumulates every update.

3.8 � Background subtraction (BGS)

The background subtraction process aims to estimate the 
foreground object from the input frame by subtracting the 
background model. Ideally, this can be done with a sim-
ple subtraction operation. But, because of factors such as 
dynamic motion in the background, white noise, adaptation 
noise, and other sources of noise, different methods have 
been proposed to estimate the foreground [1–3, 5, 7–9, 11, 
14, 16, 18, 24–26, 30]. In the proposed method, background 
subtraction process is applied to generate the difference 
image (S) as follows:

where ak ∗ I(x, y) is the convolution between the image and 
the average blur kernel ak with kernel size k. Appropriate 
range of kernel size k ∶ 3 ≤ k ≤ 9 ; in which k can also be 
regarded as a dynamic sensitivity parameter. The average 
blur acts as a low-pass filter to smoothen out the noisy struc-
ture of each image. In addition, it is chosen among other 
filters because of the simplicity of its operations allowing 
fast executions.

3.9 � Foreground mask generation (FMG)

The foreground mask generation aims to transform the dif-
ference image S(x, y) into a binary image that labels the fore-
ground and the background (Fig. 4). In doing so, after BGS, 
S(x, y) is filtered by average blur to flatten out regions con-
taining narrow depressions and ridges. This will effectively 
filter out granular noise and connect potentially separated 
blobs during the thresholding process. The thresholding 
operation is done by implementing a hard threshold τ. The 
values from the filtered difference image a9 ∗ S(x, y) below 
this threshold is labeled as background (0), otherwise a fore-
ground (1). The suitable range of values of τ is determined 
to be around 10% of 28 gray levels from empirical testing. In 
which τ can also be viewed as a contrast sensitivity param-
eter to detect small changes in the foreground.

(12)�(i,j) = �(i,j)�
(i,j)

t+1
,

(13)S(x, y) = ||ak ∗ Ft(x, y) − �(x, y) − ak ∗ Bt(x, y)
||,

4 � Experimental results

In this section, experimentation and performance evaluation 
is done to determine the relevance of our proposed method. 
The evaluation for quantitative and executional performance 
is done to test the accuracy and running time. In the quan-
titative evaluation, our method is compared on both widely 
popular and state-of-the-art algorithms by conducting exper-
imentation on a widely used dataset. While in executional 
evaluation, both custom and widely used dataset are tested 
on different platforms to compare its execution speed with 
other proposed methods.

4.1 � Quantitative method

A widely used dataset for the quantitative measure of perfor-
mance of background subtraction algorithms is the Change-
Detection.net 2014 (CDnet 2014) dataset [32]. In this data-
set, 4–6 sequences are presented for 11 different categories 
to test the accuracy of FBS-ABL. To provide a valid meas-
ure of the result, three evaluation metrics are used, namely, 
Recall (Re), Precision (Pr), and F-measure (Fm). These met-
rics rely on the pixel count basis namely, true positive (TP), 
false positive (FP), true negative (TN), and false negative 
(FN) that are generated using the provided ground truth data.

Recall is a metric to measure the completeness of the 
detected foreground, in which the value goes higher when 
the rate of false negatives is low. Precision on the other hand, 
is the measure of exactness of the detected foreground, in 
which the value will decrease when the rate of false posi-
tives is high. F-measure is used to measure the balance of 
Recall and Precision with equal weights which implies that 
it is high only when both Precision and Recall are high. The 
formula for the F-measure can be described as follows:

where Re = TP∕(TP + FN) and Pr = TP∕(TP + FP) are both 
described by the pixel count basis [32, 33]. These metrics 
were chosen from a pool of different metrics because they 
present non-redundancy in the quantitative and semantic 
interpretation of the data.

In comparing between the results from various existing 
methods published in the CDnet website [29], the median 
value from each category (CDnet-14) will be used as the 
baseline. This is done to avoid a biased comparison. Using 
the mean would drastically pull down the results and using 
the top percentile only would fail to represent the widely 
accepted methods. To compare with older but popular meth-
ods, GMM [5], KDE [12], GMM2 [6], and KNN [13] were 
chosen. ViBe [4] is also presented which is one of the fastest 
algorithms available but only on the CDnet2012 [33] dataset 

(14)Fm = (2 × Pr×Re)∕(Pr+Re),
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(first six categories of CDnet2014 [32]) because of data 
availability online. In addition, five recent, state-of-the-art 
methods were chosen, [19–21, 30], and [31] for comparison 
which presented a complete evaluation for CDnet2014. For 
comparison with block-based methods, the average Fm of 
[3] and [9] is presented for the first eight categories of CDnet 
2014 because of data availability and the concepts are much 
more relatable to the proposed method.

4.2 � Quantitative performance

In Tables 1 and 2, the best performing methods for each 
category based on Fm is highlighted in italics. It can be 
seen that it is dominated by the five state-of-the-art meth-
ods [19–21, 30] [31], as expected but with low execu-
tion speed which is not suitable for real-time applications. 
Most state-of-the-art methods are more focused on the per-
formance rather than applicability. The classical methods 
such as [5, 6, 12, 13] and fast methods such as ViBe [4] are 
more suitable for real-time applications which can be eas-
ily adapted for different platforms. The trade-off between 
performance and execution speed can be seen in Table 1, 
and as it shows, widely adaptable methods have fast/prac-
tical execution at the cost of reduced performance. But, 

the overall performance of FBS-ABL in Table 2 shows 
much better score than the classical methods with superior 
execution speed as shown in Table 1 and 3, 4 and 5 for 
different platforms. In performance comparison with state-
of-the-art methods where the focus is to perform well on 
most categories, FBS-ABL may only be comparable only 
on certain categories such as Dynamic Background, Night 
Videos, Intermittent Motion, and Bad Weather. This is can 
be explained based on the design trade-off which will be 
detailed on the succeeding paragraphs.   

The overall score in Table 2 was calculated by averaging 
the performance from the eleven categories of CDnet2014. 
It is expected that the five state-of-the-art methods will 
have the top rankings according to Fm. FBS-ABL falls 
just nearly below CDnet-14 (the median of various exist-
ing methods in the CDnet website [29]) in terms of Fm 
ranking. Nearly half of the methods of CDnet-12 includes 
improved and state-of-the-art performance methods while 
the other half are classical methods that are commonly 
adapted to wide applications. The lower average Fm score 
of FBS-ABL compared to CDnet-14 is due to the fact that 
it has a very high average Re, higher than most of the 
state-of-the-art methods (2nd rank) while its average Pr is 
comparably lower (8th rank).

Fig. 4   Foreground results obtained from each category of CDnet 2014 dataset [32]. a Baseline. b Dynamic background. c Camera Jitter. d Inter-
mittent object motion. e Shadows. f Thermal. g Low frame rate. h Bad weather, i Night videos. j PTZ. k Turbulence
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The high Re and lower Pr of FBS-ABL in the overall 
score is because it is weak to the cases such as Camera Jitter 
and Turbulence which dragged down the average Pr. In these 
cases, the background is constantly changing and because 

of the intermittent modeling scheme discussed in Sect. 2.2 
the background update cannot keep up with abrupt changes 
where the update is only once every few frames. In addition, 
the block-based method causes the false-positive regions to 
be thicker (see Fig. 6). But in general, these cases are not fre-
quently encountered on most applications. However, a better 
performance can be seen on Dynamic Background because 
the changes are more localized which can be suppressed by 
the block-based update and low-pass filter in the foreground 
mask generation stage. FBS-ABL also performed satisfac-
torily on the Baseline category relative to CDnet-14 which 
is within 6% error difference and is relatively comparable to 
the widely adapted methods.

In categories like thermal, where camouflage effect is 
most likely due to the nature of thermal image acquisition. 
FBS-ABL has a poor Fm score than most of the presented 
method. The camouflage effect is prominent as a conse-
quence of using only the intensity scale which causes the Re 
to be low. In bad weather, FBS-ABL has a comparable Fm 
with some of the state-of-the-art methods because the block-
based method is insensitive to small background noises such 
as rain and snow. Both Night Videos and PTZ also presents 
scenes with global changes like sudden change in illumina-
tion and change of background scene where FBS-ABL can 
adapt satisfactorily given its intermittent updating scheme. 
In which, resulted in comparable results with two to three 
state-of-the-art methods. Overall, FBS-ABL shows practi-
cal and well-rounded performance especially to conditions 
that are frequently encountered in different application and 
in general scenes such as Baseline, Dynamic Background, 
Night Videos, Intermittent Motion, and Bad Weather.

4.3 � Executional performance

In executional performance, FBS-ABL is tested on different 
platforms including embedded platform which can be seen 
in the Tables 1, 3, 4, and 5. Sequences from the CDnet 2014 
[32] containing resolution of 320 × 240 pixels are used to 
evaluate the said scale while a custom Baseline-like dataset 
is used to evaluate higher resolutions up to high definition 
(HD) scales. Based on the top-level structure, the execution 

Table 3   Comparison with 
block-based methods

CDnet 2014—8c: the first eight categories of CDnet 2014
Data for the proposed method FBS-ABL is highlighted in bold

Metric Reference [3] Reference [9] FBS-ABL

CDnet 2014—8c (aver-
age Fm)

0.7246 0.6811 0.7290

Platform Laptop-i3, 4 GB RAM Laptop-i3, 4 GB RAM Laptop-i3, 
4 GB 
RAM

Resolution 320 × 256 320 × 256 640 × 480
Execution (fps) 22 17 155

Table 4   Speed comparison on other methods and platforms

Data for the proposed method FBS-ABL is highlighted in bold

Method Platform Resolution fps

MCBS [16] PC w/NVIDIA GTX 970 320 × 240 18
Reference [8] Intel Core-2 2.26 GHz 320 × 240 20
SMSOM-BM [26] PC w/NVIDIA GTX 260 320 × 240 32.3
GMM2 [6] Laptop-i3, 4 GB RAM 320 × 240 126
KNN [13] Laptop-i3, 4 GB RAM 320 × 240 82
FBS-ABL Laptop-i3, 4 GB RAM 320 × 240 435
FBS-ABL PC-i7 3.3 GHz, 16 GB RAM 320 × 240 655
ABPBGS [22] PC-i7 2.8 GHz, 16 GB RAM 360 × 270 36
MBBM [23] PC-i7 2.8 GHz, 16 GB RAM 360 × 270 46
FWFC [11] PC-i7 4790, 32 GB RAM 640 × 384 3.64
GMM2 [6] Laptop-i3, 4 GB RAM 640 × 480 56
KNN [13] Laptop-i3, 4 GB RAM 640 × 480 30
ViBe (RGB) [4] PC-i7 2.67 GHz 6 GB RAM 640 × 480 200
ViBe (gray) [4] PC-i7 2.67 GHz 6 GB RAM 640 × 480 250
FBS-ABL Laptop-i3, 4 GB RAM 640 × 480 155
FBS-ABL PC-i7 3.3 GHz, 16 GB RAM 640 × 480 277
ABPBGS [22] PC-i7 2.8 GHz, 16 GB RAM 4 K UHD 5.23
MBBM [23] PC-i7 2.8 GHz, 16 GB RAM 4 K UHD 4.51
FBS-ABL PC-i7 3.3 GHz, 16 GB RAM 4 K UHD 15

Table 5   Speed on software implementation in embedded system

Data for the proposed method FBS-ABL is highlighted in bold

Method Platform Resolution fps

Reference [1] Raspberry Pi 320 × 240 3.10
ViBe (scaled) [4] Embedded ARM Core 320 × 240 6
MBSCIGA [10] ARM Cortex-A9 2-Core 320 × 240 15.2
FBS-ABL ARM Cortex-A9 2-Core 320 × 240 83
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speed of FBS-ABL does not greatly vary from different 
scenes in the same resolution scales. The execution time 
variation is found to be within ± 10% in higher resolutions 
and within ± 15% in lower resolutions.

In Tables 1, 3, 4, and 5, the execution speed of FBS-
ABL is compared to other methods in different resolu-
tion scales on different platforms. It can be observed that 
FBS-ABL dominates in speed performance in all plat-
forms. In Table 3, although FBS-ABL has comparable 
results with [3] but shows better execution speed even at a 
higher resolution. This shows the effective design strategy 
behind FBS-ABL even when compared to other block-
based methods. The execution time per resolution scale 
in the embedded platform in shown in Fig. 5 and achieved 
a peak execution speed of 83 fps at 240p resolution. In 
Table 6, the execution time per resolution scale in PC 
environment is shown and the trend in execution time is 
similar to that in embedded platform. Implementation in a 
PC environment for 720p to UHD scale is done with core 
optimizations that takes advantage of the processor archi-
tecture with multiple logical processors to parallelized 

local operations. In Table 6, it is shown that FBS-ABL 
can greatly benefit from a compute accelerator such as 
the FPGA. Implementation for CPU-FPGA embedded co-
design is done with OpenCL using the DE1-SoC develop-
ment board which houses the ARM Cortex-A9 processor 
together with the Cyclone V low-cost FPGA.

4.4 � Comparison with other methods

The performance of FBS-ABL compared to conventional 
methods [5, 6, 12, 13] and newer state-of-the-art methods 
[19–21, 30, 31] are shown in Tables 1 and 2. It can be seen 
that the performance of FBS-ABL is generally higher than 
convention methods for most of the categories except in the 
Camera Jitter category where the background is constantly 
moving. It should be noted that most of these methods are 
pixel based while FBS-ABL update scheme is block-based 
and also the background is only updated once every few 
frames. These means that a whole block contributes to every 
regional update on the background. Since the background in 
the current frame is moving constantly in the case of camera 
jitter, a thicker false positive is created in that region. In 
addition, these false-positive regions can be amplified by 
the low-pass filter during foreground mask generation. In 
Fig. 6, the camera jitter behavior for FBS-ABL is shown in 
comparison to two other conventional pixel-based methods. 
It can be immediately observed that false positives for FBS-
ABL are more concentrated in a number of regions while for 
the two other methods are much more scattered.

The performance of FBS-ABL does not greatly deviate in 
most of the presented categories such as Baseline, Dynamic 
Background, Intermittent Motion Objects, Shadows, Night 
Videos, and PTZ compared to the state-of-the-art methods. 
In the categories Bad Weather and Low Frame rate, FBS-
ABL shows more robustness than most of the methods. 
However, in execution speed the grayscale version of ViBe 
is the only method it can be on par with while besting all 
other methods. Speed up version of conventional methods 
using a method of attention sampling in [34] allows a faster 
execution in Full HD resolution sequence. With reference 
to the paper [34], GMM [5], KDE [12], and GMM2 [6] 
execution speeds perform at 18.6 fps, 31.5 fps, and 29.7 
fps, respectively, running only at a single core in PC envi-
ronment. For comparison, FBS-ABL is also executed using 
single-core implementation which performed at 32 fps in 
Full HD sequence, slower than its multicore implementa-
tion at 56 fps shown in Fig. 5. While FBS-ABL are on par 
with the speed-up versions of conventional methods, Table 1 
shows that FBS-ABL performs better.

In high-end, very high resolution of 4 K UHD, FBS-
ABL is compared to two other methods, ABPBGS [22] and 
MBBM [23] which are designed for UHD background sub-
traction (Table 4). It can be observed that FBS-ABL can 

655

502

327
277

122
56

15

83 73
30 21 7

0

100

200

300

400

500

600

700

240p 270p 352p 480p 720p FHD UHD

fp
s

resolu
on scale

Fig. 5   Average execution speed of FBS-ABL in different resolution 
scales in PC and embedded platform: PC-i7@3.3  GHz with 16  GB 
RAM (blue) and ARM Cortex-A9 2-Core, 1  GB RAM (orange). 
(240p: 320 × 240, 270p: 360 × 270, 352p: 640 × 352, 480p: 640 × 480, 
720p: 1280 × 720, FHD: 1920 × 1080, UHD: 3840 × 2160)

Table 6   Comparison of execution time of FBS-ABL with and with-
out FPGA accelerator using DE1-SoC Development Board

Platform Image resolution fps

ARM cortex only 640 × 480 21
ARM with low cost FPGA 640 × 480 40
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perform 5 × faster but with much greater memory usage. 
In comparison regarding the memory usage, in 4 K UHD 
FBS-ABL requires more than 5 GB while ABPBGS and 
MBBM uses only lower than 450 MB as claimed in their 
paper. However, it is possible to lower the memory require-
ments of FBS-ABL by removing pre-stored states but at the 
cost of processing speed.

In Table 5, execution speed of software implementation 
in embedded system is shown for FBS-ABL, downscaled 
ViBe [4], MBSCIGA [10] and method in [1]. A lower 
execution speed is expected in [1] because of its inherent 
complexity. However, hardware-oriented version with the 
same algorithm concept in [1] is proposed by the same 
authors in MBSCIGA. Its software implementation achieved 
5 × faster speed than its predecessor but FBS-ABL outper-
forms it by 5 × the speed. Although, MBSCIGA performs 
short compared to FBS-ABL in software implementation but 
its strength comes in hardware. As claimed by their paper 
[10], it can perform up to 74 fps with FHD resolution in full 
hardware implementation. As it is right now, FBS-ABL is 
software centered. A full hardware implementation means 

that some functions must be tweaked to achieve comparable 
results with MBSCIGA. This software centeredness is also 
apparent in Table 6 where overheads from the FPGA-ARM 
memory access slows down the speed. It only achieved 
2 × speed up from a low-cost FPGA.

With reference to paper [4], the downscaled version of 
ViBe can run at more than 350 fps for 640 × 480 sequence 
in PC which surpasses FBS-ABL for a performance cost of 
5% degradation. A main contributing factor about the low 
execution speed of downscaled ViBe in embedded system 
is the slower memory access compared to PC. Downscaled 
ViBe uses N = 5 samples plus the current frame totals 6 × 
resolution × pixel byte memory and also the search speed 
of 5 samples per current pixel per generation of the mask 
in comparison to FBS-ABL which only needs to access 3 
× resolution × pixel byte per mask generation, only half 
as much as downscaled ViBe. In addition, not to mention 
that FBS-ABL requires no pixel search to generate the mask 
which makes it more suitable for real-time performance in 
embedded system.

Fig. 6   Comparison on the behavior for Camera Jitter category on the 380th frame of boulevard sequence [29]. a Current input frame. b GMM2 
[6]. c KNN [13]. d FBS-ABL (proposed method)
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5 � Conclusion

This paper proposes a Fast Background Subtraction with 
Adaptive Block Learning using expectation value (FBS-
ABL) that is suitable for real-time performance in wide 
range of platforms. The background model updating is 
based on the intermittent approach coupled with adaptive 
block-learning rate, and a devised method for background 
adaptation bias. An efficient background subtraction method 
is used in the segmentation process. FBS-ABL achieved a 
well-rounded performance in varying scenes with overall 
results better than conventional techniques but outperforms 
them in execution speed. Its simplistic approach together 
with efficient design allows it to execute at high speeds in a 
wide range of platform.

The proposed method, FBS-ABL achieved a fast execu-
tion speed of up to 56 fps in PC using Full HD video. It also 
achieved 655 fps and 83 fps in PC and ARM core-embedded 
platform, respectively, using the minimum input resolution 
of 320 × 240. The efficient but practical approach of FBS-
ABL demonstrated its adaptability for both low-quality and 
high-quality image processing with the potential to parallel-
ize computation for high resolutions to execute at real-time 
speeds. Although it is particularly weaker to cases like cam-
era jitter, but it does not occur frequently on general scenes. 
Future modifications, that include a threshold adaptation 
process per block that will remedy this inherent weakness 
but for a trade-off of speed. Its fast execution speed has also 
the advantage of more room for post processes including 
deep-learning tasks such as object recognition, and motion 
tracking. Overall, it can be deduced that FBS-ABL is effec-
tive performance-wise and is suitable for real-time perfor-
mance applications.

Acknowledgements  This work was supported by Kwangwoon Univer-
sity and by the MISP Korea under the National Program for Excellence 
in SW (2017-0-00096) supervised by IITP.

References 

	 1.	 Cocorullo, G., Frustaci, F., Guachi, L., Perri, S.: Embedded sur-
veillance system using background subtraction and raspberry Pi. 
In: 2015 AEIT International Annual Conference (AEIT), pp. 1–5 
(2015)

	 2.	 Xu, Z.X., Zhang, D.H., Du, L.: Moving object detection based on 
improved three frame difference and background subtraction. In: 
International Conference on Industrial Informatics—Computing 
Technology, Intelligent Technology, Industrial Information Inte-
gration (ICIICII), pp. 79–82 (2017)

	 3.	 Elharrouss, O., Abbad, A., Moujahid, D., Tairi, H.: Moving object 
detection zone using a block-based background model. IET Com-
put. Vis. 12(1), 86–94 (2018)

	 4.	 Barnich, O., Droogenbroeck, M.V.: ViBe: a universal background 
subtraction algorithm for video sequences. IEEE Trans. Image 
Process. 20(6), 1709 (2011)

	 5.	 Stauffer, C., Grimson, W.E.L.: Adaptive background mixture for 
real-time tracking. In: Proceedings on IEEE Computer Society 
Conference on Computer Vision and Pattern Recognition, Vol. 2 
(1999)

	 6.	 Zivkovic, Z.: Improved adaptive Gaussian mixture model for 
background subtraction. In: Proceedings of the 17th international 
conference on pattern recognition, Vol. 2, pp. 28–31 (2004)

	 7.	 Riahi, D., St. Onge, P.L., Bilodeau, G.A.: RECTGAUSS-Tex: 
block-based background subtraction. École Polytechnique de 
Montréal, Montréal (2012)

	 8.	 Shah, M., Deng, J.D., Woodford, B.J.: Improving mixture of 
Gaussians background model through adaptive learning and 
spatio-temporal voting. In: IEEE International Conference on 
Image Processing, pp. 3436–3440 (2013)

	 9.	 Lin, D.Z., Cao, D.L., Zeng, H.L.: Improving motion state 
change object detection by using block background context. In: 
14th UK Workshop on Computational Intelligence (UKCI), pp. 
1–6 (2014)

	10.	 Cocorullo, G., Corsonello, P., Frustaci, F., Guachi, L.A.G., Perri, 
S.: Multimodal background subtraction for high-performance 
embedded systems. J. Real Time Image Process. (2016). https​://
doi.org/10.1007/s1155​4-016-0651-6

	11.	 Li, S., Florencio, D., Li, W., Zhao, Y., Cook, C.: A fusion frame-
work for camouflaged moving foreground in the wavelet domain. 
IEEE Trans. Image Process. 27(8), 3910–3930 (2018)

	12.	 Elgammal, A., Harwood, D., Davis, L.: Non-parametric model for 
background subtraction. In: Proceedings of the European Confer-
ence on Computer Vision, Lectures Notes in Computer Science, 
Vol. 1843, pp. 751–767 (2000)

	13.	 Zivkovic, Z., van der Heijden, F.: Efficient adaptive density esti-
mation per image pixel for the task of background subtraction. 
Patter Recogn. Lett. 27(7), 773–780 (2006)

	14.	 Vemulapalli, R., Aravind, R.: Spatio-temporal nonparametric 
background modeling and subtraction. In: IEEE 12th International 
Conference on Computer Vision Workshops, ICCV Workshops, 
pp. 1145–1152 (2009)

	15.	 Kim, K., Chalidabhongse, T.H., Hardwood, D., Davis, L.: Real-
time foreground-background segmentation using codebook model. 
Real Time Imaging 11, 172–185 (2005)

	16.	 Guo, J.M., Hsia, C.H., Liu, Y.F., Shih, M.H., Chang, C.H., Wu, 
J.Y.: Fast background subtraction based on a multilayer codebook 
model for moving object detection. IEEE Trans. Circuits Syst. 
Video Technol. 24(10), 1809–1821 (2013)

	17.	 Pal, A., Schaefer, G., Celebi, M.E.: Robust codebook-based video 
background subtraction. In: 2010 IEEE International Conference 
on Acoustics, Speech and Signal Processing, pp 1146–1149 
(2012)

	18.	 Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: prin-
ciples and practice of background maintenance. In: Proceedings 
on the 7th IEEE International Conference on Computer Vision, 
Vol. 1, pp. 255–261 (1999)

	19.	 Sajid, H., Cheung, S.C.S.: Universal multimode background sub-
traction. IEEE Trans. Image Process. 26(7), 3249–3260 (2017)

	20.	 Jiang, S.Q., Lu, X.B.: WeSamBE: a weight-sample-based method 
for background subtraction. IEEE Trans. Circuits Syst. Video 
Technol. (2017). https​://doi.org/10.1109/TCSVT​.2017.27116​59

	21.	 St Charles, P.L., Bilodeau, G.A., Bergevin, R.: SuBSENSE: a uni-
versal change detection method with local adaptive sensitivity. 
IEEE Trans. Image Process. 24(1), 359–372 (2015)

	22.	 Beaugendre, A., Goto, S.: Adaptive block-propagative background 
subtraction method for UHDTV foreground detection. IEICE 
Trans. Fundam. 98(11), 2307–2314 (2015)

https://doi.org/10.1007/s11554-016-0651-6
https://doi.org/10.1007/s11554-016-0651-6
https://doi.org/10.1109/TCSVT.2017.2711659


981Journal of Real-Time Image Processing (2021) 18:967–981	

1 3

	23.	 Beaugendre, A., Goto, S., Yoshimura, T.: Real-time UHD back-
ground modelling with mixed selection block updates. IEICE 
Trans. Fundam. Electron. Commun. Comput. Sci. 100(2), 581–
591 (2017)

	24.	 Kim, H., Lee, H.J.: A low-power surveillance video coding system 
with early background subtraction and adaptive frame memory 
compression. IEEE Trans. Consum. Electron. 63(4), 359–367 
(2017)

	25.	 Lim, L.A., Keles, H.Y.: Foreground segmentation using a triplet 
convolutional neural network for multiscale feature encoding. 
arXiv preprint arXiv​:1801.02225​ (2018)

	26.	 Zhao, Z.J., Zhang, X.B., Fang, Y.C.: Stacked multilayer self-
organizing map for background modeling. IEEE Trans. Image 
Process. 24(9), 2841 (2015)

	27.	 Lim, L.A., Keles, H.Y.: Foreground segmentation using convo-
lutional neural networks for multiscale feature encoding. Pattern 
Recogn. Lett. 112, 256–262 (2018)

	28.	 Zeng, W., Wang, K., Wang, F.Y.: A novel background subtraction 
algorithm based on parallel vision and Bayesian GANs. Neuro-
computing (2020). https​://doi.org/10.1016/j.neuco​m.2019.04.088

	29.	 Changedetection.net (CDNET).: [Online]. http://www.chang​edete​
ction​.net/. Accessed 25 Jun 2018. (2018)

	30.	 Wang, R., Bunyak, F., Seetharaman, G., Palaniappan, K.: Static 
and moving object detection using flux tensor with split Gaussian 
models. In: Proceedings of IEEE Workshop on Change Detection 
(2014)

	31.	 Bianco, S., Ciocca, G., Schettini, R.: Combination of video change 
detection algorithms by genetic programming. IEEE Trans. Evol. 
Comput. 21(6), 914–928 (2017)

	32.	 Wang, Y., Jodoin, P.M., Porikli, F., Konrad, J., Benezeth, Y., Ish-
war, P.: CDnet 2014: an expanded change detection benchmark 
dataset. In: IEEE Conference on Computer Vision and Pattern 
Recognition Workshops, pp. 393–400 (2014)

	33.	 Goyette, N., Jodoin, P.M., Porikli, F., Konrad, J., Ishwar, P.: 
Changedetection.net: a new change detection benchmark dataset. 
In: IEEE Computer Society Conference on Computer Vision and 
Pattern Recognition Workshops, pp. 1–8 (2012)

	34.	 Chang, H.J., Jeong, H.W., Choi, J.Y.: Active attention sampling 
for speed-up of background subtraction. In: IEEE Conference on 
Computer Vision and Pattern Recognition, pp. 2088–2095 (2012)

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Vince Jebryl Montero  received his 
B.S. degree in Electronics Engi-
neering from Ateneo de Davao 
University in 2014 and is cur-
rently studying for combined 
M.S. and Ph.D. degree in Elec-
tronics and Communications 
Engineering at Kwangwoon 
University.

Woo‑Young Jung  received his 
B.S., M.S., and Ph.D. degrees in 
Electronics and Communications 
Engineering department at 
Kwangwoon University. He is 
currently a CTO in Innovative 
Research and Analysis Inc. in 
Philippines and EPSOLUTE Co. 
Ltd. in Korea.

Yong‑Jin Jeong  received his B.S. 
degree in Control and Instru-
mentation Engineering from 
Seoul National University in 
1983. He received his M.S. and 
Ph.D. degrees in Electrical and 
Computer Engineering from 
University of Massachusetts. He 
is currently a professor in the 
Dept. of Electronics and Com-
municat ions Engineer ing, 
Kwangwoon University.

http://arxiv.org/abs/1801.02225
https://doi.org/10.1016/j.neucom.2019.04.088
http://www.changedetection.net/
http://www.changedetection.net/

	Fast background subtraction with adaptive block learning using expectation value suitable for real-time moving object detection
	Abstract
	1 Introduction
	2 Motivation and design basis
	2.1 Motivation
	2.2 Design basis

	3 Proposed method
	3.1 System overview
	3.2 Background scene initialization (BSI)
	3.3 Background modeling (BGM)
	3.4 Block evaluation phase
	3.5 Block update phase
	3.6 Delta Record update
	3.7 Epsilon Array generation
	3.8 Background subtraction (BGS)
	3.9 Foreground mask generation (FMG)

	4 Experimental results
	4.1 Quantitative method
	4.2 Quantitative performance
	4.3 Executional performance
	4.4 Comparison with other methods

	5 Conclusion
	Acknowledgements 
	References




