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Abstract
In recent years, deep sea and ocean explorations have attracted more attention in the marine industry. Most of the marine 
vehicles, including robots, submarines, and ships, would be equipped with automatic imaging of deep sea layers. There is a 
reason which the quality of the images taken by the underwater devices is not optimal due to water properties and impurities. 
Consequently, water absorbs a series of colors, so processing gets more difficult. Scattering and absorption are related to 
underwater imaging light and are called light attenuation in water. The examination has previously shown that the emergence 
of some inherent limitations is due to the presence of artifacts and environmental noise in underwater images. As a result, it 
is hard to distinguish objects from their backgrounds in those images in a real-time system. This paper discusses the effect 
of the software and hardware parts for the underwater image, surveys the state-of-art different strategies and algorithms 
in underwater image enhancement, and measures the algorithm performance from various aspects. We also consider the 
important conducted studies on the field of quality enhancement in underwater images. We have analyzed the methods from 
five perspectives: (a) hardware and software tools, (b) a variety of underwater imaging techniques, (c) improving real-time 
image quality, (d) identifying specific objectives in underwater imaging, and (e) assessments. Finally, the advantages and 
disadvantages of the presented real/non-real-time image processing techniques are addressed to improve the quality of the 
underwater images. This systematic review provides an overview of the major underwater image algorithms and real/non-
real-time processing.

Keywords Underwater images · Image enhancement · Real-time processing · Software improvement · Color correction · 
Image de-hazing

1 Introduction

The studies in recent years on the use of image processing 
techniques have largely been addressed by researchers in 
the field of automated real-time processing. Studies have 
included identifying, detecting, analyzing objects, living 
organisms at the macro, and sometimes micro-levels focus-
ing on a category of topics in recent years.

It is known that dynamic light diffusion is a physical 
method used to determine the distribution of particles in 
solutions and suspensions. These non-destructive and fast 
methods are used to determine the particle size in the range 

of few nanometers to microns. It is also known that the emis-
sion wavelength of a medium in question reflects the amount 
of its deviation [1].

The light emission is also overshadowed by the accumu-
lation of the water particles. Thus, the particles can further 
increase the deviation of the angle and the orientation of direct 
motion of light in water. In other words, absorbing wave-
lengths in the geographic position of seawater is emitted, and 
hence, the angular deviation of light and change in the water 
wavelength are largely dynamic [2]. Decreasing the dynamic 
range of intensities at an image plane can be a significant 
problem, because a minimum of 2–4% contrast is essential for 
the detection of an object by a human observer [3].

The real-time image processing techniques are always 
in high demand for multiple requisitions used in automated 
systems such as remote sensing, manufacturing process, and 
multimedia applications. This application required to have 
high performance. Based on that requirement, image process-
ing and machine learning systems have been investigated in 
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this paper by discussing real-time procedures for underwater 
imaging.

The main suggestion in this paper is based on analyzing 
the automated frameworks that adapt to their dynamic condi-
tions and real/non-real-time manner. If conditions were ruled 
by the underwater imaging environment, the real-time and 
automated analysis of images could be effective in a direc-
tion that would take all the constraints to satisfy alongside.

This paper attempts to present a general overview of 
methodical studies in recent years that will later be used to 
enhance the quality of future studies. First of all, there is a 
need to present a sort of classification in analyzing image 
enhancement for the previous strategies. Then, we require 
to mention the advantages/disadvantages and the extent to 
which they will be used to increase the comprehensiveness 
of the paper. It should be noted that hardware implementa-
tion is one of the most important aspects of real-time image 
processing, which is also addressed here.

This systematic review carries out an overview of the 
major underwater image algorithms and real/non-real-time 
processing in various applications. We have analyzed the 
application of underwater images in different fields, com-
prising underwater target detection, underwater navigation, 
Intelligent Underwater Vehicles (IUV), and marine remotely 
control technologies.

The rest of the paper is structured as follows: in Sect. 2, 
the categorization of the related studies will be introduced 
and some real/non-real-time underwater image enhancement 
methods will be discussed. In Sect. 3, a comparison among 
the underwater imaging techniques and their improvement 
with image processing will be focused. Finally, in Sect. 4, 
the overall conclusion is presented.

2  Underwater imaging

This section discusses underwater imaging. Modeling the 
water with Linear Position Invariant Systems (LPI) [4] 
and Image Recovery in De-convolution [5, 6] is one of the 
automated models that are presented. Many image recovery 
methods, such as Blind De-convolution [7, 8] and Wiener 
Filter [9], are based on conventional techniques.

2.1  Real‑time processing

Real-time processing is defined as responses of the system in 
the order of milliseconds or microseconds. Sometimes, we 
can design processing algorithms that produce outputs in a 
short time relative to the input. To achieve real-time process-
ing implications, we may have to avoid some of the process-
ing benefits. Thus, this challenge can be accomplished by 
reducing the time and number of loops and commands of 
the processing program. However, this method is not always 
possible due to system loads, expected results, and hardware 
limitations. As a result, we need a trade-off between soft-
ware, hardware, and real-time performance.

2.2  Hardware and software

Some studies have examined the hardware and software 
aspects of real-time detecting objects in underwater images 
[1–3, 10]. Some optical imaging analysis through real-time 
automated processing is partly studied [11–13].

A classification structure for underwater imaging 
systems based on Jaffe et al. [11] is shown in Fig. 1. In 
this figure, based on light properties, camera light close, 

Fig. 1  The accordance between camera light separation, more exotic imaging systems (range-gated and synchronous scan), and the obtainable 
viewing distances are shown.  Source: Jaffe et al. [11]
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camera light separated, range-gated, and synchronous 
scan states are shown from left to right similar real-time 
model, respectively. In [14], a synopsis of research and 
technical innovations was presented, organized in much 
the same way as the previous report of Kocak and Caimi 
[15]. They investigated image formation and image pro-
cessing methods, extended range imaging techniques, 
imaging using spatial coherency (e.g., holography), and 
multiple-dimensional image acquisition [12].

The simultaneous attention to achieve a real-time 
model based on hardware and software underwater imag-
ing is also found in research [16]. Bouchette et al. had 
suggested an integrated structure to investigate the per-
formance and phenomenology of Electrical Impedance 
Tomography (EIT) for underwater applications [16].

Color correction of underwater images for aquatic 
robot inspection is one of the fast models that its improve-
ment is based on a combination of color matching cor-
respondences from the training data and local context 
via belief propagation for the aquatic robot [17]. Their 
aquatic robot [18] swims through the ocean and captures 
video images and real-time enhancements.

The use of structured illumination for increasing the 
resolution of underwater optical images was proposed in 
[19]. This goal is not fast in Jaffe’s work was achieved, so 
that a set of computer programs was employed to imple-
ment both one- and two-dimensional scanned images. 
Transmitting a short pulse of light in a grid, like a pattern 
that included multiple, narrow, delta/function like beams, 
was his proposed method.

McLeod et al. [20] introduced autonomous inspection 
using the underwater 3D Light Detection and Ranging 
(LiDAR). Accordingly, some benefits such as desir-
able enhancement of safety, reliability, and the reduc-
tion in risks provide users and operators with significant 
improvements over general visual inspection. This possi-
bility is performed by the addition of sensors that cannot 
be constructed in real-time 3D models of the framework 
being inspected.

2.3  Types of underwater imaging methods

Some researchers try to improve image quality as real-time 
applications by basic tools to be able to analyze images 
of high quality and appropriate [21–25]. Tran et al. [21] 
develop a method to determine shape optimization of acous-
tic lenses for underwater imaging using geometrical and 
wave acoustics. They revealed that pressure at the focal point 
is corrected using geometric parameters for lens surfaces as 
design variables. They optimized lens operation due to the 
shear wave effect of the lens, and then, the near field pressure 
behind the lens showed shorter oscillations, which could not 
be neglected. Accordingly, their model is not real time, and 
then also investigated [26], a lens surface is parameterized 
as (1):

where four parameters consist of c, k, a1, and a2, which are 
used as design variables for correction and optimization of 
the process. Schechner and Averbuch [22] proposed a fast 
adaptive filtering approach that counters the noise ampli-
fication in pixels corresponding to distant objects, where 
the medium transmittance is low. They used Gradient and 
Hessian operators. Hereupon, if m = 1 and f be a scalar field, 
then the Jacobian matrix is reduced to a row vector of partial 
derivatives of f—i.e., the gradient of f [27, 28].

Photometric stereo is a time-consuming model but widely 
used for 3D reconstruction [23]. In their study, a perspec-
tive camera is imaging an object point at X with a normal 
N, illuminated by a point light source at S, as shown in 
Fig. 2. Imaging in turbid environments often relies heav-
ily on artificial sources for illumination [24]. Treibitz and 
Schechner [24] considered non-real-time turbid scene 
enhancement using multi-directional illumination fusion. 
They mentioned that simultaneously illuminating the scene 
from multiple directions increases the backscatter and fills 
in shadows, both of which degrade local contrast. Simulta-
neous underwater visibility assessment, enhancement, and 
improved stereo were conducted by Roser and et al. [25]. 

Z =
cx2

1 +
√
1 − (1 + k)c2x2

+ �1x
2 + �2x

4
,

Fig. 2  The object is in a scattering medium, and thus, light may be scattered in the three ways shown.  Source: Murez et al. [23]
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They implemented a non-real-time method that simultane-
ously performs underwater image quality assessment, vis-
ibility enhancement, and improved stereo estimation.

Fundamental and modern methods of sonar imaging 
underwater include real-time and multi-beam forming sonar, 
lateral scan sonar, synthetic aperture sonar, acoustic lens-
ing, and acoustical holography [1, 10]. Side Scan Sonar is 
a sonar model that sends its pulse to the side and processes 
the recursive echoes.

2.4  Underwater image quality improvement

Noise reduction is the time-consuming process of eliminat-
ing noise from the original signal. In underwater images, in 
addition to artifacts such as noise, there is a lack of ambi-
ent light, low contrast, non-uniform lighting, shadows, 
suspended particles, and disruptive agents [29–34]. Ghani 
and Isa [29] were presented a non-real-time approach for 
underwater image quality improvement. Their procedure 
successfully improved the contrast and reduced the noise of 
the original method of the Integrated Color Model (ICM) 
and the Unsupervised Color Correction Method (UCM) 
previously proposed by Iqbal et al. [35]. As proposed by 
Iqbal et al. [36], the output image in the RGB color model 
is stretched over the entire dynamic range. The image is 
then converted to the HSI color space in which the S and I 
components are applied with contrast stretching.

The RGB color space fits well with the fact that "The 
human eye understands the colors of the red, green, and 
blue colors." Although RGB to HIS or HSV spaces is near 
real-time technique, unfortunately, other color spaces such as 
CMY and even RGB and other similar color models are not 
suitable for describing colors based on human interpretation. 
To convert RGB to HSI space and vice versa [37], it oper-
ates in terms of the number of bits. For ease, the dependence 
between x and y is not considered.

The effect of HSV and HSI spaces is to homogenize 
the images. They can prevent some optical artifacts such 
as excessive light radiation and blackout of the image. For 
example, in images with large shadows of different objects, 
the uses of HSV and HSI spaces are effective in helping 
to remove artifacts. The effect of this transformation in 
other studies, for underwater images of aquatic animals 
or objects, has led to a major change in the image from 
saturation. Hence, we can measure the degree of pure light 
scattering by small particles, which is understood by the 
observer as recognizable. A sample of the space transfer 
images is shown in Fig. 3. The use of contrast stretching 
in similar studies also has a significant impact on improv-
ing the quality of underwater images as a near-real-time 
approach. Besides, the studies [35, 36, 38] use evolution-
ary algorithms (PSO) to improve the quality of the images, 
and it is done along with contrast stretching. A sample of 
improvement in [38] is shown in Fig. 4. In the PSO algo-
rithm, each particle is characterized by multidimensional 
(depending on the problem) with two vectors Vi [t] and Xi 
[t], which represent the position and current velocity in 
the moment t of the particle i. At each stage of population 
movement, the location of each bird comes up with two 
values of the best personal experience, and the best group 
experience [38].

The evolutionary algorithms cannot be applied in real-
time applications, such as underwater image enhancement. 
Depending on the results of research on the removal of 
artifacts and the improvement of image quality underwa-
ter, approaches can be divided into two general methods: 
wavelength compensation (i.e., dispersion of substances 
and particles in water) and the reconstruction of color (i.e., 
absorption of light) [10].

Sometimes methods use physical or hardware optimiza-
tion. The optimization procedures include most non-physical 
and software methods to improve image quality.

Fig. 3  The image on the right, the RGB image, and the left image is the transfer of the image to the modified HSI space.  Source: Ghani et al. 
[29] and Iqbal et al. [36]
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Although, some software methods, such as the use of 
mapping filter, are a real-time technique which their effects 
cannot accept in the image. The reason for this problem 
is the result of the deletion of some image information by 
the definition of noise removal or other artifacts [39, 40].

Panetta et  al. [39] presented a new non-reference 
Underwater Image Quality Measure (UIQM) that com-
prises three underwater image attribute measures. (1) The 
Underwater Image Colorfulness Measure (UICM), (2) the 
Underwater Image Sharpness Measure (UISM), and (3) the 
Underwater Image contrast Measure (UIConM).

Based on [40], the object detection algorithm can 
be divided into three stages: (1) non-real-time image 
enhancement via enhancer techniques, (2) edge detection, 
and (3) object detection.

The recent methods used to improve the image quality 
underwater are the reconstruction of color-based restora-
tions in [41–47], the compensation of wavelengths of light 
(i.e., physical and non-physical models) [38–46, 48], and 
Polarization (hardware) [47, 49].

Bianco and Neumann [41] used a real-time and non-
uniformly method to improve underwater images. Their 
method was based on the Gray-World assumption in 
turning color space. The use of the red channel as one of 

the methods of color decomposition can be seen in the 
research by Galdran et al. [42].

Bianco et al. [43] had already declared that the advantage 
of some methods is that they do not entail the learning of 
the medium physical parameters, while some underwater 
image adjustments can be performed by non-automatic (as 
histogram stretching [50]). In some studies, the color change 
is also used to reduce the intensity of blurring, and exces-
sive blurring is referred to in the underwater image called 
fog image [43].

Similar to [42, 43], a study by Li et al. [44] has been 
used to reshape and redone the red channel in a De-hazing 
process based on a non-real-time application. They initially 
improved blue and green color channels through the Dehaz-
ing algorithm and based on the expansion and modification 
of the Dark Channel Prior algorithm. Then, the red chan-
nel is corrected after the theory of a global hypothesis. In 
[45], a non-real-time effective color correction strategy was 
introduced based on linear particle transduction to respond 
to color distortion, an innovative contrast enhancement tech-
nique that was able to reduce artifacts to lower contrast.

Also, [46] introduced a near real-time effective algo-
rithm to optimize the quality of captured images underwa-
ter and degraded due to the medium scattering and absorp-
tion. As illustrated in Fig. 5, their approach built on the 

Fig. 4  Improving the quality of the original image (left) by the PSO algorithm and contrast stretching (right).  Source: Abonaser et al. [38]

Fig. 5  Method overview.  
Source: Ancuti et al. [46]
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fusion of multiple inputs. The method of [47] was based 
on light attenuation inversion after processing a color 
space contraction using quaternions. In fact, they applied 
the algorithm to the white, and then, the attenuation gave 
a hue vector characterizing the watercolor.

In some methods, conventional filters are used which 
serve as a mean low-pass filter of a neighborhood of 
dimensions m × n, and its method is to interlock all neigh-
borhood pixels, arranges the ascending order, and selects 
the middle element of the ordered numbers, and replaces 
the center pixel [37].

Some also suggest the use of homomorphic filtering 
[51], which has been successful in combining methods 
such as discrete wavelet transform and histogram match-
ing. Similar to [51], there is also research that uses real-
time filtering on an image, color correction, noise elimina-
tion, correction, and avoidance of high light propagation, 
and is considered an efficient tool [52]. Sub water imaging 
can be modeled as Fig. 6 by taking into account the noise. 
According to Fig. 6, the image of the object being modeled 
with f(x,y) is disrupted by passing through the water envi-
ronment and the components of the imaging system by the 
expansion function h(x,y) [53, 54]. Finally, the recorded 
image is a distorted image of g(x,y), which is impregnated 
with noise caused by the detector environment n(x,y). 
The relation between the main image, the point expan-
sion function, the received image, and the noise can be 
expressed as (2) [55]:

Here, × sign is a convolution operator, and the goal is 
to compute the original image f of the impeded image and 
impart g noise.

One of the most important real-time filters that can 
simultaneously try to remove the blurring and noise from 
original images such as underwater images is the Wiener 
filter [9]. This filter is defined by relation, so that when 
power is reduced in it, the Wiener filter will act as the 
reverse filter. Wiener filter, which seeks to find an optimal 
trade-off between inverse filtering and denoising, is one of 
the linear estimators that use the concepts of orthogonally 

g(x, y) = f (x, y) × h(x, y) + n(x, y).

properties [10, 54, 56]. The frequency response of this 
filter can be expressed according to (3) [9, 57–60]:

where H(u,v) is the frequency response of blur Point Spread 
Function (PSF), and Sgg(u,v) and Sɳɳ(u,v) are the power spec-
tral density of the degraded image of g(x,y) and noise ɳ(x,y).

Adaptive histogram correction is also found in other stud-
ies such as Ghani et al. [61] and Althaf et al. [62], which 
improve the quality of underwater images to improve color 
and contrast.

Other methods have been suggested in this regard, which 
has been shown to have high efficacy in improving the qual-
ity of underwater images, such as the multi-scale Retinex 
transformation method [63–65].

Since the design and manufacturing of real-time Syn-
thetic Aperture Sonar (SAS) [66, 67] has a short life and has 
been scattered in research and industrial centers around the 
world, it has been attempted to elaborate on how to calculate 
the most important SAS parameters using research.

In the same year, Hu et al. [68] published a research pro-
ject aimed at enhancing resolution for underwater images 
and fixing the motion transmission or modification of under-
water sensor network simulators [68, 69]. Image quality 
improvement is also one of the real-time techniques that 
Wang et al. [70] and another researcher [71] have found 
by measuring the amount of image impairment. Similar to 
[68, 70, 71], another study was conducted to near real-time 
recover underwater scenes based on image blurriness and 
also light absorption [72]. This process practically enhanced 
the images. Underwater image recovery under the non-uni-
form optical field based on polarimetric imaging was among 
new studies conducted by Hu et al. [73].

3  Targets in underwater images

In this section, we study the methods that have worked on 
the targets in the underwater images. It may be necessary for 
some applications to track a particular object or target, and 
therefore, it is necessary to suggest and operating methods 
that are appropriate to what is contemplated in underwater 
images.

3.1  Detection of specific targets

The capability to extract features from underwater images 
and adaptation based on visual recognition is interesting 
research having presented to detect targets and objects as 
real-time applications [52]. Sometimes unsupervised meth-
ods, as a separate network, not only enhance image quality 

W(u, v) =
H∗(u, v)Sgg(u, v)

‖H(u, v)‖2Sgg(u, v) + S
��
(u, v)

,

Fig. 6  Imported noise model in underwater imaging devices.  Source: 
Ghani et al. [51] and Lu et al. [52]
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but also can effectively real-time detect the objects appear-
ing in the images [74]. The attempt made in this field is an 
unsupervised generative network to produce high-quality 
underwater images and to correct the color of the images 
[66, 75–79].

The detection of the Region of Interest (ROI) in images 
is achieved by extracting features and, consequently, cal-
culating the contrast in the underwater images [80]. Wang 
et al. [81] have proposed a non-real-time model that detects 
the objects in underwater images with logical randomized 
escalation as a strategy that is delayed in the implementa-
tion loop. In Fig. 7, a scheme of the strategy function [81] 
is displayed for an underwater image in detecting the image 
of number "4".

3.2  Assessment criteria

Quality assessment can be considered as a comprehensive-
ness method that improves underwater image structures and 
is more suitable for low depth images [82].

The advantages of this method are having a combination 
of different techniques, and it can eliminate noise, scattering, 
hazing, contrast, and improper color distribution [83–85]. 
However, these techniques are not applied simultaneously 
and can be applied hierarchically on underwater images 
according to comprehensiveness in method; it is likely to 

ruin the information in the process. Normally, the real-time 
and less time-consuming methods are used.

Some real/non-real-time methods have employed stand-
ard deviation, mean, normal distribution, and geometric 
characteristics analysis [86]. Real-time processing is some-
times misapprehending to be high-performance computing, 
but this is not an accurate classification [87–89]. Some stud-
ies have used the calculation of the quality, similarity, or dif-
ference of the processed and original images, which can be 
considered as a more important assessment method [86, 90].

Besides detecting the desired goals in images, try to 
improve the quality is necessary to apply techniques for esti-
mating the image quality and the detected targets, such as 
studies [29–34]. In these examinations, entropy, mean square 
error (MSE), and peak signal-to-noise ratio (PSNR) have 
been used as assessment criteria. Similar, [91] in [29–31, 92] 
used MSE and PSNR as assessment criteria to measure the 
quality improvement of underwater images. Time estima-
tion, MSE, PSNR, and entropy are among the benchmarks 
mentioned in [32]. Precision and factors such as the par-
tial decision rate and detection sensitivity are calculated in 
some methods [91]. The Structural Similarity Index (SSIM) 
of two images, peak signal-to-noise ratio, and MSE in the 
proposed model in [33] have been considered in assessing 
the removal of artifacts into underwater images. Perhaps, 
the research conducted by Yang et al. [83] is one of the best 
studies for the quality assessment of underwater images. In 

Fig. 7  A work sample by Wang et al. in near real-time semi-automatic detection of targets from underwater images.  Source: Wang et al. [81]
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addition to the conventional benchmarks that have just been 
mentioned, they also used benchmarks to estimate the best 
features extracted from the image. In studies [39, 40], in 
addition to the conventional benchmarks, the Pearson coef-
ficient was employed as a correlation coefficient between 
images. Besides these, the [52] has also used SSIM, MSE, 
and PSNR. Using the PSNR is also evident in [93]. MSE, 
PSNR, entropy, Structural Contrast Index (SCI), quality 
assessment of underwater images, and time components 
were among the characteristics of [94]. The average color 
matching coefficient and the quality of the underwater color 
image are among the benchmarks used in [95]. Also, the 
mean gradient, MSE and PSNR, and entropy are among 
the benchmarks discussed in the underwater image quality 
assessment [53, 96]. Medium entropy and quality improve-
ment factor are among the other benchmarks in [56].

Many different methods exist to measure execution time 
and time components, but there is a no single best assess-
ment criterion. Moreover, each criterion is a compromise 
between multiple features, such as resolution, accuracy, and 
computational complexity of the problem.

3.3  Advantages and disadvantages

There is a little investigation based on the advantages and 
disadvantages to improve real-time and non-real-time under-
water imaging quality, and there are many maneuvers on 
this topic.

3.4  Comparison with experiment

Certainly, data loss is to be expected in some ways. For 
example, in filtering methods, the loss of image informa-
tion as a result of filtering is high. This can also cause prob-
lems in transferring images to main processing center online. 
Accordingly, some methods can be suggested to resolve the 
transferring images. As an example, the use of deep learning 
can reduce the loss of image information, but its real time 
is affected. Therefore, we can compromise in this regard 
and expect that the loss of image information is somewhat 
negligible. Another suggestion is to use deep learning light 
weight structures to compensate for the loss of image infor-
mation and to maintain real-time capability. Other methods 
can be used to improve the resolution, such as super-resolu-
tion or enhance the details of underwater images.

Although hybrid and multi-step models have better out-
puts in improving the quality of underwater images, they 
spend more time processing than the conventional and clas-
sic methods. Therefore, hybrid and multi-step models are not 
appropriate for real-time processing. Problems with image 
quality degradation are mainly addressed by the selective 
absorption and scattering of light in water as well as the use 
of artificial light in deep water. Degraded underwater images 

have low contrast, low brightness, color aberration, blurred 
details, and uneven specifications that limit their applica-
tions in practical scenarios. For this reason, the use of hybrid 
methods and more recent methods based on deep learning 
can significantly improve the quality of the processed image. 
Several underwater image enhancement algorithms are sum-
marized in Table 1, with their characteristics, along with 
some of their representative investigations.

In Fig. 8, a configuration of previous underwater image 
enhancement methods is shown for the presented underwater 
image quality that the branch growth of each demonstrates 
better performance and high efficiency. We discuss differ-
ent conditions such as hardware, software, and other related 
methods to enhance the quality of underwater imaging in 
Fig. 8. The advantages and disadvantages of each part are 
pointed out.

3.4.1  Hardware

Different models such as polarization, laser imaging, multi-
imaging, and stereo imaging are affecting the precision of 
hardware. Some studies such as [47, 49] are as methods with 
sonar demonstration, and one of the main shortcomings of 
the sonar is its dependence to signal and noise on it. Studies 
[97, 98] are the other hardware promotion methods based on 
non-uniform distribution effect and proper recovery. On the 
other hand, some variables such as light change or magni-
tude of noise and water opacity are not considered [1, 10, 14, 
54]. Authors in [99, 100] suggested that laser imaging can be 
used for underwater robots, while lack of controlling laser 
can affect the precision of the detection. For example, how 
to send pulses can cause many problems. Multi-imaging and 
stereo imaging can be more effective compared with other 
hardware methods [23, 24, 100]. Photometric measuring 
might not be possible for images with different dimensions 
and not meet the optimal hardware condition. However, 
illumination fusion [24] is more efficient among hardware 
promotion methods as they can provide a better and more 
transparent image compared with other solutions.

3.4.2  Software

(a) De-hazing
  Software promotion is one of the main issues of 

improving quality of underwater images. Some esti-
mation proposed from optical transmission aiming at 
de-hazing and contrast improvement [101–103] may 
not always have ideal results. The mentioned conditions 
will encounter more complexity if the objects have a 
large scale than other parts of images. Some studies use 
the Laplacian pyramid [104] that depended on the low- 
or high-pass filter, and it is likely to ruin the informa-
tion. For de-hazing the images, color patches [105] are 
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an interesting idea. The image information is protected 
and can be used for underwater imaging, but also it is 
not so effective in overcoming underwater noise.

(b) De-flickering and de-scattering
  Compensating for the attenuation discrepancy along 

the propagation path is one of the most unique and effi-
cient methods in [106] and suitable for de-flickering 
and de-scattering. The strong point of [106] is that the 
process of de-scattering is implemented in addition to 
de-flickering.

(c) Enhancement
  Some techniques such as Local Histogram Equaliza-

tion [107, 108], Contrast Limited Adaptive Histogram 
Equalization (CLAHE) [13], Low level Noise [109], 
Wiener Filtering [110], and Slide Stretching [36] are 
some methods of image quality improvements without 
ruining information and the simplest methods ever [1, 
10, 14, 54].

(d) Restoration
  Ordinarily, the image restoration improvement model 

is based on repairing or changing the color channel. In 
[42], de-hazing is used in addition to image restora-
tion, which can be considered as a combined model in 
underwater image enhancement.

(e) De-noising

  It is suggested to use denoising as adaptive smooth-
ing as in other methods [111], but one of the main dis-
advantages of denoising models is ruining part of the 
essential information that is not noise.

f) Color correction
Color correction is a method for estimating quality [17, 

47, 112–114], while other methods ruining information 
have little destruction and they are not very accurate.

g) Classification and clustering
Although learning in classification is preferred to clus-

tering, but clustering is used in segmentation and even 
image quality improvement [115, 116]. Deep learning 
theory (also known as hierarchical learning) is part of a 
broader category of machine learning methods based on 
learning data representations, as opposed to task-specific 
algorithms. This process is modeled using a deep graph 
with several processed layers, including linear and nonlin-
ear converting layers [89, 117–119].

A key issue for underwater target detection is intertwined 
with goals such as proper object classification accuracy, 
rapid detection, and low complexity competing. It is clear 
that when images are not preprocessed properly, the recogni-
tion process is fraught with error. Although designing high 
deep architecture would resolve the recognition procedure 

Table 1  Characteristics of the reviewed papers on quality enhancement of underwater images

Study Categorization Algorithm model Strengths/characteristics

Lu et al. [10] Review study Survey of different models –
Lu et al. [1] –
Kocak et al. [14] –
Namdeo et al. [54] –
Schettini et al. [121] –
Hou [122] –
Yang et al. [123] –
Anwar and Li [124] –
Petit et al. [47] Improvement of the hardware 

part
Polarization Sonar detection, non-real time

Hurtós et al. [49] Sonar detection, non-real time
Yemelyanov et al. [97] Non-uniform distributions effect
Huang et al. [98] Proper recovery, non-real time
Tan et al. [99] Laser imaging Suitable for the robotic vehicle; can be performed 

in real time
Tan et al. [100] Suitable for the robotic vehicle; can be performed 

in real time
Murez et al. [23] Multi-imaging Photometric measuring, real/non-real time
Treibitz et al. [24] Illumination fusion, real/non-real time
Tan et al. [100] Photometric measuring, real/non-real time
Murez et al. [23] Stereo imaging Photometric measuring, real/non-real time
Roser et al. [25] Stereo estimation, non-real time
Murez et al. [125] Photometric measuring, non-real time
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Table 1  (continued)

Study Categorization Algorithm model Strengths/characteristics

Fattal [101] Improvement of the software 
part

Image de-hazing Estimating the optical transmission and haze-free 
scene contrasts; their model can work as real/
non-real time

Fattal [102] A local formation model for the color-lines in the 
context of hazy scenes; their model can work as 
real/non-real time

Ancuti et al. [104] They used Laplacian pyramid representation to 
minimize artifacts; their model can work as real/
non-real time

He et al. [103] Estimating the thickness of the haze, their model 
can work as real/non-real time

Chiang et al. [105] Evaluating both objectively and subjectively by 
utilizing ground truth color patches

Serikawa et al. [53] A model to compensate the attenuation discrepancy 
along the propagation path; Their model can work 
as real/non-real time

Lu et al. [106] De-flickering De-scattering Compensating for the attenuation discrepancy 
along the propagation path, their model can work 
as real/non-real time

Garcia et al. [107] Image enhancement Local histogram equalization; their model can work 
as real time

Hitam et al. [13] Mixture Contrast Limited Adaptive Histogram 
Equalization (CLAHE); their model can work as 
real/non-real time

Bekaert et al. [109] Images are characterized by reduced noise level, 
better exposedness of the dark regions, and 
improved global contrast; real time

Gibson et al. [110] Implementing Wiener filtering; real time
Iqbal et al. [36] They proposed an approach based on slide stretch-

ing; their model can work as real/non-real time
Fu et al. [108] They used the enhancement process with global, 

local networks, compressed, and histogram 
equalization

Galdran et al. [42] Image restoration and de-hazing They proposed a red channel method that colors 
associated with short wavelengths are recovered, 
and finally, underwater images are enhanced, real 
time

Arnold-Bos et al. [111] Image denoising They proposed an adaptive smoothing procedure to 
address the remaining sources of noise, real time

Åhlén et al. [126] Color correction They presented a method to estimate a hyper-
spectral image from an RGB image, which can be 
performed in real time

Liang et al. [114] They investigated the single underwater image 
enhancement by attenuation map-guided color 
correction and detail preserved de-hazing to solve 
problems of color degradation and detail loss 
in underwater imaging. Their technique can be 
performed in real time

Petit et al. [47] Light attenuation inversion; their model can work 
as real time

Torres-Méndez et al. [17] Markov Random Field learning; their model can 
work as real time

Lu et al. [113] Spectral response function; their model cannot 
work as real time

Rizzi et al. [112] Local filtering effect; real time
Chambah et al. [127] Color constancy Color restoration of underwater images; real time
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Table 1  (continued)

Study Categorization Algorithm model Strengths/characteristics

Wang et al. [84] Image quality assessment They proposed Structural Similarity Index (SSIM)
Lu et al. [128] They proposed a comprehensive image quality 

assessment index Qu
Arredondo et al. [85] The paper suggests a methodology to quantitatively 

assess the robustness and behavior of algorithms 
in the face of underwater noises

Panetta et al. [39] They proposed a new reference Underwater Image 
Quality Measure (UIQM)

Lu et al. [82] Their key contributions are proposed to include a 
novel shallow water imaging model

Yang et al. [83] They presented a new UCIQE metric, which is a 
linear combination of chroma, saturation, and 
contrast

Hou et al. [129] This contribution presents an approach to measure 
the sharpness of an image based on the weighted 
Gray Scale Angle (GSA) of detected edges

Li et al. [115] Classification and clustering They found de-scattering and color correction of 
underwater images affect using classification 
results, real/non-real time

Schmid et al. [116] The model successfully distinguished between 114 
different categories of zooplankton and particles, 
non-real time

Hollinger et al. [130] They focused on the active classification setting, 
where the vehicle controls which views to select 
the best perform the classification; can be per-
formed in real time

Kumar et al. [131] A mean shift clustering-based segmentation tech-
nique was used for isolating highlight and shadow 
segments from the images, real/non-real time

Yu et al. [132] A mean shift clustering-based segmentation 
technique was used for isolating highlights and 
shadow segments from the images, real/non-real 
time

Mahmood et al. [117] They investigated deep learning for underwater 
image analysis, in particular for coral species 
classification, which can be performed in real 
time

Qing et al. [118] In their work, three signals were used to detect and 
recognize three 10 cm diameter solid spherical 
targets with different materials (copper, alu-
minum, stainless), which can be performed in 
real time

Faillettaz et al. [119] They process a computer generated classifica-
tion, obtained with the common ZooProcess and 
Plankton Identifier tool chain developed for the 
ZooScan. Their work can be performed in real 
time

Li et al. [88] Underwater image and video synthesis approaches 
are desired. They pointed out that the lightweight 
network structure can be easily extended to 
underwater video

Yang et al. [89] They used the Conditional Generative Adversarial 
Network (CGAN), where the clear underwater 
image is achieved by a multi-scale generator. 
Their work can perform as a near-real-time model
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Fig. 8  A configuration is suggested for presented underwater image quality

Fig. 9  Comparison of underwater image analysis strategies to improve image quality in terms of computational complexity, time spent, and 
delay in 5 repetitions on PBRT images
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in images, but it takes a lot of time, and this makes it impos-
sible to model real-processing time.

3.4.3  Computational complexity

Investigating computational complexity among the various 
strategies for underwater image enhancement is more impor-
tant than software. The collection of images received from 
the underwater was used to estimate the time criteria for the 
methods, which are real and artificial sets produced by the 
PBRT Laboratory. This collection is composed of several 
images, most of which are freely available [103, 120]. Based 
on time calculations, we compared the types of algorithms 
based on the enhancement of underwater images. The results 
are shown in Fig. 9, where the methods that can perform 
real time are compared in terms of computational complex-
ity, time, and percentage delay. Calculation of relative time 
complexity is considered, and the experiment is performed 
for five repetitions by each method.

Figures 9 and 10 show that the values of delay, computa-
tional computation, and time-consuming are estimated based 
on the performance criteria of each algorithm. For example, 
after simulating the method, the functions of estimating time 
delay in response, as well as temporal and computational 
complexity in MATLAB software, have been used. Methods 
such as color correction and image de-hazing are methods 
that can be less computationally complex. There are some 
methods such as classification models in this field. Although 
they have the ability to update the structure and create better 
outputs, they require training. If the training step is removed 
from the algorithm’s main processing time set, they can 
respond quickly and apply real time by applying similar 
data applied in other ways. Figure 10 shows the variance 
and time interval based on the computational complexity 
of the methods in different iterations. As shown in Figs. 9 

and 10, the estimation of mean values and the variance of 
time response in color correction and clustering techniques 
are minimal. The low variance between responses indicates 
functional stability. It is inferred that some methods, such as 
the de-flickering and de-scattering methods, take less time 
than techniques such as clustering or denoising. Image res-
toration and classification methods also have the least time 
variance among the image quality improvement procedures.

4  Conclusions

In this paper, a comprehensive review of underwater image 
processing concerning real-time and unreal-time improve-
ments was presented. Depending on the different states of 
water, its depths and its varying levels, as well as how to 
move the control vehicle remotely, various types of the 
direction of the possible optimum image quality were inves-
tigated. These real-time or near real-time approaches include 
five main steps based on image processing. These five steps 
are color space transfer, noise reduction, blurring removal, 
and contrast enhancement of the underwater image in ways 
such as histogram equalization, histogram stretching, trans-
forms such as wavelet transformation, and image restoration. 
Each of the approaches has been employed in certain catego-
ries to improve the quality of underwater images. By com-
bining them or using the improved application of solutions, 
the quality of underwater images or videos can be enhanced.
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