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Abstract
In this paper, the main network of multi-channel light sources is improved, so that multi-channel pictures can be fused for 
joint training. Secondly, for high-resolution detection pictures, the huge memory consumption leads to a reduction in batches 
and then affects the model distribution. Group regularization is adopted. We can still train the model normally in small 
batches; then, combined with the method of the regional candidate network, the final detection accuracy and the accuracy 
of the candidate frame regression are improved. Finally, through in-depth analysis, based on image lighting technology and 
physical-based rendering theory, the requirements for lighting effects and performance limitations, combined with a vari-
ety of image enhancement technologies, such as gamma correction, HDR, and these technologies used in Java. Real-time 
lighting algorithms that currently run efficiently on mainstream PCs. The algorithm can be well integrated into the exist-
ing rasterization rendering pipeline, while into account better lighting effects and higher operating efficiency. Finally, the 
lighting effects achieved by the algorithm are tested and compared through experiments. This algorithm not only achieves 
a very good light and shadow effect when rendering virtual objects with a real scene as the background but also can meet 
the realistic rendering of picture frames in more complex scenes. Rate requirements. The experimental results show that the 
virtual light source automatically generated by this algorithm can approximate the lighting of the real scene, and the virtual 
object and the real object can produce approximately consistent lighting effects in an augmented reality environment with 
one or more real light sources.

Keywords Real-time enhancement · Realistic scene · Light source detection · Photorealistic rendering · Real-time 
augmented reality

1 Introduction

Augmented reality is an emerging field of interdisciplinary 
research. It is a technology that uses computers, sensors, 
displays, and other devices to enhance or expand the real-
world additional information seen by users. Augmented 
reality can realize the blending of virtual and real in the 
image or video stream, that is, the virtual information is 
dynamically superimposed into the real world by sensing 
and analyzing the objects and environments in the real world 
[1–3]. Among them, the three-dimensional registration tech-
nology for accurately registering virtual information is the 
basis for achieving a seamless fusion of virtual and real, 
and directly affects the user experience [4]. In the past two 
decades, many related theoretical algorithms and hardware 
devices have emerged in the field of augmented reality [5]. 
Hardware-based 3D registration mainly relies on the perfor-
mance of hardware sensors and does not need to calculate 
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complex algorithms to obtain positioning. Such as the long-
term stability system complex inertial navigation system, 
GPS, and high precision gyroscopes, speed sensors, optical 
or ultrasonic trackers that are often used in mobile terminals. 
These hardware technologies have large positioning errors 
or severe working environment conditions and have limited 
scope of action. In contrast, the positioning error based on 
vision 3D registration is small, there are many applicable 
scenarios, the system structure is simple, and the cost is 
low. Because of these advantages, vision-based 3D registra-
tion has been highly valued and developed [6–8]. Especially 
with the popularization of mobile terminals and the need for 
the integration of life scene applications, the technology is 
increasingly used in AR systems.

Each of the current mainstream methods has its own 
advantages and disadvantages [9, 10]. When the object 
has enough texture, the method based on feature point 
matching shows good results, but when there are a lot of 
cluttered objects in the scene, it will produce many fea-
ture mismatches. The model-based method performs well 
when dealing with untextured objects, but the effect will 
be affected when occlusion and lighting conditions change, 
and the performance will decrease when the object is the 
background texture [11]. The method based on deep learn-
ing can make end-to-end predictions. The accuracy is very 
high in scenarios the environment of the training set, but it 
is insufficient in generalization ability. Some methods use 
random forest classifiers to train with input image blocks or 
simplified pixel-based features. Although they work well, 
they rely on manually designed features that are difficult to 
fine-divide everyday items, and speed slower.

Lowe uses a combination of SFT descriptors and clus-
tered images from similar viewpoints for pose prediction 
of a single model [12]. Martinez combined SFT features to 
propose a fast and scalable multi-target registration system 
for object recognition and pose estimation. In addition to 
feature point descriptors, sparse features of key point regions 
can also be learned as descriptions [13]. Lepetit and others 
used a random forest as a classifier to collect color appear-
ance samples in key point areas to generate a training set, 
so that all possible appearance sets of each key point of an 
object are grouped into one class, and key point matching is 
completed by classifying pixel blocks in the point domain 
[14]. Prisacari and others performed global probability sta-
tistics on the color information of the front background and 
minimized the posterior probability error pixel by pixel to 
achieve region segmentation and pose parameter estimation. 
The improved algorithm enhances the pose optimization 
strategy, and the local histogram model is used to improve 
the robustness of the algorithm [15, 16]. However, when 
the color information of the foreground is close to the back-
ground, it is difficult to accurately segment the object and 
affect the attitude estimation.

In this paper, a self-coding convolutional neural network 
is constructed to predict the complete six-degree-of-freedom 
pose [17]. First, the self-encoder is used to reconstruct the 
target to suppress unfavourable factors such as background, 
lighting, noise, extract the main features related to the tar-
get, classify the viewpoint, and initially predict the rotation 
component. Secondly, the position and contour of the object 
in the plane are obtained according to the reconstructed 
map output from the encoder. The translation component 
is predicted using the proportional relationship of the cam-
era imaging principle, and the complete rotation compo-
nent is predicted using the offset angle of the bounding box. 
According to the requirements of photorealistic rendering, 
based on the existing hardware foundation, a reasonable and 
efficient lighting algorithm is designed and applied to pho-
torealistic rendering.

2  Optimization framework construction

2.1  Detection area training parameter extraction

First zoom the picture four times to get three pictures includ-
ing the original picture, and then train an RPN network at 
the front of the entire network to simply distinguish positive 
and negative samples, and then select some fixed-size ROIS, 
such as 512 × 512 × 40 to ensure that these ROIS contain as 
many candidate frames as possible [18–20]. At the same 
time, many ROIS generated in the RPN are removed from 
large and small boxes to ensure that the scales are approxi-
mately the same. At the same time, all these ROIS must 
include all candidate boxes without omissions. These uni-
formly sized ROIS are then sent to the detection network. 
After the pictures of all sizes are detected, the test results are 
restored to the pictures to form a result [21].

As shown in Fig. 1, the images of three scales obtained 
a large number of ROIS after passing through the RPN net-
work, and then continued filtering to delete incomplete can-
didate frames and candidate frames, that are too large or too 
small to obtain all the set of ROIS for the candidate box. 
Ensure that all targets can be trained without wasting data.

From Table 1, it can be clearly found that the effect of 
the SNIPER structure on the baseline produces a more obvi-
ous effect, and the more input picture scales, the better the 
effect, but as more and more pictures, the increasing effect 
tends to be saturated. Obviously, when the scale of the input 
picture is enough, the picture entering the main network has 
almost covered all the candidate boxes. At the same time, 
each candidate box can be enlarged to the same value. Even 
if the number of scales continues to increase, the target can-
not be reduced the scale is different, so the later the scale, 
the smaller the scale effect is.
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As shown in Fig. 2, a feature map is output for operations 
from bottom to top, top to bottom, and horizontal connec-
tion. However, the difference is that in this part, instead of 
extracting only the features of the last layer, all the interme-
diate feature maps of all the right branches are extracted, 
and then these feature maps are used for RPN operations. It 
is obvious that the ratio of each feature map to the original 
image after this operation is different. Similarly, the recep-
tive field of each anchor point on the feature map is also dif-
ferent, which corresponds to the size of the candidate frame. 
So extracting candidate frames on these feature maps does 
not need to select three areas in addition to the three aspect 

Fig. 1  Multi-scale training ROI 
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Table 1  Impact of data on SNIPER structure on test results

Method mAP25 AP45 AP65

Faster 0.7526 0.8921 0.8627
SNIPER + faster (1 scale) 0.7918 0.9184 0.9054
SNIPER + faster (3 scale) 0.8129 0.9408 0.9128
SNIPER + faster (5 scale) 0.8271 0.9556 0.915
SNIPER + faster (7 scale) 0.8226 0.9572 0.9171

Fig. 2  FPN in RPN
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ratios like the Faster R-CNN mentioned above. Each RPN 
part in this network only needs to select 3 candidate frames 
of aspect ratio, even if there are feature maps of five scales, 
there are only 15 candidate frames of size. Not much more 
computation than the original RPN. In these feature maps, 
(512 × 512 + 256 × 256 + 128 × 128 + 64 × 64 + 32 × 32) × 3 
candidate frames can be extracted in total.

The lighting effect is not only determined by the light 
source, the fineness of the object model also plays a large 
role. To make the rendered scene look more realistic, it is 
necessary to use a physical-based rendering method to give 
the surface material of the object more finer parameters. 
This article chooses to use the following four parameters 
to control.

The reason that the method based on feature point match-
ing shows good results is mainly due to the advantages of 
three aspects: small calculation amount, good robustness, 
and complex geometric shadow insensitivity.

Albedo The albedo map assigns a color or basic reflec-
tance to each Texel pixel on the surface of an object. It rep-
resents the basic color of the object. It uses a texture to store 
the color RGB vectors.

Normal A normal map is a special texture that stores 
the normal vector of the object’s local coordinate system 
(tangent space), which is expressed in RGB colors. In the 
traditional lighting model, the normal of each segment are 
obtained by interpolating the vertices of the triangles, so that 
the surface of the object will appear flat when calculating 
lighting, without levels and details. In actual life, the surface 
of the object is often uneven, because the normal arrange-
ment of the surface of the object is not consistent. Normal 
mapping technology can give each segment a unique nor-
mal, which greatly enhances the surface details and enhances 
the bump feeling. Normal maps are generally generated by 
mapping the surface normal from the high-precision models 
and storing them in the maps. This eliminates the need to 
calculate triangle meshes of several orders of magnitude like 

high-precision models, which can greatly improve rendering 
efficiency.

Coarseness The Roughness map can specify the rough-
ness of the surface for each Texel. It is used to control the 
normal distribution function and geometric occlusion func-
tion of the BRDF, so that the specular reflection range of the 
rough surface is larger but blurred, while the specular reflec-
tion of the smooth surface appears concentrated and sharp. It 
stores a floating-point value ranging from 0.0000 to 1.0000.

We set the light occlusion factor for dark areas on the 
surface of the object through the “Ambient Occlusion” map. 
For example, on the surface of a brick, the crack of the brick 
on the albedo map does not contain any shadow information, 
and the AO map can specify the crack, because the light in 
this area is easily blocked, which can significantly improve 
the reality on site. The floating-point values stored in the 
map range from 0.0000 to 1.000.

2.2  Detection algorithm of light source in real‑time 
augmented reality scene

The encoder and decoder included in the reconstructed self-
encoder are composed of a convolution layer and a decon-
volution layer, respectively. The network structure is shown 
in Fig. 3. The convolution layer is responsible for extracting 
multi-scale feature maps from top to bottom to complete 
the goal. The dimension reduction indicates that the decon-
volution layer improves the resolution of the feature map to 
restore the target size [22]. To the general network structure, 
we also stack the convolutional layer / deconvolution layer 
and the RELU activation layer to form the entire network. 
The training goal of the reconstructed autoencoder is to 
reproduce the input samples, and the loss of each sample 
is simply expressed as the average Euclidean distance of 
the pixels.

The training goal of the reconstructed autoencoder is to 
reproduce the input samples, and the loss of each sample is 

Fig. 3  Network structure
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simply expressed as the average Euclidean distance of the 
pixels:

Add random noise to the input image for enhancement, 
while the reconstruction target remains intact. The auto-
encoder pays attention to the target object and suppresses 
the influence of background, lighting, occlusion and other 
factors. We implement a random enhancement function 
faugm (*) for the input x, and the reconstruction target can 
be expressed as

The encoder extracts the features of the shape of the 
object. To output the prediction of the object’s pose, we 
implement the pose classification immediately after the 
encoder with the fully connected layer. Considering the 
non-linear mathematical relationship of the pose estimation 
problem in the geometric mapping, two layers of full con-
nections are used, the dimensions of which are 1024 and N, 
and N is the number of sampling viewpoints. The feature 
vector of the feature extraction network is further reduced 
in dimension, and the probability distribution vector of the 
sampling viewpoint is output. Generally, in a classification 
network, the fully connected layer followed by the SOM-
TEX layer turns the output of the neuron into a probability 
distribution vector. We use a cross-entropy loss function to 
determine the classification category:

The network is roughly divided into two subjects, one 
is an autoencoder G that is responsible for generating the 
image, and the other is a full convolutional network D that 
is responsible for judging the authenticity of the data. The 
CGAN-based discriminant network has two inputs, one is 
the real image and the original image {x, y}, and the other is 
the generated image and the original image {x, G (x)}. The 
training cost function is

Define multi-task objective function for pose classifica-
tion and target segmentation:

Generally, α = 1, β = 1, and γ = 1. For pose estimation, 
pose classification is based on the reconstruction of the tar-
get model. Adversarial training has a good reconstruction 
effect on objects with complex textures. It helps to locate 

(1)Dp =
∑

m∈D
‖
‖xm − xm

‖
‖p.

(2)xm =
(
� ∗ � ∗ faugm

)
(x).

(3)dr−cla = −
∑N

m
ym log sm.

(4)
min

G

max

D
ladv =

(
Mx,y[logD(x, y)]

)

+Mx(1 − logD(x, y)).

(5)N = �Lp + �Lp + �Lp.

objects in the early stage and accelerates the convergence 
speed of the autoencoder.

Define the random affine transformation function faff (*) 
and random enhancement function faugn (*), then the input x 
and the reconstruction target are expressed as

2.3  Photorealistic rendering algorithm

The algorithm mainly contains two core points, there are 
voxel and cone tracking [23]. The first is the voxel, which is 
the pixel concept. It divides the three-dimensional space into 
unit cubes, and each cube has information such as position, 
normal, and material. Traditional scenes are represented 
using triangle primitives as the basic unit, while voxels are 
used as basic primitives in the new scene. Using voxels can 
greatly simplify the calculation of the intersection of light 
and objects. The process of turning triangle primitives into 
voxels is called voxelization.

After vowelizing the model, you can obtain the scene 
information stored in the three-dimensional texture, that is, 
the leaf nodes of the octree. An octree is a tree structure 
that is extended from the root node. Generally, an octree is 
created from the bottom up, and the structure of the entire 
tree is obtained by recursively merging the leaf nodes. The 
adjacent eight voxels are merged into a cube, and iteratively 
iterates until the top root node ends. Using sparse octrees 
has the following advantages. The first is the computational 
complexity of global illumination is independent of the com-
plexity of the scene. The second is that you can avoid stor-
ing empty areas in the scene, which greatly saves memory 
consumption. Finally, with the hierarchical structure, the 
traversal speed will be much faster.

The basic process of real-time rendering is as follows (a) 
Set the rendering state required to render the current model, 
(b) Set the vertex data of the current model, (c) Set the tex-
ture and texture data of the current model, (d) Render the 
current model, (e) Switch to step (a) and repeat the render-
ing, Until all models are rendered.

On the CPU side, there are mainly rendering state man-
agement functions, and on the GPU side, various functions 
are mainly used to facilitate the calculation of lighting in 
the fragment shader [24, 25]. Sender State function: Enter 
Boolean parameters to control the state of OpenGL when 
rendering, such as depth test, template test, clear color, and 
blend on and off. Fresnel equation: It inputs an included 
angle cosine and roughness coefficient, and calculates the 
ratio of reflected to refracted light in the incident light 

(6)X = faff(xview)

(7)xn =
(
� ∗ � ∗ faugn

)
(x).
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according to the formula. It should return a vector that 
represents the reflectance of the three colors of the RGB.

During training, we first need to randomly select CL 
and CR from the captured image sequence as the input to 
the network. Then select another intermediate image Ct 
for supervised learning (0 ≤ L < t < R ≤ N). Since the image 
sequence is captured by a camera that moves uniformly 
around the object, the blending coefficient α can be deter-
mined in the following ways:

Assuming that the depth features in the last six encoder 
layers are represented as FLk and FRk, the hybrid depth 
features used for decoding should be written as

The proposed network is trained in a supervised manner, 
including mask loss Lm, attenuation loss La, and refrac-
tion flow loss Lb. To improve the quality of the composite 
image in a new perspective, we added composition loss Lc 
and perception loss Ld to achieve this. Therefore, train the 
network by minimizing the loss function as follows:

where ω represents the equilibrium weight of the cor-
responding loss term. We use an additional SOFTMAX 
layer to normalize the output and use the BCE (binary 
cross entropy) function to calculate the loss as follows:

where H and W represent the height and width of the 
input image, and Mij and Pij represent the pixel values of 
the true binary mask and normalized output at position 
(i, j), respectively. We use the MSE (mean square error) 
function to measure this loss:

We normalize the output by an activation function, 
and then scale the output value using the size of the input 
image. Using the average endpoint error (EPE) function, 
this loss function is expressed as

To minimize the difference between the reconstructed 
image and the real image, the Lc function metric is used 
as follows:
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(9)Fb
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k
+ �Fr

k
.

(10)L = wmLm + waLa + wbLb + wcLc + wdLd,
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HW
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ij
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ij
)2,
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HW
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ij

(Pij − Pij)
2(Mij − 1)Mij.

(13)Lb =
1

HW

∑
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(Pmm − Pmn)
2.

The introduced perceptual loss can better preserve the 
details and reduce the blur, while increasing the clarity of 
the reconstructed image, as follows:

3  Framework analysis

3.1  Detection algorithm analysis

To the method in this paper, the algorithm proposed by 
LINE2D is also predicted on a single RGB image. Figure 4 
shows the comparison results with LINE2D on the Line 
mode data. LINE2D is able to detect objects relatively well 
(see 2D.Bonding.Box) but cannot reliably estimate the cor-
rect pose. Without depth information, it mainly relies on 
gradient features on the contour of the object, which makes 
it very difficult to estimate the rotation accurately. It can be 
seen from Fig. 4 that the method based on deep learning 
networks has shown excellent potential and achieved good 
results in various aspects.

Through Fig. 5, we show the comparison of the track-
ing accuracy of the algorithm on BUNQ, CAT and DUCK 
sequences. Finally, it is found that there is interference 
of complex background in the video sequence. Since the 
previous research will not filter the trusted edges, when the 
contour points match, it is inevitable that the false edge 
points in the front background will not match, resulting 
in inaccurate tracking optimization results. The improved 
algorithm in this paper removes false edges near the edge 
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1
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of the contour, avoids mismatch problems, and can achieve 
accurate tracking in most test scenarios. Due to the inter-
ference of the same color area in the front background, 
PWP3D is prone to drift.

We found that the impact of this sample collection 
method on improving experimental results is huge. The 
experiment will select some pictures from the data set 
according to a fixed index order to ensure that the light 
source conditions are consistent, and then divide it into a 
training set and a test set. And then test the test set to get 
the results in Fig. 6, you can see that each index will make 
great progress when increasing the number of pictures, it 
is clear that the data collection method can greatly improve 
my method The effect, the resulting improvement is even 
greater than the model improvement. Good data is heavier 
in deep learning methods than well-designed algorithms.

3.2  Analysis of rendering algorithms

Test the performance and efficiency of the algorithm in 
this paper. The number of vertices and the number of quad-
rangles represent the order of magnitude of the objects 
drawn in the scene, as shown in Table 2. Because the per-
formance requirements of the calculation in this article 
are not too high, the test graphics card is Intel HD630. A 
vertex represents the high symmetry point of each figure. 
The following table records the frame rate performance 
within 120 s of continuously rendering the scene under dif-
ferent loads. When the model is more detailed, the frame 
rate can still be maintained above 50 fps. It fully meets 
the requirements of real-time Yunnan dyeing, and can also 
achieve very good lighting effects, which fully proves the 
efficiency of the algorithm in this paper.

The experiment showed all the lighting phenomena, 
as shown in Fig. 7, including the specular reflection of 
metal dragons, the diffuse reflection of red plastic drag-
ons, the refraction effect of glass dragons, and the spec-
ular reflection effect of balls. Objects of different mate-
rials can be well integrated with the scene in the same 
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Table 2  Scene complexity
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scene, confirming once again the rationality of the algo-
rithm in this paper, which can indeed bring better global 
illumination.

The effects of different refractive indices were tested. As 
shown in Fig. 8, higher refractive indices will cause greater 
reconstruction errors. The main reason is that the higher 
refractive index results in a wider range of radiation after 
refracted light, which is more difficult to capture, resulting 
in a reduction in reconstruction accuracy.

An intrusive method was used to reconstruct the real 
model. As shown in Fig. 9, the object was sprayed with 
DPT-5 developer and scanned and reconstructed using a 
high-end industrial scanner. Then iterative nearest point 
algorithm is used to align the initial model and the scan 
reconstruction model, and the distance between the recon-
struction model and the scan reconstruction model is also 
used as a quantitative index for evaluation. The convergence 
speed of the real model during reconstruction is the simula-
tion model. Although there are still some errors in our final 
reconstruction results, compared to the initial model (visual 
convex hull), it has been improved by 26%. The test curve 
shows that our method can significantly reduce the recon-
struction error in about 20 iterations.

3.3  Overall framework analysis

The algorithm designed in this paper can achieve very good 
lighting effects in real-time rendering. The implementation 
process of the ambient lighting part was further improved 
to make it have better performance on low-end devices. The 
first part is the diffuse reflection irradiance map. The size 
of the original algorithm map is 512 × 512. Since the irradi-
ance map stores the average value of the emissivity of the 
surrounding hemisphere, it is a low-frequency signal in the 
illumination equation. The pre-calculated cost is changed to 
a low-resolution (32 × 32) map here, and linear filtering is 

enabled to make the result smoother. The second part is to 
reduce the number of samples of pre-filtered environment 
maps, which can greatly reduce the time required for pre-
calculation. As the roughness increases from left to right, 
reducing the number of samples will bring a lot of imaging 
to objects with higher roughness. Noise. After the optimi-
zation of the above algorithm, the time for processing pre-
filtered environment maps is greatly reduced, which speeds 
up the pre-calculation process (Fig. 10).

Considering the performance and implementation com-
plexity of the scheme, two simulation scenarios are set up. 
Bias voltage, signal amplitude, and number of active LED 
chips can all be used to adjust lighting and communication 
performance. It should be noted here that the spatial-domain 
dimming control with low complexity fixes the DC offset 
to alleviate the problem of color shift. In this work, the 
dynamic range of the LED is set to [0.00, 1.00]. Therefore, 
the optimal DC offset is set to the midpoint of the dynamic 
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range to ensure stable lighting and maximize modulation 
depth. Therefore, there are two parameters in the system 
(signal amplitude and number of active LED chips) that can 
be used to adjust different lighting levels. Figure 11 shows 
a comparison of the system’s BER performance at different 
normalized lighting levels in this framework, and Fig. 12 
shows a comparison of the available spectral efficiency at 
different normalized brightness levels.

4  Conclusion

Aiming at multi-scale target problems in the data set, this 
article takes the Faster R-CNN network as the basis and 
adopts three improvement measures on multi-scale prob-
lems. First of all, we used the image pyramid to reduce the 
defect to an appropriate ratio before inputting the image 

into the network, and regardless of its size, the detection 
network was relatively easy to handle. This part involves 
regional candidate network methods. In the step of select-
ing a suitable ROI, training is performed to make the selec-
tion more intelligent; second, the feature pyramid method 
is used in the feature extraction method, and the idea of the 
feature pyramid is included in the detection main network 
and the candidate frame extraction network, so that each 
feature map. One layer can contain multi-scale information, 
it is found that the recall rate for small targets is greatly 
increased through comparative experiments; finally, a cor-
relation constraint method is used in the last layer feature 
map of the main network to enhance the non-correlation of 
the feature map, which can be in the first layer feature map 
Characterizing more information can effectively reduce the 
occurrence of overfitting. Use image-based lighting tech-
nology to calculate the ambient light of the entire scene, 
including the creation of environmental maps, the convolu-
tion generation of the irradiance maps of diffuse reflections, 
and the pre-filtered environmental maps of highlights and 
the generation of BRD 2D lookup textures; then calculate 
the phenomenon of reflected light and refracted light finally 
constitutes global illumination. These lights are based on 
physically rendering the object, making the object’s appear-
ance look more realistic in the virtual environment. Image 
enhancement technology is used in the final imaging. The 
model algorithm in this paper has practical application value 
in various performance indicators. The work of this paper 
makes a meaningful exploration for the detection of real-
time augmented reality scene light sources and the construc-
tion of photorealistic rendering framework.
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