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Abstract
The high-efficiency video coding (HEVC) standard improves the coding efficiency at the cost of a significantly more 
complex encoding process. This is an issue for a large number of video-capable devices that operate on batteries, with 
limited and varying processing power. A complexity controller enables an encoder to provide the best possible quality at 
any power quota. This paper proposes a complexity control method for HEVC intra coding, based on a Pareto-efficient 
rate–distortion–complexity (R–D–C) analysis. The proposed method limits the intra prediction for each block (as opposed 
to existing methods which limit the block partitioning), on a frame-level basis. This method consists of three steps, namely 
rate-complexity modeling, complexity allocation, and configuration selection. In the first step, a rate-complexity model is 
presented which estimates the encoding complexity according to the compression intensity. Then, according to the estimated 
complexity and target complexity, a complexity budget is allocated to each frame. Finally, an encoding configuration from 
a set of Pareto-efficient configurations is selected according to the allocated complexity and the video content, which offers 
the best compression performance. Experimental results indicate that the proposed method can adjust the complexity from 
100 to 50%, with a mean error rate of less than 0.1%. The proposed method outperforms many state-of-the-art approaches, 
in terms of both control accuracy and compression efficiency. The encoding performance loss in terms of BD-rate varies 
from 0.06 to 3.69%, on average, for 90–60% computational complexity, respectively. The method can also be used for lower 
than 50% complexity if need be, with a higher BD-rate.

Keywords  Complexity control · HEVC · Intra coding · Pareto optimization

1  Introduction

The latest video coding standard, high-efficiency video cod-
ing (HEVC), was finalized by the Joint Collaborative Team 
on video coding (JCT-VC), in 2013 [1]. Compared to its 
predecessor H.264/AVC, The HEVC standard reduces the 
bitrate by half with the same visual quality. The prominent 
coding performance of HEVC is the result of encoding tools 
and schemes, such as intra prediction with 35 modes, and 
the flexible coding structure, coding tree unit (CTU), which 
consists of coding units (CUs), prediction units (PUs), trans-
form units (TUs), and more prediction modes. However, 
these coding tools lead to higher power consumption and 
processing time (about five times higher than H.264/AVC 
for a certain configuration [2]).

The rapid advances of semiconductor and multimedia 
technologies have brought many multimedia capable con-
sumer equipment and industrial video applications to use. 
Many of these applications, such as video conferencing and 
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video surveillance, need real-time encoding and are sensi-
tive to delay. Also, portable devices, such as smartphones, 
and portable computers, have limited processing power and 
battery capacity. Due to the varying load of computations in 
different processing elements, shared memory, and battery-
dependent power/performance policies at the operating sys-
tem level of these devices, the available processing power 
for video encoding varies during the time.

To deal with the video coding complexity, many research-
ers work on different aspects of lowering encoding complex-
ity which can be categorized into two groups; complexity 
reduction and complexity control methods. Complexity 
reduction methods address the problem of reducing the pro-
cessing time while keeping the encoding performance loss 
negligible [3–7]. Complexity control approaches, on the other 
hand, provide flexible and efficient solutions to make trade-
offs between rate–distortion (R–D) performance and compu-
tational complexity [8–11]. These approaches provide video 
encoding in any specified target complexity and try to maxi-
mize the coding performance within that target complex-
ity. Complexity control is more necessary for real-time and 
power-constrained video applications, since the complexity 
reduction methods are usually limited and their performance 
is highly dependent on the video content.

As an important part of HEVC encoding, intra prediction 
enables random access to coded frames, prevents the propa-
gation of error, and is a good choice for archiving [12], screen 
content coding [13], low-delay video coding in complex 
communication environments and heterogeneous network 
conditions [8, 14]. As the complexity of intra prediction has 
specifically increased in HEVC, dealing with its complexity 
has become very important. Hence, complexity control meth-
ods [8], resource allocation schemes in cloud-based systems 
[15], and encoding time and energy modeling [16] for intra 
coding have recently become interesting research problems. 
Moreover, intra coding’s contribution to the total encoding 
complexity of the next-generation video coding standard, 
versatile video coding (VVC) [17], has increased more than 
five times, compared to HEVC, which makes dealing with 
this complexity more pressing.

In this paper, a novel complexity control approach is pro-
posed that for the first time adjusts the complexity via limit-
ing the number of intra modes in each CU (as opposed to the 
existing approaches that limit CU partitioning). This approach 
has some advantages over the existing methods: (1) it is more 
precise and provides a fine-grain control (as the complexity 
can be adjusted with steps as small as a single intra mode); (2) 
it is easier to be implemented in the existing video encoders, as 
it does not require modifying the CTU partitioning algorithm 
which is the backbone of the HEVC encoder, (3) and it can be 
employed separately, or on top of existing CU partitioning-
based methods for fine-grain control. Several video sequences 
with various properties have been used to study the effect of 

encoding parameter selection on the rate–distortion–complex-
ity (R–D–C) space. A set of Pareto-optimal configurations is 
extracted as the result of this study that corresponds to the 
best configurations in different complexity quota. A texture-
aware fast intra-coding technique is used alongside this opti-
mization to refine the decision process according to the video 
content. This decision-making technique is integrated into a 
three-step complexity control. In the first step, a fast online 
rate-complexity modeling is performed for the sequence under 
encoding. This model is used to estimate the encoding com-
plexity based on the quantization parameter (QP) and is used 
to handle the varying bitrate coding. In the second step, a com-
plexity parameter is allocated to each frame, according to the 
estimated complexity and the target complexity. Finally, the 
third step assigns a coding configuration to each block of the 
current frame, based on the allocated complexity, the Pareto 
analysis, and the frame content.

The main contributions of this paper are summarized as:
A complexity control scheme for HEVC intra prediction 

is proposed that works based on finding the best set of intra-
prediction modes. To the best of our knowledge, this is the 
first complexity control system that works based on coding 
modes instead of CU partitioning.

Adjusting the complexity based on the coding modes pro-
vides a fine-grain complexity control with lower error rate 
compared to competing methods. Moreover, it is easier to be 
implemented on top of existing encoder implementations, as 
it does not require changing the CTU processing algorithm.

The effect of coding configuration on the R–D–C space 
of intra coding is explored and modeled, using a Pareto-
frontiers analysis. Moreover, a texture-aware fast intra-
mode decision [6] is exploited to refine the efficiency of 
this Pareto-based model. The simplicity of a Pareto-based 
controller makes it a good choice for both software and hard-
ware encoders.

A simple yet effective encoding complexity-encoding rate 
model is presented that estimates the encoding time of each 
video sequence, based on the selected QP. This is useful in 
handling variable bitrate encoding.

The rest of the paper is organized as follows. Section 2 
reviews the related works. Section 3 presents the R–D–C 
analysis performed. The details of the proposed complexity 
controller are discussed in Sect. 4. Experimental results veri-
fying the effectiveness of the proposed method are presented 
in Sects. 5 and 6 concludes the paper.

2 � Related works

The problem of the high computational complexity of the 
HEVC standard has been addressed in several works. Two 
related tasks can be identified in these works: complexity 
reduction and complexity control.
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2.1 � Complexity reduction

Methods in [3–6] try to reduce the number of intra modes 
that should be assessed to reduce complexity. To this end, 
the use of dual-tree complex wavelet transform (DT-CWT) 
and Prewitt operator in finding the dominant edge direc-
tion has been studied in [3] and [4], respectively. Hosseini 
et al. [6] proposed a novel texture analysis method that esti-
mates the intra mode, analyzing the residuals of the planar 
intra prediction. Moreover, the proposed method can detect 
the DC/planar modes with the help of the content-adaptive 
binary arithmetic coding (CABAC) at almost no extra com-
plexity, which leads to further reduction of the rate–distor-
tion optimization (RDO) time. Fast CU decision and fast 
intra-mode decision based on neighboring blocks are pre-
sented in [18] and [19], respectively. convolutional neural 
networks (CNN) [20, 21] and support vector machines 
(SVM) [7] are other recent approaches for fast intra-CU par-
titioning decision. Moreover, hardware-level optimizations 
for intra coding have been studied in [22–26] where efficient 
implementations of encoding tools and data reuse techniques 
are employed to improve energy efficiency.

2.2 � Complexity control

Most existing methods [9, 11, 27, 28] control the coding 
complexity by constraining the maximum CTU depth. Cor-
rêa et al. [27] explored the relationship between the CU depth 
and coding complexity, and then constrained the maximum 
largest CU (LCU) depths of certain frames according to those 
of the previous frames. By adjusting the number of these 
constrained frames, the target encoding complexity can be 
met. The complexity-scalable encoder in [28] is capable of 
adjusting the processing time by limiting the maximum cod-
ing tree depth, according to the maximum depth of neighbor-
ing and co-located CTUs. In [11], a statistical model is pro-
posed to estimate the coding complexity of each CTU, which 
helps to restrict the CTU depth range based on the allocated 
complexity. Jimenez Moreno et al. [9] have proposed a com-
plexity control approach for HEVC which is based on a set 
of early termination conditions. They obtained thresholds 
for early termination at different depths via online learning. 
The methods in [29–31] are based on R–D–C analysis of 
intensive experiments. A set of configuration pairs has been 
created by the combination of coding parameters. Each pair 
has been evaluated on several video sequences to obtain the 
relationship between R–D performance and complexity. The 
pairs belonging to the Pareto frontiers are selected to build 
a lookup table. These complexity control tools can achieve 
the target complexity ratio by changing the parameter values 
according to the lookup table. However, ignoring the video 
content makes this approach prone to loss of efficiency. Grel-
lert et al. [32] propose a complexity metric that measures the 

complexity according to different used coding tools, such 
as transforms and sub-pixel interpolations. A proportional, 
integral, and derivative (PID)-based control system is used to 
control the coding complexity. A potential issue with CTU-
limiting methods is that they require changing the CTU par-
titioning algorithm and this can be hard in many existing 
implementations/libraries. As encoding operations are often 
implemented as recursive algorithms, limiting the operation, 
especially skipping certain sizes, requires major changes in 
implementation.

Another approach [10, 33] is to allocate the complexity 
budget to each CTU according to the visual saliency. Deng 
et al. [10] present a subjective-driven complexity control 
(SCC) approach based on the visual attention model. To 
predict human visual attention, SCC utilizes bottom-up and 
top-down models to yield the pixel-wise weight map of 
each video frame, reflecting the saliency values of different 
pixels. Since the maximum depth of LCU influences the 
encoding complexity and visual distortion, they formulate a 
polynomial optimization to minimize visual distortion.

Recently, a few complexity controllers have been proposed 
that support intra coding. In [34], the method proposed in 
[27] was extended to adjust the number of constrained frames 
faster. Zhang et al. [8] explore the relationship between CTU 
complexity of intra frames and SATD cost, which is shown 
to be linear. A CTU-level complexity estimation model is 
proposed according to this relationship. Then the coding 
complexity is adjusted by selecting a subset of PU sizes for 
each CTU based on the estimated CTU complexity. For the 
complexity control accuracy, a feedback-based error elimi-
nation scheme is adopted. The subjective-driven approach 
in [10, 33] also supports intra coding, as well as inter cod-
ing. A software defined network (SDN)-based load balancing 
method for video encoding is presented in [15] that distrib-
utes intra coding of videos to several cores and FPGA accel-
erators. Finally, [16] presents a time and energy modeling 
for intra coding that can be used to control the intra-coding 
complexity.

The above-mentioned methods mainly have either or both 
of these two problems. (1) All discussed methods perform 
the complexity control by limiting the CU partitioning pro-
cess and ignore the choice of coding configuration, which 
can be an accurate means of adjusting the complexity and 
coding efficiency [6]. This also makes the implementation of 
these methods harder for the existing encoder designs/librar-
ies, since the CU partitioning is at the core of all HEVC 
encoder systems. (2) Some existing methods concentrate 
on the error control and oversimplify the effect of texture 
characteristics which has a major effect on the choice of 
encoding. In what follows, a fine-grain complexity controller 
is proposed that adjusts the complexity using only the encod-
ing configuration and provides a superior coding efficiency 
by taking into account the video content.
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3 � R–D–C space exploration

For an efficient complexity controller, an effective under-
standing of trade-offs between coding complexity and cod-
ing efficiency is required. An R–D–C analysis on different 
choices of HEVC encoder configurations can be very help-
ful as they have a major impact on both complexity and 
coding efficiency. Next subsections explain the exploration 
and modeling of R–D–C space, using the coding configu-
ration of HEVC intra coding.

3.1 � Coding configurations for space exploration

To analyze the R–D–C space, first the encoding parameters 
that have a major effect on both complexity and compres-
sion performance are selected, which form the encoding 
configurations. The rough mode decision (RMD) and RDO 
processes are the two main steps of HEVC intra coding, 
and have the largest impact on all-intra-encoder complex-
ity. Therefore, the number of intra modes in RMD and 
RDO (Nrmd and Nrdo) are selected for R–D–C analysis. 
Moreover, these operations affect the performance of dif-
ferent PU sizes differently. While larger PU sizes are less 
affected by reducing the number of modes, smaller PU 
sizes are more sensitive to the choice of intra modes.

The baseline HEVC test model (HM) [35] encoder uses 
35 modes for RMD in all PU sizes, and {8,8,3,3,3} candi-
dates for RDO in PUs of {4,8,16,32,64} pixels. Since all 
combinations of these two parameters can create numerous 
configurations ( 

∑64

PU=4
N
rmd

× N
rdo,PU ≈ 9 × 1010 configura-

tion for 5 PU sizes of 64 to 4 pixels), exploration of all 
these configurations is not practical. As adding or remov-
ing a few intra modes to the list of candidates have negli-
gible effect on coding efficiency and coding complexity, a 
step size of more than one is used to explore the R–D–C 
space. Experiments show that adding seven modes (step 
size = 7) to the previous list of candidates in each new con-
figuration provides an acceptable accuracy for a practical 
complexity control system.

To further reduce the exploration space, without losing 
much accuracy, some observations from coding several 
video sequences [6] are notable: (1) since smaller PU sizes 
(4 × 4 and 8 × 8) are more sensitive to the number of intra 
modes, more modes are checked in RDO of smaller PUs; 

(2) PUs of 64 × 64 pixels are very unlikely to be encoded 
with a diagonal intra mode. Thus, intra modes of RMD for 
64 × 64 PUs are restricted to take three values of {DC/P, 
DC/P/H/V, all 35 modes} where H and V represent hori-
zontal and vertical modes, respectively; (3) moreover, due 
to the similar precision in PUs of 4 × 4 and 8 × 8 pixels, the 
same number of candidates are assigned to them. Hence, 
the number of RMD and RDO candidates for each PU, 
except for 64 × 64 pixels, can take values from the fol-
lowing sets.

3.2 � Model training with Pareto analysis

When the above-mentioned restrictions are applied to 
parameter selection, 1507 configurations are created for 
the encoder. In the training process, each configuration is 
used to encode six high-resolution (1080p) video sequences, 
including Beauty, Bosphorus, Kimono, Parkscene, Rush-
Hour and Sunflower, with QPs of 22, 27, 32 and 37 and the 
all-intra main configuration [36]. To generalize well on vari-
ous content, the above-mentioned training videos have been 
selected such that they cover a wide range of texture and 
content types. A total of 36,168 encodings are performed 
accordingly. To reduce the total encoding time required for 
modeling, 10 frames from the first 100 frames of each video 
sequence, with strides of 10 frames, were used. Then the 
Bjontegaard delta rate (BD-rate) and BD-PSNR [37] are 
calculated to compare each configuration with the baseline 
HM coding (i.e., the full search). To make complexity of 
various contents comparable, all measured encoding times 
are normalized with their baseline HM encoding. In other 
words, their encoding time is divided by the case of 100% 
coding complexity.

To analyze and model the R–D–C space, the rate-com-
plexity (R–C) and distortion-complexity (D–C) spaces are 
explored separately. The blue crosses in Fig. 1a, b show R–C 
and D–C space for average results of each of the 1507 coding 
configurations for all the tested video sequences, respec-
tively. It can be observed in Fig. 1 that the configuration 
1507 (baseline configuration) has the highest computational 
complexity and zero degradation; hence, it appears in the 
rightmost of both plots with complexity of 1 (100%). Simi-
larly, the first configuration which only considers DC/Planar 

Nrmd ∈ {DC/P, DC/P + 7 angular modes, DC/P + 14 angular modes, DC/P + 21 angular modes, All 35 modes}.

Nrdo for PUs of{4, 8, 16, 32, 64}pixels ∈ {{1, 1, 1, 1, 1}, {2, 2, 1, 1, 1}, {3, 3, 2, 2, 1}, {4, 4, 2, 2, 2},

{5, 5, 2, 2, 2}, {6, 6, 3, 3, 2}, {7, 7, 3, 3, 2}, {8, 8, 3, 3, 3}}.
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has the highest degradation and lowest complexity, on the 
leftmost of both plots.

The R–D–C modeling represents a multi-objective opti-
mization problem where the smallest rate and distortion in 
each complexity level is desired. This type of problem can 
effectively be solved by Pareto optimization. To identify the 
optimal configurations among the 1507 configurations in 
R–C and D–C spaces, all objectives (rate, distortion, and 
complexity) are to be minimized at the same time. But due 
to contradicting objectives, this is not possible in general. To 
perform a well-balanced trade-off decisions, the configura-
tions which belong to the Pareto frontier in both R–C and 
D–C spaces are identified.

In case of the R–C space, considering two configura-
tion C1 and C2, C1 dominates (is preferred to) C2 if each 
objective (BD-rate and complexity) of C1 is smaller than 
the corresponding objective of C2. Also, in D–C space, C1 
dominates C2 if it results in a larger BD-PSNR and a smaller 
computational complexity compared to C2. The set of con-
figurations that fulfill these conditions belong to the Pareto 
frontiers and can provide the best average results in terms 
of R–D–C efficiency within the analyzed configurations. It 
has been observed that the Pareto analysis might lead to 
different optimum values for each training video; however, 
the optimum points which are the goals of this analysis are 
almost always the same for all training videos. This is why 
the average results of all training video sequences have been 
used for this analysis.

Circles in Fig. 1a, b show the Pareto frontiers in the R–C 
and D–C spaces. It has been observed that almost all con-
figurations that belong to the Pareto frontiers of one space, 
are in the Pareto set of the other space as well. This similar-
ity happens due to the nature of the two BD measures used 
in the analysis, which take into account variations in both the 
bitrate and PSNR. As illustrated in Fig. 1, the encoding per-
formance naturally diminishes with the decrease of the nor-
malized computational complexity. For complexities above 
0.80, degradation of encoding performance is negligible. 
From 0.80 down to 0.65, the encoding performance dimin-
ishes gradually until it reaches a BD-rate increase of 1.04% 
and a BD-PSNR around 0.033 dB. However, from 0.65 to 
0.45, the encoding performance degrades rapidly, resulting 
in 6.73% increase in BD-rate for 0.2 less complexity.

The reason for this rapid degradation is the sparse 
intra-mode candidates in lower complexities, which can-
not provide an efficient texture modeling. To remedy this, 
the processing power can be effectively guided to the most 
probable intra modes, using a fast texture analysis. Sec-
tion 3.3 employs the method in [6] to improve the quality 
of modeling.

3.3 � Improving the model with texture‑aware mode 
decision

Instead of uniformly selecting angular modes in RMD, the 
fast mode decision algorithm presented in [6] is exploited 
here to guide the processing power toward the most probable 
intra modes. According to [6], the planar mode is proven 
to be a strong tool to model the plain textures. Therefore, 
removing the predicted plain textures from the image high-
lights the dominant high energy texture of the block. To 
obtain this, first the planar filter is applied to each pixel 
of the block. Then the residual of planar prediction with 
respect to the original picture is computed. After obtaining 
this residual, its energy in the horizontal and vertical direc-
tions is measured, to estimate one or two dominant texture 
directions [6]. Also presents an early termination scheme 
for DC and planar modes that exploits the context modeling 
of CABAC. It is shown that when the Hadamard cost of DC 
and planar are smaller than those of modes with smallest 
predicted bits based on CABAC’s status, DC or planar are 
most probably selected in the RDO process. This technique 
has been shown to reduce the complexity with a negligible 
loss of efficiency.

The content-based decision of this fast mode decision 
algorithm can improve the encoding performance in low lev-
els of complexity in the proposed complexity control system. 
Since the DC, planar, horizontal (H) and vertical (V) modes 
are more frequently chosen for encoding a PU, they have 
higher priority for lower complexity cases. If the complexity 
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configurations and crosses represent all tested configurations
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quota allows it, more predicted angular modes (and refine-
ment modes close to them) are added to the list of candi-
dates. Therefore, the following set of values for RMD are 
designed for the exploration, where 2 angles ± i denotes the 
estimated angular modes and i closest modes around them:

Similar to the previous exploration step, 64 × 64 PUs are 
encoded with only DC/P, horizontal and vertical modes. 
Also, the number of intra modes in RDO is equivalent to 
the previous R–D–C exploration in 3.1. Accordingly, 1992 
configurations are generated in the new exploration phase 
and overall 47,808 encodings are performed. Repeating the 
same steps of exploration in 3.2 on all tested configurations 
from 3.1 and this section (i.e., 1507 + 1992 configurations), 
the optimum configurations that belong to the Pareto frontier 
of the entire exploration space are obtained. These optimum 
points are presented in Fig. 2. Comparing this figure with 
Fig. 1, it is observed that for higher complexity quota, the 
same configurations form the first exploration in 3.1 are 
selected; while for lower complexity quota, the new context-
aware configurations are selected. It can also be observed 
that the degradation in the lower end of plots (leftmost) 
decreases to almost half, compared with the previous case, 
which is due to the context-aware decision making.

Nrmd ∈ {DC∕P, DC∕P∕H∕V , DC∕P∕H∕V + 2 angles

±1, DC∕P∕H∕V + 2 angles ± 3, DC∕P∕H∕V

+2 angles ± 5, All 35 modes}.

The complexity control algorithm proposed in this work 
operates by changing the encoder configuration to adjust 
the computational complexity. To provide a practical con-
trol system, 17 final configurations from Fig. 2 with almost 
equal distances were selected to be used by the complexity 
control algorithm. Table 1 presents these configurations in 
descending order of normalized computational complexity. 
The complexity, BD-PSNR and BD-rate columns present the 
average results for all training sequences.

Configurations 0–7, shown in white rows of Table 1, 
adopt the Pareto modes resulting from the fast mode decision 
algorithm as discussed in Sect. 3.3. Configurations 8–16, on 
the other hand, shown in gray shadows, select the Pareto 
modes with uniform distances, as discussed in Sect. 3.2. 
Table 2 represents the corresponding parameter values for 
each of these configurations. The RDO and RMD columns 
indicate the number (or specific modes) of intra modes in 
RDO and RMD for 4 × 4 to 64 × 64 pixels PUs, respectively. 
D ± i denotes the estimated direction and i refinement modes 
around it.

4 � The proposed complexity control scheme

This section introduces the components of the proposed 
control method. The overall framework of this method is 
summarized in Fig. 3 and includes: (1) rate–complexity 
modeling, (2) complexity allocation and (3) configura-
tion selection. The rate–complexity modeling component 
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Fig. 2   Final Pareto frontiers among all tested configurations in a R–C 
and b D–C spaces

Table 1   Average results of the selected Pareto configurations

Configuration 
number

BD-Rate (%) BD-PSNR (dB) Normalized 
complexity 
(%)

0 4.81 − 0.1433 47.77
1 3.97 − 0.1189 48.21
2 3.50 − 0.1066 48.55
3 2.79 − 0.0842 50.01
4 2.16 − 0.0671 54.30
5 1.75 − 0.0517 57.00
6 1.22 − 0.0377 59.82
7 1.02 − 0.0315 63.44
8 0.79 − 0.0253 68.87
9 0.62 − 0.0204 70.78
10 0.30 − 0.0091 74.92
11 0.27 − 0.0088 77.39
12 0.21 − 0.0068 81.89
13 0.18 − 0.0058 85.80
14 0.06 − 0.0014 88.66
15 0.03 − 0.0009 92.65
16 − 0.01 0.0005 96.88
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exploits the relation between QP and encoding time. This 
is used to improve the accuracy of the proposed complex-
ity controller in the target rate or the scene change. The 
complexity allocation sets the target complexity for each 
frame. This module monitors the performance of previous 
frames and decides the complexity allocation in a way to 
compensate any unexpected deviations. The last component, 
configuration selection, chooses the optimum configuration 
based on a fine-grain content-aware model, to obtain the 
best possible quality and performance within the allocated 
complexity. Following subsections detail different parts of 
this method.

Table 2   Selected configurations for complexity control

C RDO RMD

4 × 4, 8 × 8 16 × 16 32 × 32 64 × 64

0 {1, 1, 1, 1, 1} (DC/P) (DC/P/H/V) (DC/P/H/V) (DC/P)
1 {1, 1, 1, 1, 1} (DC/P) 10 (D ± 1) (DC/P) (DC/P)
2 {1, 1, 1, 1, 1} (DC/P) 18 (D ± 3) (DC/P) (DC/P)
3 {1, 1, 1, 1, 1} (DC/P) 10 (D ± 1) 10 (D ± 1) (DC/P)
4 {2, 2, 1, 1, 1} (DC/P/H/V) 18 (D ± 3) 18 (D ± 3) (DC/P)
5 {1, 1, 1, 1, 1} 10 (D ± 1) 10 (D ± 1) 10 (D ± 1) (DC/P/H/V)
6 {1, 1, 1, 1, 1} 18 (D ± 3) 18 (D ± 3) 18 (D ± 3) (DC/P)
7 {3, 3, 2, 2, 1} 18 (D ± 3) 18 (D ± 3) 18 (D ± 3) (DC/P/H/V)
8 {3, 3, 2, 2,1} DC/P + 14 35 35 (DC/P/H/V)
9 {3, 3, 2, 2,1} DC/P + 21 35 35 (DC/P)
10 {3, 3, 2, 2,1} 35 35 35 (DC/P/H/V)
11 {3, 3, 2, 2, 1} 35 35 35 35
12 {4, 4, 2, 2, 2} 35 35 35 35
13 {5, 5, 2, 2, 2} 35 35 35 35
14 {6, 6, 3, 3, 2} 35 35 35 (DC/P/H/V)
15 {7, 7, 3, 3, 2} 35 35 35 (DC/P/H/V)
16 {8, 8, 3, 3, 3} 35 35 35 (DC/P/H/V)
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4.1 � Rate–complexity modeling

Bitrate control is an essential tool for video coding which 
allows adapting to various network and input conditions. 
Adjusting QP is one of the main tools to control bitrate. 
On the other hand, QP has a great impact on the encoding 
complexity. Thus, to adapt the complexity to the changes of 
QP, the relationship between QP and encoding complexity 
is modeled in this paper.

To do so, first all the training video sequences of Sect. 3 
were encoded using the HM 16.14 with all QP values (from 
0 to 51) and the encoding time has been recorded. All 
experiments have been performed with the all-intra main 
HM encoder. The results of these experiments are depicted 
in Fig. 4, reflecting the average encoding time per frame.

A major conclusion that can be drawn from the experi-
ments is that the complexity of the all-intra coding depends 
on two factors. (1) QP: controls the number of residual 
coefficients that are processed by the entropy encoder. (2) 
Video content: affects the number of bits that are passed to 
the entropy encoder, especially for mid-range QP values. 
In the lower values of QP, this dependency is milder, since 
almost no quantification is made and all coefficients should 
be entropy encoded. In the higher values of QP, the number 
of coefficients is largely reduced and just a small number of 
them are entropy encoded.

It can be observed that all curves present a similar sig-
moid-like function, however, with different parameters. 
Thus, the main function is obtained via model fitting and the 
exact parameters can be obtained per sequence at the encod-
ing time. Sigmoid function in (1) is used for this, which 
leads to the highest fitting accuracy. To determine the four 
parameters of this equation (a, b, c, and d) for a video, which 
is done at the encoding time, first, four frames are encoded 
as training frames with QPs 10, 20, 40 and 50 and all-intra 
configuration. Then, using the four recorded encoding times 
and QPs, a system of four linear equations is obtained and 
solved to find the four parameters, which is used to encode 
all frames. This model needs to be updated at the start of 
encoding and after a scene change is detected, which is done 
using the method introduced in [38]. Please note that this 
step is used (only once) to learn the rate–complexity char-
acteristics of a video scene, and the encoded frames of this 

step are not sent to the bitstream. Consequently, the QPs are 
selected to cover a wider range and provide a more accurate 
estimation.

As summarized in Table 3, the coefficient of determina-
tion (R2) [39] values of this model for all the six sequences 
are above 0.99, which means that almost all variations can be 
represented by this model and demonstrates the high accu-
racy of the model.

4.2 � Complexity allocation

According to the complexity quota and the remaining frames 
to be encoded in the current task, the controller allocates a 
specific amount of complexity (equivalent to time in this 
paper) to the current frame. Assuming that the target com-
plexity is represented as Target Time, the allocated complex-
ity (TA) for the current frame is computed as (2), where the 
encoding time of previous frames, Tx, is subtracted from the 
Target Time to determine the available complexity budget.

TA is allocated on a frame by frame basis. This strategy 
has the advantage that in case the available processing power 
fluctuates, and thus the encoding time of a frame suddenly 
changes, this can be considered in the complexity allocation 
of next frames, which helps finishing the task in the speci-
fied time.

The Target Time here is assumed to be an input to our 
method which is specified from the system’s hardware or 
operating system. Calculating this parameter is out of the 
scope of our paper, and can be done through power allo-
cation schemes which decide the distribution of system 
resources between existing tasks or processing modules 
[40, 41]. In summary, these schemes first estimate the 
available resources based on information such as hard-
ware status, load of tasks, memory traffic, and expected 
deadlines. Second, the available power is distributed 
among existing tasks or processing elements, according to 
their priorities, real-time requirements, and other system 
objectives. Finally, the allocated power/resources should 
be interpreted as a target time for the video encoder, com-
paring the allocated power to the total requirements, or 
according to slack times.

(1)TE(QP) =
a

(

1 + e(b×QP+c)
) + d

(2)TA =
Target Time −

∑i−1

x=0
T
x

Remaining Frames

Table 3   R-square values for 
different sequences

Sequences R2

Beauty 0.9961
Bosphorus 0.9942
Kimono 0.9974
ParkScene 0.9981
Rushhour 0.9973
Sunflower 0.9967
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4.3 � Configuration selection

The encoder configuration for the next frame is determined 
by the ratio (Ri) between the allocated time (TA) and the 
encoding time of the previous frame. At the beginning of 
video coding or after each scene change, where the previ-
ous encoding time is not available, the estimated time from 
the model in (1) is used instead. The complexity control-
ler checks the QP value at the beginning of each frame. 
If the current QP differs from the one at the beginning of 
the previous frame, TE is calculated by (1). This is sum-
marized in (3).

Once Ri is computed, it is used to index a lookup table 
containing the pre-calculated ratios between the nor-
malized complexities of the 17 selected configurations, 
to determine the next configuration. The lookup table 
is marked as Lookup Table in Fig. 4 and is presented in 
Table 4, where the numbers at the first row indicate the 
current configuration, numbers in the first column indicate 
the next frame configuration and the values within each 
cell indicate the ratio between the normalized complexities 

(3)R
i
=

⎧

⎪

⎨

⎪

⎩

TA

TE

if QP or scene changed

TA

Ti−1

Otherwise

of the next and the current configurations. C0 and C16 are 
the lowest and the highest configurations in terms of com-
putational complexity. For example, if current configura-
tion is C10 and the calculated ratio (Ri) is 0.79, meaning 
the next configuration should be 21% less complex than 
C10, the closest value under C10 is 0.8 which means the 
next configuration based on the table will be C6. As shown 
in Fig. 4, the new configuration index is used to access a 
Configuration Table, to find the encoding parameters of 
Table 2 (number of intra modes in the RMD and RDO 
processes) which will be used to encode the next frame.

5 � Experimental results

Extensive experiments were conducted to evaluate the pro-
posed method. The proposed method was implemented 
on top of HM 16.14. The first 100 frames of each video 
sequence were encoded with QPs 22, 27, 32 and 37, and the 
all-intra main configuration. The BD-rate, BD-PSNR, and 
the time error with respect to the target time were meas-
ured. The tests have been performed on a computer with a 
2.80 GHz CPU and 8 GBs of memory.

5.1 � Complexity control accuracy and R–D efficiency 
results

To evaluate the performance of the proposed method, firstly, 
the complexity control system was evaluated using five tar-
get complexity ratios of 90% to 50%, defined as an encod-
ing complexity ratio between the proposed method and 

Table 5   Average encoding time error, BD-rate, and BD_PSNR for all 
test video sequences

Target com-
plexity (%)

BD-rate (%) BD-PSNR (dB) Error (%)

50 11.07 − 0.56 0.05
60 3.69 − 0.19 0.08
70 2.02 − 0.11 0.07
80 0.28 − 0.01 0.04
90 0.06 0.00 0.06
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baseline HM encoder. In practical implementations of an 
HEVC encoder, the computational resources available in the 
encoding platforms will dictate the complexity constraint 
imposed on the video encoding procedure. To evaluate the 
proposed complexity controller, 13 sequences (Tables 6, 7) 
with different resolutions (Class A–E) have been tested. All 
sequences differ from the training sequences. Table 5 tabu-
lates the average results of these sequences in terms of com-
plexity control accuracy and R–D efficiency. The complexity 
control accuracy was measured as time error compared with 
the target complexity ratio, which is calculated by (4):

Table 5 shows that the encoding time errors vary from 
0.04 to 0.08% (averaging 0.06%). Moreover, the compres-
sion efficiency results show that BD-rate and BD-PSNR 
values increase and decrease, respectively, as the target 
complexity ratio decreases. The loss of compression effi-
ciency for target complexities between 90 and 60% is very 
small; however, in the lowest complexity ratio, 50%, the loss 
increases. In this case, the complexity reduction compared 
to the original encoder is close to the maximum complexity 
reduction possible using fast mode decision. Thus, naturally 

(4)Time Error (%) =
TEnc − Target Time

Target Time
× 100

the coding efficiency declines. However, this efficiency is 
acceptable for the low complexity ratio.

Table 5 also reports BD-PSNR which shows the quality 
degradation compared to HM encoding, in a similar bitrate. 
The degradations for 90–60% complexity levels are negligi-
ble and even for 50% complexity level, it is still very small 
and with hardly noticeable artifacts. The degradation in all 
complexity levels are visually insignificant.

Figure 5 demonstrates the R–D performance of the pro-
posed method for different target complexities of the Cac-
tus sequence. On the right-hand side, the curve has been 
zoomed in to show a segment in greater detail. As can be 
observed, the differences between the target complexities 
of 60 and 100% are very marginal. When the smallest target 
complexity, i.e., 50%, is used, the corresponding curve is 
more visible due to the larger loss of R–D performance, 
however, still with less than 0.5 dB degradation.

Figure 6 illustrates the operation of the proposed com-
plexity control for the first 50 frames of PeopleOnStreet 
(2600p). Figure 6a shows encoding times per frame, and 
Fig. 6b shows the evolution of the encoding configuration 
index, for each of the five different target complexities. 
The first frame was encoded using the estimated complex-
ity, which shows closer encoding time to the target time; 
proving the accuracy of the rate–complexity model. In each 
next frame, the control system adjusts the configuration to 
deliver the target ratio. Although there are more fluctuations 
in configurations for lower complexity (50–60%), the encod-
ing times and the used configuration stay almost stable after 
a few frames.

Moreover, the capability of the proposed method to 
adapt to dynamic changes of the available processing power 
was evaluated. To do so, the HoneyBee video sequence 
was encoded with a scenario where the available process-
ing power (and hence, the target time) changes every 50 
frames, from 50 to 90% target time. Hence, the algorithm 
should adapt the encoding to the new constraint after each 
change. As depicted in Fig. 7, for all QP values, the algo-
rithm dynamically changes the encoding configurations, so 
that the target time is met. At the time of changes (vertical 
lines in Fig. 7a), a small fluctuation of time is observed, 
which usually resolves within two to three frames. After 
that, the control algorithm converges to one or two specific 
configurations and continues coding with those. Some small 
fluctuations might remain longer in the encoding time, e.g. 
in 60% target time. In these cases, the target time per frame 
happens to be between two adjacent configurations (based 
on Fig. 7b, C4 and C5 in case of 60% target time). Thus, 
the algorithm sometimes switches between the two con-
figurations to compensate the higher/lower used quota, and 
remains as close as possible to a zero timing error during 
the coding process.
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5.2 � Comparison with the state‑of‑the‑art methods

In this subsection, the proposed complexity control is com-
pared with four state-of-the-art complexity control meth-
ods which support HEVC intra coding [8, 10, 33, 34]. The 
results of these methods are reported in [8], which uses 
the same setup for evaluation as used in this paper. The 
BDBR and time error of these methods for two target ratios, 
namely 80% and 60%, are provided in Tables 6 and 7. As 
240p frames are not reported in [10] and [33], the results of 
BasketballPass, BQsquare and RaceHorses are left blank 
for them. The comparison results demonstrate that the pro-
posed method outperforms all other approaches in terms of 
achieving the target complexity. This is due to the use of 
intra-encoding modes for complexity control (as opposed 
to CU partitioning in other methods), which is a finer-grain 
complexity knob.

It can be observed that the BDBR increases as the target 
complexity ratio drops for all the five methods. With target 
complexity ratio of 80% in Table 6, the BDBR and encoding 
time error values of the proposed method are the smallest 
(0.28 and 0.03%, respectively), which manifests the superior 

performance of the proposed method. At the target complex-
ity ratio of 60%, Table 7, the proposed method gains the best 
time error and the second best BDBR after [8], only mar-
ginally. While [8] achieves on average 2.88% BDBR with 
0.61% encoding time error (average of absolute values), the 
proposed method achieves 3.69% BDBR with only 0.08% 
time error on average (average of absolute values). Moreo-
ver, it can be observed in Table 7 that, in higher resolution 
videos, the two methods achieve similar BDBR, and only in 
lower resolutions (240p and 480p) [8] gains better BDBR 
(and worse encoding time error).

Other notable approaches such as [28] and [32] are absent 
in Tables 6 and 7 as they do not support intra coding, but 
they can be considered for comparison of timing error. These 
two works report, respectively, 1.2% and 0.38% timing error 
in 60% complexity, which confirms the performance of the 
proposed fine-grain complexity control scheme.

An interesting feature of the proposed method is that it 
can be employed separately or on top of CU-based meth-
ods like [8]. Such a system can use a coarse- to fine-grain 
adjustment, using [8] and the proposed method, respectively. 
This benefits the method from high efficiency of [8] at lower 
complexities and high accuracy of the the proposed method 
in timing control.

5.3 � Complexity control performance with scene 
change

To evaluate the performance of the proposed method in 
the presence of scene changes, four video sequences with 
the same resolutions were concatenated to form two video 
sequences with scene change. Then the first 100 frames of 
each composite sequence were encoded. Figure 8a, b pre-
sents the encoding times and configurations per frame for 
these sequences. When scene change is detected at frame 50, 
the rate–complexity model is updated and the configuration 
changes according to the new content. The Cactus_Basket-
ballDrive pair is encoded with a target complexity of 80%. 
It contains a scene change from a very detailed texture and 
homogenous motion, to a rather simple texture with more 
intensive motion. The ShakeNDry_HoneyBee sequence is 
encoded with target complexity of 60% and contains a scene 
change from a rather smooth texture but with detailed mov-
ing objects such as droplets in the air, to a sharper texture 
with various edge directions, but less details and limited 
motion. As shown in Fig. 8, although the configuration 
changes to handle the scene change, the encoding time per 
frame stays stable for both pairs. This indicates that the 
proposed complexity control method can smoothly handle 
scene changes regardless of scene types. The most important 
factor in scene change is the scene complexity that affects 
the coding complexity. For Cactus_BasketballDrive, the sec-
ond scene is much simpler and thus less computationally 
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complex. Hence, as depicted in Fig. 8b, the control algo-
rithm changes the configuration index from 10–11 to 14–15 
(i.e., more computations) to keep the previous encoding 
time. A similar decision with a smaller offset is taken for 
ShakeNDry_HoneyBee.

6 � Conclusion

In this paper, a complexity control method for HEVC intra 
coding was presented that is useful in power-constraint 
portable devices and low delay applications. The R–D–C 
space was explored using encoding configurations and 
modeled using a Pareto optimization approach, leading to 
a table of selected coding configurations for each complex-
ity level. A fast mode decision method was used to further 
enhance the selected configurations. At the controller, first, 
a complexity estimation model is proposed to estimate 
the coding complexity of each frame based on the QP (or 
bitrate). Second, the complexity budget is allocated to each 
frame proportional to its estimated complexity. Finally, 
according to the allocated complexity, a coding configura-
tion is determined, which includes a subset of intra modes 
for RMD and RDO operations. Experimental results have 
demonstrated that the proposed method accurately con-
trols the encoding complexity, with an average time error 
from the target complexity of only 0.06%, which is due 
to employing prediction modes as the complexity knob. 
The proposed method supports complexity ratios from 100 
to 50%. The bitrate increase for 90% to 60% complexity 
ratio is from 0.06 to 3.69% on average. Also, the quality 
degradation is negligible and hard to detect visually. While 
the proposed method provides superior control accuracy 
and excellent coding efficiency in high to mid ranges of 
complexity, it can be extended in future alongside (exist-
ing or new) CU partitioning-based methods to enhance the 
performance in lower complexities as well.
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