
Vol.:(0123456789)1 3

Journal of Real-Time Image Processing (2020) 17:759–771
https://doi.org/10.1007/s11554-020-00984-x

SPECIAL ISSUE PAPER

Fast deep neural networks for image processing using posits and ARM
scalable vector extension

Marco Cococcioni1 · Federico Rossi1 · Emanuele Ruffaldi2 · Sergio Saponara1

Received: 17 February 2020 / Accepted: 12 May 2020 / Published online: 18 May 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
With the advent of image processing and computer vision for automotive under real-time constraints, the need for fast and
architecture-optimized arithmetic operations is crucial. Alternative and efficient representations for real numbers are start-
ing to be explored, and among them, the recently introduced positTM number system is highly promising. Furthermore, with
the implementation of the architecture-specific mathematical library thoroughly targeting single-instruction multiple-data
(SIMD) engines, the acceleration provided to deep neural networks framework is increasing. In this paper, we present the
implementation of some core image processing operations exploiting the posit arithmetic and the ARM scalable vector exten-
sion SIMD engine. Moreover, we present applications of real-time image processing to the autonomous driving scenario,
presenting benchmarks on the tinyDNN deep neural network (DNN) framework.

Keywords  Deep neural networks (DNNs) · Posit arithmetic · Scalable vector extension · Auto-vectorization · Real-time
image processing · Autonomous driving

1  Introduction

Nowadays, one of the most fruitful topics that exploit the
pervasiveness of DNNs is image processing in the auto-
motive industry. This field brings new problems and chal-
lenges to DNNs. On the one side, there is the need to reduce
network architecture and computation complexity to better
accomplish real-time tasks in resource-constrained devices.
On the other side, there is the need to target-specific plat-
form DNN accelerators [e.g. NVIDIA cuDNN for NVIDIA
graphical processing units (GPUs)] to provide substantial
speed-ups to neural network processing, in the both training
and inference phases. On the complexity reduction side, one

of the most explored and interesting fields is the alternative
representation of real numbers, to reduce the number of bits
used to represent the weights of the DNNs. Some ideas have
already been proposed by industries such as Google (Brain
Float—BFloat16—[1]), Intel (Flexpoint—FP16—[2, 3])
and Facebook AI Group [4]. Another promising represen-
tation that diverges from the floating-point standard is the
posit number system [5–7]. This type has been proven to
be a perfect drop-in replacement of 32-bit IEEE 754 floats
in machine learning, using just 16 bits [8–13]. Moreover,
it has been productively exploited in low-precision infer-
ence down to 8-bit posit representation, with very little
degradation of network inference accuracy. Furthermore,
as also explained in Sect. 2 and in [9], this number system
can be exploited to build fast, approximated and efficient
activation functions for neural networks like the sigmoid
function by only using the already existent arithmetic logic
unit (ALU) within the CPU. On the side of target-specific
platform accelerators, the ubiquity of operations such as
dot products, matrix multiplications and filter convolutions
points out the need for optimized routines able to increase
the throughput for these operations. While the spread of
GPUs in this field is relevant, the use of such components
may be precluded by both high implementation costs and
low-power requirements. Microprocessor industries have

 *	 Federico Rossi
	 federico.rossi@ing.unipi.it

	 Marco Cococcioni
	 marco.cococcioni@unipi.it

	 Emanuele Ruffaldi
	 emanuele.ruffaldi@mmicro.com

	 Sergio Saponara
	 sergio.saponara@unipi.it

1	 University of Pisa, Pisa, Italy
2	 MMI spa, Calci, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-020-00984-x&domain=pdf

760	 Journal of Real-Time Image Processing (2020) 17:759–771

1 3

already moved towards this direction providing a vectorized
extension of their instruction set architecture (ISA). In par-
ticular, ARM has firstly proposed the NEON instruction set,
then evolved and improved with the ARM scalable vector
extension (SVE) [14, 15]. Furthermore, ARM has already
developed a deep neural network library that supports its
NEON vectorization backend [16], but at time of writing it
lacks the SVE support. This extension, along with the ARM
compiler, allows producing executable binaries exploiting
the SVE instruction set in two dimensions. One dimen-
sion is the auto-vectorization approach, with the compiler
autonomously producing vectorized instructions exploiting
data parallelism in the code (e.g. loop unrolling). The other
dimension is the explicit use of specific high-level instruc-
tions to instrument vectorization in an explicit way. This is
possible thanks to the ARM C Language Extension (ACLE)
for SVE [14]. Combining the reduction in information size
with the vectorization is thus very interesting. If we halve the
bits of a given representation without losing decimal accu-
racy, we can fit twice the elements in the same vector regis-
ter, increasing the overall throughput. In this paper, we will
develop a vectorized extension for the cppPosit C++ posit
arithmetic library, following both the approaches. Then, this
extension will be tested against common DNN and machine
learning operations and in the tinyDNN C++ DNN library.

1.1 � Organization of the paper

In Sect. 2, we present the posit format and its properties
along with some interesting arithmetic operators developed
only using integer arithmetic. In Sect. 4, we are going to
summarize the main characteristic of the new ARM SVE
architecture, pointing out the useful tools and approaches
that we can exploit for the development of our vectorized
backend. In Sect. 5, we are going to present the cppPosit
library developed by the authors and to propose a vector-
ized extensions for it, providing implementations for com-
mon operations (such as dot product and convolution) and
addressing the issues and challenges of posit in general. This
work has been carried out within the H2020 European Pro-
cessor Initiative (EPI). The obtained results provide inter-
esting feedback to the EPI CPU designers, since they can
evaluate upon a time the impact of their design choices.

In Sect. 6, we present the results obtained on the official
ARM Instruction Emulator, trying to point out the differ-
ence in terms of processing time between the different ver-
sions and vectorization levels. Finally, in Sect. 7 we present
the results achieved using the tinyDNN library (equipped
with the cppPosit library) on very deep convolutional neu-
ral networks (using synthetic images). These benchmarks
are interesting for real-time image processing applied to the
automotive scenario. Single-operation benchmarks show the
impact of our approach on the image processing building

blocks (e.g. convolution is a very common operation in
image processing and filtering). Furthermore, the tinyDNN
benchmarks are focused on widely used neural networks
in the autonomous driving world. In particular, the evalu-
ated networks are employed as basic blocks both in auto-
motive computer vision (e.g. object detection and semantic
segmentation).

2 � Posit arithmetic

As widely shown in [7, 8, 10, 17, 18], the posit format is a
fixed-length alternative representation to float numbers. A
posit can be configured in the total number of bits (nbits)
and the number of exponent bits (es). It has up to four fields
as in Fig. 1:

–	 Sign field (1 bit,). Posits are 2’s complement.
–	 Regime field (variable length: it is identified as the

sequence of identical bits r followed by the opposite bit
r̄ ,).

–	 Exponent field (maximum length of es,). This field can
be shorter or even missing at all, for some representa-
tions, even when es > 0.

–	 Fraction field (variable length,) can be missing too.

Given such a format, the value x is represented by the
signed integer v representing the posit:

where useed = 22
es and f = � ⋅ 2−F is the fractional part rep-

resented by the fraction field.
Figure 2 shows an example of posit format decoding:

2.1 � Fast approximated operations on posits using
only the ALU

In this subsection, we will refer to x as the represented real
value and to v, Y as the integers representing the posit, with v
being the input of the operation and Y being the output of the
same operation. The represented real value can be obtained
from its representation using Eq. (1).

(1)x =

⎧
⎪⎨⎪⎩

0, if v = 0

NaN, if v = −2(nbits−1)

sign(v) × useedk ⋅ 2e ⋅ (1 + f), otherwise

51 41 31 21 11 01 9 8 7 6 5 4 3 2 1 0

S Regime(1..R) Exp
(0..es) Fraction (0..F)

Fig. 1   Illustration of a posit⟨16, 2⟩

761Journal of Real-Time Image Processing (2020) 17:759–771	

1 3

Please notice how, when es = 0 , the formula in Eq. (1) can
be further simplified as:

where k = −R for x < 1 and k = R − 1 for x > 1 , and R is the
regime length, as shown in Fig. 1.

This posit formulation allows implementing some arith-
metic operators that, unlike IEEE 754 float numbers, can be
evaluated by using only the ALU on the integer v representing
the posit bit string.

2.1.1 � The twice operation (2x)

When applying the twice operator, we consider three different
cases for the posit value: x ∈ [2,+∞) , x ∈ [1, 2) , x ∈ [0, 1]
(the same holds for negative values). We implement the twice
operator in the different cases as follows (in the following
expressions, x ≪ n represents the number x left shifted of n
bits, x ≫ n represents the number x arithmetically right shifted
of n bits, x ≫∗ n represents the number x logically right shifted
of n bits, | is the bitwise or operation and ⊕ is the bitwise
exclusive or (xor) operation).

where twicemask is obtained as follows:

We obtain the final result as:

(2)x = 2k ⋅ (1 + f)

vabs =abs(v)

s =sign(v)

vs =v ≪ 1

Yt =

⎧⎪⎨⎪⎩

vs ≫ 1, if x ≥ 2

vs⊕ twicemask, if x ≥ 1

vs ≪ 1, if x < 1

(3)twicemask = (1 ≪ nbits − 2)|(1 ≪ nbits − 3)

Y = (Yt ≫
∗ 1)⊕ s − s.

A similar approach can be applied to the half (x/2) opera-
tion. We only need to change the transformation in the three
different cases:

2.1.2 � The one’s complement operator ( 1 − x)

The one’s complement operator requires also that the posit
to be in the range [0, 1] and can be implemented as follows:

2.1.3 � Fast reciprocate function (1/x)

We can implement a fast and approximated version of the
reciprocate function as follows (where ¬ is a bitwise negation,
⊕ is the exclusive-or operator and signmask is a bit mask for
the sign bit:

The signmask can be obtained as follows:

Moreover, some interesting nonlinear activation functions in
DNNs can be approximated with this format. Some of the
most important approximated functions that can be imple-
mented are the Sigmoid (see [7]), hyperbolic tangent and
the extended linear unit function (see [9]), as also explained
in Sect. 2.1.6.

2.1.4 � Fast sigmoid activation function

The sigmoid function sigmoid(x) = 1∕(1 + exp(−x)) can be
approximated as follows (where v is the integer representing
the posit and Y the integer representing the posit that approxi-
mates sigmoid(x)):

The approximated sigmoid function can be used as a build-
ing block for the other two functions, using linear combina-
tions that exploit fast approximated operators of posit arith-
metic seen before.

Yt =

⎧
⎪⎨⎪⎩

vs ≪ 1, if x ≥ 2

vs⊕ twicemask, if x ≥ 1

vs ≫ 1, if x < 1

.

Y = (1 ≪ nbits − 2) − v.

Y = (v⊕ ¬signmask).

msb =1 << (nbits − 1)

signmask = ((msb|msb − 1) >> 1).

Y = ((1 ≪ nbits − 1) + v + 2) ≫ 2.

51 41 31 21 11 01 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 1 1 1 0 1 1 0 0 1

51 41 31 21 11 01 9 8 7 6 5 4 3 2 1 0

S R E F

1 00 1 001 000100111

Fig. 2   An example of a 16-bit posit with 3 bits for the exponent
( es = 3 ). Given the sequence on top of the figure, after detect-
ing it starts with 1, we have to compute the 2’s complement of all
the remaining bits (passing from 110-110-111011001 to 001-001-
000100111). Then, we can proceed to decode the posit. The associ-
ated real value is therefore −256−2 · 21 · (1+39/512).. The final
value is therefore −1∕65536 ⋅ (1 + 39∕512) = −0.00003284

762	 Journal of Real-Time Image Processing (2020) 17:759–771

1 3

2.1.5 � Fast hyperbolic tangent

The hyperbolic tangent can be obtained from a linear com-
bination of the sigmoid function using the double and the
one’s complement operators:

Finally, instead of using the exact sigmoid formula, we
approximate the hyperbolic tangent using the fast approxi-
mated version of the sigmoid described in Sect. 2.1.4.
In order to satisfy the one’s complement requirements
( x ∈ [0, 1] ), we only consider negative x values that result
in the sigmoid output to be in [0, 1/2]. Then, we can exploit
the hyperbolic tangent odd symmetry around 0 to obtain the
values for the positive arguments.

2.1.6 � Fast extended linear unit

Similarly, the extended linear unit function for negative
arguments can be implemented as a linear combination of
the sigmoid using the said operators:

As in the previous case, if we substitute the exact sigmoid
function with its fast approximated, we obtain the fast
approximated version of the ELU. Figure 3 shows the accu-
racy comparison between the two. Figure 4 shows process-
ing time comparison between latter two approximated func-
tions. More mathematical details can be found in [17]. In
the next section, we will see how to speed-up DNN training
and inference using the SVE feature of modern ARM CPUs.

tanh(x) = 2 ⋅ sigmoid(2x) − 1 = −(1 − 2 ⋅ sigmoid(2x)).

ex − 1 = −2 ⋅

[
1 −

1

2 ⋅ sigmoid(−x)

]
.

3 � Posits and DNNs

When considering posit numbers for DNNs, we need to take
into account that the highest density of posit numbers is
in the range [−1, 1] . This range indeed represents half of
the posit projective circle. This can be exploited to design
networks that are more proficient when used together with
posit numbers. This can be addressed in different ways, as
discussed in next subsections.

3.1 � Activation functions

When choosing activation functions, we need to consider the
output range of the functions. For example, if we consider
the ReLU activation function, it discards all the negative
numbers passed as argument flattening them to 0. Further-
more, the sigmoid function, limiting the output in [0, 1],
discards the precious high-density region [−1, 0] . Instead,
the hyperbolic tangent can fully exploit the region [−1, 1] .
However, being modern deep neural network architectures
very deep (the number of layers is huge), S-shaped functions
like hyperbolic tangent suffer from vanishing gradients; thus,
they are not acceptable in the training process. The ELU
function and in general scaled extended linear units (SELUs
[19]) manage to cover a higher range, typically parameter-
ized by two real factors � and � : [−� ⋅ �,+∞].

3.2 � Distribution of values

When stacking layers in a deep model, we need to care about
the right-shifting of value distributions during forwarding
passes. Adding a batch normalization layer [20] after some

Fig. 3   Accuracy comparison between exact (original formula applied
to the posit format) and approximated versions of the hyperbolic
tangent (TANH) and extended linear unit (ELU) using posit⟨8, 0⟩ .

The functions were computed on each point of the posit⟨8, 0⟩ range.
The mean squared error between the TANH function versions is
2.8 ⋅ 10

−3 , while the mean squared error for the ELU ones is 3.7 ⋅ 10−3

763Journal of Real-Time Image Processing (2020) 17:759–771	

1 3

convolution and activation steps can manage to re-scale the
values by subtracting the batch mean and dividing it by its
standard deviation. This will result in a value distribution
with a null mean value and unitary standard deviation, thus
fitting the needs already explained.

3.3 � Loss strategies

If we want to perform low-precision inference without losing
too much accuracy (e.g. switching to posit⟨8, 0⟩ for infer-
ence), we may need to take into account the dynamic range
of such types (e.g. posit⟨8, 0⟩ has a range [−64, 64] ). This
means that, during the training, we must penalize high net-
work weights. This can be addressed by using different types
of regularization. In [21] are shown recent trends in regu-
larization for neural networks. For example, a weight decay
approach (see [22]) with a decay rate of � adds the following
L2 regularization term to the loss:

This has been proven to reduce overfit and training error in
[23]. In general, avoiding overfitting can help in maintain-
ing low weight values. Therefore, the use of other layers
designed to help with a generalization like dropout layer [24]
can be useful as well.

3.4 � Data pre‑processing

When considering low-precision inference, we also need
to take into account the encoding of data fed to the neural
network. For example, if we take an RGB dataset, we will

R(w) = � ⋅

1

2
⋅ |w|2

2
.

find each pixel encoded in each channel as an integer in
[0, 255]. If we feed this type of data to a posit⟨8, 0⟩ net-
work, it will result in values above 64 to be clipped down
to the maximum value. Moreover, we are not exploiting the
negative axis. To address this problem, we may apply a re-
scaling of the encoding before even training the network.
Simply re-scaling the image in [−1, 1] is not always a good
solution, since it may result in an unacceptable loss of infor-
mation. Another important point in the posit circle is the
useed = ±22

es point that is strictly connected to the dynamic
range of a posit ±useednbits−2 . For example, re-scaling an
image in the range [−useed, useed] of posit⟨8, 0⟩ (thus having
the pixel encoded in [−2, 2] ) has been proven to be effective
encoding during both training (with higher-precision types)
and inference phase (with low-precision types). The formula
to re-scale the value p of each pixel is therefore:

In Appendix, we describe a MATLAB tool, helpful to
support the user in choosing the best posit configuration,
depending on the needs of the application at hand.

4 � ARM SVE architecture

The ARM scalable vector extension (SVE [14]) is a vector
extension for the ARM AArch64 architecture supported by
the ARMv8 instruction set. The main difference between
SVE and other single-instruction multiple-data (SIMD)
engines (Intel AVX/SSE or ARM NEON) is that it does not
specify any width for vector registers, but it provides some

n(p) = 2 ⋅ useed ⋅

p

255
− useed.

Fig. 4   Processing time comparison between exact (original for-
mula applied to the posit format) and fast approximated versions of
the hyperbolic tangent (TANH) and extended linear unit (ELU). The
reported results came from evaluations of the functions on each point

of the posit⟨8, 0⟩ domain. As reported, the approximated ELU func-
tion is on average five times faster when compared to the exact ver-
sion. On the other hand, the TANH function is more than 18 times
faster on average

764	 Journal of Real-Time Image Processing (2020) 17:759–771

1 3

constraints for it. The vector register widths must be multiple
of 128 up to 2048 bits. This approach, called vector length
agnostic (VLA), allows us to implement only one vectorized
version of our operations, exploiting both auto-vectorization
and ARM ACLE (ARM C Language Extensions), without
the need to target-specific hardware platforms (Figs. 5, 6).

SVE architecture introduces new kind of registers:

–	 Z registers: 32 registers with configurable width, from
128 to 2048 bits, as said above. These registers are meant
to be data registers. SVE allows to interpret data in Z
registers as 8 bits (bytes), 16 bits (half words), 32 bits
(words) and 64 bits (double words). For instance, refer-
ring to posits, a 2048-bit Z register can hold up to 256
posit⟨8,X⟩ (in any exponent configuration).

–	 P registers: 15 predicate registers, with one bit to control
each byte in a Z register (a 2048-bit Z register will be
controlled by 256-bit P register). Each bit in the P regis-
ter is interpreted as a Boolean. A predicate lane, made by
1 to 8 predicate bits, indicates whether the correspondent
lane (when using a Z register) is active or not, depending
on the least significant bit.

5 � The C++ library cppPosit

For this work, we used the cppPosit C++ posit library
developed in Pisa. This library exploits C++ templates to
provide flexibility for posit configurations, ranging the total
number of bits from 4 to 64. The main feature of cppPosit
is the separation of the posit type in an interface frontend
and a backend. The cppPosit frontend exposes all the pos-
sible implemented operations on posits, regardless of the

underlying implementation. The backend implements the
actual operations offered by the frontend, in one of the fol-
lowing flavours.

The supported backends are: i) fixed-point, ii) software
floating-point (exploiting Berkeley SoftFloat library), iii)
hardware floating-point unit (FPU) if present and iv) tabu-
lated (or log-tabulated). The latter two deserves to be deeply
analyzed. In fact, they become an important backend when
a hardware posit processing unit (PPU) is not available and
the number of bits is not required to be much large (like in
DNNs).

5.1 � Tabulated posits

When dealing with low-bit posits (e.g. 8-, 10-, 12-bit pos-
its), we can think of pre-computing the arithmetic opera-
tors and some convenient functions in look-up tables to be
used at run time for posit processing. Without optimization,
these tables grow quadratically with the size of the posits.
The main optimizations are applied exploiting addition and
subtraction symmetry and antisymmetry properties to have
half of the tables. The log-tabulated approach also optimizes
the multiplication and division operations, by noticing that
log(a ⋅ b) = log(a) + log(b) (see also [4] for logarithmic
numbers). In this way, we only need two single-operand
tables for logarithm and exponentiation to perform both
multiplication and division operations. These single-operand
tables scale only linearly with the posit size, thus reducing
the overall size of look-up tables. Note that the log-tabulated
approach may result in some products or powers being off
in the last bit.

5.2 � Operational levels

The cppPosit library also classifies the posit operations into
four different operational levels:

–	 L1: These operations only require bit manipulations of
the signed integer v representing the posit and thus can be
executed just with the ALU support in a fast and efficient
way. L1 operations are the most efficient one and are of
crucial importance. Table 1 shows some of the L1 opera-
tions implemented in the library.

–	 L2: These operations require to decode the posit into the
sign, regime, exponent and fraction with an additional
unpacking step that slows down the computation. (This
includes the use of count-leading-zeros (CLZ) opera-
tions.)

–	 L3: These operations also require the complete construc-
tion of the posit field, including the join between expo-
nent and regime fields, with additional computation cost.
Note that in the 0-bit exponent case L3 and L2 operations
have the same complexity.

Z0 (0..L)

...

Z31 (0..L)

Fig. 5   ARM SVE Z Data registers: 32 vector length agnostic register
where L = 128 ⋅ k, k ∈ [1, 16]

P0 (0..P)

...

P15 (0..P)

Fig. 6   ARM SVE P predicate registers: 16 vector length agnostic reg-
ister where P = Z∕8

765Journal of Real-Time Image Processing (2020) 17:759–771	

1 3

–	 L4: These operations require the posit to be fully
unpacked and reconstructed in the chosen backend.

As reported in Table 1, most of the L1 operations require
to have 0 exponent bits, due to the emerging properties of
posits with this particular configuration, as already explained
in Sect. 2. Moreover, other functions such as the 1’s comple-
ment require the posit to be in the unitary range.

5.3 � Vectorized extension

In this section, we introduce the vectorized extension of the
cppPosit library, aimed to provide the vector version of the
posit operations. Firstly, we need to take into account the
differences between different operational levels. L1 and L2
operations are the easiest one to be vectorized; they only
require bit manipulation of unsigned or signed integers plus
additional encoding and decoding steps. Instead, L3 and L4
operations need to be brought back at the chosen backend,
and then, in case of hardware floating point, we can use
native SIMD vectorization if any.

In order to provide a more general and abstract interface
to posit vectorized operations, the architecture has separate
posit vector frontend and a specialized posit vector backend
that, in the paper case, implements the vectorized operations
using ARM ACLE for SVE (Fig. 7).

When implementing vectorized operations, we have a
common template to follow:

–	 Prologue: We need to prepare the data to be fed to the
SIMD engine. For posits and L1 operations, this means
preparing a vector with the signed integer representing
the posits. In the SVE case, this means loading into the
Z registers the posit holder type content (e.g. int16_t
for posit⟨16,X⟩ ) using the svld1(...) intrinsic. For
L3/4 operations, we need instead to unpack the posit to
the underlying backend (fixed, floating or tabulated) and
load the backend type into registers as well, performing
full decoding of the posit type.

–	 Body: The body contains all the arithmetic and logic
functions needed to apply the considered operation. In the
SVE case, this may contain the SVE intrinsics that oper-
ate on the Z vector registers that contain the posit data.
For instance, when implementing the fastSigmoid func-
tion, we will use the built-in intrinsics svasr_x(...)
for the first right shift and svadd_x(...) for the sum.
The first performs the same right shift on all the vector
elements while the second performs the addition of the
value (1 ≪ nbits − 2) to all the vector elements.

–	 Epilogue: We need to build back the posit into the result
vector from the signed integer we have just manipulated
in the function body. For SVE, this means invoking
the svst1(...) intrinsic on the SVE result pointer
obtained in the previous step. For L3/4 operations, we
need instead to pack the posit up to the frontend, per-
forming a full encoding of the posit type.

When vectorizing non-L1 operations that require the posit
to be decoded in its components (sign, regime, exponent
and fraction), we need to take into account two phases of
the prologue. The first and simplest one is the posit conver-
sion to the underlying signed integer holder type, that is, the
cost of a pointer cast from the posit type to the holder one.
This step has practically no cost. The second and hardest
one is the vectorization of the posit decoding step since it
involves many operations and branches on the bit string.
After this decoding, the function body is the same as apply-
ing vectorization to the backend type (native ARM floats
in our case).

The same behaviour holds for the epilogue as well. Pre-
dictably, both prologue and epilogue for non-L1 operations
will introduce some kind of overhead in function computa-
tion, due to the conversion of the posit at the underlying
backend. This means that, to see real effectiveness of this
vectorized approach, we need to test this on large-sale data

Table 1   cppPosit most important implemented L1 operations, includ-
ing common use activation functions such as sigmoid, hyperbolic tan-
gent and extended linear unit

Operation Approximation Requirements

2 ⋅ x No es = 0

x/2 No es = 0

1/x Yes None
1 − x No es = 0 , x ∈ [−1, 1]

FastSigmoid Yes es = 0

FastTanh Yes es = 0

FastELU Yes es = 0

positSVEBackend

+ vFastSigmoid(vector op,vector dst) : void

positT

�interface�
positVectorizedFrontend

+ vFastSigmoid(vector op,vector dst) : void

positT

Fig. 7   UML class diagram for an example SVEBackend that allows
the vectorized computation of the fastSigmoid

766	 Journal of Real-Time Image Processing (2020) 17:759–771

1 3

and SVE vector sizes. This will be addressed more deeply
in the next section..

6 � Single‑operation benchmarks results

In this section, we present benchmark results on isolated
operations such as activation functions, dot products
and DNN convolutions. All benchmarks are compiled in
two different versions using the armclang++ 19.3
compiler. One version is compiled enabling all compiler
optimization using the -Ofast flag and targeting the
armv8-a+sve architecture to enable SVE vectorized
assembly instruction generation. The other version (naive
from now on) is compiled without targeting any vectoriza-
tion platform. In this way, we can compare the differences
in execution time of single operations when using both the
vectorized and the naive approach. At the time of writing,
the only proposed hardware supporting SVE instruction set
is the Fujitsu A64FX CPU [25] that employs 512-bit wide
SVE vector registers. Unfortunately, it is not available to
us at the moment. Therefore, both benchmarks presented
in this paper are executed on the ARM SVE Instruction
Emulator, with a different configuration of SVE vector
lengths from 128 to 2048 bit. The emulator runs on a
HiSilicon Hi1616 CPU with 32@2.4GHz ARM Cortex-
A72 cores. (Only single-core performance is addressed
for the single-operation benchmarks).

Table 2 shows activation function comparison between
vectorized and naive approaches on different benchmarks.
Each benchmark has been executed on 8192-bit vectors
with different vectorization levels in the case of SVE. Each
computation is repeated 1000 times, and the average is com-
puted and reported. As we can see, every function benefits
of a substantial speed-up thanks to vectorization, up to 18×.

Table 3 shows benchmark result for vectorized and
naive approaches. Dot-product benchmarks have been exe-
cuted on 8192-bit vectors with different vectorization lev-
els in the case of SVE. Matrix multiplication benchmarks
have been executed on 64 × 64 matrices. Each computa-
tion is repeated 1000 times, and the average is computed
and reported. Convolution operations employ a 3 × 3 filter.
More details are provided in the next subsections.

Note that the vectorized multiply and accumulate
instruction (namely svmla) offered by the ARM SVE ISA
allows to perform these operations as fused floating-point
addition of products. As stated in the ARM SVE ACLE
documentation [26], this instruction does not perform
intermediate rounding step after the multiplication. (This
is a very important behaviour.)

6.1 � Dot product

As reported, vectorized dot product benefits of an impres-
sive speed-up, even without vectorization of posit decod-
ing. This can be straightforwardly explained: Both naive

Table 2   Common activation
function benchmark result
comparison between vectorized
and naive approaches

vSig is the vectorized FastSigmoid. vTanh is the vectorized FastTanh. vELU is the vectorized ELU function

posit version vSig (ms) vTanh (ms) vELU (ms)

8,0 16,0 8,0 16,0 8,0 16,0

Naive 3.41 3.08 5.76 7.24 8.12 8.54
SVE-128 0.59 1.51 1.32 2.65 1.29 2.60
SVE-256 0.73 1.05 1.18 1.83 1.16 1.79
SVE-512 0.43 0.62 0.69 1.09 0.69 1.05
SVE-1024 0.29 0.39 0.48 0.72 0.46 0.68
SVE-2048 0.22 0.28 0.36 0.50 0.35 0.47

Table 3   Common vector
operation benchmark result
comparison between vectorized
and naive approaches

Dot is the vectorized dot product. vGeMM is the vectorized general matrix–matrix multiplication. Conv is
3 × 3 convolution operation

Posit version Dot (ms) vGeMM Conv

8,0 16,0 8,0 16,0 8,0 16,0

Naive 14.60 14.95 3.7 3.23 80.67 80.84
SVE-128 3.20 3.11 0.58 1.12 24.02 37.99
SVE-256 3.31 3.21 0.72 1.04 11.66 21.49
SVE-512 2.42 2.28 0.41 0.61 6.85 14.03
SVE-1024 2.04 1.88 0.27 0.38 6.38 12.88
SVE-2048 1.82 1.62 0.20 0.26 3.65 8.81

767Journal of Real-Time Image Processing (2020) 17:759–771	

1 3

and vectorized approaches need to convert posit to a cho-
sen backend (native float in our case). Once converted, the
vectorized approach fully exploits the floating-point unit
and SIMD acceleration, while the naive one only exploits
floating-point acceleration.

6.2 � Matrix–matrix multiplication

Furthermore, matrix–matrix multiplication substantially
benefits from vectorization operations. As a plus, as
shown in [15], this operation has been realized avoiding
the traditional sequence of dot products between rows and
columns. The idea is to carry more than a single column
of the second multiplication operand in vector registers,
to be multiplied with the same element of the first one.
Let A ∈ ℝ

M×K , B ∈ ℝ
K×N and C = A ⋅ B be the matrices

involved in the operation. Values of C can be obtained in
batches of length equal to the vector register capability,
say L, for the used representation as follows:

6.3 � Convolution

Computing the convolution (a sequence of matrix–vector
multiplications) is the most demanding part in the for-
ward pass of a convolutional deep neural network. Thus,
speeding it up is crucial. Therefore, we considered a 3 × 3
convolution operation, where we obtained significant
improvements from the vectorization approach, gaining
a very impressive speed-up compared to the plain ver-
sion. Our approach works for any size of the filter when
the stride is equal to 1. For different types of convolution,
the auto-vectorized version is preferable, still providing
consistent speed-ups. The basic idea is to perform three
different one-dimensional convolutions, one for each fil-
ter row, moving the filter along with the image matrix.
For each filter stride, we convolve the filter rows with a
batch of matrix row elements loaded in a vector register.
In order to do this, we pre-fetch the nine filter elements in
the vector registers. The pseudocode for the algorithm is
shown in Algorithm 1. Note that the vector multiplication
instructions are controlled by three different predicates,
one for each column. The first predicate allows elements
of the filter to be multiplied with elements inside the win-
dow

[
j; j + L − 2

]
 , where j is the current position of the

filter in the image columns and L is the SVE vector length.
Similarly, the second predicate will allow multiplication
only in

[
j + 1; j + L − 1

]
 and the third one in

[
j + 2; j + L

]
 .

The algorithm can be easily extended to 5 × 5 convolution,
increasing the register pressure.

(4)Ci,[j∶j+L−1] =

K∑
i

Ai,k ⋅ Bk,[j∶j+L−1].

Algorithm 1 3×3 (stride = 1) Vectorized Convolution
Input: Image,Filter,Rows,Columns
Output: FeatureMap
1: /* Initialise by loading each of the 9 Filter weights in the

SVE lanes */
2: // Loop on Image rows
3: for i = 0 to Rows− 2 do
4: for j = 0 to Columns− 2 do
5: /* Load the three rows targeted by current filter

position (i,j), L is the SVE vector register length */
6: firstRow = Image[i][j:j+L-1]
7: secondRow = Image[i+1][j:j+L-1]
8: thirdRow = Image[i+2][j:j+L-1]
9: /* Perform multiplication with correspondent fil-

ter elements of same row. */
10: p00 = firstRow × filterLane[0][0]
11: ...
12: p22 = thirdRow × filterLane[2][2]
13: c0 = p00 + p10 + p20 // Reduce-sum columns
14: c1 = p01 + p11 + p21
15: c2 = p02 + p12 + p22
16: res = c0 + c1 + c2 // Complete sum row-wise
17: FeatureMap[i][:] = res // Store the result row
18: end for
19: end for
20: return FeatureMap

6.4 � Pooling

Pooling kernels (i.e. average and max pooling) are impor-
tant operations aimed to reduce the spatial information of
network layers. In general, the spatial behaviour of these
kernels is similar to convolution operations. In particular, the
average pooling layer can be seen as a f × f convolution with
all the filter elements fixed to 1∕f 2 . Therefore, for average
pooling we can make the same conclusion already applied to
convolution operations, hence having similar results.

Typically, we want to reduce the layer output size by a
factor k, equal to 2 or 3. To have a reduction of a factor 2,
we need to employ a 2 × 2 kernel with stride equal to 2.
In general, if we want to reduce the size by a factor k, we
need to employ a k × k kernel with stride equal to k (with
appropriate padding). The implemented algorithm (see
Algorithm 2) for vectorized max pooling is quite different
from the convolution one, employing both intrinsic vec-
torization and auto-vectorization mechanisms. Consider
now a typical 3 × 3 max-pooling with stride 3. The first
step is to perform element-wise maximum between the
three rows targeted by current filter top-left element row
position i. Now we also need to perform the same opera-
tion column-wise. Therefore, to avoid expensive gather
loads to fetch the matrix columns, we can perform the
reduction with an additional, auto-vectorizable loop. We
force the compiler to particularly vectorize a loop with an
index step of 3 (that is, the separation step between groups
of item involved in the maximum operation) using the fol-
lowing pragma directive:

768	 Journal of Real-Time Image Processing (2020) 17:759–771

1 3

#pragma clang loop interleave_
count(3).

This pre-processor directive aims to increase both the
instruction-level parallelism inside the loop performing
an unrolling operation and the data level parallelism of
the vector performing data interleaving with a compiler-
specified parameter 3.

For max pooling, we employed 225 × 225 images with a
3 × 3 pooling kernel with stride 3. Each computation was
repeated 1000 times, and mean timing results are shown
in Table 4. As reported therein, the max pooling operation
incredibly benefits from the SVE vectorization, gaining a
massive speed-up when compared to the naive version. As
a plus, we analysed the Clang vectorization report to verify
that the additional loop is interleaved by the compiler.

7 � tinyDNN benchmarks results

In this section, we present benchmark results for the vector-
ized cppPosit library when used inside the tinyDNN neural
network framework. For this benchmark, we used different
very deep neural network models. In particular, we used
some models proven to be successful in the ImageNet chal-
lenge [27]. AlexNet [23] consists of an eight-layer deep neu-
ral network, with internal convolutional layers reaching up
to 192 convolution kernels, with an overall 60M parameters.
ResNet architectures [28] are built stacking the so-called
residual blocks, composed by two or, in deeper models, three
convolutional layers. For each of them, the block input is
summed to the output. This approach has been proven to
improve classification performance in the ImageNet chal-
lenge. We tested our vectorized method on the 34-layer and
152-layer versions of the ResNet architecture. VGG16 and
VVG19 models [29] are deep convolutional neural networks
with a series of stacked convolutional layers (16 and 19
weight layers, respectively), where dimensionality reduc-
tion is operated by max-pooling layers.

Table 5 shows the inference results of the said benchmark
networks. As reported the speed-up gained by the SVE-ena-
bled version to the non-vectorized, one is impressive.

8 � Conclusions

Since many of the current image processing applications
use deep neural networks, it is crucial to speed-up at least
the DNN forward-pass phase. In this paper, we presented an
approach based on the use of a novel representation of real
numbers (the posit format) and the speed-up of DNN opera-
tions using SIMD instructions. Our approach is interesting

Table 4   Common pooling operation benchmark result comparison
between vectorized and naive approaches

Posit version Max pooling (ms) Average pooling

8,0 16,0 8,0 16,0

Naive 59.41 49.7 80.51 80.44
SVE-128 9.51 26.52 24.35 37.66
SVE-256 10.59 22.06 11.46 21.63
SVE-512 6.96 14.69 6.53 14.25
SVE-1024 5.12 11.84 6.68 12.48
SVE-2048 4.13 9.76 3.35 8.84

Table 5   Image processing time (in seconds) for various very deep
neural network models using posit⟨8, 0⟩

For this benchmark random RGB 224 × 224 , images are employed.
As reported, the processing time with SVE vectorization experienced
a dramatically improvement. Note that, however, in terms of abso-
lute values, the processing time is quite large. Clearly, this is due to
the fact that SVE-enabled hardware is not available for evaluation
at moment of writing and all benchmarks are executed on the ARM
SVE instruction emulator, not on a real CPU

Version AlexNet ResNet34 VGG16 VGG19 ResNet152

Naive 40.06 146.07 590.68 675.32 779.7
SVE128 2.76 10.07 40.74 46.57 53.77
SVE256 2.64 9.61 38.88 44.45 51.32
SVE512 2.54 8.93 36.12 41.30 47.68
SVE1024 2.44 8.92 36.06 41.23 47.60
SVE2048 2.34 8.90 35.97 41.13 47.48

Algorithm 2 3×3 (stride = 3) Vectorized Max-Pooling
Input: Image
Output: PooledImage
1: /* Initialise by loading each of the 9 Filter weights in the

SVE lanes*/
2: // Loop on Image rows
3: for i = 0 to Rows-2 step 3 do
4: Initialise maxRow element to store the maximum values

in the SVE lanes
5: for j = 0 to Columns - 2 do
6: /* Load the three rows targeted by current filter

position (i,j), L is the SVE vector register length */
7: firstRow = Image[i][j:j+L-1]
8: secondRow = Image[i+1][j:j+L-1]
9: thirdRow = Image[i+2][j:j+L-1]
10: /* Perform element-wise maximum between the 3

rows and store in maxRow. */
11: maxRow = max(firstRow,secondRow,thirdRow)
12: end for
13: /* Auto-vectorized part: 3-by-3 maximum for the cur-

rent maxRow */
14: for k = 0 to Columns - 2 step 3 do
15: PooledImage[i/3][k/3] = max(maxRow[k:k+2])
16: end for
17: end for
18: return PooledImage

769Journal of Real-Time Image Processing (2020) 17:759–771	

1 3

for image processing applications where the GPU is not
available, such as in most smart cameras applications or
even in some assisted driving applications. More precisely,
in this work we have presented a vectorized extension of
posit arithmetic targeting the ARM SVE architecture, imple-
menting some interesting core functions of machine learning
and deep neural networks, where we have taken advantage
of both explicit and auto-vectorization. We extended our
cppPosit C++ software posit arithmetic library exploiting
the knowledge on L1 operations and applying vectoriza-
tion to the integer arithmetic behind them. This allowed
us to obtain a substantial speed-up in the computation of
fast approximated activation functions such as sigmoid,
hyperbolic tangent and extended linear unit. Moreover, we
proposed an approach for implementing machine learning
vector and matrix operations with posit format, exploiting
the underlying native vectorization for ARM floats, gain-
ing again a solid speed-up in the computation of operations
such as dot products and convolutions. Finally, we applied
acquired knowledge to the tinyDNN C++ deep neural net-
work library for the low-precision inference phase with 8-bit
posits, reporting a relevant improvement in the mean sample
inference time when switching from non-optimized version
to optimized one. Future work includes porting more por-
tions of the tinyDNN library to the ARM SVE architectures,
to further extend the presence of vectorization within it.

Acknowledgements  This work is partially funded by H2020 European
Processor Initiative (Grant agreement No 826647) and partially by the
Italian Ministry of Education and Research (MIUR) in the framework
of the CrossLab project (Departments of Excellence).

Appendix: The posit designer tool

When choosing the posit configuration, we need to take
into account multiple factors, such as target dynamic range
and target decimal precision. We developed a MATLAB
tool to analyse different alternative representations for real
numbers, and we provide posit configurations that match
the requirements for converting a given format into its
closest posit alternative, evaluating range and resolution of
them. The tool provides the following information:

1.	 Number-type statistics such as the total number of bits,
maximum value and � value (i.e. smallest step we can
make from a number of that format). Figure 8 shows the
output of this functionality. (In that figure, bin32_8 is a
32-bit float IEEE 754 with 8 bits for the exponent, i.e. a
standard single-precision representation.)

2.	 Graphical evaluation of � value against the max value (in
a logarithmic scale).

3.	 Next posit with 0 exponent bits that covers the dynamic
range of a given number format. Figure 9 shows the out-
put of this functionality.

4.	 posit to fixed type to build appropriate quire space for
deferred rounding operations (such as exact multiply and
accumulate).

Furthermore, we derived a general formula that allows us
to convert any posit⟨X, Y⟩ to any posit⟨Z,W⟩ (with X > Z )
without losing the dynamic range coverage:

This may be useful when trying to reduce the number of bits
during of neural network weights after we trained it. Table 6
shows an example of application of this formula.

References

	 1.	 Burgess, N., Milanovic, J., Stephens, N., Monachopoulos, K.,
Mansell, D.: Bfloat16 processing for neural networks. In: 2019

(5)W ≥ log2

(
X − 2

Z − 2

)
+ Y .

Fig. 8   Posit designer tabulated statistics for different number types

Fig. 9   Posit designer output for posit with 0 exponent bits covering
the posit⟨16, 3⟩ configuration

Table 6   Conversion table between training and inference types

Training posits Inference posits

posit⟨16, 1⟩ posit⟨8, 2⟩
posit⟨32, 2⟩ posit⟨16, 3⟩
posit⟨64, 3⟩ posit⟨32, 4⟩

770	 Journal of Real-Time Image Processing (2020) 17:759–771

1 3

IEEE 26th Symposium on Computer Arithmetic (ARITH), pp.
88–91 (2019)

	 2.	 Köster, U., Webb, T., Wang, X., Nassar, M., Bansal, A.K., Con-
stable, W., Elibol, O., Gray, S., Hall, S., Hornof, L., et al.: Flex-
point: An adaptive numerical format for efficient training of deep
neural networks. In: Advances in Neural Information Processing
Systems, pp. 1742–1752 (2017)

	 3.	 Popescu, V., Nassar, M., Wang, X., Tumer, E., Webb, T.: Flex-
point: Predictive numerics for deep learning. In: 2018 IEEE 25th
Symposium on Computer Arithmetic (ARITH), pp. 1–4 (2018)

	 4.	 Johnson, J.: Rethinking floating point for deep learning. CoRR
(2018). [Online]. Available: arxiv​:1811.01721​

	 5.	 Gustafson, J.L.: The End of Error: Unum Computing. Chapman
and Hall/CRC, Boca Raton (2015)

	 6.	 Gustafson, J.L.: A radical approach to computation with real num-
bers. Supercomput. Front. Innov. 3(2), 38–53 (2016)

	 7.	 Gustafson, J.L., Yonemoto, I.T.: Beating floating point at its own game:
posit arithmetic. Supercomput. Front. Innov. 4(2), 71–86 (2017)

	 8.	 Cococcioni, M., Rossi, F., Ruffaldi, E., Saponara, S.: Novel arith-
metics to accelerate machine learning classifiers in autonomous
driving applications. In: 26th IEEE International Conference on
Electronics Circuits and Systems (ICECS’19) (2019)

	 9.	 Cococcioni, M., Rossi, F., Ruffaldi, E., Saponara, S.: A fast
approximation of the hyperbolic tangent when using posit num-
bers and its application to deep neural networks. In: International
Workshop on Applications in Electronics Pervading Industry,
Environment and Society (ApplePies’19) (2019). [Online]. https​
://doi.org/10.1007/978-3-030-37277​-4_25

	10.	 Cococcioni, M., Ruffaldi, E., Saponara, S.: Exploiting posit arith-
metic for deep neural networks in autonomous driving applica-
tions. IEEE Automotive (2018)

	11.	 Carmichael, Z., Langroudi, H.F., Khazanov, C., Lillie, J., Gustaf-
son, J.L., Kudithipudi, D.: Deep positron: A deep neural network
using the posit number system. In: 2019 Design, Automation Test
in Europe Conference Exhibition (DATE), pp. 1421–1426 (2019)

	12.	 Fatemi Langroudi, S.H., Carmichael, Z., Gustafson, J., Kudith-
ipudi, D.: PositNN framework: Tapered precision deep learning
inference for the edge, pp. 53–59 (2019)

	13.	 Lu, J., Fang, C., Xu, M., Lin, J., Wang, Z.: Evaluations on deep
neural networks training using posit number system. IEEE Trans.
Comput. 1 (2020)

	14.	 A sneak peek into SVE and VLA programming (2018). https​://
devel​oper.arm.com/solut​ions/hpc/resou​rces/hpc-white​-paper​s/a-
sneak​-peek-into-sve-and-vla-progr​ammin​g

	15.	 ARM Scalable Vector Extension and application to Machine
Learning (2019). https​://devel​oper.arm.com/-/media​/devel​oper/
produ​cts/softw​are-tools​/hpc/White​%20pap​ers/arm-scala​ble-
vecto​r-exten​sions​-and-appli​catio​n-to-machi​ne-learn​ing.pdf?revis​
ion=510ee​340-fce1-4fd8-bad6-bade6​74620​a5

	16.	 ARM NN (2019). https​://devel​oper.arm.com/ip-produ​cts/proce​
ssors​/machi​ne-learn​ing/arm-nn

	17.	 Cococcioni, M., Rossi, F., Ruffaldi, E., Saponara, S.: Fast approxi-
mations of activation functions in deep neural networks when
using posit arithmetic. Sensors 20(5) (2020)

	18.	 Cococcioni, M., Rossi, F., Ruffaldi, E., Saponara, S., de Dine-
chin, B.: Novel arithmetics in deep neural networks signal pro-
cessing for autonomous driving: challenges and opportunities.
IEEE Signal Process. Mag. (2020). https​://doi.org/10.1109/
MSP.2020.29884​36

	19.	 Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-
normalizing neural networks. In: Guyon, I., Luxburg, U.V., Ben-
gio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R.
(eds) Advances in Neural Information Processing Systems 30,
pp. 971–980. Curran Associates, Inc. (2017). [Online]. Available:
http://paper​s.nips.cc/paper​/6698-self-norma​lizin​g-neura​l-netwo​
rks.pdf

	20.	 Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. In: Proceedings
of the 32Nd International Conference on International Conference
on Machine Learning - Volume 37, ser. ICML’15. JMLR.org, pp.
448–456 (2015). [Online]. Available: http://dl.acm.org/citat​ion.
cfm?id=30451​18.30451​67

	21.	 Kukačka, J., Golkov, V., Cremers, D.: Regularization for deep
learning: a taxonomy (2017)

	22.	 Plaut, D.C., et al.: Experiments on learning by back propagation
(1986)

	23.	 Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classifica-
tion with deep convolutional neural networks. Commun. ACM
60(6), 84–90 (2017). https​://doi.org/10.1145/30653​86

	24.	 Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhut-
dinov, R.: Dropout: a simple way to prevent neural networks from
overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

	25.	 Post-K Supercomputer with Fujitsu’s Original CPU, A64FX Pow-
ered by ARM ISA (2019). https​://www.fujit​su.com/globa​l/Image​s/
post-k_super​compu​ter_with_fujit​su’s_origi​nal_cpu_a64fx​_power​
ed_by_arm_isa.pdf

	26.	 ARM C Language Extensions for SVE. https​://stati​c.docs.arm.
com/10098​7/0000/acle_sve_10098​7_0000_00_en.pdf

	27.	 Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S.,
Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C.,
Fei-Fei, L.: ImageNet large scale visual recognition challenge. Int.
J. Comput. Vis. (IJCV) 115(3), 211–252 (2015)

	28.	 He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for
image recognition. In: 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

	29.	 Simonyan, K., Zisserman, A.: Very deep convolutional networks
for large-scale image recognition (2014). arXiv preprint arXiv​
:1409.1556

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Marco Cococcioni  received the Laurea degree in 2000 and the diploma
degree in 2001 in Computer Engineering from University of Pisa and
Scuola Superiore S. Anna, respectively, both with magna cum laude.
In 2004, he earned the PhD degree in Computer Engineering at the
University of Pisa. In 2010–2011, he spent 2 years as Senior Visiting
Scientist at the NATO Undersea Research Centre (now CMRE) in La
Spezia, Italy. For his collaboration with CMRE, he obtained the NATO
Scientific Achievement Award in 2014. Since 2016, he is an Associate
Professor at the Department of Information Engineering of the Univer-
sity of Pisa. His main research interests include artificial intelligence,
decision support systems, fuzzy logic, multi-objective evolutionary
optimization, genetic fuzzy systems, pattern recognition, neural net-
works and operations research. He has been the general chair of three
IEEE international conferences. In addition, he has co-organized six
special sessions at international conferences and has been program
committee member of 50+ international conferences. He is in the edito-
rial board of four journals indexed by Scopus. He is member of three
IEEE task forces: Genetic Fuzzy Systems, Computational Intelligence
in Security and Defense and Intelligent System Application. Prof.
Cococcioni has co-authored 90 contributions to international journals
and conferences, and he is a Senior Member of both IEEE and ACM
(Association for Computing Machinery).

Federico Rossi  is a PhD student of the Information Engineering Depart-
ment at University of Pisa. In 2019, he received his master degree in
Computer Engineering magna cum laude. He is currently involved in
the European Processor Initiative (EPI) project. His research topics

http://arxiv.org/abs/1811.01721
https://doi.org/10.1007/978-3-030-37277-4_25
https://doi.org/10.1007/978-3-030-37277-4_25
https://developer.arm.com/solutions/hpc/resources/hpc-white-papers/a-sneak-peek-into-sve-and-vla-programming
https://developer.arm.com/solutions/hpc/resources/hpc-white-papers/a-sneak-peek-into-sve-and-vla-programming
https://developer.arm.com/solutions/hpc/resources/hpc-white-papers/a-sneak-peek-into-sve-and-vla-programming
https://developer.arm.com/-/media/developer/products/software-tools/hpc/White%20papers/arm-scalable-vector-extensions-and-application-to-machine-learning.pdf?revision=510ee340-fce1-4fd8-bad6-bade674620a5
https://developer.arm.com/-/media/developer/products/software-tools/hpc/White%20papers/arm-scalable-vector-extensions-and-application-to-machine-learning.pdf?revision=510ee340-fce1-4fd8-bad6-bade674620a5
https://developer.arm.com/-/media/developer/products/software-tools/hpc/White%20papers/arm-scalable-vector-extensions-and-application-to-machine-learning.pdf?revision=510ee340-fce1-4fd8-bad6-bade674620a5
https://developer.arm.com/-/media/developer/products/software-tools/hpc/White%20papers/arm-scalable-vector-extensions-and-application-to-machine-learning.pdf?revision=510ee340-fce1-4fd8-bad6-bade674620a5
https://developer.arm.com/ip-products/processors/machine-learning/arm-nn
https://developer.arm.com/ip-products/processors/machine-learning/arm-nn
https://doi.org/10.1109/MSP.2020.2988436
https://doi.org/10.1109/MSP.2020.2988436
http://papers.nips.cc/paper/6698-self-normalizing-neural-networks.pdf
http://papers.nips.cc/paper/6698-self-normalizing-neural-networks.pdf
http://dl.acm.org/citation.cfm?id=3045118.3045167
http://dl.acm.org/citation.cfm?id=3045118.3045167
https://doi.org/10.1145/3065386
https://www.fujitsu.com/global/Images/post-k_supercomputer_with_fujitsu’s_original_cpu_a64fx_powered_by_arm_isa.pdf
https://www.fujitsu.com/global/Images/post-k_supercomputer_with_fujitsu’s_original_cpu_a64fx_powered_by_arm_isa.pdf
https://www.fujitsu.com/global/Images/post-k_supercomputer_with_fujitsu’s_original_cpu_a64fx_powered_by_arm_isa.pdf
https://static.docs.arm.com/100987/0000/acle_sve_100987_0000_00_en.pdf
https://static.docs.arm.com/100987/0000/acle_sve_100987_0000_00_en.pdf
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556

771Journal of Real-Time Image Processing (2020) 17:759–771	

1 3

include alternative real number representations and their applications
to deep neural networks for the automotive environment.

Emanuele Ruffaldi  is senior software engineer at MMI S.p.A. (IT)
working on robotic-assisted microsurgery. Formerly, he has been
Assistant Professor at Scuola Superiore Sant’Anna in the Perceptual
Robotics laboratory, Pisa, Italy. His research interests are in the field
of machine learning for HRI and embedded artificial intelligence. He
is Senior IEEE Member and has served IEEE as Publicity Chair for
the Haptics TC.

Sergio Saponara  (SM’13) is Full Professor of Electronics at University
of Pisa, where he got Master degree cum laude and PhD degree. In
2012, he was a Marie Curie Research Fellow in IMEC. He is an IEEE

Distinguished Lecturer and co-founder of special interest group on IoT
of both IEEE CAS and SP societies. He is the director of I-CAS Lab, of
CrossLab Industrial IoT, of the Summer School Enabling Technologies
for IoT. He is associate editor of several IEEE and Springer Journals.
He co-authored more than 300 scientific publications and 18 patents.
He is the leader of many funded projects by EU and by companies such
as Intel, Magneti Marelli, Ericsson and PPC.

	Fast deep neural networks for image processing using posits and ARM scalable vector extension
	Abstract
	1 Introduction
	1.1 Organization of the paper

	2 Posit arithmetic
	2.1 Fast approximated operations on posits using only the ALU
	2.1.1 The twice operation (2x)
	2.1.2 The one’s complement operator ( )
	2.1.3 Fast reciprocate function (1x)
	2.1.4 Fast sigmoid activation function
	2.1.5 Fast hyperbolic tangent
	2.1.6 Fast extended linear unit

	3 Posits and DNNs
	3.1 Activation functions
	3.2 Distribution of values
	3.3 Loss strategies
	3.4 Data pre-processing

	4 ARM SVE architecture
	5 The C++ library cppPosit
	5.1 Tabulated posits
	5.2 Operational levels
	5.3 Vectorized extension

	6 Single-operation benchmarks results
	6.1 Dot product
	6.2 Matrix–matrix multiplication
	6.3 Convolution
	6.4 Pooling

	7 tinyDNN benchmarks results
	8 Conclusions
	Acknowledgements
	References

