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Abstract
With the advent of image processing and computer vision for automotive under real-time constraints, the need for fast and 
architecture-optimized arithmetic operations is crucial. Alternative and efficient representations for real numbers are start-
ing to be explored, and among them, the recently introduced positTM number system is highly promising. Furthermore, with 
the implementation of the architecture-specific mathematical library thoroughly targeting single-instruction multiple-data 
(SIMD) engines, the acceleration provided to deep neural networks framework is increasing. In this paper, we present the 
implementation of some core image processing operations exploiting the posit arithmetic and the ARM scalable vector exten-
sion SIMD engine. Moreover, we present applications of real-time image processing to the autonomous driving scenario, 
presenting benchmarks on the tinyDNN deep neural network (DNN) framework.

Keywords  Deep neural networks (DNNs) · Posit arithmetic · Scalable vector extension · Auto-vectorization · Real-time 
image processing · Autonomous driving

1  Introduction

Nowadays, one of the most fruitful topics that exploit the 
pervasiveness of DNNs is image processing in the auto-
motive industry. This field brings new problems and chal-
lenges to DNNs. On the one side, there is the need to reduce 
network architecture and computation complexity to better 
accomplish real-time tasks in resource-constrained devices. 
On the other side, there is the need to target-specific plat-
form DNN accelerators [e.g. NVIDIA cuDNN for NVIDIA 
graphical processing units (GPUs)] to provide substantial 
speed-ups to neural network processing, in the both training 
and inference phases. On the complexity reduction side, one 

of the most explored and interesting fields is the alternative 
representation of real numbers, to reduce the number of bits 
used to represent the weights of the DNNs. Some ideas have 
already been proposed by industries such as Google (Brain 
Float—BFloat16—[1]), Intel (Flexpoint—FP16—[2, 3]) 
and Facebook AI Group [4]. Another promising represen-
tation that diverges from the floating-point standard is the 
posit number system [5–7]. This type has been proven to 
be a perfect drop-in replacement of 32-bit IEEE 754 floats 
in machine learning, using just 16 bits [8–13]. Moreover, 
it has been productively exploited in low-precision infer-
ence down to 8-bit posit representation, with very little 
degradation of network inference accuracy. Furthermore, 
as also explained in Sect. 2 and in [9], this number system 
can be exploited to build fast, approximated and efficient 
activation functions for neural networks like the sigmoid 
function by only using the already existent arithmetic logic 
unit (ALU) within the CPU. On the side of target-specific 
platform accelerators, the ubiquity of operations such as 
dot products, matrix multiplications and filter convolutions 
points out the need for optimized routines able to increase 
the throughput for these operations. While the spread of 
GPUs in this field is relevant, the use of such components 
may be precluded by both high implementation costs and 
low-power requirements. Microprocessor industries have 
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already moved towards this direction providing a vectorized 
extension of their instruction set architecture (ISA). In par-
ticular, ARM has firstly proposed the NEON instruction set, 
then evolved and improved with the ARM scalable vector 
extension (SVE) [14, 15]. Furthermore, ARM has already 
developed a deep neural network library that supports its 
NEON vectorization backend [16], but at time of writing it 
lacks the SVE support. This extension, along with the ARM 
compiler, allows producing executable binaries exploiting 
the SVE instruction set in two dimensions. One dimen-
sion is the auto-vectorization approach, with the compiler 
autonomously producing vectorized instructions exploiting 
data parallelism in the code (e.g. loop unrolling). The other 
dimension is the explicit use of specific high-level instruc-
tions to instrument vectorization in an explicit way. This is 
possible thanks to the ARM C Language Extension (ACLE) 
for SVE [14]. Combining the reduction in information size 
with the vectorization is thus very interesting. If we halve the 
bits of a given representation without losing decimal accu-
racy, we can fit twice the elements in the same vector regis-
ter, increasing the overall throughput. In this paper, we will 
develop a vectorized extension for the cppPosit C++ posit 
arithmetic library, following both the approaches. Then, this 
extension will be tested against common DNN and machine 
learning operations and in the tinyDNN C++ DNN library.

1.1 � Organization of the paper

In Sect. 2, we present the posit format and its properties 
along with some interesting arithmetic operators developed 
only using integer arithmetic. In Sect. 4, we are going to 
summarize the main characteristic of the new ARM SVE 
architecture, pointing out the useful tools and approaches 
that we can exploit for the development of our vectorized 
backend. In Sect. 5, we are going to present the cppPosit 
library developed by the authors and to propose a vector-
ized extensions for it, providing implementations for com-
mon operations (such as dot product and convolution) and 
addressing the issues and challenges of posit in general. This 
work has been carried out within the H2020 European Pro-
cessor Initiative (EPI). The obtained results provide inter-
esting feedback to the EPI CPU designers, since they can 
evaluate upon a time the impact of their design choices.

In Sect. 6, we present the results obtained on the official 
ARM Instruction Emulator, trying to point out the differ-
ence in terms of processing time between the different ver-
sions and vectorization levels. Finally, in Sect. 7 we present 
the results achieved using the tinyDNN library (equipped 
with the cppPosit library) on very deep convolutional neu-
ral networks (using synthetic images). These benchmarks 
are interesting for real-time image processing applied to the 
automotive scenario. Single-operation benchmarks show the 
impact of our approach on the image processing building 

blocks (e.g. convolution is a very common operation in 
image processing and filtering). Furthermore, the tinyDNN 
benchmarks are focused on widely used neural networks 
in the autonomous driving world. In particular, the evalu-
ated networks are employed as basic blocks both in auto-
motive computer vision (e.g. object detection and semantic 
segmentation).

2 � Posit arithmetic

As widely shown in [7, 8, 10, 17, 18], the posit format is a 
fixed-length alternative representation to float numbers. A 
posit can be configured in the total number of bits (nbits) 
and the number of exponent bits (es). It has up to four fields 
as in Fig. 1:

–	 Sign field (1 bit, ). Posits are 2’s complement.
–	 Regime field (variable length: it is identified as the 

sequence of identical bits r followed by the opposite bit 
r̄ , ).

–	 Exponent field (maximum length of es, ). This field can 
be shorter or even missing at all, for some representa-
tions, even when es > 0.

–	 Fraction field (variable length, ) can be missing too.

Given such a format, the value x is represented by the 
signed integer v representing the posit:

where useed = 22
es and f = � ⋅ 2−F is the fractional part rep-

resented by the fraction field.
Figure 2 shows an example of posit format decoding:

2.1 � Fast approximated operations on posits using 
only the ALU

In this subsection, we will refer to x as the represented real 
value and to v, Y as the integers representing the posit, with v 
being the input of the operation and Y being the output of the 
same operation. The represented real value can be obtained 
from its representation using Eq. (1).

(1)x =

⎧
⎪⎨⎪⎩

0, if v = 0

NaN, if v = −2(nbits−1)

sign(v) × useedk ⋅ 2e ⋅ (1 + f ), otherwise

51 41 31 21 11 01 9 8 7 6 5 4 3 2 1 0

S Regime(1..R) Exp
(0..es) Fraction (0..F)

Fig. 1   Illustration of a posit⟨16, 2⟩



761Journal of Real-Time Image Processing (2020) 17:759–771	

1 3

Please notice how, when es = 0 , the formula in Eq. (1) can 
be further simplified as:

where k = −R for x < 1 and k = R − 1 for x > 1 , and R is the 
regime length, as shown in Fig. 1.

This posit formulation allows implementing some arith-
metic operators that, unlike IEEE 754 float numbers, can be 
evaluated by using only the ALU on the integer v representing 
the posit bit string.

2.1.1 � The twice operation (2x)

When applying the twice operator, we consider three different 
cases for the posit value: x ∈ [2,+∞) , x ∈ [1, 2) , x ∈ [0, 1] 
(the same holds for negative values). We implement the twice 
operator in the different cases as follows (in the following 
expressions, x ≪ n represents the number x left shifted of n 
bits, x ≫ n represents the number x arithmetically right shifted 
of n bits, x ≫∗ n represents the number x logically right shifted 
of n bits, | is the bitwise or operation and ⊕ is the bitwise 
exclusive or (xor) operation).

where twicemask is obtained as follows:

We obtain the final result as:

(2)x = 2k ⋅ (1 + f )

vabs =abs(v)

s =sign(v)

vs =v ≪ 1

Yt =

⎧⎪⎨⎪⎩

vs ≫ 1, if x ≥ 2

vs⊕ twicemask, if x ≥ 1

vs ≪ 1, if x < 1

(3)twicemask = (1 ≪ nbits − 2)|(1 ≪ nbits − 3)

Y = (Yt ≫
∗ 1)⊕ s − s.

A similar approach can be applied to the half (x/2) opera-
tion. We only need to change the transformation in the three 
different cases:

2.1.2 � The one’s complement operator ( 1 − x)

The one’s complement operator requires also that the posit 
to be in the range [0, 1] and can be implemented as follows:

2.1.3 � Fast reciprocate function (1/x)

We can implement a fast and approximated version of the 
reciprocate function as follows (where ¬ is a bitwise negation, 
⊕ is the exclusive-or operator and signmask is a bit mask for 
the sign bit:

The signmask can be obtained as follows:

Moreover, some interesting nonlinear activation functions in 
DNNs can be approximated with this format. Some of the 
most important approximated functions that can be imple-
mented are the Sigmoid (see [7]), hyperbolic tangent and 
the extended linear unit function (see [9]), as also explained 
in Sect. 2.1.6.

2.1.4 � Fast sigmoid activation function

The sigmoid function sigmoid(x) = 1∕(1 + exp(−x)) can be 
approximated as follows (where v is the integer representing 
the posit and Y the integer representing the posit that approxi-
mates sigmoid(x)):

The approximated sigmoid function can be used as a build-
ing block for the other two functions, using linear combina-
tions that exploit fast approximated operators of posit arith-
metic seen before.

Yt =

⎧
⎪⎨⎪⎩

vs ≪ 1, if x ≥ 2

vs⊕ twicemask, if x ≥ 1

vs ≫ 1, if x < 1

.

Y = (1 ≪ nbits − 2) − v.

Y = (v⊕ ¬signmask).

msb =1 << (nbits − 1)

signmask = ((msb|msb − 1) >> 1).

Y = ((1 ≪ nbits − 1) + v + 2) ≫ 2.

51 41 31 21 11 01 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 1 1 1 0 1 1 0 0 1

51 41 31 21 11 01 9 8 7 6 5 4 3 2 1 0

S R E F

1 00 1 001 000100111

Fig. 2   An example of a 16-bit posit with 3 bits for the exponent 
( es = 3 ). Given the sequence on top of the figure, after detect-
ing it starts with 1, we have to compute the 2’s complement of all 
the remaining bits (passing from 110-110-111011001 to 001-001-
000100111). Then, we can proceed to decode the posit. The associ-
ated real value is therefore −256−2 · 21 · (1+39/512).. The final 
value is therefore −1∕65536 ⋅ (1 + 39∕512) = −0.00003284
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2.1.5 � Fast hyperbolic tangent

The hyperbolic tangent can be obtained from a linear com-
bination of the sigmoid function using the double and the 
one’s complement operators:

Finally, instead of using the exact sigmoid formula, we 
approximate the hyperbolic tangent using the fast approxi-
mated version of the sigmoid described in Sect.  2.1.4. 
In order to satisfy the one’s complement requirements 
( x ∈ [0, 1] ), we only consider negative x values that result 
in the sigmoid output to be in [0, 1/2]. Then, we can exploit 
the hyperbolic tangent odd symmetry around 0 to obtain the 
values for the positive arguments.

2.1.6 � Fast extended linear unit

Similarly, the extended linear unit function for negative 
arguments can be implemented as a linear combination of 
the sigmoid using the said operators:

As in the previous case, if we substitute the exact sigmoid 
function with its fast approximated, we obtain the fast 
approximated version of the ELU. Figure 3 shows the accu-
racy comparison between the two. Figure 4 shows process-
ing time comparison between latter two approximated func-
tions. More mathematical details can be found in [17]. In 
the next section, we will see how to speed-up DNN training 
and inference using the SVE feature of modern ARM CPUs.

tanh(x) = 2 ⋅ sigmoid(2x) − 1 = −(1 − 2 ⋅ sigmoid(2x)).

ex − 1 = −2 ⋅

[
1 −

1

2 ⋅ sigmoid(−x)

]
.

3 � Posits and DNNs

When considering posit numbers for DNNs, we need to take 
into account that the highest density of posit numbers is 
in the range [−1, 1] . This range indeed represents half of 
the posit projective circle. This can be exploited to design 
networks that are more proficient when used together with 
posit numbers. This can be addressed in different ways, as 
discussed in next subsections.

3.1 � Activation functions

When choosing activation functions, we need to consider the 
output range of the functions. For example, if we consider 
the ReLU activation function, it discards all the negative 
numbers passed as argument flattening them to 0. Further-
more, the sigmoid function, limiting the output in [0, 1], 
discards the precious high-density region [−1, 0] . Instead, 
the hyperbolic tangent can fully exploit the region [−1, 1] . 
However, being modern deep neural network architectures 
very deep (the number of layers is huge), S-shaped functions 
like hyperbolic tangent suffer from vanishing gradients; thus, 
they are not acceptable in the training process. The ELU 
function and in general scaled extended linear units (SELUs 
[19]) manage to cover a higher range, typically parameter-
ized by two real factors � and � : [−� ⋅ �,+∞].

3.2 � Distribution of values

When stacking layers in a deep model, we need to care about 
the right-shifting of value distributions during forwarding 
passes. Adding a batch normalization layer [20] after some 

Fig. 3   Accuracy comparison between exact (original formula applied 
to the posit format) and approximated versions of the hyperbolic 
tangent (TANH) and extended linear unit (ELU) using posit⟨8, 0⟩ . 

The functions were computed on each point of the posit⟨8, 0⟩ range. 
The mean squared error between the TANH function versions is 
2.8 ⋅ 10

−3 , while the mean squared error for the ELU ones is 3.7 ⋅ 10−3
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convolution and activation steps can manage to re-scale the 
values by subtracting the batch mean and dividing it by its 
standard deviation. This will result in a value distribution 
with a null mean value and unitary standard deviation, thus 
fitting the needs already explained.

3.3 � Loss strategies

If we want to perform low-precision inference without losing 
too much accuracy (e.g. switching to posit⟨8, 0⟩ for infer-
ence), we may need to take into account the dynamic range 
of such types (e.g. posit⟨8, 0⟩ has a range [−64, 64] ). This 
means that, during the training, we must penalize high net-
work weights. This can be addressed by using different types 
of regularization. In [21] are shown recent trends in regu-
larization for neural networks. For example, a weight decay 
approach (see [22]) with a decay rate of � adds the following 
L2 regularization term to the loss:

This has been proven to reduce overfit and training error in 
[23]. In general, avoiding overfitting can help in maintain-
ing low weight values. Therefore, the use of other layers 
designed to help with a generalization like dropout layer [24] 
can be useful as well.

3.4 � Data pre‑processing

When considering low-precision inference, we also need 
to take into account the encoding of data fed to the neural 
network. For example, if we take an RGB dataset, we will 

R(w) = � ⋅

1

2
⋅ |w|2

2
.

find each pixel encoded in each channel as an integer in 
[0, 255]. If we feed this type of data to a posit⟨8, 0⟩ net-
work, it will result in values above 64 to be clipped down 
to the maximum value. Moreover, we are not exploiting the 
negative axis. To address this problem, we may apply a re-
scaling of the encoding before even training the network. 
Simply re-scaling the image in [−1, 1] is not always a good 
solution, since it may result in an unacceptable loss of infor-
mation. Another important point in the posit circle is the 
useed = ±22

es point that is strictly connected to the dynamic 
range of a posit ±useednbits−2 . For example, re-scaling an 
image in the range [−useed, useed] of posit⟨8, 0⟩ (thus having 
the pixel encoded in [−2, 2] ) has been proven to be effective 
encoding during both training (with higher-precision types) 
and inference phase (with low-precision types). The formula 
to re-scale the value p of each pixel is therefore:

In Appendix, we describe a MATLAB tool, helpful to 
support the user in choosing the best posit configuration, 
depending on the needs of the application at hand.

4 � ARM SVE architecture

The ARM scalable vector extension (SVE [14]) is a vector 
extension for the ARM AArch64 architecture supported by 
the ARMv8 instruction set. The main difference between 
SVE and other single-instruction multiple-data (SIMD) 
engines (Intel AVX/SSE or ARM NEON) is that it does not 
specify any width for vector registers, but it provides some 

n(p) = 2 ⋅ useed ⋅

p

255
− useed.

Fig. 4   Processing time comparison between exact (original for-
mula applied to the posit format) and fast approximated versions of 
the hyperbolic tangent (TANH) and extended linear unit (ELU). The 
reported results came from evaluations of the functions on each point 

of the posit⟨8, 0⟩ domain. As reported, the approximated ELU func-
tion is on average five times faster when compared to the exact ver-
sion. On the other hand, the TANH function is more than 18 times 
faster on average
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constraints for it. The vector register widths must be multiple 
of 128 up to 2048 bits. This approach, called vector length 
agnostic (VLA), allows us to implement only one vectorized 
version of our operations, exploiting both auto-vectorization 
and ARM ACLE (ARM C Language Extensions), without 
the need to target-specific hardware platforms (Figs. 5, 6).

SVE architecture introduces new kind of registers:

–	 Z registers: 32 registers with configurable width, from 
128 to 2048 bits, as said above. These registers are meant 
to be data registers. SVE allows to interpret data in Z 
registers as 8 bits (bytes), 16 bits (half words), 32 bits 
(words) and 64 bits (double words). For instance, refer-
ring to posits, a 2048-bit Z register can hold up to 256 
posit⟨8,X⟩ (in any exponent configuration).

–	 P registers: 15 predicate registers, with one bit to control 
each byte in a Z register (a 2048-bit Z register will be 
controlled by 256-bit P register). Each bit in the P regis-
ter is interpreted as a Boolean. A predicate lane, made by 
1 to 8 predicate bits, indicates whether the correspondent 
lane (when using a Z register) is active or not, depending 
on the least significant bit.

5 � The C++ library cppPosit

For this work, we used the cppPosit C++ posit library 
developed in Pisa. This library exploits C++ templates to 
provide flexibility for posit configurations, ranging the total 
number of bits from 4 to 64. The main feature of cppPosit 
is the separation of the posit type in an interface frontend 
and a backend. The cppPosit frontend exposes all the pos-
sible implemented operations on posits, regardless of the 

underlying implementation. The backend implements the 
actual operations offered by the frontend, in one of the fol-
lowing flavours.

The supported backends are: i) fixed-point, ii) software 
floating-point (exploiting Berkeley SoftFloat library), iii) 
hardware floating-point unit (FPU) if present and iv) tabu-
lated (or log-tabulated). The latter two deserves to be deeply 
analyzed. In fact, they become an important backend when 
a hardware posit processing unit (PPU) is not available and 
the number of bits is not required to be much large (like in 
DNNs).

5.1 � Tabulated posits

When dealing with low-bit posits (e.g. 8-, 10-, 12-bit pos-
its), we can think of pre-computing the arithmetic opera-
tors and some convenient functions in look-up tables to be 
used at run time for posit processing. Without optimization, 
these tables grow quadratically with the size of the posits. 
The main optimizations are applied exploiting addition and 
subtraction symmetry and antisymmetry properties to have 
half of the tables. The log-tabulated approach also optimizes 
the multiplication and division operations, by noticing that 
log(a ⋅ b) = log(a) + log(b) (see also [4] for logarithmic 
numbers). In this way, we only need two single-operand 
tables for logarithm and exponentiation to perform both 
multiplication and division operations. These single-operand 
tables scale only linearly with the posit size, thus reducing 
the overall size of look-up tables. Note that the log-tabulated 
approach may result in some products or powers being off 
in the last bit.

5.2 � Operational levels

The cppPosit library also classifies the posit operations into 
four different operational levels:

–	 L1: These operations only require bit manipulations of 
the signed integer v representing the posit and thus can be 
executed just with the ALU support in a fast and efficient 
way. L1 operations are the most efficient one and are of 
crucial importance. Table 1 shows some of the L1 opera-
tions implemented in the library.

–	 L2: These operations require to decode the posit into the 
sign, regime, exponent and fraction with an additional 
unpacking step that slows down the computation. (This 
includes the use of count-leading-zeros (CLZ) opera-
tions.)

–	 L3: These operations also require the complete construc-
tion of the posit field, including the join between expo-
nent and regime fields, with additional computation cost. 
Note that in the 0-bit exponent case L3 and L2 operations 
have the same complexity.

Z0 (0..L)

...

Z31 (0..L)

Fig. 5   ARM SVE Z Data registers: 32 vector length agnostic register 
where L = 128 ⋅ k, k ∈ [1, 16]

P0 (0..P)

...

P15 (0..P)

Fig. 6   ARM SVE P predicate registers: 16 vector length agnostic reg-
ister where P = Z∕8
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–	 L4: These operations require the posit to be fully 
unpacked and reconstructed in the chosen backend.

As reported in Table 1, most of the L1 operations require 
to have 0 exponent bits, due to the emerging properties of 
posits with this particular configuration, as already explained 
in Sect. 2. Moreover, other functions such as the 1’s comple-
ment require the posit to be in the unitary range.

5.3 � Vectorized extension

In this section, we introduce the vectorized extension of the 
cppPosit library, aimed to provide the vector version of the 
posit operations. Firstly, we need to take into account the 
differences between different operational levels. L1 and L2 
operations are the easiest one to be vectorized; they only 
require bit manipulation of unsigned or signed integers plus 
additional encoding and decoding steps. Instead, L3 and L4 
operations need to be brought back at the chosen backend, 
and then, in case of hardware floating point, we can use 
native SIMD vectorization if any.

In order to provide a more general and abstract interface 
to posit vectorized operations, the architecture has separate 
posit vector frontend and a specialized posit vector backend 
that, in the paper case, implements the vectorized operations 
using ARM ACLE for SVE (Fig. 7).

When implementing vectorized operations, we have a 
common template to follow:

–	 Prologue: We need to prepare the data to be fed to the 
SIMD engine. For posits and L1 operations, this means 
preparing a vector with the signed integer representing 
the posits. In the SVE case, this means loading into the 
Z registers the posit holder type content (e.g. int16_t 
for posit⟨16,X⟩ ) using the svld1(...) intrinsic. For 
L3/4 operations, we need instead to unpack the posit to 
the underlying backend (fixed, floating or tabulated) and 
load the backend type into registers as well, performing 
full decoding of the posit type.

–	 Body: The body contains all the arithmetic and logic 
functions needed to apply the considered operation. In the 
SVE case, this may contain the SVE intrinsics that oper-
ate on the Z vector registers that contain the posit data. 
For instance, when implementing the fastSigmoid func-
tion, we will use the built-in intrinsics svasr_x(...) 
for the first right shift and svadd_x(...) for the sum. 
The first performs the same right shift on all the vector 
elements while the second performs the addition of the 
value (1 ≪ nbits − 2) to all the vector elements.

–	 Epilogue: We need to build back the posit into the result 
vector from the signed integer we have just manipulated 
in the function body. For SVE, this means invoking 
the svst1(...) intrinsic on the SVE result pointer 
obtained in the previous step. For L3/4 operations, we 
need instead to pack the posit up to the frontend, per-
forming a full encoding of the posit type.

When vectorizing non-L1 operations that require the posit 
to be decoded in its components (sign, regime, exponent 
and fraction), we need to take into account two phases of 
the prologue. The first and simplest one is the posit conver-
sion to the underlying signed integer holder type, that is, the 
cost of a pointer cast from the posit type to the holder one. 
This step has practically no cost. The second and hardest 
one is the vectorization of the posit decoding step since it 
involves many operations and branches on the bit string. 
After this decoding, the function body is the same as apply-
ing vectorization to the backend type (native ARM floats 
in our case).

The same behaviour holds for the epilogue as well. Pre-
dictably, both prologue and epilogue for non-L1 operations 
will introduce some kind of overhead in function computa-
tion, due to the conversion of the posit at the underlying 
backend. This means that, to see real effectiveness of this 
vectorized approach, we need to test this on large-sale data 

Table 1   cppPosit most important implemented L1 operations, includ-
ing common use activation functions such as sigmoid, hyperbolic tan-
gent and extended linear unit

Operation Approximation Requirements

2 ⋅ x No es = 0

x/2 No es = 0

1/x Yes None
1 − x No es = 0 , x ∈ [−1, 1]

FastSigmoid Yes es = 0

FastTanh Yes es = 0

FastELU Yes es = 0

positSVEBackend

+ vFastSigmoid(vector op,vector dst) : void

positT

�interface�
positVectorizedFrontend

+ vFastSigmoid(vector op,vector dst) : void

positT

Fig. 7   UML class diagram for an example SVEBackend that allows 
the vectorized computation of the fastSigmoid
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and SVE vector sizes. This will be addressed more deeply 
in the next section..

6 � Single‑operation benchmarks results

In this section, we present benchmark results on isolated 
operations such as activation functions, dot products 
and DNN convolutions. All benchmarks are compiled in 
two different versions using the armclang++ 19.3 
compiler. One version is compiled enabling all compiler 
optimization using the -Ofast flag and targeting the 
armv8-a+sve architecture to enable SVE vectorized 
assembly instruction generation. The other version (naive 
from now on) is compiled without targeting any vectoriza-
tion platform. In this way, we can compare the differences 
in execution time of single operations when using both the 
vectorized and the naive approach. At the time of writing, 
the only proposed hardware supporting SVE instruction set 
is the Fujitsu A64FX CPU [25] that employs 512-bit wide 
SVE vector registers. Unfortunately, it is not available to 
us at the moment. Therefore, both benchmarks presented 
in this paper are executed on the ARM SVE Instruction 
Emulator, with a different configuration of SVE vector 
lengths from 128 to 2048 bit. The emulator runs on a 
HiSilicon Hi1616 CPU with 32@2.4GHz ARM Cortex-
A72 cores. (Only single-core performance is addressed 
for the single-operation benchmarks).

Table 2 shows activation function comparison between 
vectorized and naive approaches on different benchmarks. 
Each benchmark has been executed on 8192-bit vectors 
with different vectorization levels in the case of SVE. Each 
computation is repeated 1000 times, and the average is com-
puted and reported. As we can see, every function benefits 
of a substantial speed-up thanks to vectorization, up to 18×.

Table 3 shows benchmark result for vectorized and 
naive approaches. Dot-product benchmarks have been exe-
cuted on 8192-bit vectors with different vectorization lev-
els in the case of SVE. Matrix multiplication benchmarks 
have been executed on 64 × 64 matrices. Each computa-
tion is repeated 1000 times, and the average is computed 
and reported. Convolution operations employ a 3 × 3 filter. 
More details are provided in the next subsections.

Note that the vectorized multiply and accumulate 
instruction (namely svmla) offered by the ARM SVE ISA 
allows to perform these operations as fused floating-point 
addition of products. As stated in the ARM SVE ACLE 
documentation [26], this instruction does not perform 
intermediate rounding step after the multiplication. (This 
is a very important behaviour.)

6.1 � Dot product

As reported, vectorized dot product benefits of an impres-
sive speed-up, even without vectorization of posit decod-
ing. This can be straightforwardly explained: Both naive 

Table 2   Common activation 
function benchmark result 
comparison between vectorized 
and naive approaches

vSig is the vectorized FastSigmoid. vTanh is the vectorized FastTanh. vELU is the vectorized ELU function

posit version vSig (ms) vTanh (ms) vELU (ms)

8,0 16,0 8,0 16,0 8,0 16,0

Naive 3.41 3.08 5.76 7.24 8.12 8.54
SVE-128 0.59 1.51 1.32 2.65 1.29 2.60
SVE-256 0.73 1.05 1.18 1.83 1.16 1.79
SVE-512 0.43 0.62 0.69 1.09 0.69 1.05
SVE-1024 0.29 0.39 0.48 0.72 0.46 0.68
SVE-2048 0.22 0.28 0.36 0.50 0.35 0.47

Table 3   Common vector 
operation benchmark result 
comparison between vectorized 
and naive approaches

Dot is the vectorized dot product. vGeMM is the vectorized general matrix–matrix multiplication. Conv is 
3 × 3 convolution operation

Posit version Dot (ms) vGeMM Conv

8,0 16,0 8,0 16,0 8,0 16,0

Naive 14.60 14.95 3.7 3.23 80.67 80.84
SVE-128 3.20 3.11 0.58 1.12 24.02 37.99
SVE-256 3.31 3.21 0.72 1.04 11.66 21.49
SVE-512 2.42 2.28 0.41 0.61 6.85 14.03
SVE-1024 2.04 1.88 0.27 0.38 6.38 12.88
SVE-2048 1.82 1.62 0.20 0.26 3.65 8.81
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and vectorized approaches need to convert posit to a cho-
sen backend (native float in our case). Once converted, the 
vectorized approach fully exploits the floating-point unit 
and SIMD acceleration, while the naive one only exploits 
floating-point acceleration.

6.2 � Matrix–matrix multiplication

Furthermore, matrix–matrix multiplication substantially 
benefits from vectorization operations. As a plus, as 
shown in [15], this operation has been realized avoiding 
the traditional sequence of dot products between rows and 
columns. The idea is to carry more than a single column 
of the second multiplication operand in vector registers, 
to be multiplied with the same element of the first one. 
Let A ∈ ℝ

M×K , B ∈ ℝ
K×N and C = A ⋅ B be the matrices 

involved in the operation. Values of C can be obtained in 
batches of length equal to the vector register capability, 
say L, for the used representation as follows:

6.3 � Convolution

Computing the convolution (a sequence of matrix–vector 
multiplications) is the most demanding part in the for-
ward pass of a convolutional deep neural network. Thus, 
speeding it up is crucial. Therefore, we considered a 3 × 3 
convolution operation, where we obtained significant 
improvements from the vectorization approach, gaining 
a very impressive speed-up compared to the plain ver-
sion. Our approach works for any size of the filter when 
the stride is equal to 1. For different types of convolution, 
the auto-vectorized version is preferable, still providing 
consistent speed-ups. The basic idea is to perform three 
different one-dimensional convolutions, one for each fil-
ter row, moving the filter along with the image matrix. 
For each filter stride, we convolve the filter rows with a 
batch of matrix row elements loaded in a vector register. 
In order to do this, we pre-fetch the nine filter elements in 
the vector registers. The pseudocode for the algorithm is 
shown in Algorithm 1. Note that the vector multiplication 
instructions are controlled by three different predicates, 
one for each column. The first predicate allows elements 
of the filter to be multiplied with elements inside the win-
dow 

[
j; j + L − 2

]
 , where j is the current position of the 

filter in the image columns and L is the SVE vector length. 
Similarly, the second predicate will allow multiplication 
only in 

[
j + 1; j + L − 1

]
 and the third one in 

[
j + 2; j + L

]
 . 

The algorithm can be easily extended to 5 × 5 convolution, 
increasing the register pressure.

(4)Ci,[j∶j+L−1] =

K∑
i

Ai,k ⋅ Bk,[j∶j+L−1].

Algorithm 1 3×3 (stride = 1) Vectorized Convolution
Input: Image,Filter,Rows,Columns
Output: FeatureMap
1: /* Initialise by loading each of the 9 Filter weights in the

SVE lanes */
2: // Loop on Image rows
3: for i = 0 to Rows− 2 do
4: for j = 0 to Columns− 2 do
5: /* Load the three rows targeted by current filter

position (i,j), L is the SVE vector register length */
6: firstRow = Image[i][j:j+L-1]
7: secondRow = Image[i+1][j:j+L-1]
8: thirdRow = Image[i+2][j:j+L-1]
9: /* Perform multiplication with correspondent fil-

ter elements of same row. */
10: p00 = firstRow × filterLane[0][0]
11: ...
12: p22 = thirdRow × filterLane[2][2]
13: c0 = p00 + p10 + p20 // Reduce-sum columns
14: c1 = p01 + p11 + p21
15: c2 = p02 + p12 + p22
16: res = c0 + c1 + c2 // Complete sum row-wise
17: FeatureMap[i][:] = res // Store the result row
18: end for
19: end for
20: return FeatureMap

6.4 � Pooling

Pooling kernels (i.e. average and max pooling) are impor-
tant operations aimed to reduce the spatial information of 
network layers. In general, the spatial behaviour of these 
kernels is similar to convolution operations. In particular, the 
average pooling layer can be seen as a f × f  convolution with 
all the filter elements fixed to 1∕f 2 . Therefore, for average 
pooling we can make the same conclusion already applied to 
convolution operations, hence having similar results.

Typically, we want to reduce the layer output size by a 
factor k, equal to 2 or 3. To have a reduction of a factor 2, 
we need to employ a 2 × 2 kernel with stride equal to 2. 
In general, if we want to reduce the size by a factor k, we 
need to employ a k × k kernel with stride equal to k (with 
appropriate padding). The implemented algorithm (see 
Algorithm 2) for vectorized max pooling is quite different 
from the convolution one, employing both intrinsic vec-
torization and auto-vectorization mechanisms. Consider 
now a typical 3 × 3 max-pooling with stride 3. The first 
step is to perform element-wise maximum between the 
three rows targeted by current filter top-left element row 
position i. Now we also need to perform the same opera-
tion column-wise. Therefore, to avoid expensive gather 
loads to fetch the matrix columns, we can perform the 
reduction with an additional, auto-vectorizable loop. We 
force the compiler to particularly vectorize a loop with an 
index step of 3 (that is, the separation step between groups 
of item involved in the maximum operation) using the fol-
lowing pragma directive:
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#pragma clang loop interleave_ 
count(3).

This pre-processor directive aims to increase both the 
instruction-level parallelism inside the loop performing 
an unrolling operation and the data level parallelism of 
the vector performing data interleaving with a compiler-
specified parameter 3.

For max pooling, we employed 225 × 225 images with a 
3 × 3 pooling kernel with stride 3. Each computation was 
repeated 1000 times, and mean timing results are shown 
in Table 4. As reported therein, the max pooling operation 
incredibly benefits from the SVE vectorization, gaining a 
massive speed-up when compared to the naive version. As 
a plus, we analysed the Clang vectorization report to verify 
that the additional loop is interleaved by the compiler.

7 � tinyDNN benchmarks results

In this section, we present benchmark results for the vector-
ized cppPosit library when used inside the tinyDNN neural 
network framework. For this benchmark, we used different 
very deep neural network models. In particular, we used 
some models proven to be successful in the ImageNet chal-
lenge [27]. AlexNet [23] consists of an eight-layer deep neu-
ral network, with internal convolutional layers reaching up 
to 192 convolution kernels, with an overall 60M parameters. 
ResNet architectures [28] are built stacking the so-called 
residual blocks, composed by two or, in deeper models, three 
convolutional layers. For each of them, the block input is 
summed to the output. This approach has been proven to 
improve classification performance in the ImageNet chal-
lenge. We tested our vectorized method on the 34-layer and 
152-layer versions of the ResNet architecture. VGG16 and 
VVG19 models [29] are deep convolutional neural networks 
with a series of stacked convolutional layers (16 and 19 
weight layers, respectively), where dimensionality reduc-
tion is operated by max-pooling layers.

Table 5 shows the inference results of the said benchmark 
networks. As reported the speed-up gained by the SVE-ena-
bled version to the non-vectorized, one is impressive.

8 � Conclusions

Since many of the current image processing applications 
use deep neural networks, it is crucial to speed-up at least 
the DNN forward-pass phase. In this paper, we presented an 
approach based on the use of a novel representation of real 
numbers (the posit format) and the speed-up of DNN opera-
tions using SIMD instructions. Our approach is interesting 

Table 4   Common pooling operation benchmark result comparison 
between vectorized and naive approaches

Posit version Max pooling (ms) Average pooling

8,0 16,0 8,0 16,0

Naive 59.41 49.7 80.51 80.44
SVE-128 9.51 26.52 24.35 37.66
SVE-256 10.59 22.06 11.46 21.63
SVE-512 6.96 14.69 6.53 14.25
SVE-1024 5.12 11.84 6.68 12.48
SVE-2048 4.13 9.76 3.35 8.84

Table 5   Image processing time (in seconds) for various very deep 
neural network models using posit⟨8, 0⟩

For this benchmark random RGB 224 × 224 , images are employed. 
As reported, the processing time with SVE vectorization experienced 
a dramatically improvement. Note that, however, in terms of abso-
lute values, the processing time is quite large. Clearly, this is due to 
the fact that SVE-enabled hardware is not available for evaluation 
at moment of writing and all benchmarks are executed on the ARM 
SVE instruction emulator, not on a real CPU

Version AlexNet ResNet34 VGG16 VGG19 ResNet152

Naive 40.06 146.07 590.68 675.32 779.7
SVE128 2.76 10.07 40.74 46.57 53.77
SVE256 2.64 9.61 38.88 44.45 51.32
SVE512 2.54 8.93 36.12 41.30 47.68
SVE1024 2.44 8.92 36.06 41.23 47.60
SVE2048 2.34 8.90 35.97 41.13 47.48

Algorithm 2 3×3 (stride = 3) Vectorized Max-Pooling
Input: Image
Output: PooledImage
1: /* Initialise by loading each of the 9 Filter weights in the

SVE lanes*/
2: // Loop on Image rows
3: for i = 0 to Rows-2 step 3 do
4: Initialise maxRow element to store the maximum values

in the SVE lanes
5: for j = 0 to Columns - 2 do
6: /* Load the three rows targeted by current filter

position (i,j), L is the SVE vector register length */
7: firstRow = Image[i][j:j+L-1]
8: secondRow = Image[i+1][j:j+L-1]
9: thirdRow = Image[i+2][j:j+L-1]
10: /* Perform element-wise maximum between the 3

rows and store in maxRow. */
11: maxRow = max(firstRow,secondRow,thirdRow)
12: end for
13: /* Auto-vectorized part: 3-by-3 maximum for the cur-

rent maxRow */
14: for k = 0 to Columns - 2 step 3 do
15: PooledImage[i/3][k/3] = max(maxRow[k:k+2])
16: end for
17: end for
18: return PooledImage
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for image processing applications where the GPU is not 
available, such as in most smart cameras applications or 
even in some assisted driving applications. More precisely, 
in this work we have presented a vectorized extension of 
posit arithmetic targeting the ARM SVE architecture, imple-
menting some interesting core functions of machine learning 
and deep neural networks, where we have taken advantage 
of both explicit and auto-vectorization. We extended our 
cppPosit C++ software posit arithmetic library exploiting 
the knowledge on L1 operations and applying vectoriza-
tion to the integer arithmetic behind them. This allowed 
us to obtain a substantial speed-up in the computation of 
fast approximated activation functions such as sigmoid, 
hyperbolic tangent and extended linear unit. Moreover, we 
proposed an approach for implementing machine learning 
vector and matrix operations with posit format, exploiting 
the underlying native vectorization for ARM floats, gain-
ing again a solid speed-up in the computation of operations 
such as dot products and convolutions. Finally, we applied 
acquired knowledge to the tinyDNN C++ deep neural net-
work library for the low-precision inference phase with 8-bit 
posits, reporting a relevant improvement in the mean sample 
inference time when switching from non-optimized version 
to optimized one. Future work includes porting more por-
tions of the tinyDNN library to the ARM SVE architectures, 
to further extend the presence of vectorization within it.
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Appendix: The posit designer tool

When choosing the posit configuration, we need to take 
into account multiple factors, such as target dynamic range 
and target decimal precision. We developed a MATLAB 
tool to analyse different alternative representations for real 
numbers, and we provide posit configurations that match 
the requirements for converting a given format into its 
closest posit alternative, evaluating range and resolution of 
them. The tool provides the following information: 

1.	 Number-type statistics such as the total number of bits, 
maximum value and � value (i.e. smallest step we can 
make from a number of that format). Figure 8 shows the 
output of this functionality. (In that figure, bin32_8 is a 
32-bit float IEEE 754 with 8 bits for the exponent, i.e. a 
standard single-precision representation.)

2.	 Graphical evaluation of � value against the max value (in 
a logarithmic scale).

3.	 Next posit with 0 exponent bits that covers the dynamic 
range of a given number format. Figure 9 shows the out-
put of this functionality.

4.	 posit to fixed type to build appropriate quire space for 
deferred rounding operations (such as exact multiply and 
accumulate).

Furthermore, we derived a general formula that allows us 
to convert any posit⟨X, Y⟩ to any posit⟨Z,W⟩ (with X > Z ) 
without losing the dynamic range coverage:

This may be useful when trying to reduce the number of bits 
during of neural network weights after we trained it. Table 6 
shows an example of application of this formula.
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include alternative real number representations and their applications 
to deep neural networks for the automotive environment.
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