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Abstract
Planar 3D reconstruction presents advantages over point cloud representations. This work focuses on the acceleration of 
piecewise-planar-based 3D reconstruction, a StereoScan method. We identify the SymStereo (logN) and uncapacitated facil-
ity location (UFL) algorithms as the most computationally expensive tasks, consuming nearly 80 × of total runtime, when 
detecting planes in a single stereo pair on a sequential CPU pipeline. Consequently, these algorithms have been parallelized 
using single- and multi-GPU architectures to perform significantly faster than previous sequential approaches. Experimental 
results show that accelerated parallel implementations of SymStereo (logN) can process up to 56 frames per second, achiev-
ing a speedup of 38 × against the sequential C implementation (Intel Core i7-4790k). The parallel version of the message-
passing algorithm (max-sum) for the UFL problem processes up to five matrices per second and outperforms the sequential 
C baseline for computing UFL by 38 ×.

Keywords  Piecewise-planar reconstruction · SymStereo · Uncapacitated facility location · Parallel image processing · 3D 
reconstruction · High-resolution images · Multi-GPU systems

1  Introduction

3D reconstruction became an important topic due to appli-
cations such as Google Street View [10, 28, 40, 43, 50] or 
medical imaging [12, 16, 24, 46, 49], to name only two 
popular cases. Higher-resolution images require increased 
computational performance. The amount of data captured 

and the resolution of images acquired by modern cameras 
and devices are expected to continue to increase over the 
coming years. This increase in complexity affects the per-
formance of 3D reconstruction algorithms, most of which 
compute disparity maps using photo-similarity between 
pairs of images [18, 41, 45, 47]. More recent work from 
Antunes et. al [4, 5, 36] uses dense photo-symmetry instead 
to extracting disparities.

Despite being dominated by plane surfaces in buildings, 
facades and streets, urban scenarios are still typically rep-
resented as clouds of points, which pose additional chal-
lenges in terms of required storage capacity, bandwidth and 
processing power.

Recently, piecewise-planar 3D reconstruction was intro-
duced by Antunes, Barreto and Raposo [5, 37, 38] as an 
alternative to clouds of points, with obvious advantages 
in storage, transmission speed and rendering simplifica-
tion. The methods used to detect plane surfaces from stereo 
matching involve solving the uncapacitated facility loca-
tion (UFL) problem to identify the best plane candidates. 
In our case, this represents more than 75% of the execu-
tion time of the plane detection pipeline (see Table 2). Also, 
the approach followed in this work is based on the analysis 
of the energy of symmetry between stereo pairs of images 
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[4], which adds additional computational complexity to the 
3D reconstruction pipeline. Therefore, the acceleration of 
essayed procedures in this work must cope with such a vari-
ety of functional challenges that should all be considered 
together with the most suitable and powerful parallel pro-
gramming framework and architecture.

Modern desktop CPUs incorporate a few cores (typically 
4) optimized for sequential execution, while graphics pro-
cessing units (GPUs) provide parallel computer architec-
tures including thousands of smaller processing units and 
very high memory bandwidths [34]. GPU architectures are 
becoming increasingly efficient for dealing with compute-
intensive workloads, offering high speedups when compared 
to execution on conventional CPUs, even using multiple 
CPU threads. To illustrate this, the considered CPU (Intel 
i7-4790k) has four cores running at 4.0 GHz and 25.6 GB/s 
of maximum memory bandwidth, while the fastest GPU con-
sidered (GTX TITAN X) has 3072 cores running at 1.075 
GHz and a maximum memory bandwidth of 336.5 GB/s. 
The GPU provides a higher number of cores and superior 
memory bandwidth. To overcome the main obstacles regard-
ing the development of the parallel algorithms to run on 
GPUs, we use the Compute Unified Device Architecture 
(CUDA) framework [34].

The contributions of this paper are:

•	 SymStereo (CUDA) Development of C/CUDA parallel 
kernels of a semi-dense version of the SymStereo (logN) 
algorithm [4] compatible with single- and multi-GPU 
assemblies. By varying the number of virtual cut planes 
from 45 to 15, our multi-GPU configuration E (see 
Table 4) is able to process between 24 and 56 frames 
per second using 1024 × 768 pixel images, achieving a 
speedup of 40 to 43× over a sequential C program on a 4 
GHz CPU (see Table 7);

•	 Parallel UFL (CUDA) Development of C/CUDA parallel 
kernels of the message-passing algorithm (max-sum) for 
solving the UFL problem executing under both single- 
and multi-GPU assemblies. By varying the size of the 
input matrix from 34560 × 553 to 11520 × 180 , our multi-
GPU configuration E (see Table 4) is able to process 
between 0.68 and 4.76 matrices per second, achieving a 
speedup of up to 38× over a sequential C program on a 4 
GHz CPU (see Table 7);

•	 CUDA parallel code publicly available Our source code 
is available at http://monte​crist​o.co.it.pt/PPR_Rec [15].

This paper is structured as follows. An overview of the 
UFL and SymStereo piecewise-planar reconstruction 
methods and the illustration of some early achieve-
ments are provided in Sect. 2. Related work is presented 
in Sect.  3. The GPU architecture, memory bandwidth 

optimization and parallel kernels configuration for the 
UFL and SymStereo algorithms are described in Sect. 4. 
In Sect.  5, we detail a multi-GPU balanced workload 
approach. Performance benchmarking with detailed time 
analyses for single- and multi-GPU configurations is pre-
sented in Sect. 6. Finally, we close the paper in Sect. 7.

2 � Two‑view piecewise‑planar reconstruction

The strong planarity assumption has recently made piece-
wise-planar models popular for the reconstruction of man-
made environments. In stereo reconstruction, it is useful 
for overcoming problems of poor texture and non-Lamber-
tian reflections. Moreover, the obtained dense 3D models 
are perceptually pleasing and geometrically simple, mak-
ing their rendering, storage and transmission computation-
ally more efficient. Raposo et al. [37, 38] recently used a 
simplified version of the two-view semi-dense piecewise-
planar reconstruction (PPR) method proposed by Antunes 
et. al [3, 5]. The method starts by using the SymStereo 
framework [4] to compute the energies associated with a 
sparse set of virtual cut planes that intersect the baseline 
of the stereo camera in its midpoint. The energies are used 
as input to a Hough transform to extract a set of line seg-
ments, which are the intersections of the virtual planes 
with the scene planes. The extracted hypotheses are used 
in a MRF formulation to improve the estimation of the line 
segments [6, 11, 42], which is solved by Delong et. al [8] 
using graph cut optimization (GCO). A plane hypothesis 
is then computed from a set of two lines. As a final step, 
the algorithm solves a UFL problem to select a subset of 
planes from the large set of input plane hypotheses that is 
likely to describe the observed scene. In Figs. 1 and  2, we 
can see two examples of 3D reconstruction results for this 
PPR method which receive stereo pairs as input.

We coded the semi-dense PPR algorithm in sequential 
C. The execution time of the complete algorithm is 1.92× 
faster than the one obtained using MATLAB (see Table 1).

Table 2 highlights the most computationally expen-
sive step in the semi-dense PPR algorithm—the UFL 
algorithm—which is the best candidate for paralleliza-
tion. The SymStereo framework is a recent and promising 
matching function for stereo pairs; thus, we believe that 
its acceleration towards real-time execution can represent 
an important evolution and a relevant contribution. There-
fore, we focus on the parallelization of the SymStereo and 
UFL algorithms presented in the semi-dense PPR for sin-
gle stereo pairs, which consume 80% of total runtime. In 
Sects. 2.1 and 2.2, the reader can find more details regard-
ing the SymStereo and UFL algorithms.

http://montecristo.co.it.pt/PPR_Rec
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Fig. 1   3D reconstruction results computed by GPUs for a two-view semi-dense piecewise-planar reconstruction (PPR) method using a stereo 
pair as input. The original size of images is 1280 × 960 pixels, and SymStereo uses 25 virtual cut planes and ten LogGabor filtering scales
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2.1 � SymStereo theory

Most stereo methods use matching costs that measure inten-
sity differences between image regions centered on possible 
matches to determine whether two pixels match. Recently, 
Antunes and Barreto [4] measured symmetry instead of 

photo-similarity to associate pixels across views. They show 
that a virtual plane that intersects the baseline of the stereo 
camera allows the rendering of image signals that are sym-
metric or antisymmetric about the contour where the plane 
meets the scene. These symmetric and antisymmetric signals 
are obtained, respectively, by adding and subtracting the left 

Fig. 2   Further 3D reconstruction results computed by GPUs for a 
two-view semi-dense piecewise-planar reconstruction (PPR) method 
using a 1024 × 768 pixel stereo pair as input. SymStereo used 25 vir-
tual cut planes and ten LogGabor filtering scales. The dark areas rep-

resent the floor and shadows, while the white patches show the imper-
fections of the algorithm, mostly due to variations in luminosity and 
brightness, shadows and occlusions
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image of the stereo pair � with �̂ , which is the image that is 
obtained by warping the right image �′ by the plane homog-
raphy of the virtual cut plane. When the matching function 
resulting from these image signals is evaluated across all 
possible disparities and pixel locations, the so-called dispar-
ity space image (DSI) is obtained. In other words, the entire 
DSI domain can be fully covered by carefully choosing the 
set of virtual cut planes. The more virtual cut planes we use, 
the better the final 3D model accuracy.

We now present a formal interpretation of the relations 
between virtual cut planes and the DSI for rectified stereo 
images, i.e., images acquired by cameras related by a rigid 
transformation with rotation component � = �3×3 , where �3×3 
is the three-by-three identity matrix, and translation compo-
nent � = (b 0 0)� , where b is the baseline length.

Let � = (� − h)� , where � = (n1 n2 n3) and h is 
the distance from the plane to the origin, be a particular 
virtual cut plane that induces a homography � that maps 
points �� ∼ (q�

1
q�
2

1)� on the right image to points 
� ∼ (q1 q2 1)� on the left image and is defined by

Using this homography, the relation between points on the 
left and right images becomes

(1)� ∼

�
�3×3 +

���

h

�−1

∼

⎛
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because it is known that q�
2
= q2 for rectified images. It fol-

lows that the stereo disparity d = q1 − q�
1
 is

which specifies a 3D plane parametrized by (q1, q2, d) . This 
means that the matching hypothesis implicitly defined by a 
virtual cut plane � corresponds to a plane

in the DSI domain. To obtain dense stereo matching, it is 
necessary to choose a set of virtual cut planes �i such that 
the corresponding planes �i fully cover the DSI space. Sup-
pose each �i is a vertical plane that intersects the baseline in 
its midpoint, such that it induces a homography defined by

where �i is the rotation angle around the vertical axis. If � 
and �′ are in pixel coordinates, the homography mapping is 
� ∼ ��i�

−1�� , where � is the matrix of intrinsic parameters 
consisting of a focal length f and a principal point (c1, c2) . 
This homography mapping can be rewritten as

yielding a disparity d = 2q1 − 2c1 − �i . In this case, the DSI 
plane �i of Equation 4 takes the simplified form

These results lead to two important observations: i) if �i 
takes consecutive integer values, the full range of dispari-
ties in the DSI domain can be covered and ii) the homog-
raphy mapping in (6) allows the warping of images, which 
is required to compute the symmetric and antisymmetric 
signals, to be accomplished by simply flipping the original 
right image �′ around the vertical axis passing through the 
principal point and then shifting the resulting image by �i 
pixels along the horizontal direction. Since this configura-
tion of virtual cut planes yields such simplified computa-
tions, it is employed throughout the remainder of this paper.

Let �s and �a be the symmetric and antisymmetric image 
signals obtained from �s = � + �̂ and �a = � − �̂ for a particu-
lar virtual cut plane � . In order to locate the contour where 
� meets the scene, it is necessary to quantify the symmetry 
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Table 1   Execution time in 
seconds (s) for the semi-dense 
PPR procedure. The tests were 
performed on urban images 
with 1024 × 768 pixels using 
35 virtual cut planes and 15 
LogGabor filtering scales

CPU Intel core i7-4790K

Processing platform Execu-
tion time 
(s)

MATLAB 82
C Sequential 42.8

Table 2   Execution time in seconds (s) for the semi-dense PPR pro-
cedure. The tests were performed running a sequential C program on 
a 4 GHz CPU using urban images with 1024 × 768 pixels, 35 virtual 
cut planes and 15 LogGabor filtering scales

CPU Intel core i7-4790K

Function Execu-
tion time 
(s)

UFL 31.9
Hough transform 5.6
Graph cut optimization 2.6
SymStereo 1.4
Simple arithmetic 1.3
Time SUM 42.8
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and antisymmetry of �s and �a along the epipolar lines. This 
is done by applying a set of N log-Gabor wavelets with pre-
defined scales for measuring the image signal symmetry and 
antisymmetry at every pixel location.

As explained in [4], the convolution of images �s and �a 
with the log-Gabor wavelets generates the symmetric and 
antisymmetric energies �s and �a , respectively. A joint energy 
� , which is the pixel-wise multiplication of �s and �a , is defined 
to account for the fact that the individual energies contain sev-
eral local maxima, precluding a correct detection of the rel-
evant contour. This energy � is the output of the SymStereo 
pipeline.

Besides efficiently computing the warped image, �̂ , which is 
a simple reflection and shift of �′ , another important advantage 
of using a vertical pencil of cut planes whose axis intersects 
the baseline in its midpoint is that it efficiently computes the 
convolution. Since it is a linear operator, the convolution of 
�s = � + �̂ can be performed by first convolving � and �̂ and 
then adding the result. Also, since �̂ is a reflected and shifted 
version of �′ , it is only necessary to perform one convolution 
for the K virtual cut planes.

In the implementation of SymStereo, note that the log-
Gabor filters are analog signals, so here we filter by taking 
a DFT of the rows of Is and Ia, multiplying by the log-Gabor 
kernels and then taking the IDFT.

Raposo et al used SymStereo [37, 38] to obtain a semi-
dense stereo reconstruction by estimating depth along user-
defined virtual cut planes. The intersection of two planes 
results in a line; thus, the line segments extracted from this 
energy correspond to the intersection of the virtual plane with 
a scene plane, allowing these scene planes to be reconstructed.

2.2 � UFL theory

In generic terms, the UFL problem can be formulated as fol-
lows. Suppose a set of facilities �0

j
 has to be opened to serve N 

customers �i ∈ P whose locations are known. Given a set V0 
with M possible facility locations, the cost c0

ij
 of assigning 

facility �0
j
 to customer �i and the cost v0

j
 of opening the par-

ticular facility �0
j
 , the goal is to select a subset of V0 such that 

each customer is served by one facility, and the summed cus-
tomer-facility and facility opening costs are minimized. This 
leads to an integer programming problem that can be formu-
lated using unary indicator variables y0

j
 and binary indicator 

variables y0
ij
 , with the objective of finding vector 

�0 = {x0
11
… x0

ij
… x0

NM
} such that

The second constraint ensures that each customer is assigned 
to exactly one facility, while the last constraint guarantees 
that each customer is only served by open facilities. UFL 
problems can be efficiently solved using a message-passing 
inference algorithm as proposed by Lazic et al. [23].

As described at the beginning of the present section, an ini-
tial set of plane hypotheses {�} is generated using the energy 
that is output by the SymStereo framework. Afterward, and in 
order to obtain a semi-dense PPR and a set of planar surfaces 
that properly describes the scene, a discrete optimization prob-
lem is formulated as follows [5].

Consider that there is a virtual camera, called the cyclopean 
eye, whose center of projection is the midpoint of the baseline 
and whose height is the number of epipolar planes (equal to 
the number of rows in the stereo images). Each pixel �ir of 
the cyclopean eye is associated with the back-projection ray 
that is the intersection of the epipolar plane r with the virtual 
cut plane �i . Thus, the width of the cyclopean eye is N, the 
number of cut planes. The objective of the discrete optimiza-
tion is to assign to each pixel �ir a plane hypothesis �j from 
the initial set of hypotheses {�} , or the discard label l∅ . This 
is a multi-model fitting problem that can be cast as an unca-
pacitated facility location (UFL) instance since the energy to 
be minimized only contains label and data terms. The data 
term Dir for pixel �ir , corresponding to cost cij in Equation 8, 
is defined as

where �i is the joint energy associated with �i , � is a con-
stant and the coordinate xl is the column defined by hypothe-
sis l, corresponding to the intersection of the back-projection 
ray of pixel �ir and the scene plane indexed by l. The role of 
the label term is to select as few plane hypotheses as possible 
to obtain a proper description of the 3D scene.

The output of this UFL stage is a semi-dense PPR of the 
scene and a small set of planar surfaces that can be used as 
input to a dense labeling scheme to generate dense PPRs as 
the ones shown in Figs. 1 and  2.

(8)

min

N�
i=1

M�
j=1

c0
ij
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ij
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v0
j
y0
j

subject to

⎧⎪⎨⎪⎩

x0
ij
, y0

j
∈ {0, 1},∀i,j∑M

j=1
x0
ij
= 1,∀i

y0
j
≥ x0

ij
,∀i,j

.

(9)Dir(l) =
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� if l = l�
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3 � Related work

A common strategy to obtain dense PPR models is to start 
by reconstructing a sparse point cloud of the scene to gen-
erate plane hypotheses, which are then used to segment 
the input images into piecewise-planar regions. Pollefeys 
et al. [35] used the plane normals, obtained from sparse 
3D point features, to guide the plane sweep stereo. Sinha 
et al. [42] presented a probabilistic framework for assign-
ing plane hypotheses to pixels, within the constraints of 
planar structures provided by point cloud reconstruc-
tion, matching line segments and estimation of vanishing 
points. Gallup et al. [11] used a robust scheme to fit plane 
hypotheses to dense depth maps, which are then used to 
label the input images into planar regions.

Other works that produce dense PPRs and, unlike pre-
vious algorithms, work with monocular cameras have 
recently been proposed. In [39], Raposo et al. employed 
a new error metric that enables the efficient segmenta-
tion of affine correspondences into planes, providing 
plane hypotheses. The dense labeling of the input images 
is obtained using a standard Markov random field (MRF) 
approach. Kou et al. [21] and Bódis-Szomorú et al. [7] 
used superpixels to segment the input images, and while 
[7] used planarity assumptions to overcome the problems 
of SfM sparsity and textureless regions, [21] made use of 
optical flows stacked over multiple images and a factoriza-
tion approach to directly obtain a dense piecewise-planar 
reconstruction of the scene.

In the last few years, GPU parallel processing tech-
niques have been applied to diverse areas of image pro-
cessing and computer vision. In 2008, a fast graph cuts 
implementation using CUDA was introduced by Vineet 
et al. [44]. A parallel implementation of Canny edge detec-
tion developed by Luo et al. and Ogawa et al. can be found 
in [25, 32]. Addressing a correlated topic regarding image 
distortion caused by the use of small lenses, an efficient 
solution for camera calibration and real-time image distor-
tion correction has been proposed by Melo et al. for medi-
cal endoscopy [27]. But many other contributions using 
accelerators have been proposed in the field of computer 
vision [33, 48]. Among those, we find new accurate ste-
reo matching systems using GPU architectures such as 
the ones proposed by Mei et al. and Zhang et al. [26, 51] 
and GPU-based 3D reconstruction. In 2008, an efficient 
3D reconstruction method from video was developed by 
Pollefeys et al. to run under the CUDA framework, achiev-
ing real-time processing capabilities [35]. Real-time 3D 
reconstruction using visual hull computation running on 
GPUs was also proposed by Ladikos et al. in 2008 [22]. A 
symmetric dynamic programming stereo matching algo-
rithm running under GPU was presented by Kalarot and 

Morris in 2010 [20]. In 2011, KinectFusion was presented 
by Isadi et al. for real-time 3D reconstruction using the 
Kinect RGB-D system and executed on GPU [19]. A full-
body volumetric reconstruction of a person in a scene 
using a sensor network and the CUDA framework was 
developed in 2011 by Aliakbarpour et al. [2]. Alexiadis 
et al. developed a new parallel approach based on the gen-
eration of separate textured meshes from multiple RGB-D 
cameras to recover a full 3D model of moving humans in 
real time [1]. In 2015, a new magnetic resonance imag-
ing (MRI) reconstruction algorithm via three-dimensional 
dual-dictionary learning using CUDA was reported by Li 
et al. [24]. A GPU optimization and refinement of slanted 
3D reconstructions using dense stereo induced from sym-
metry were presented in 2016 by Ralha et al. [36]. Our 
dense stereo 3D reconstruction method uses all valid infor-
mation in the stereo pair, but since urban scenarios are 
dominated by planes, we realized there is a high potential 
gain in representing such structures using planes instead 
of millions of pixels, thus minimizing pixel information 
and storing much less information in data centers, while 
reducing the network bandwidth necessary to visualize the 
3D model. With this in mind, our current work is based on 
the detection of planes using a symmetry-based algorithm 
[4] to calculate the energy of the intersection of a subset 
of virtual cut planes (we used 15 to 45 cut planes) with the 
volume background. By extracting the cut planes energy, 
we find 3D line segments that better represent the scene 
and apply refinement techniques in order to define a 3D 
world plan to use in our final 3D model.

We designed and tested a multi-GPU system with multi-
threading software that makes efficient use of all the avail-
able CUDA devices in the workstation and significantly 
reduces idle time resulting from task management and 
communication overheads. In previous parallel computing 
work, Graca et al. [13, Sect. 8.2] developed workload distri-
bution based on single-GPU execution times, to determine 
how many images can be processed on each GPU at the 
same time, drastically reducing the GPU idle time. However, 
Graca et al. [13, Fig. 10] indicated that considerable idle 
time is spent between data transfers and instruction execu-
tion. Also, when the GPU completes the execution of a ker-
nel, it always needs to wait before processing new data.

4 � Parallelization

4.1 � Computational complexity

The number of operations can be modeled as described 
next. The UFL receives as input one matrix with dimensions 
M × N and another with dimensions M × 1 . M is the product 
of the number of image lines and the number of cut planes 
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(CuPla), and N is the number of plane hypotheses + 1 . At the 
output, it produces a matrix of dimensions M × N . Assum-
ing that the number of iterations processed is represented 
by Niters , then the global number of arithmetic operations 
calculated can be described by:

Subtractions: Niters × 8 ×M × N

Additions: Niters × N × (3 ×M + 1)

Multiplications: Niters × 2 ×M × N

Conditional operations: Niters × 10 ×M × N

The performance of the algorithm depends on the number 
of image lines, cut planes, plane hypotheses (that directly 
relate to the number of iterations). Since the last two are 
much lower compared to image size, the algorithm presents 
computational complexity O(n3) . On the limit, if we assume 
super-resolution images, the problem tends to complexity 
O(n2) . Also, one matrix of dimension M × 1 and four matri-
ces of dimension M × N  are allocated and initialized, but 
the time necessary to do so is negligible compared to the 
main loop.

A model to estimate the execution time TprocTime on the 
GPU is shown from (10) to  (12). Here, Th represents the 
total number of threads running on the GPU, MP the number 
of multiprocessors of the GPU, SP the number of streaming 
cores per MP, OPs/iteration the number of cycles executed 
per iteration and fop the GPU operating frequency. Each 
thread accesses global memory with latency L and performs 
a total of Maccess memory accesses.

and

identify, respectively, the architectural and algorithmic 
parameters that influence performance, with �n represent-
ing the cost function that minimizes execution time. Thus, 
global processing time can be modeled as

(10)TArch = Niters

Th

MP
× (

OPs/iteration

SP
) + Th ×Maccesses × L

fop

(11)TAlg ∼ �(�1(M,N),�2(CuPla),�3(Niters)),

The throughput (in matrices per second) is thus obtained by

Thost→device and Tdevice→host represent data transfer times 
between the host CPU and the GPU.

4.2 � Apparatus

The pipeline of the methods described in Sects. 2.1 and 2.2 
was first coded for reference in MATLAB and sequential C, 
and profiled on a system with an Intel Core i7-4790K CPU 
@ 4.0GHz, 32GB of RAM, running CentOS 7 with GNU / 
Linux kernel 2.6.32−573.7.1.el6. × 86_64. The C code was 
compiled using GCC-4.7.2.

In order to process more frames per second and improve 
the quality of the generated 3D volume, the SymStereo and 
UFL algorithms were parallelized to execute in the different 
single-GPU configurations, compiled using CUDA 7.5 [34]. 
The parallelization of the SymStereo and UFL procedures 
exploiting the single-instruction, multiple-thread (SIMT) 
principles makes these algorithms compatible with GPU-
based computing. In this section, we also describe the GPUs 
used in benchmarking and their underlying architectures (see 
Table 3).

4.3 � GPU architecture

Typically, parallel platforms (composed of one or more GPU 
devices) need to be managed by a host CPU that controls 
the entire processing pipeline by sending data, launching 
parallel kernels and collecting the computed data from the 
device(s) before terminating execution. These functions are 
supported by the CUDA parallel programming model [34], 
which allows the programmer to write transparent and scal-
able parallel C code. This enables good utilization of thread 
and data parallelism on the GPU.

(12)TprocTime ∼ �(TArch, TAlg).

(13)T =
1

Thost→device + TprocTime + Tdevice→host

[MPS].

Table 3   In this table, we show to the reader a comparison of the relevant specifications of different GPUs used in the experiments

As we can see, we run our tests using GPUs with significant performance differences. Such diversity in terms of architectures represents a non-
ideal scenario and thus increases the validation of our new multi-GPU approach

GPU CUDA cores Normal/boost 
clock (MHz)

Memory size 
(MB)

Memory band-
width (GB/sec)

Constant/shared memory 
per block (bytes)

Max 
[ower 
(Watts)

NVidia GTX 680 1536 1006 / 1058 2048 192.2 65536 / 49152 195
NVidia GTX TITAN 2688 837 / 876 6114 288.4 65536 / 49152 250
NVidia Tesla K40c 2880 745 / 875 12000 288 65536 / 49152 235
NVidia GTX TITAN X 3072 1000 / 1075 12000 336.5 65536 / 49152 250
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Figure 6 shows a simplified overview of the GPU archi-
tecture. As shown, several multiprocessors contain a large 
number of stream processors (the number and manage-
ment of stream processors and multiprocessors vary with 
the GPU model and architecture). In this case, the GTX 
TITAN X has 24 multiprocessors, each of which contains 
128 stream processors, totaling 3072 CUDA cores running 
at 1.0/1.075GHz.

Another important consideration when building an GPU 
has several memory types, which have different impacts on 
the final throughput. Two of them, registers and shared mem-
ory, share the same die as the processor itself. Constant, tex-
ture and global memories are placed outside the GPU chip, 
but depending on device capabilities, they may be cached 
(see Chapter 9, Section 9.2 in [31] for detailed information). 
When a kernel runs, consecutive threads are grouped for 
execution in groups of 32 threads (a warp). When a branch 
(such as an ‘if’ or a ‘case’ statement) is present, the warp 
checks all possible paths of execution, resulting in additional 
clock cycles. If all threads follow a different path, execution 
is serialized. Thus, whenever possible, all branches should 
be eliminated. Another important consideration when build-
ing an efficient parallel software running on GPUs is the use 
of coalesced memory accesses when performing accesses to 
global memory. These memory accesses are extremely slow, 
and they can severely penalize the system’s overall through-
put. Thus, coalesced accesses should be employed whenever 
possible. They imply data accesses in global memory to be 
contiguously aligned so that all 32 threads in a warp can 
access the corresponding data element concurrently in the 
same clock cycle, with thread T(x, y) accessing pixel P(x, y), 
as depicted in Fig. 5.

4.4 � Optimizing memory bandwidth

SymStereo relies intensively on filtering, which can be slow. 
In the CPU baseline, images are filtered faster using fre-
quency-domain methods from the FFTW3.3.3 library [9]. 
We used methods from the cuFFT library [14, 30] for the 
LogGabor filters. Other processing-intensive tasks consist 
of calculating minima and maxima values from intermediate 
results and the computation of accumulated values for each 
column in a matrix. Functions from the cuBLAS library [17, 
29] were used to compute the reductions.

The present work introduces efficient algorithms and 
optimizes the use of device memory, in the following order:

•	 cuFFT In Sect. 2.1, in order to perform the DTFT and 
IDTFT on the GPU, the optimized cuFFT library [30] 
is used. In this algorithm, shared memory blocks that 
provide higher memory bandwidth are used, and thus 
higher throughputs can be achieved;

•	 cuBLAS In Sect. 2.2, we compute an accumulation for 
each column in a matrix. Using shared memory, the opti-
mized cuBLAS library from NVidia [29] can perform 
this computation with higher efficiency and throughput;

•	 Find Max/Min values In Sect. 2.2, we calculate maxi-
mum and minimum values. To compute these reductions, 
shared memory is used to make data accessible by all the 
threads in a block [17]. Thus, data transfers with global 
memory are minimized, enabling higher throughput;

•	 Simple arithmetic operations Many operations use global 
memory accesses instead of the faster shared memory, 
because in these cases there is no data reuse between 
GPU threads and it is more efficient to access global 
memory directly.

•	 CUDA streams To optimize memory data transfers and 
kernel executions, we use CUDA streams [34]. A stream 
is a sequence of commands that execute in order, and 
different streams can run concurrently. We created the 
following three streams for each device: (1) upload data; 
(2) execute kernel; and (3) download data.

4.5 � SymStereo parallelization

To achieve superior performance in the SymStereo algo-
rithm described in Sect. 2.1, some functions make use of 
shared memory blocks. However, as mentioned previously, 
other functions perform faster without using any shared 
memory. In the case of SymStereo, only cuFFT and the 
function that determines the maximum values use shared 
memory. All other functions perform slower if shared mem-
ory is used since the total number of transactions with global 
memory would be higher and slow in these cases. Also, no 
data are used repeatedly (see Simple Arithmetic Operations, 
Sect. 4.4). The results of the maximum are processed in two 
stages: the first uses GPU grids with a 256 × 256 block size; 
the second uses 1 × 256 grids. The remaining functions in 
the segmentation process only use global memory and GPU 
grids with a 256 × 4 block size as best-performing configu-
rations. By observing Fig. 3, the reader should be able to 
understand the entire kernel execution pipeline for the Sym-
Stereo algorithm running on the GPU.

4.6 � UFL parallelization

To accelerate the UFL algorithm described in Sect. 2.2, we 
use the shared memory blocks in the functions that compute 
the accumulator value for each column in a matrix (cuBLAS 
library [29]) and that determine the maximum values: find 
the maximum in all matrix rows and then find the global 
maximum from the resulting column. However, the other 
arithmetic functions use global memory instead. All other 
functions perform slower if shared memory is used since 
the total number of transactions with global memory would 
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be higher in these cases. There is also no data reuse in this 
case (see Simple Arithmetic Operations in Sect. 4.4). The 
results of the maximum are processed in two stages: the 
first uses GPU grids with a 256 × 256 block size; the second 
uses 1 × 256 . In the function that finds maximum value per 
row, we only use blocks with 128 × 1 threads, which is justi-
fied by the small size of shared memory. To compute the 

vector that stores the accumulator values for each column in 
a matrix, we use the ‘cublasSgemv()’ function from the cuB-
LAS library. The remaining functions in the UFL pipeline 
only use global memory and GPU grids with 256 × 1 block 
sizes as best-performing configurations. Figure 4 shows the 
entire kernel execution pipeline for the UFL algorithm run-
ning on GPU.

5 � Multi‑GPU processor configuration

Here, a suitable multi-GPU framework speeds up the Sym-
Stereo and UFL algorithms of the 3D reconstruction frame-
work. Table 4 shows all multi-GPU configurations tested, 
using an Intel Core i7-4790K @ 4.0GHz as the host CPU.

5.1 � GPU workload balance

We propose a new workload distribution for concurrently 
running GPUs with distinct architectures (see Table 3). 
This new system comprises multi-threaded software run-
ning on the host CPU (see Fig. 6). One dedicated host thread 
is assigned to each GPU, and another host thread parses 
input data from disk or other I/O devices. A shared memory 
zone in the host is used to store input data and the neces-
sary synchronization metadata. The first host thread (Thread 

Fig. 3   Profiling the entire parallel kernel execution assigned for the SymStereo algorithm. This figure includes all functions that compose the 
SymStereo algorithm and a simple comparison of total execution times

Fig. 4   Profiling the entire parallel kernel execution assigned for the UFL algorithm. This figure shows all functions that compose the UFL algo-
rithm and a simple comparison of total execution times

Fig. 5   Coalesced memory accesses illustrating a warp of 32 threads 
reading/writing the respective 32 data elements on a single clock 
cycle
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0 in Fig. 6) reads the input data and stores it in a shared 
memory zone, setting a shared boolean variable to 1 (which 
indicates the arrival of input data). On the GPU device, all 
host threads that control GPU execution work concurrently 
to read the input data from the shared memory zone. If the 
boolean variable is set to 1, we can read data for processing 

(the first thread upcoming reads the data and sets the boolean 
variable to 0). Until the system has data to process, all GPUs 
work concurrently without significant idle times between 
executions or data transfers, as shown in Figs. 7 and 8.

With the adopted workload distribution, the execution 
workflow is different for distinct GPUs, reducing global 

Fig. 6   The figure illustrates the different steps of the accelerated 3D 
reconstruction pipeline. For each stereo pair, a semi-dense PPR is 
computed as described in Sect.  2 using a multi-GPU workload dis-
tribution strategy. It illustrates how threaded blocks are processed 

simultaneously on GPU multiprocessors and how the same code seg-
ment is executed by multiple threads concurrently. Each thread pro-
cesses a single pixel
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execution times and minimizing previously existing idle 
times. The current solution can perform multiple tasks 

concurrently, such as running a kernel and transferring data 
between the host device and the GPU. This workload balanc-
ing can adapt to a variable number of GPUs. Thus, GPUs 
from different generations can operate together.

6 � Performance evaluation

Here, we address the speedups obtained for SymStereo and 
UFL algorithms using single- and multi-GPU assemblies, 
by comparing against the sequential C versions running on 
an Intel Core i7-4790k CPU.

Table 4   Labeling for all multi-GPU configurations

Configuration GPU hardware installed

A GTX 680 / Tesla K40c
B Tesla K40c / GTX TITAN
C Tesla K40c / GTX TITAN X
D GTX TITAN / GTX TITAN X
E Tesla K40c / GTX TITAN / 

GTX TITAN X

Fig. 7   Execution pipeline of SymStereo multi-GPU assemblies. In 
the figure, Configuration E (Tesla K40c / GTX TITAN / GTX TITAN 
X) considers the SymStereo procedure processing more than ten 

images using a time interval of approximately 271 ms. The tests were 
performed on urban images with 1024 × 768 pixels, 35 virtual cut 
planes and 15 LogGabor scales

Fig. 8   Execution pipeline of UFL with workload distribution on 
multi-GPU assemblies. In the figure, Configuration E (Tesla K40c 
/ GTX TITAN / GTX TITAN X) considers the UFL algorithm pro-

cessing more than seven images using a time interval of approxi-
mately 6200 ms. The tests were performed using an input matrix with 
26880 × 407
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6.1 � Single‑GPU throughput and speedup 
evaluation

We first analyze the speedups achieved for the SymStereo 
and UFL algorithms using single-GPU assemblies and com-
pare them with the sequential C versions running on an Intel 
Core i7-4790k CPU.

6.1.1 � SymStereo

Table 5 shows the computation time and throughput in 
frames per second for the SymStereo algorithm, varying the 
number of virtual cut planes (we tested 15, 25, 35, 45) using 
1024 × 768 images as stereo input. As displayed in this table, 

the faster GPU (GTX TITAN X) executes the entire proce-
dure in 44.05ms for 15 virtual cut planes and 100.21ms for 
45 virtual cut planes against 759ms and 1672ms produced 
by Intel Core i7-4790k.

Table 5 shows the single-GPU speedups. The best single-
GPU assembly produces a speedup of 16.68 to 17.23× over 
execution on an Intel Core i7-4790k CPU.

6.1.2 � UFL

Table 6 shows computation time and throughput (in matrices 
per second, or MPS) for the UFL algorithm. Input matrix 
dimensions 11520 × 180 , 19200 × 271 , 26880 × 407 and 
34560 × 553 are considered. The fastest GPU (GTX TITAN 
X) executes the entire procedure in 0.5s for 11520 × 180 

Table 5   Computation times, 
including Host/Device 
communication and data 
transfer, for single-GPU 
assemblies

Throughput is measured in frames per second. Speedup is calculated for the SymStereo procedure var-
ying the number of virtual cut planes (15,  25,  35,  45). The tests were performed on urban images with 
1024 × 768 pixels

Virtual cut planes 15 25 35 45

Processing platform Execution 
time (ms)

FPS Execution 
time (ms)

FPS Execution 
time (ms)

FPS Execution 
time (ms)

FPS

Intel Core i7-4790K 759 1.32 1063 0.94 1365 0.73 1672 0.598
GTX 680 71.98 13.9 109.01 9.17 146.49 6.83 181.80 5.50
Tesla K40c 58.18 17.19 87.33 11.45 116.5 8.58 140.75 7.10
GTX TITAN 51.49 19.42 77.76 12.86 104.1 9.61 127.95 7.82
GTX TITAN X 44.05 22.70 63.75 15.69 83.58 11.96 100.21 9.98

Speedup
GTX 680 10.55 x 9.75 x 9.32 x 9.20 x
Tesla K40c 13.05 x 12.17 x 11.71 x 11.88 x
GTX TITAN 14.74 x 13.67 x 13.11 x 13.07 x
GTX TITAN X 17.23 x 16.67 x 16.33 x 16.68 x

Table 6   Computation times, including host/device communication and data transfer, for single-GPU assemblies

Throughput is measured in matrices per second and speedup for the UFL procedure. Input matrix dimensions 11520 × 180 , 19200 × 271 , 
26880 × 407 and 34560 × 553 are considered

Input matrix dimensions 11520 × 180 19200 × 271 26880 × 407 34560 × 553

Processing platform Execution time (s) MPS Execution time (s) MPS Execution time (s) MPS Execution time (s) MPS

Intel Core i7-4790K 6.13 0.16 15.2 0.066 31.9 0.031 55.5 0.018
GTX 680 0.95 1.05 2.30 0.43 4.70 0.21 7.10 0.14
Tesla K40c 0.70 1.42 1.60 0.63 3.30 0.30 5.20 0.19
GTX TITAN 0.60 1.67 1.40 0.71 2.90 0.34 4.70 0.21
GTX TITAN X 0.50 2.00 1.00 1.00 2.00 0.50 3.20 0.31

Speedup
GTX 680 6.4 × 6.6 × 6.7 × 7.8 ×
Tesla K40c 8.7 × 9.5 × 9.6 × 10.6 ×
GTX TITAN 10.2 × 10.8 × 11.0 × 11.8 ×
GTX TITAN X 12.2 × 15.2 × 15.9 × 17.3 ×
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input matrices and 3.2s for 34560 × 553 input matrices, com-
pared with 6.13s and 55.5s for an Intel Core i7-4790k CPU.

Single-GPU speedups for UFL procedure are shown in 
Table 6. The best single-GPU assembly can solve the UFL 
problem between 12.2 and 17.3× faster than the Intel Core 
i7-4790k CPU.

6.2 � Multi‑GPU throughput and speedup evaluation

We present below the speedup results obtained by applying 
these parallelization techniques to our case studies, using 
multi-GPU systems.

6.2.1 � SymStereo

Table  7 shows execution times and throughput for the 
SymStereo algorithm, for different virtual cut planes 

(15, 25, 35, 45) using the multi-GPU systems and 1024 × 768 
images as stereo inputs. Configuration E (Tesla K40c / GTX 
TITAN / GTX TITAN X) executes the entire procedure in 
17.62ms for 15 virtual cut planes and 41.68ms for 45 vir-
tual cut planes, against 759ms and 1672ms produced by the 
Intel Core i7-4790k CPU. The multi-GPU speedups are also 
shown in Table 7. The best multi-GPU assembly produces 
a speedup between 43 and 40.1 when compared to the Intel 
Core i7-4790k CPU. With this new multi-GPU approach, we 
SymStereo algorithm execution is 2.5× faster than using the 
best single-GPU version (GTX TITAN X).

6.2.2 � UFL

Table 8 shows execution times and throughput in matri-
ces per second for the UFL algorithm, for distinct input 
matrix sizes ( 11520 × 180 , 19200 × 271 , 26880 × 407 , 

Table 7   Computation 
times, including host/device 
communication and data 
transfer, for multi-GPU 
assemblies

Throughput is measured in frames per second and speedup for the SymStereo procedure varying the num-
ber of virtual cut planes (15, 25, 35, 45). The tests were performed on urban images with 1024 × 768 pixels

Virtual cut planes 15 25 35 45

Configuration Execution 
time (ms)

FPS Execution 
time (ms)

FPS Execution 
time (ms)

FPS Execution 
time (ms)

FPS

A 30.45 32.84 46.51 21.50 62.95 15.89 76.96 12.99
B 27.36 36.55 38.60 25.91 52.07 19.21 63.60 15.72
C 24.97 40.05 35.42 28.23 47.03 21.26 56.96 17.56
D 23.61 42.36 33.98 29.42 45.69 21.89 55.12 18.14
E 17.62 56.75 25.29 39.54 34.34 29.12 41.68 23.99

Speedup
A 24.9 × 22.8 × 21.6 × 21.7 ×
B 27.7 × 27.5 × 26.2 × 26.2 ×
C 30.4 × 30.0 × 29.0 × 29.3 ×
D 32.1 × 31.2 × 29.8 × 30.3 ×
E 43.0 × 42.0 × 39.7 × 40.1 ×

Table 8   Execution times including host/device communications and data transfers for multi-GPU assemblies, throughput measured in matrices 
per second and speedup for the UFL procedure for different matrix sizes ( 11520 × 180 , 19200 × 271 , 26880 × 407 , 34560 × 553)

Input matrix dimensions 11520 × 180 19200 × 271 26880 × 407 34560 × 553

Configuration Execution time (s) MPS Execution time (s) MPS Execution time (s) MPS Execution time (s) MPS

A 0.43 2.33 0.97 1.03 1.95 0.51 3.02 0.33
B 0.35 2.86 0.78 1.28 1.56 0.64 2.55 0.39
C 0.3 3.33 0.65 1.54 1.26 0.79 2.03 0.49
D 0.28 3.57 0.61 1.64 1.25 0.80 2.01 0.50
E 0.21 4.76 0.46 2.17 0.91 1.10 1.46 0.68

Speedup
A 14.3 × 15.7 × 16.4 × 18.4 ×
B 17.5 × 19.5 × 20.4 × 21.8 ×
C 20.4 × 23.4 × 25.3 × 27.3 ×
D 21.9 × 24.9 × 25.5 × 27.6 ×
E 29.2 × 33.0 × 35.1 × 38.0 ×
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34560 × 553 ). Configuration E executes the entire proce-
dure in 0.21s for a 11520 × 180 input matrix and 1.46s for a 
34560 × 553 input matrix, against 6.13s and 55.5s produced 
by an Intel Core i7-4790k CPU.

Table 8 also shows the multi-GPU speedups for the UFL 
procedure. Thus, the best multi-GPU assembly achieves 
a speedup between 29.2 and 38× faster than Intel Core 
i7-4790k CPU. By comparing against the best single-GPU 
version (GTX TITAN X), we can solve the UFL problem up 
to 2.39× faster using the multi-GPU approach.

7 � Conclusions and remarks

With the rapidly increasing performance of graphics proces-
sors, improved programming support and excellent price-
to-performance ratio, GPUs have emerged as competitive 
parallel computing platforms for computationally expensive 
tasks in a wide range of image processing applications. Our 
semi-dense PPR algorithm is a computationally intensive 
part of the global 3D reconstruction pipeline, and it can be 
processed independently for each stereo pair. Consequently, 
we have identified and parallelized the semi-dense PPR func-
tions. In Table 2, we can see the more expensive semi-dense 
PPR procedures (SymStereo and UFL) that require paralleli-
zation. Thus, we introduced single-GPU and multi-GPU ver-
sions of a framework for computing the SymStereo and UFL 
procedures, which can be helpful in many computer vision 
applications. Also, in the multi-GPU approach, the workload 
distribution adopts a generic method that can be used to run 
other applications without significant changes. To perform 
these steps efficiently, we have built parallel kernels that 
make appropriate use of the memory hierarchy, supported 
by parallel C code and the CUDA API. This approach allows 
multiple pixels of an image to be processed simultaneously. 
The multi-GPU framework can process multiple images 
concurrently, using different devices, thus producing the 
reported throughput. We show that by varying the number 
of cut planes from 45 to 15, the parallel implementation 
of SymStereo (logN) running in our best single-GPU plat-
form (GTX TITAN X) processes between 9.98 and 22.70 
frames per second, with corresponding speedups of 16.68 
and 17.23× over a sequential C implementation running on 
CPU (Intel Core i7-4790k). The multi-GPU system with 
configuration E (Tesla K40c / GTX TITAN / GTX TITAN 
X) achieves a throughput ranging from 23.99 to 56.75 
frames per second processing SymStereo, and a speedup 
from 40.1 up to 43.0× over the sequential C implementa-
tion. For SymStereo, we can conclude that the multi-GPU 
approach can be up to 2.5× faster than the best single-GPU 
version (GTX TITAN X).

In the message-passing algorithm for processing the 
UFL, with matrix dimensions ranging from 11520 × 180 to 

34560 × 553 , the best single-GPU configuration considered 
(GTX TITAN X) processes between 0.31 and 2.0 matrices 
per second with an associated speedup of 17.3× over the 
sequential C implementation. The multi-GPU system with 
configuration E achieves a throughput between 0.68 and 
4.76 matrices per second for UFL, and a speedup of 38× as 
compared to the sequential C implementation. We conclude 
that the multi-GPU approach solves the UFL algorithm up 
to 2.39× faster than using the best single-GPU version (GTX 
TITAN X). Our workload distribution achieves superior per-
formance when compared with the best multi-GPU workload 
distributions in our previous work [13]. With the speedups 
obtained in both algorithms, we can reduce the execution 
time of the entire 3D reconstruction pipeline, targeting a 
real-time system in the near future.

The parallel CUDA source code and datasets are available 
online [15].
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