
Vol.:(0123456789)1 3

Journal of Real-Time Image Processing (2021) 18:233–243
https://doi.org/10.1007/s11554-020-00967-y

ORIGINAL RESEARCH PAPER

Channel‑independent spatially regularized discriminative correlation
filter for visual object tracking

A. Varfolomieiev1

Received: 25 September 2019 / Accepted: 26 March 2020 / Published online: 22 April 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
The study proposes the improvements for visual object trackers based on discriminative correlation filters. These improve-
ments consist in the development of the channel-independent spatially regularized method for filter calculation, which is based
on the alternating direction method of multipliers as well as in the use of additional features that are the result of the back-
projection of normalized weighted object histogram. The VOT Challenge 2018 benchmark has confirmed that the proposed
approaches allow to increase the tracking robustness. Particularly, by the value of expected average overlap (EAO = 0.1828),
the tracker that uses these approaches (CISRDCF) can reach the level of more computationally complex competitors that
utilize convolutional neural features. At the same time, the software-optimized version of the CISRDCF tracker, which
implements the suggested improvements has moderate computational complexity and can operate in the real-time both on
the PC and on the mid-range ARM-based processors, making the CISRDCF tracker promising for embedded applications.

Keywords Visual object tracking · Discriminative correlation filter · Alternating direction method of multipliers ·
Embedded devices

1 Introduction

Visual object tracking is the area in computer vision, which
is widely used in robotics, machine–human interfaces, medi-
cine, security systems, advanced driver assistance systems
(ADAS), video editing and post-production, etc. In many of
the mentioned applications, the tracking should perform in
the real-time, and sometimes even on embedded hardware.
This requirement restricts a tracking algorithm to have rea-
sonable computational complexity.

Currently, the most promising in terms of robustness and
accuracy are the trackers based on discriminative correlation
filters (DCF) or on convolutional neural networks, as well
as the methods that combine these two approaches [1–4].
In particular, according to the [1–4] benchmarks, the most
accurate and robust trackers utilize either convolutional
neural networks directly or discriminative correlation fil-
ters, which use responses from some layers of convolutional

neural networks as features. At the same time, the mentioned
approaches have high computational complexity and usu-
ally able to process only several frames per second, even on
the most modern PCs with high-end GPUs [5–7]. The only
exceptions here are the Siamese neural network trackers [8,
9] that can process up to 100 fps, but also requiring high-
performance GPUs. Methods which employ the discrimina-
tive correlation filters with so-called “handcrafted” features
such as HOG [10–14], colour names or attributes [14–16]
have lower robustness and accuracy, but are much faster and
allowing to achieve hundreds of frames per second using
only CPU of a conventional PC.

Consequently, the discriminative filter-based methods
which use handcrafted (non-convolutional) features appear
to be still of interest for implementation in embedded sys-
tems. Therefore, in this paper, we focus on the improve-
ment of these methods by increasing their robustness and
accuracy, while maintaining low computational complexity.
The main contribution of this paper consists in fulfilling the
following objectives:

1. To develop the approach for calculating the channel-
independent spatially regularized discriminative corre-
lation filter by using the alternating direction method

 * A. Varfolomieiev
 a.varfolomieiev@kpi.ua

1 Igor Sikorsky Kyiv Polytechnic Institute, Faculty
of Electronics, National Technical University of Ukraine, 37,
Peremogy Prospect, Kyiv, Ukraine

http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-020-00967-y&domain=pdf

234 Journal of Real-Time Image Processing (2021) 18:233–243

1 3

of multipliers (ADMM). This approach combines the
channel-independent calculation of the DCF described
in paper [14] with the spatial regularization technique
given in [12, 17], which results in a specific optimization
problem solved within this paper.

2. To employ the additional features, which are based on
backprojection of the normalized object histogram.
These features are extracted similarly to the ones given
in [18], but unlike to [18], we propose using the result
of backprojection as an additional channel for DCF fil-
ter calculation, which, we believe, should increase the
discriminative properties during the object localization.

It is worth noting that one of the peculiarities of the sug-
gested modification is its ability to increase the tracking
robustness without using the colour information, which may
be important in some cases.

The paper is organized as follows. The section “Related
Work” gives a brief overview of tracking methods that pre-
ceded and was the basis of the suggested approach. In the
section “The Proposed Approach”, we discuss the methods
for calculating the modified discriminative filter and extract-
ing the features based on the object histogram backprojec-
tion as well as the peculiarities of combining correlation
responses obtained from different kinds of features. The
section “Experimental Results” presents the details of the
implementation of proposed approach (We use CISRDCF
below in the paper to refer to this implementation), the anal-
ysis of its tracking quality based on VOT Challenge 2018
benchmark [4], and lastly the evaluation of the CISRDCF
tracker speed on different computational platforms (includ-
ing embedded ones).

2 Related work

A discriminative correlation filter (DCF) is a special type of
filter, whose correlation (or convolution, in some formula-
tions) with the image gives a sharp response in the region,
where the object encoded in this filter is located. Based on
the response peak, it is possible to locate the object in each
frame of video sequence, which actually makes tracking fea-
sible. The DCF calculation implies solving the least squares
minimization problem, which is done in the frequency
domain to find this solution fast.

DCFs have become widely used in the visual object track-
ing since the MOSSE implementation [19] where the sim-
ple single-channel filter has been calculated from a greyscale
image. Later, the similar approach known as the kernelized
correlation filter (KCF) [10, 20] was suggested. This approach
introduced the SVM-like feature space kernelization and the
use of multichannel FHOG features [21], which increased the
discriminative capabilities of the filter and led to significant

tracking quality improvement. The main advantage of both
approaches that made them popular was their high frame rate,
namely about 700 fps for the MOSSE [19] and 170–290 fps
for the KCF [10] with FHOG features. Such high frame rates
were achieved mainly due to the calculation of filters in the
frequency domain.

Nevertheless, the filter calculation in the frequency domain
has a significant drawback, as it was established later in [12,
22, 23]. Due to the periodic nature of Fourier transform, it
is impossible to obtain the spatially equivalent filter having
non-zero values only in the part that encodes an object. It is
believed that such a filter is inaccurate, more sensitive to back-
ground variation (since it captures background or so-called
“context” information), and consequently gives lower track-
ing quality. To overcome this difficulty, some modifications
of the optimization problem were proposed in [12, 22, 23].
The authors of papers [13, 22, 23] reformulated the minimiza-
tion problem by introducing the additional constraints, which
restricted the filter to have a desirable form (to have non-zero
values wherever it is necessary). The problem itself was solved
by the proximal gradient descent in [22] and also by the use
of the alternating direction method of multipliers (ADMM)
in [13, 23]. The constraints in the mentioned approaches are
implemented by the special proximal operator that transforms
the filter from the frequency to the spatial domain, excludes
unnecessary components from the filter (setting them to zero),
and returns it back to the frequency domain. This slightly
increases the amount of computation, but the asymptotic
complexity remains at the level of the KCF and the MOSSE
methods. In [12], the authors propose suppressing unnecessary
filter components using the regularization. The optimization
problem in this case is solved by the Gauss-Seidel method,
or in later implementations [5, 6], by the conjugated gradi-
ents method. It should be noted that in practice ADMM-based
approaches are slightly faster and use less memory, therefore,
they are more expedient for fast trackers implementation.

Another way to improve the DCF-based trackers is the
use of alternative features [4]. Here, one should note the
approaches, which employ colour information [14, 16, 18]
as well as the CNN features extracted from certain layers
of convolutional neural networks [6, 17, 24, 25]. The CNN
features provide a better tracking quality, but at the same
time have higher computational complexity making them
less appropriate for the real-time application, especially on
embedded hardware.

3 The proposed approaches

This section describes in details the algorithm of DCF filter
calculation using the ADMM method and the way of extrac-
tion and application of the features based on the normalized
histogram backprojection.

235Journal of Real-Time Image Processing (2021) 18:233–243

1 3

3.1 Calculation of channel‑independent spatially
regularized DCF

In order to obtain the DCF filter in the frequency domain so
that its spatial counterpart will have suppressed components
outside the object region, we used the optimization method,
which was employed in [13, 14, 17], particularly the alter-
nating direction method of multipliers (ADMM).

The object region for the tracking is usually given as a
rectangle, but, obviously, the shapes of real objects may
defer from the rectangular ones. Therefore, it could be rea-
sonable to make the region, which encodes an object in the
filter with fuzzy boundaries. It can be done by suppressing
the background filter components using the regularization,
similarly to the approach given in [17]. However, in contrast
to [17], we suggest calculating the filter channels indepen-
dently. We believe that this should slightly simplify the com-
putations as well as the control of the response merging for
different kind of features during the convolution calculation
(relying on the experience in [14]). Thus, in this paper, we
suggest combining the approaches of channel-independent
DCF filter calculation similar to the one from [14], and
applying spatial regularization in the formulation given in
papers [12, 17]. In particular, it leads to the following opti-
mization problem:

here, ‖ ⋅ ‖2 denotes the square of Frobenius norm; “ ⋆ ”
denotes convolution between the filter h and the template t,
from which this filter is calculated; r is the desired response;
w is the regularization matrix that defines which filter com-
ponents should be suppressed; g also denotes the filter, and
the optimization constraint guaranties that g = h ; operator
“ ⋅ ” denotes the element-wise multiplication between w and
g. The template t is the multichannel image, d is the total
number of channels, and subscript i defines the particular
channel number.

For the problem (1), the augmented Lagrangian in case of
using the scaled dual variable u [26] has the following form:

where � is the penalty parameter; u is the scaled dual vari-
able, which is proportional to Lagrange multipliers [26].

The ADMM method in the scaled form [26] implies
the iterative solution of the following optimization
sub-problems:

(1)
argmin

h

d�

i=1

�
‖ti ⋆ hi − r‖2 + ‖w ⋅ gi‖2

�
,

s.t. h − g = 0,

(2)
L(h, g, u) =

d�

i=1

�
‖ti ⋆ hi − r‖2 + ‖w ⋅ gi‖2

+
𝜌

2
‖hi − gi + ui‖2 +

𝜌

2
‖ui‖2

�
,

where superscript (k) denotes the values of respective vari-
ables at the kth iteration of the ADMM.

Sub-problem h. Because of convolution, which is present
in sub-problem h (3), it is expedient to search the solution in
the frequency domain. Using the Parseval’s and the convolu-
tion theorems, as well as denoting the respective variables in
the frequency domain by the capital letters, the sub-problem
h may be rewritten as follows:

where m, n and d are the sizes of arrays along each dimen-
sion; “ ⋅ ” is the element-wise multiplication, which corre-
sponds to the cyclic convolution in the spatial domain; | ⋅ |
denotes the absolute value of the complex number.

The solution of (4) can be found taking into account the
optimization specifics of real functions of complex argu-
ments. One of the most essential things here is that the
differentiation of (4) may be performed by the complex-
conjugated variable H∗ , while the resulting equation may
be solved for simple non-conjugated variable H [19, 27].
Moreover, since all operations in (4) are element-wise, the
differentiation and solutions of equations may be found for
each element independently. Thus, after the derivation and
solving the respective equations, we can write the final result
for sub-problem h:

here, T∗ is the complex-conjugated template t in the fre-
quency domain; the operations of multiplication and division
are element-wise. Subscripts in formula (5) are omitted for
simplicity.

Sub-problem g. Sub-problem g in (3) can be directly
solved in spatial domain. For this, we expand the norms:

(3)

h(k+1) = argmin
h

d�

i=1

�
‖ti ⋆ hi − r‖2 + 𝜌

2
‖hi − g

(k)

i
+ u

(k)

i
‖2
�
,

g(k+1) = argmin
g

d�

i=1

�
‖w ⋅ gi‖2 +

𝜌

2
‖h(k+1)

i
− gi + u

(k)

i
‖2
�
,

u(k+1) = u(k) +
�
h(k+1) − g(k+1)

�
,

(4)
argmin

H

d∑

i=1

1

mn

m∑

y=1

n∑

x=1

(
|Tx,y,i ⋅ Hx,y,i − Rx,y|2

+
�

2
|Hx,y,i − G

(k)

x,y,i
+ U

(k)

x,y,i
|2
)
,

(5)H(k+1) =
RT∗ +

�

2

(
G(k) − U(k)

)

TT∗ +
�

2

,

(6)
argmin

g

d∑

i=1

m∑

y=1

n∑

x=1

(
[wx,y ⋅ gx,y,i]

2

+
�

2
[h

(k+1)

x,y,i
− gx,y,i + u

(k)

x,y,i
]2
)
.

236 Journal of Real-Time Image Processing (2021) 18:233–243

1 3

All operations in formula (6) are element-wise, thus, we
can again differentiate and solve equations for each array
element independently, as we did for previous sub-problem
(4). The final result of minimization has the following form
(subscripts omitted):

It is interesting to note that the solution for the sub-problem
g (7) is equivalent to the one, obtained in [17].

Since we search the solution for h in the frequency
domain, and the convolution of g during the object locali-
zation can be also computed faster in the same domain,
it is expedient to transform the solution for g as follows:

where F[⋅] and F−1[⋅] denote direct and inverse Fourier
transforms respectively. Thus, the formula (8) implements
the solution of the sub-problem g in the frequency domain.

Update of the scaled dual variable u can also be per-
formed directly in the frequency domain:

In order to achieve the faster convergence, the step scale � is
usually updated at every iteration of the algorithm. In most
existing trackers, this update is performed via the following
formula [13, 14, 17]:

where �max is the maximally allowed penalty parameter (step
size); � is the coefficient of penalty parameter change. Note
that if the ADMM method is used in the scaled form, the
dual scaled variable U should also be rescaled, when updat-
ing the parameter � ; particularly if � increases � times, U
should be decreased, respectively: U = U∕� [26].

After performing the required number of iterations, the
approximation of the final result is obtained as the solu-
tion of sub-problem g, i.e. the filter with the suppressed
components will be stored in the G(k+1) variable at the last
ADMM iteration.

The computational complexity of the above algo-
rithm [formulas (5), (8–10)] is defined by the most
computationally expensive operations, which are direct
and inverse Fourier transforms used in (8). Thus, the
asymptotic complexity of calculation of the DCF filter
is O(k ⋅ d ⋅ mn ⋅ log(mn)) , where mn denotes the resolu-
tion (width and height) of the template (search region)
in the feature space [the term mn ⋅ log(mn) corresponds
to the Fourier transform complexity]; d is the number of

(7)g(k+1) =
�
(
h(k+1) + u(k)

)

2w2 + �
.

(8)G(k+1) = F

[
F

−1
[
H(k+1) + U(k)

]
⋅

�

2

w2 +
�

2

]
,

(9)U(k+1) = U(k) +
(
H(k+1) − G(k+1)

)
.

(10)�(k+1) = min(� ⋅ �(k), �max),

the feature channels (depth); and k is the number of the
ADMM iterations.

3.2 Features based on object normalized histogram
backprojection

The idea of using the features that utilize the object histo-
gram backprojection was borrowed from the Staple tracker
[18]. Generally, this tracker consists of two components run-
ning in parallel. The first of them is actually DCF-based
tracker with FHOG features, which essentially repeats the
approach from [11]. The second component employs his-
togram of pixel features (namely of quantized RGB colour
space). Since we apply the ideas from the second component
of the Staple tracker, let’s consider it in more details.

This component implies the computation of two histo-
grams: the object histogram and the histogram of the back-
ground around the object. Normalizations of both of these
histograms give two features distributions for the object p(O)
and for the background p(B), respectively. Then, the normal-
ized object histogram � (distribution of feature weights) is
calculated using these distributions:

where j is the histogram bin that is associated with a par-
ticular feature (colour); pj(R) = Nj(R)∕|R| is the relative
appearance frequency of the feature associated with the jth
histogram bin in the region R, here Nj(R) denotes the num-
ber of pixels (features) in the region R, which corresponds
the jth histogram bin, and |R| is the total number of pixels
(features) in the region R; O and B are the sets of pixels in
the object and the background areas, respectively; � is the
regularization parameter, which prevents division by a small
value if pj(O) + pj(B) ≈ 0 . Accordingly to [18], formula (11)
can be considered as the solution of the regression problem,
where the �j values minimize the weights of background
and maximize the weights of object features simultaneously;
for more details reader may refer to the original paper [18].

In order to locate the object in the current frame using the
feature weights � , the weights of every single pixel in the
region that is centred on the last known object position are
evaluated. It can be done by the replacing each pixel with its
respective histogram weight �j . This procedure is also known
as histogram backprojection and gives the likelihood map.
The search of the object through the likelihood map (back-
projection) is performed by the localization of the densest
area within this map. The density itself is estimated by the
averaging of the map regions using a sliding window of the
same size as the object. To achieve higher performance, the
average values for each window position are calculated using
the integral images [18].

(11)�j =
pj(O)

pj(O) + pj(B) + �
,

237Journal of Real-Time Image Processing (2021) 18:233–243

1 3

The averaging of elements in the likelihood map using the
sliding window is actually equivalent to the application of the
conventional averaging box filter. The averaging makes the
tracking invariant to the shape of the object, since the filtering
results (mean values) do not depend on any weights �j (and
thus the features) permutations within the filter window. At
the same time, this approach neglects the relative spatial posi-
tions of features, which, in turn, may decrease the discrimina-
tive properties. Therefore, in this paper, we propose replacing
the averaging filter with the DCF filter calculated using the
ADMM method from the previous subsection. In our opinion,
the DCF can take into account spatial positions of the features
in the object and thus may deliver a better performance during
the tracking. The transition from the old approach to the new
one is straightforward: it implies transforming the likelihood
map into the frequency domain and considering its frequency
image as the template T for the DCF filter calculation proce-
dure; during object localization, the obtained DCF filter should
be convolved with the likelihood map extracted from the cur-
rent frame. In this case, the peak of the response defines the
object position, as for the general DCF localization technique.
Of course, the likelihood map (backprojected features) can
also be considered as one of the channels of the multichannel
template image. Thus, the aforementioned approach may be
easily integrated into the channel-independent DCF calcula-
tion procedure described in the previous subsection.

When applying the suggested backprojected features in
conjunction with some features of different type, for instance
FHOG, we need to merge the responses taking into account
that the FHOG features usually include a set of channels, while
the likelihood map (backprojection result) has single channel
only. Thus, to obtain the balanced response, we perform the
merging similarly to the one given in the original paper [18]:

where cHOG is the total response over all channels of FHOG
features; cHBP is the convolution response given by a likeli-
hood map that is obtained from the backprojection of object

(12)c = cHOG + � ⋅ cHBP,

normalized histogram � ; � is the merging coefficient, which
allows us to control the importance of responses [18].

For a better adaptation to the changes of object appear-
ance during the tracking, it is expedient to update the object
normalized histogram � in each frame [18]:

where �(t+1) and �(t) are the updated normalized histograms
for the next and the current frames respectively; � is the
normalized histogram for the object located in the current
frame; �h is the update coefficient.

4 Experimental results

4.1 Implementation details

To evaluate the suggested improvements, we implemented
the tracker with parameters that are described in details in
this section. Below, we refer to this implementation as the
CISRDCF tracker.

Our implementation uses both FHOG [21] features and
the described above features that are based on the backpro-
jection of the object normalized histogram. FHOG features
were calculated for the cell size of 4 × 4 pixels and 9 orienta-
tions. Thus, the complete feature array (tensor) consists of
d = 32 channels (31 channels of FHOG features and 1 chan-
nel obtained from the object histogram backprojection). The
detailed procedure of feature extraction is shown in Fig. 1.

We calculate the DCF filter by using (5), (8–10) formu-
las for each feature channel separately. In these formulas, we
employ the Gaussian with the standard deviation of � = 0.1
as the desired response r in the spatial domain. We also utilize
the matrix with the high values elsewhere outside the object-
bounding box as the regularization matrix w (Fig. 2). These
high values are taken as equal to 100, while the values inside
the bounding box of the object are equal to 0.01. We blur
the margin between the high and low values in the matrix w
using the Gaussian filter with the size of 7 × 7 pixels and the

(13)�(t+1) = (1 − �h) ⋅ �
(t) + �h ⋅ �,

FHOG
Feature Extraction

Histogram
Backprojection

Grayscale Image

Concatenation

31
channel

32
channels

Features Tensor

Fig. 1 Feature calculation procedure in the suggested approach:
FHOG and histogram backprojection features are extracted from
greyscale image and concatenated to a single tensor. This procedure

is repeated several times per frame: (1) to locate the object at different
scales, and (2) when the object is found to calculate a new DCF filter
for the region of object location

238 Journal of Real-Time Image Processing (2021) 18:233–243

1 3

standard deviation of � = 0.25 . This technique is applied to
make the margin of the suppressed area in the filter smoother,
which, we hope, should help when the object position is set
slightly inaccurately or when the object has fuzzy edges.

We also use the following parameters in (5), (8–10): ini-
tial step size (penalty parameter) �(0) = 1 ; maximally allowed
step size �max = 1000 ; step size change factor � = 30 . The
number of ADMM iterations for each filter calculation is 2.
The initial values G(0) and U(0) for the first ADMM iteration
were taken from the results of the filter calculation of the
previous frame. (In the paper, [26] this approach is called the
“warm start”.) We believe that such a technique is applicable
because objects tend to change their appearance slightly in
adjacent frames during the tracking. For the very first frame,
we take G(0) and U(0) equal to 0.

We also apply the exponential filtering of the DCF in each
frame, similarly to the commonly used practice [10, 12, 18,
19]. Such an approach allows adapting more efficiently to the
changes of object appearance during the tracking:

where G(t+1) and G(t) are the averaged filters for the next and
the current frames, respectively; G is the filter, which is cal-
culated for the region where the object was found in the cur-
rent frame (It is obtained directly from (8) at the last ADMM
iteration); �f is the exponential filtering coefficient. In this
paper, we use �f = 0.025 . For the very first frame, G(0) = G.

We calculate the normalized histogram for the localized
object position in the current frame and update the histogram
for the next frame using the formula (13) in which we use
�h = 0.125 update coefficient.

We localize the object by calculating convolution
(according to the definition of minimization problem (1)
in the frequency domain with subsequent transition to the
spatial domain:

where F−1[⋅] as earlier denotes the inverse Fourier trans-
form; ci is the calculated convolution for the ith feature chan-
nel in the spatial domain; Fi is the ith feature channel of the
search region of the object in the frequency domain; Gi is

(14)G(t+1) = (1 − �f) ⋅ G
(t) + �f ⋅ G,

(15)ci = F
−1[Fi ⋅ Gi],

the ith channel of the DCF in the frequency domain (filter
G here is the G(t+1) from formula (14)).

We merge the responses of the individual channels (cal-
culated by (15)) applying (12), in which we use the coef-
ficient: � = 0.55 ⋅max(cHOG)∕max(cHBP) . This value is
obtained empirically.

To adapt to the change of the object size, we calculate
the filter convolution with exemplars of the search region
at ns = 3 scales. The scale factors are taken to be s = 1.03p ,
where p = {−(ns − 1)∕2,… ,+(ns − 1)∕2}.

In all further experiments, the search region had the
square shape. It was taken approximately 4.25 times larger
than the object, and also was downscaled so that in the fea-
ture space its resolution was not larger than 38 × 38 pixels.

4.2 Tracking accuracy and robustness evaluation

We evaluated the quality of the suggested CISRDCF tracker
using the VOT Challenge 2018 [4] benchmark intended for
the short-term trackers. This benchmark includes 60 anno-
tated video sequences with different objects and with differ-
ent visual complexity attributes: object occlusion, illumina-
tion change, object motion change, scale change, and camera
motion [4]. The quality of tracking is estimated by three
measures: the accuracy (A), the robustness (R), and the
expected average overlap (EAO) [1, 4]. The overlap in the
benchmark is assessed by the intersection-over-union value
(also known as Jaccard index), which is IoU =

|rt∪rGT |
|rt∩rGT |

 , where
rt is the location of the object (rectangle) reported by the
tracker, and rGT is the ground-truth location [18]. The accu-
racy measures the average overlap for all frames and all
video sequences in the benchmark where the tracking was
acknowledged successful (robust). The robustness is the
mean number of tracker re-initializations (fails) caused by
the loss of object. The fact of the object loss is established
on the basis of the zero overlap value between the bounding
box predicted by the tracker and the ground-truth object
location. The expected average overlap is the average over-
lap, which the tracker is expected to achieve on a large set of
video sequences of some identical length and visual proper-
ties [1, 4]. This measure accounts for the increase in the
variance and bias of the average overlap for video sequences
of variable lengths. The VOT Challenge 2018 results are
arranged in accordance with the EAO measure [4].

The VOT Challenge 2018 benchmark includes three sub-
challenges: the baseline, the unsupervized, and the real-time
ones. The unsupervized sub-challenge does not imply re-
initialization when tracker fails, therefore, the only no-reset
average overlap (AO) is estimated within this sub-chal-
lenge. In the real-time sub-challenge, the frames of video
sequences are sent to the tracker with constant framerate of
20 fps, and if the tracker does not respond in time, the last

Fig. 2 Generalized view of the regularization matrix w: the dark
region contains the low values and corresponds to the object-bound-
ing box in the feature space: the light region contains the high values
and defines the area in the filter that have to be suppressed

239Journal of Real-Time Image Processing (2021) 18:233–243

1 3

object position is considered as the tracker output for the
current frame [4].

The results of our CISRDCF tracker on the VOT Chal-
lenge 2018 benchmark are shown in Table 1. For compari-
son, we also extended the table with the results of some
other trackers of the same class or similar performance.
These results are completely consistent with the ones in [4]
and were downloaded from the official VOT Challenge web
page.

As can be seen from Table 1, the suggested approach
(CISRDCF) by the EAO measure is able to surpass some
state-of-the-art trackers of the same category: Staple,
SRDCF, STBACF, and KCF. In addition, by the same
parameter the CISRDCF tracker approaches and even goes

slightly beyond the more powerful neural network-based
trackers, such as DCFNet and DensSiam. At the same time,
the accuracy of the CISRDCF tracker is in the last place in
the baseline sub-challenge (Table 1, A column of the Base-
line experiment), while it takes the second place by robust-
ness: right after the DCFNet tracker (Table 1, R column of
the Baseline sub-challenge). In the real-time sub-challenge,
the EAO of the suggested approach is in the second place
(again, after the DCFNet tracker). In the unsupervized sub-
challenge, the CISRDCF tracker takes place slightly ahead
of STBACF, but behind the ANT tracker (see, last column of
the Table 1). It should be noted that the SAPKLTF, ASMS
and Staple trackers, which share the first places in the unsu-
pervized sub-challenge, explicitly use colour information,
while the suggested CISRDCF tracker employs only the
greyscale information.

The expected average overlaps for the tested trackers
depending on the sequence length are shown in Fig. 3. From
these curves, one can see that the CISRDCF tracker has one
of the highest values of EAO for sequences longer than 100
frames. It means that the suggested approach tends to have
relatively high precision of object localization for longer
sequences in comparison with other tested trackers.

Figure 4 illustrates some examples of the tracking of
objects in video sequences from the VOT Challenge [4] that
were obtained by the CISRDCF tracker. The first row (a–d)
of Fig. 4 shows the sequence with the object, which signifi-
cantly changes its size during the tracking. The second row
(e–h) of Fig. 4 gives the example of the tracking of the small
object (drone), which rotates in- and out- of plane of frame
during the motion, the object also periodically falls into the
regions with a cluttered background (frames g, h). The third
row (i–l) illustrates the sequence, where the object moves
behind the plant and undergoes significant partial occlu-
sion (frame k). In all these cases, the suggested CISRDCF
approach managed to track the objects without failures.

Table 1 The comparison results of the tracking quality for the sug-
gested CISRDCF tracker and the similar trackers, which were tested
in VOT Challenge 2018 benchmark

Cells denoted by bold, bolditalic and italic fonts are the first, the sec-
ond and the third best values in the columns, respectively
↑ means higher better
↓ means lower better

Tracker Baseline Real-time Unsup.

EAO ↑ A ↑ R ↓ EAO ↑ AO ↑

DCFNet 0.1827 0.470 0.543 0.1803 0.3269
DensSiam 0.1732 0.462 0.688 0.1731 0.3037
SAPKLTF 0.1713 0.488 0.613 0.1174 0.3521
Staple 0.1694 0.530 0.688 0.1696 0.3327
ASMS 0.1692 0.494 0.623 0.1669 0.3356
ANT 0.1684 0.464 0.632 0.0590 0.2770
STBACF 0.1548 0.461 0.740 0.0618 0.2447
KCF 0.1349 0.447 0.773 0.1336 0.2671
SRDCF 0.1189 0.490 0.974 0.0584 0.2445
CISRDCF 0.1828 0.426 0.566 0.1774 0.2685

Fig. 3 The expected average overlap curves (EAO depending on the video sequence length) for the trackers from Table 1. The curves are gener-
ated by the VOT 2018 benchmark for the baseline and real-time sub-challenges

240 Journal of Real-Time Image Processing (2021) 18:233–243

1 3

The dependencies of the accuracy and robustness meas-
ures on the visual attributes for the CISRDCF tracker are
shown in Fig. 5. We used the sensitivity parameter of
S = 100 for robustness estimation similarly to the [4]. This
diagram allows us to judge about the influence of visual
attributes (parameters of video sequence and object motion)
to the work quality of a given tracker. Namely, as it can be
seen in Fig. 5, the tracking robustness of CISRDCF evi-
dently drops when illumination changes. At the same time,
occlusions and changes of object motion affect the robust-
ness less. Camera motion or change of the object size have
the smallest influence on the CISRDCF robustness. We also
observe that none of attributes significantly affects the accu-
racy of the CISRDCF.

During the benchmarking, we used the Matlab imple-
mentation of the CISRDCF tracker. Since Matlab is an
interpreted language, this implementation has reduced per-
formance; thus, we decided to re-implement the tracker in
the C++ to estimate its speed more adequately. The next
section is dedicated to this issue.

4.3 Speed evaluation

To estimate the speed of the CISRDCF tracker, we re-
implemented it using C++. This implementation uses the
same parameters that are described in the “Implementation
Details” section.

We used the OpenCV library (version 3.4.5) for software
implementation of the tracker on both PC and ARM-based
platforms. To achieve the highest possible performance, we
employed the following software optimmization techniques.
Firstly, we implemented the modified FHOG features extrac-
tion procedure, which defers from the original one1, mainly

Fig. 4 Examples of some video sequences from VOT Challenge
2018, where the CISRDCF algorithm tracked objects without fails:
green rectangles are the object-bounding boxes reported by the

CISRDCF tracker; red rectangles are the ground-truth; the numbers
of the frames in the respective video sequences are shown in the top
right-hand corners

Fig. 5 The VOT Challenge 2018 accuracy–robustness diagram for
the CISRDCF tracker depending on different visual attributes

1 https ://githu b.com/rbgir shick /voc-dpm/blob/maste r/featu res/featu
res.cc.

https://github.com/rbgirshick/voc-dpm/blob/master/features/features.cc
https://github.com/rbgirshick/voc-dpm/blob/master/features/features.cc

241Journal of Real-Time Image Processing (2021) 18:233–243

1 3

by applying the lookup tables (LUTs) for arctangent and
square root calculation during the estimation of orientations
and magnitudes of the gradients. It should be noted that the
image pixels are usually 8-bit unsigned integers and the
number of gradients orientations is small (up to few tens),
thus the arctangents and square roots have limited values,
which allows making the LUTs of a compact size. Also, we
used SIMD instructions for the inverse square root calcu-
lation during the histogram bins normalization. For more
details on the optimization of FHOG features extraction
procedure, reader may refer to [28, 29]. Secondly, we used
the twice reduced complex-conjugated symmetric spectrum
representations (CCS format), which allowed us to simplify
the most matrix operations by the factor of two. And thirdly,
since the DCF filter may be calculated for each channel
independently, we applied the per-channel parallelization.
Moreover, we also computed the features for each scale in
parallel during the object localization.

We implemented and tested the CISRDCF tracker on a
few platforms including the embedded ones. Fig. 6 illus-
trates the impact of the mentioned software optimizations
on the tracker performance for some selected platforms. The
complete results for all tested platforms including parallel
implementation are shown in Table 2. During the tests, we
used the video sequence, in which the object in the feature
space had maximally allowed resolution of 38 × 38 pixels
(according to the implementation details described above).
Note that the average frame processing time in Table 2 does
not include the time for the image input–output.

As can be seen in Fig. 6, the use of CCS spectrum repre-
sentation format does not give any notable advantages on a
PC, while it increases the performance roughly by 10% on
the ARM platform. The application of look-up tables (LUTs)
during the feature extraction brings 15–30% improvement

in performance on all tested platforms. Again, the results of
optimization are more evident on the ARM. Furthermore,
the portion of FFT calculations is larger for the ARM plat-
form, which is probably caused by the better OpenCV opti-
mization for the Intel processors (OpenCV employs com-
ponents of the IPP library). The parallel implementation,
together with all mentioned above improvements, increases
the tracker performance approximately 2 times on all plat-
forms (compare first and last bars of each diagram).

The performance of CISRDCF tracker on PC in Table 2
is given for the reference. Generally, there are no doubts that
the tracker is able to operate in the real-time on modern,
but not the most powerful PCs. It was confirmed on the x86
64-bit processor downclocked to 0.78 GHz: when only one
thread of this processor is used, the frame rate of 37 fps is
achieved (see Table 2, third row, column 1). At the same
time, the CISRDCF tracker can operate at approximately
15 fps using a single thread of the mid-range ARM Cor-
tex-A53 processor, which runs at 1.2 GHz (Table 2, fourth
row, column 1). When multiple threads in this processor are
employed, the frame rate can be increased up to 21–23 fps
(see Table 2, ARM Cortex-A53, 4 Cores 1.2 GHz row, col-
umn 2), and when it is additionally overclocked to 1.3–1.4
GHz, it is possible to achieve up to 25–26 fps. The more
productive platform, such as ARM Cortex-A57, is capable
of 27 fps at 1.2 GHz and up to 40 fps at 2.0 GHz without
parallelization (see first column of Table 2 for ARM Cortex-
A57 processor rows).

It is interesting to note that the performance of the tracker
on the Jetson TX2 platform becomes lower, when two addi-
tional Denver cores are engaged (see last two rows of the
Table 2). It may be caused by the power limitations of the
SoC or by some peculiarities of the scheduler of the Linux
operating system.

Fig. 6 The impact of suggested optimizations on the average frame
processing speed of CISRDCF tracker. The bars in the diagrams
denoted as “Non-optimized”, “CCS”, “LUTs, CCS”, and “LUTs,
CCS, Parallel” correspond the basic unimproved implementation,
the implementation that uses reduced complex-conjugated symmet-
ric spectrum format (CCS format), the implementation that employs

CCS format and look-up tables (LUTs) during feature calculations,
and the multi-threaded (parallel) implementation, which uses CCS
format and look-up tables, respectively. Each section in the bar is
a portion of the time taken by some principal operations: feature
extraction, FFT computations, and other operations, including matrix
manipulations during DCF filter calculation

242 Journal of Real-Time Image Processing (2021) 18:233–243

1 3

5 Conclusions

In this paper, we have suggested and tested the modifications
for the tracking methods based on discriminative correlation
filters (DCF). These modifications consist in introducing of
the channel-independent spatially regularized method for
calculation of the DCF filter using the alternating direction
method of multipliers (ADMM), and also in applying the
features based on the backprojection of normalized object
histogram. The study has shown benefits of using the pro-
posed modifications that allow increasing the tracking per-
formance in terms of robustness, which was confirmed on
the VOT Challenge 2018 benchmark. We have shown that
the CISRDCF tracker that uses the proposed improvements
achieves the expected average overlap measure of EAO =
0.1828, surpassing some state-of-the-art methods of the
same category, and even putting it on a par with certain
more powerful, but at the same time, more computationally
complex approaches based on convolutional neural features.
It should be emphasized that the CISRDCF tracker does not
use any colour information, which may be important for
some applications. The experiments also confirmed that the
C++ optimized implementation of the suggested CISRDCF
tracker can process frames in a real-time on modern PCs
(from 37 fps when using single thread of downclocked x86
processor to 220 fps on the same processor at the full speed)
as well as on embedded platforms, which are based on the
mid-range ARM processors (at least at 15 fps in a single
thread of Cortex-A53 processor).

Compliance with ethical standards

 Conflict of interest The authors declare that they have no conflict of
interest.

References

 1. Kristan, M., Matas, J., Leonardis, A., Felsberg, M., et al: The
visual object tracking VOT2015 challenge results. In: IEEE Inter-
national Conference on Computer Vision Workshop (ICCVW),
pp. 564–586 (2015). https ://doi.org/10.1109/ICCVW .2015.79

 2. Matej, K., Leonardis, A., Matas, J., et al: The visual object track-
ing VOT2016 challenge results. In: European Conference on
Computer Vision âĂŞ ECCV 2016 Workshops. ECCV 2016. Lec-
ture Notes in Computer Science, vol. 9914, pp. 777–823 (2016).
https ://doi.org/10.1007/978-3-319-48881 -3_54

 3. Kristan, M., Leonardis, A., Matas, J., Felsberg, M., et al: The
visual object tracking VOT2017 challenge results. In: ICCV2017
Workshops, Workshop on visual object tracking challenge (2017).
https ://doi.org/10.1109/ICCVW .2017.230

 4. Kristan, M. , Leonardis, A., Matas, J., Felsberg, M., et al: The
sixth visual object tracking VOT2018 challenge results. In: Com-
puter Vision âĂŞ ECCV 2018 Workshops. ECCV 2018. Lecture
Notes in Computer Science, vol. 11129, pp. 3–53 (2018). https ://
doi.org/10.1007/978-3-030-11009 -3_1

 5. Danelljan, M., Robinson, A., Khan, F.S., Felsberg, M.: Beyond
correlation filters: learning continuous convolution operators
for visual tracking. In: 14th European Conference on Com-
puter VisionâĂŞ ECCV 2016. ECCV 2016. Lecture Notes in
Computer Science, vol. 9909, pp. 472–488 (2016). https ://doi.
org/10.1007/978-3-319-46454 -1_29

 6. Danelljan, M., Bhat, G., Khan, F.S., Felsberg, M.: ECO: efficient
convolution operators for tracking. In: IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 6931–6939
(2017). https ://doi.org/10.1109/CVPR.2017.733

 7. Nam, H., Han, B.: Learning multi-domain convolutional neural
networks for visual tracking. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 4293–4302 (2016).
https ://doi.org/10.1109/CVPR.2016.465

 8. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr,
P.H.S.: Fully-convolutional siamese networks for object tracking.
In: European Conference on Computer Vision âĂŞ ECCV 2016
Workshops. ECCV 2016. Lecture Notes in Computer Science,
vol. 9914, pp. 850–865 (2016). https ://doi.org/10.1007/978-3-319-
48881 -3_56

 9. Li, B, Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual
tracking with siamese region proposal network. In: IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp.
8971–8980 (2018). https ://doi.org/10.1109/CVPR.2018.00935

Table 2 Average frame
processing time by the C++
version of CISRDCF tracker,
which is implemented on
different computational
platforms

The two columns of Performance part of the table present the results for the basic non-parallel (single-
threaded) and parallel (multi-threaded) implementations of the algorithm, respectively
* Tested on Nvidia Jetson TX2

Platform Performance (ms)

Basic implementation Using parallelization

Intel Core i7, 4 Cores 3.25 GHz 6.85 (146 fps) 4.4 (227 fps)
Intel Core i3, 2 Cores 2.1 GHz 10.9 (91.7 fps) 8.1 (123 fps)
Intel Core i7, 4 Cores 0.78 GHz 26.9 (37.1 fps) 16.9 (59.2 fps)
ARM Cortex-A53, 4 Cores 1.2 GHz 67.5 (14.8 fps) 42.5 (23.5 fps)
ARM Cortex-A53, 4 Cores 1.344 GHz 61 (16.4 fps) 38.8 (25.8 fps)
ARM Cortex-A57, 4 Cores 1.2 GHz* 35.8 (27.9 fps) 19.2 (52.1 fps)
ARM Cortex-A57, 4 Cores 2.0 GHz* 22.4 (44.7 fps) 12.4 (80.6 fps)
ARM Cortex-A57, 4 Cores + Denver, 2 Cores,

2.0 GHz*
23.3 (42.3 fps) 13.8 (72.5 fps)

https://doi.org/10.1109/ICCVW.2015.79
https://doi.org/10.1007/978-3-319-48881-3_54
https://doi.org/10.1109/ICCVW.2017.230
https://doi.org/10.1007/978-3-030-11009-3_1
https://doi.org/10.1007/978-3-030-11009-3_1
https://doi.org/10.1007/978-3-319-46454-1_29
https://doi.org/10.1007/978-3-319-46454-1_29
https://doi.org/10.1109/CVPR.2017.733
https://doi.org/10.1109/CVPR.2016.465
https://doi.org/10.1007/978-3-319-48881-3_56
https://doi.org/10.1007/978-3-319-48881-3_56
https://doi.org/10.1109/CVPR.2018.00935

243Journal of Real-Time Image Processing (2021) 18:233–243

1 3

 10. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-
speed tracking with kernelized correlation filters. IEEE Trans.
Pattern Anal. Mach. Intell. 37(3), 583–596 (2015). https ://doi.
org/10.1109/TPAMI .2014.23453 90

 11. Danelljan, M., HÃd’ger, G., Khan, F., Felsberg, M.: Discrimi-
native scale space tracking. IEEE Trans. Pattern Anal. Mach.
Intell. 39(8), 1561–1575 (2017). https ://doi.org/10.1109/TPAMI
.2016.26099 28

 12. Danelljan, M., HÃd’ger, G., Khan, F., Felsberg, M.: Learning
spatially regularized correlation filters for visual tracking. In:
IEEE International Conference on Computer Vision (ICCV), pp.
4310–4318 (2015). https ://doi.org/10.1109/ICCV.2015.490

 13. Galoogahi, H.K., Fagg, A., Lucey, S.: Learning background-aware
correlation filters for visual tracking. In: IEEE International Con-
ference on Computer Vision (ICCV), pp. 1144–1152 (2017). https
://doi.org/10.1109/ICCV.2017.129

 14. Lukežič, A., Vojíř, T., Čehovin, Z.L., Matas, J., Kristan, M.:
Discriminative correlation filter tracker with channel and spatial
reliability. Int. J. Comput. Vis. 126, 671–688 (2018). https ://doi.
org/10.1007/s1126 3-017-1061-3

 15. van de Weijer, J., Schmid, C., Verbeek, J., Larlus, D.: Learn-
ing color names for real world applications. IEEE Trans. Image
Process. 18(7), 1512–1523 (2009). https ://doi.org/10.1109/
TIP.2009.20198 09

 16. Danelljan, M., Khan, F.S., Felsberg, M., Weijer, J.: Adaptive color
attributes for real-time visual tracking. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 1090–
1097 (2014). https ://doi.org/10.1109/CVPR.2014.143

 17. Li, Feng, Tian, C., Zuo, W., Zhang, Lei, Yang, M.-H.: Learning
spatial-temporal regularized correlation filters for visual tracking.
In: IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 4904–4913 (2018). https ://doi.org/10.1109/
CVPR.2018.00515

 18. Bertinetto, L., Valmadre, J., Golodetz, S., Miksik, O., Torr, P.H.S.:
Staple: Complementary learners for real-time tracking. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 1401–1409 (2016). https ://doi.org/10.1109/CVPR.2016.156

 19. Bolme, D.S., Beveridge, R.J., Draper, B.A., Lui, Y.M.: Visual
object tracking using adaptive correlation filters. In: IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp.
2544–2550 (2010). https ://doi.org/10.1109/CVPR.2010.55399 60

 20. Hannuna, S., Camplani, M., Hall, J., et al.: DS-KCF: a real-time
tracker for RGB-D data. J. Real-Time Image Proc. 16, 1439–1458
(2019). https ://doi.org/10.1007/s1155 4-016-0654-3

 21. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.:
Object detection with discriminatively trained part based models.
IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2010).
https ://doi.org/10.1109/TPAMI .2009.167

 22. Fernandez, J.A., Boddeti, V.N., Rodriguez, A., Kumar, B.V.K.V.:
Zero-aliasing correlation filters for object recognition. IEEE Tran.
Pattern Anal. Mach. Intell. 37(8), 1702–1715 (2014). https ://doi.
org/10.1109/TPAMI .2014.23752 15

 23. Galoogahi, H.K., Sim, T., Lucey, S.: Correlation filters with lim-
ited boundaries. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 4630–4638 (2015). https ://doi.
org/10.1109/CVPR.2015.72990 94

 24. Danelljan, M., HÃd’ger, G., Khan, F., Felsberg, M.: Convolutional
features for correlation filter based visual tracking. In: IEEE Inter-
national Conference on Computer Vision Workshop (ICCVW),
pp. 621–629 (2015). https ://doi.org/10.1109/ICCVW .2015.84

 25. Gundogdu, E., Alatan, A.A.: Good features to correlate for visual
tracking. IEEE Trans. Image Proc. 27(5), 2526–2540 (2018). https
://doi.org/10.1109/TIP.2018.28062 80

 26. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed
optimization and statistical learning via the alternating direction
method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122
(2010). https ://doi.org/10.1561/22000 00016

 27. Messerschmitt, D.: Stationary points of a real-valued function of a
complex variable. Tech. Report No. UCB/EECS-2006-93. EECS,
U.C. Berkeley (2006)

 28. Varfolomieiev, A., Lysenko, O.: Modification of the KCF track-
ing method for implementation on embedded hardware platforms.
In; International Conference Radio Electronics & Info Commu-
nications (UkrMiCo) (2016). https ://doi.org/10.1109/UkrMi
Co.2016.77396 44

 29. Varfolomieiev, A., Lysenko, O.: A simple way to broaden objects
search area for tracking methods based on discriminative correla-
tion filters. In IEEE First Ukraine Conference on Electrical and
Computer Engineering (UKRCON), pp. 1149–1154 (2017). https
://doi.org/10.1109/UKRCO N.2017.81004 30

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Anton Varfolomieiev Received Ph.D. degree in Computer Systems and
Components (2014) from the Vinnytsia National Technical University,
M.Sc. degree (2010) and B.Sc. degree (2008) in Electronic Devises
from the National Technical University of Ukraine “Kyiv Polytechnic
Institute”. Currently he is associate professor in the Department of
Design of Electronic Digital Equipment (DEDEC) at the Faculty of
Electronics of NTUU “Igor Sikorsky Kyiv Polytechnic Institute”. Sci-
entific interests: visual object recognition and tracking, digital image
and signal processing, embedded devices design.

https://doi.org/10.1109/TPAMI.2014.2345390
https://doi.org/10.1109/TPAMI.2014.2345390
https://doi.org/10.1109/TPAMI.2016.2609928
https://doi.org/10.1109/TPAMI.2016.2609928
https://doi.org/10.1109/ICCV.2015.490
https://doi.org/10.1109/ICCV.2017.129
https://doi.org/10.1109/ICCV.2017.129
https://doi.org/10.1007/s11263-017-1061-3
https://doi.org/10.1007/s11263-017-1061-3
https://doi.org/10.1109/TIP.2009.2019809
https://doi.org/10.1109/TIP.2009.2019809
https://doi.org/10.1109/CVPR.2014.143
https://doi.org/10.1109/CVPR.2018.00515
https://doi.org/10.1109/CVPR.2018.00515
https://doi.org/10.1109/CVPR.2016.156
https://doi.org/10.1109/CVPR.2010.5539960
https://doi.org/10.1007/s11554-016-0654-3
https://doi.org/10.1109/TPAMI.2009.167
https://doi.org/10.1109/TPAMI.2014.2375215
https://doi.org/10.1109/TPAMI.2014.2375215
https://doi.org/10.1109/CVPR.2015.7299094
https://doi.org/10.1109/CVPR.2015.7299094
https://doi.org/10.1109/ICCVW.2015.84
https://doi.org/10.1109/TIP.2018.2806280
https://doi.org/10.1109/TIP.2018.2806280
https://doi.org/10.1561/2200000016
https://doi.org/10.1109/UkrMiCo.2016.7739644
https://doi.org/10.1109/UkrMiCo.2016.7739644
https://doi.org/10.1109/UKRCON.2017.8100430
https://doi.org/10.1109/UKRCON.2017.8100430

	Channel-independent spatially regularized discriminative correlation filter for visual object tracking
	Abstract
	1 Introduction
	2 Related work
	3 The proposed approaches
	3.1 Calculation of channel-independent spatially regularized DCF
	3.2 Features based on object normalized histogram backprojection

	4 Experimental results
	4.1 Implementation details
	4.2 Tracking accuracy and robustness evaluation
	4.3 Speed evaluation

	5 Conclusions
	References

