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Abstract
The study proposes the improvements for visual object trackers based on discriminative correlation filters. These improve-
ments consist in the development of the channel-independent spatially regularized method for filter calculation, which is based 
on the alternating direction method of multipliers as well as in the use of additional features that are the result of the back-
projection of normalized weighted object histogram. The VOT Challenge 2018 benchmark has confirmed that the proposed 
approaches allow to increase the tracking robustness. Particularly, by the value of expected average overlap (EAO = 0.1828), 
the tracker that uses these approaches (CISRDCF) can reach the level of more computationally complex competitors that 
utilize convolutional neural features. At the same time, the software-optimized version of the CISRDCF tracker, which 
implements the suggested improvements has moderate computational complexity and can operate in the real-time both on 
the PC and on the mid-range ARM-based processors, making the CISRDCF tracker promising for embedded applications.

Keywords Visual object tracking · Discriminative correlation filter · Alternating direction method of multipliers · 
Embedded devices

1 Introduction

Visual object tracking is the area in computer vision, which 
is widely used in robotics, machine–human interfaces, medi-
cine, security systems, advanced driver assistance systems 
(ADAS), video editing and post-production, etc. In many of 
the mentioned applications, the tracking should perform in 
the real-time, and sometimes even on embedded hardware. 
This requirement restricts a tracking algorithm to have rea-
sonable computational complexity.

Currently, the most promising in terms of robustness and 
accuracy are the trackers based on discriminative correlation 
filters (DCF) or on convolutional neural networks, as well 
as the methods that combine these two approaches [1–4]. 
In particular, according to the [1–4] benchmarks, the most 
accurate and robust trackers utilize either convolutional 
neural networks directly or discriminative correlation fil-
ters, which use responses from some layers of convolutional 

neural networks as features. At the same time, the mentioned 
approaches have high computational complexity and usu-
ally able to process only several frames per second, even on 
the most modern PCs with high-end GPUs [5–7]. The only 
exceptions here are the Siamese neural network trackers [8, 
9] that can process up to 100 fps, but also requiring high-
performance GPUs. Methods which employ the discrimina-
tive correlation filters with so-called “handcrafted” features 
such as HOG [10–14], colour names or attributes [14–16] 
have lower robustness and accuracy, but are much faster and 
allowing to achieve hundreds of frames per second using 
only CPU of a conventional PC.

Consequently, the discriminative filter-based methods 
which use handcrafted (non-convolutional) features appear 
to be still of interest for implementation in embedded sys-
tems. Therefore, in this paper, we focus on the improve-
ment of these methods by increasing their robustness and 
accuracy, while maintaining low computational complexity. 
The main contribution of this paper consists in fulfilling the 
following objectives: 

1. To develop the approach for calculating the channel-
independent spatially regularized discriminative corre-
lation filter by using the alternating direction method 
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of multipliers (ADMM). This approach combines the 
channel-independent calculation of the DCF described 
in paper [14] with the spatial regularization technique 
given in [12, 17], which results in a specific optimization 
problem solved within this paper.

2. To employ the additional features, which are based on 
backprojection of the normalized object histogram. 
These features are extracted similarly to the ones given 
in [18], but unlike to [18], we propose using the result 
of backprojection as an additional channel for DCF fil-
ter calculation, which, we believe, should increase the 
discriminative properties during the object localization.

It is worth noting that one of the peculiarities of the sug-
gested modification is its ability to increase the tracking 
robustness without using the colour information, which may 
be important in some cases.

The paper is organized as follows. The section “Related 
Work” gives a brief overview of tracking methods that pre-
ceded and was the basis of the suggested approach. In the 
section “The Proposed Approach”, we discuss the methods 
for calculating the modified discriminative filter and extract-
ing the features based on the object histogram backprojec-
tion as well as the peculiarities of combining correlation 
responses obtained from different kinds of features. The 
section “Experimental Results” presents the details of the 
implementation of proposed approach (We use CISRDCF 
below in the paper to refer to this implementation), the anal-
ysis of its tracking quality based on VOT Challenge 2018 
benchmark [4], and lastly the evaluation of the CISRDCF 
tracker speed on different computational platforms (includ-
ing embedded ones).

2  Related work

A discriminative correlation filter (DCF) is a special type of 
filter, whose correlation (or convolution, in some formula-
tions) with the image gives a sharp response in the region, 
where the object encoded in this filter is located. Based on 
the response peak, it is possible to locate the object in each 
frame of video sequence, which actually makes tracking fea-
sible. The DCF calculation implies solving the least squares 
minimization problem, which is done in the frequency 
domain to find this solution fast.

DCFs have become widely used in the visual object track-
ing since the MOSSE implementation [19] where the sim-
ple single-channel filter has been calculated from a greyscale 
image. Later, the similar approach known as the kernelized 
correlation filter (KCF) [10, 20] was suggested. This approach 
introduced the SVM-like feature space kernelization and the 
use of multichannel FHOG features [21], which increased the 
discriminative capabilities of the filter and led to significant 

tracking quality improvement. The main advantage of both 
approaches that made them popular was their high frame rate, 
namely about 700 fps for the MOSSE [19] and 170–290 fps 
for the KCF [10] with FHOG features. Such high frame rates 
were achieved mainly due to the calculation of filters in the 
frequency domain.

Nevertheless, the filter calculation in the frequency domain 
has a significant drawback, as it was established later in [12, 
22, 23]. Due to the periodic nature of Fourier transform, it 
is impossible to obtain the spatially equivalent filter having 
non-zero values only in the part that encodes an object. It is 
believed that such a filter is inaccurate, more sensitive to back-
ground variation (since it captures background or so-called 
“context” information), and consequently gives lower track-
ing quality. To overcome this difficulty, some modifications 
of the optimization problem were proposed in [12, 22, 23]. 
The authors of papers [13, 22, 23] reformulated the minimiza-
tion problem by introducing the additional constraints, which 
restricted the filter to have a desirable form (to have non-zero 
values wherever it is necessary). The problem itself was solved 
by the proximal gradient descent in [22] and also by the use 
of the alternating direction method of multipliers (ADMM) 
in [13, 23]. The constraints in the mentioned approaches are 
implemented by the special proximal operator that transforms 
the filter from the frequency to the spatial domain, excludes 
unnecessary components from the filter (setting them to zero), 
and returns it back to the frequency domain. This slightly 
increases the amount of computation, but the asymptotic 
complexity remains at the level of the KCF and the MOSSE 
methods. In [12], the authors propose suppressing unnecessary 
filter components using the regularization. The optimization 
problem in this case is solved by the Gauss-Seidel method, 
or in later implementations [5, 6], by the conjugated gradi-
ents method. It should be noted that in practice ADMM-based 
approaches are slightly faster and use less memory, therefore, 
they are more expedient for fast trackers implementation.

Another way to improve the DCF-based trackers is the 
use of alternative features [4]. Here, one should note the 
approaches, which employ colour information [14, 16, 18] 
as well as the CNN features extracted from certain layers 
of convolutional neural networks [6, 17, 24, 25]. The CNN 
features provide a better tracking quality, but at the same 
time have higher computational complexity making them 
less appropriate for the real-time application, especially on 
embedded hardware.

3  The proposed approaches

This section describes in details the algorithm of DCF filter 
calculation using the ADMM method and the way of extrac-
tion and application of the features based on the normalized 
histogram backprojection.
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3.1  Calculation of channel‑independent spatially 
regularized DCF

In order to obtain the DCF filter in the frequency domain so 
that its spatial counterpart will have suppressed components 
outside the object region, we used the optimization method, 
which was employed in [13, 14, 17], particularly the alter-
nating direction method of multipliers (ADMM).

The object region for the tracking is usually given as a 
rectangle, but, obviously, the shapes of real objects may 
defer from the rectangular ones. Therefore, it could be rea-
sonable to make the region, which encodes an object in the 
filter with fuzzy boundaries. It can be done by suppressing 
the background filter components using the regularization, 
similarly to the approach given in [17]. However, in contrast 
to [17], we suggest calculating the filter channels indepen-
dently. We believe that this should slightly simplify the com-
putations as well as the control of the response merging for 
different kind of features during the convolution calculation 
(relying on the experience in [14]). Thus, in this paper, we 
suggest combining the approaches of channel-independent 
DCF filter calculation similar to the one from [14], and 
applying spatial regularization in the formulation given in 
papers [12, 17]. In particular, it leads to the following opti-
mization problem:

here, ‖ ⋅ ‖2 denotes the square of Frobenius norm; “ ⋆ ” 
denotes convolution between the filter h and the template t, 
from which this filter is calculated; r is the desired response; 
w is the regularization matrix that defines which filter com-
ponents should be suppressed; g also denotes the filter, and 
the optimization constraint guaranties that g = h ; operator 
“ ⋅ ” denotes the element-wise multiplication between w and 
g. The template t is the multichannel image, d is the total 
number of channels, and subscript i defines the particular 
channel number.

For the problem (1), the augmented Lagrangian in case of 
using the scaled dual variable u [26] has the following form:

where � is the penalty parameter; u is the scaled dual vari-
able, which is proportional to Lagrange multipliers [26].

The ADMM method in the scaled form [26] implies 
the iterative solution of the following optimization 
sub-problems:

(1)
argmin

h

d�

i=1

�
‖ti ⋆ hi − r‖2 + ‖w ⋅ gi‖2

�
,

s.t. h − g = 0,

(2)
L(h, g, u) =

d�

i=1

�
‖ti ⋆ hi − r‖2 + ‖w ⋅ gi‖2

+
𝜌

2
‖hi − gi + ui‖2 +

𝜌

2
‖ui‖2

�
,

where superscript (k) denotes the values of respective vari-
ables at the kth iteration of the ADMM.

Sub-problem h. Because of convolution, which is present 
in sub-problem h (3), it is expedient to search the solution in 
the frequency domain. Using the Parseval’s and the convolu-
tion theorems, as well as denoting the respective variables in 
the frequency domain by the capital letters, the sub-problem 
h may be rewritten as follows:

where m, n and d are the sizes of arrays along each dimen-
sion; “ ⋅ ” is the element-wise multiplication, which corre-
sponds to the cyclic convolution in the spatial domain; | ⋅ | 
denotes the absolute value of the complex number.

The solution of (4) can be found taking into account the 
optimization specifics of real functions of complex argu-
ments. One of the most essential things here is that the 
differentiation of (4) may be performed by the complex-
conjugated variable H∗ , while the resulting equation may 
be solved for simple non-conjugated variable H [19, 27]. 
Moreover, since all operations in (4) are element-wise, the 
differentiation and solutions of equations may be found for 
each element independently. Thus, after the derivation and 
solving the respective equations, we can write the final result 
for sub-problem h:

here, T∗ is the complex-conjugated template t in the fre-
quency domain; the operations of multiplication and division 
are element-wise. Subscripts in formula (5) are omitted for 
simplicity.

Sub-problem g. Sub-problem g in (3) can be directly 
solved in spatial domain. For this, we expand the norms:

(3)

h(k+1) = argmin
h
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All operations in formula (6) are element-wise, thus, we 
can again differentiate and solve equations for each array 
element independently, as we did for previous sub-problem 
(4). The final result of minimization has the following form 
(subscripts omitted):

It is interesting to note that the solution for the sub-problem 
g (7) is equivalent to the one, obtained in [17].

Since we search the solution for h in the frequency 
domain, and the convolution of g during the object locali-
zation can be also computed faster in the same domain, 
it is expedient to transform the solution for g as follows:

where F[⋅] and F−1[⋅] denote direct and inverse Fourier 
transforms respectively. Thus, the formula (8) implements 
the solution of the sub-problem g in the frequency domain.

Update of the scaled dual variable u can also be per-
formed directly in the frequency domain:

In order to achieve the faster convergence, the step scale � is 
usually updated at every iteration of the algorithm. In most 
existing trackers, this update is performed via the following 
formula [13, 14, 17]:

where �max is the maximally allowed penalty parameter (step 
size); � is the coefficient of penalty parameter change. Note 
that if the ADMM method is used in the scaled form, the 
dual scaled variable U should also be rescaled, when updat-
ing the parameter � ; particularly if � increases � times, U 
should be decreased, respectively: U = U∕� [26].

After performing the required number of iterations, the 
approximation of the final result is obtained as the solu-
tion of sub-problem g, i.e. the filter with the suppressed 
components will be stored in the G(k+1) variable at the last 
ADMM iteration.

The computational complexity of the above algo-
rithm [formulas (5), (8–10)] is defined by the most 
computationally expensive operations, which are direct 
and inverse Fourier transforms used in (8). Thus, the 
asymptotic complexity of calculation of the DCF filter 
is O(k ⋅ d ⋅ mn ⋅ log(mn)) , where mn denotes the resolu-
tion (width and height) of the template (search region) 
in the feature space [the term mn ⋅ log(mn) corresponds 
to the Fourier transform complexity]; d is the number of 

(7)g(k+1) =
�
(
h(k+1) + u(k)

)

2w2 + �
.

(8)G(k+1) = F

[
F

−1
[
H(k+1) + U(k)

]
⋅

�

2

w2 +
�

2

]
,

(9)U(k+1) = U(k) +
(
H(k+1) − G(k+1)

)
.

(10)�(k+1) = min(� ⋅ �(k), �max),

the feature channels (depth); and k is the number of the 
ADMM iterations.

3.2  Features based on object normalized histogram 
backprojection

The idea of using the features that utilize the object histo-
gram backprojection was borrowed from the Staple tracker 
[18]. Generally, this tracker consists of two components run-
ning in parallel. The first of them is actually DCF-based 
tracker with FHOG features, which essentially repeats the 
approach from [11]. The second component employs his-
togram of pixel features (namely of quantized RGB colour 
space). Since we apply the ideas from the second component 
of the Staple tracker, let’s consider it in more details.

This component implies the computation of two histo-
grams: the object histogram and the histogram of the back-
ground around the object. Normalizations of both of these 
histograms give two features distributions for the object p(O) 
and for the background p(B), respectively. Then, the normal-
ized object histogram � (distribution of feature weights) is 
calculated using these distributions:

where j is the histogram bin that is associated with a par-
ticular feature (colour); pj(R) = Nj(R)∕|R| is the relative 
appearance frequency of the feature associated with the jth 
histogram bin in the region R, here Nj(R) denotes the num-
ber of pixels (features) in the region R, which corresponds 
the jth histogram bin, and |R| is the total number of pixels 
(features) in the region R; O and B are the sets of pixels in 
the object and the background areas, respectively; � is the 
regularization parameter, which prevents division by a small 
value if pj(O) + pj(B) ≈ 0 . Accordingly to [18], formula (11) 
can be considered as the solution of the regression problem, 
where the �j values minimize the weights of background 
and maximize the weights of object features simultaneously; 
for more details reader may refer to the original paper [18].

In order to locate the object in the current frame using the 
feature weights � , the weights of every single pixel in the 
region that is centred on the last known object position are 
evaluated. It can be done by the replacing each pixel with its 
respective histogram weight �j . This procedure is also known 
as histogram backprojection and gives the likelihood map. 
The search of the object through the likelihood map (back-
projection) is performed by the localization of the densest 
area within this map. The density itself is estimated by the 
averaging of the map regions using a sliding window of the 
same size as the object. To achieve higher performance, the 
average values for each window position are calculated using 
the integral images [18].

(11)�j =
pj(O)

pj(O) + pj(B) + �
,
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The averaging of elements in the likelihood map using the 
sliding window is actually equivalent to the application of the 
conventional averaging box filter. The averaging makes the 
tracking invariant to the shape of the object, since the filtering 
results (mean values) do not depend on any weights �j (and 
thus the features) permutations within the filter window. At 
the same time, this approach neglects the relative spatial posi-
tions of features, which, in turn, may decrease the discrimina-
tive properties. Therefore, in this paper, we propose replacing 
the averaging filter with the DCF filter calculated using the 
ADMM method from the previous subsection. In our opinion, 
the DCF can take into account spatial positions of the features 
in the object and thus may deliver a better performance during 
the tracking. The transition from the old approach to the new 
one is straightforward: it implies transforming the likelihood 
map into the frequency domain and considering its frequency 
image as the template T for the DCF filter calculation proce-
dure; during object localization, the obtained DCF filter should 
be convolved with the likelihood map extracted from the cur-
rent frame. In this case, the peak of the response defines the 
object position, as for the general DCF localization technique. 
Of course, the likelihood map (backprojected features) can 
also be considered as one of the channels of the multichannel 
template image. Thus, the aforementioned approach may be 
easily integrated into the channel-independent DCF calcula-
tion procedure described in the previous subsection.

When applying the suggested backprojected features in 
conjunction with some features of different type, for instance 
FHOG, we need to merge the responses taking into account 
that the FHOG features usually include a set of channels, while 
the likelihood map (backprojection result) has single channel 
only. Thus, to obtain the balanced response, we perform the 
merging similarly to the one given in the original paper [18]:

where cHOG is the total response over all channels of FHOG 
features; cHBP is the convolution response given by a likeli-
hood map that is obtained from the backprojection of object 

(12)c = cHOG + � ⋅ cHBP,

normalized histogram � ; � is the merging coefficient, which 
allows us to control the importance of responses [18].

For a better adaptation to the changes of object appear-
ance during the tracking, it is expedient to update the object 
normalized histogram � in each frame [18]:

where �(t+1) and �(t) are the updated normalized histograms 
for the next and the current frames respectively; � is the 
normalized histogram for the object located in the current 
frame; �h is the update coefficient.

4  Experimental results

4.1  Implementation details

To evaluate the suggested improvements, we implemented 
the tracker with parameters that are described in details in 
this section. Below, we refer to this implementation as the 
CISRDCF tracker.

Our implementation uses both FHOG [21] features and 
the described above features that are based on the backpro-
jection of the object normalized histogram. FHOG features 
were calculated for the cell size of 4 × 4 pixels and 9 orienta-
tions. Thus, the complete feature array (tensor) consists of 
d = 32 channels (31 channels of FHOG features and 1 chan-
nel obtained from the object histogram backprojection). The 
detailed procedure of feature extraction is shown in Fig. 1.

We calculate the DCF filter by using (5), (8–10) formu-
las for each feature channel separately. In these formulas, we 
employ the Gaussian with the standard deviation of � = 0.1 
as the desired response r in the spatial domain. We also utilize 
the matrix with the high values elsewhere outside the object-
bounding box as the regularization matrix w (Fig. 2). These 
high values are taken as equal to 100, while the values inside 
the bounding box of the object are equal to 0.01. We blur 
the margin between the high and low values in the matrix w 
using the Gaussian filter with the size of 7 × 7 pixels and the 

(13)�(t+1) = (1 − �h) ⋅ �
(t) + �h ⋅ �,

FHOG
Feature Extraction

Histogram
Backprojection

Grayscale Image

Concatenation

31
channel

32
channels

Features Tensor

Fig. 1  Feature calculation procedure in the suggested approach: 
FHOG and histogram backprojection features are extracted from 
greyscale image and concatenated to a single tensor. This procedure 

is repeated several times per frame: (1) to locate the object at different 
scales, and (2) when the object is found to calculate a new DCF filter 
for the region of object location
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standard deviation of � = 0.25 . This technique is applied to 
make the margin of the suppressed area in the filter smoother, 
which, we hope, should help when the object position is set 
slightly inaccurately or when the object has fuzzy edges.

We also use the following parameters in (5), (8–10): ini-
tial step size (penalty parameter) �(0) = 1 ; maximally allowed 
step size �max = 1000 ; step size change factor � = 30 . The 
number of ADMM iterations for each filter calculation is 2. 
The initial values G(0) and U(0) for the first ADMM iteration 
were taken from the results of the filter calculation of the 
previous frame. (In the paper, [26] this approach is called the 
“warm start”.) We believe that such a technique is applicable 
because objects tend to change their appearance slightly in 
adjacent frames during the tracking. For the very first frame, 
we take G(0) and U(0) equal to 0.

We also apply the exponential filtering of the DCF in each 
frame, similarly to the commonly used practice [10, 12, 18, 
19]. Such an approach allows adapting more efficiently to the 
changes of object appearance during the tracking:

where G(t+1) and G(t) are the averaged filters for the next and 
the current frames, respectively; G is the filter, which is cal-
culated for the region where the object was found in the cur-
rent frame (It is obtained directly from (8) at the last ADMM 
iteration); �f  is the exponential filtering coefficient. In this 
paper, we use �f = 0.025 . For the very first frame, G(0) = G.

We calculate the normalized histogram for the localized 
object position in the current frame and update the histogram 
for the next frame using the formula (13) in which we use 
�h = 0.125 update coefficient.

We localize the object by calculating convolution 
(according to the definition of minimization problem (1) 
in the frequency domain with subsequent transition to the 
spatial domain:

where F−1[⋅] as earlier denotes the inverse Fourier trans-
form; ci is the calculated convolution for the ith feature chan-
nel in the spatial domain; Fi is the ith feature channel of the 
search region of the object in the frequency domain; Gi is 

(14)G(t+1) = (1 − �f ) ⋅ G
(t) + �f ⋅ G,

(15)ci = F
−1[Fi ⋅ Gi],

the ith channel of the DCF in the frequency domain (filter 
G here is the G(t+1) from formula (14)).

We merge the responses of the individual channels (cal-
culated by (15)) applying (12), in which we use the coef-
ficient: � = 0.55 ⋅max(cHOG)∕max(cHBP) . This value is 
obtained empirically.

To adapt to the change of the object size, we calculate 
the filter convolution with exemplars of the search region 
at ns = 3 scales. The scale factors are taken to be s = 1.03p , 
where p = {−(ns − 1)∕2,… ,+(ns − 1)∕2}.

In all further experiments, the search region had the 
square shape. It was taken approximately 4.25 times larger 
than the object, and also was downscaled so that in the fea-
ture space its resolution was not larger than 38 × 38 pixels.

4.2  Tracking accuracy and robustness evaluation

We evaluated the quality of the suggested CISRDCF tracker 
using the VOT Challenge 2018 [4] benchmark intended for 
the short-term trackers. This benchmark includes 60 anno-
tated video sequences with different objects and with differ-
ent visual complexity attributes: object occlusion, illumina-
tion change, object motion change, scale change, and camera 
motion [4]. The quality of tracking is estimated by three 
measures: the accuracy (A), the robustness (R), and the 
expected average overlap (EAO) [1, 4]. The overlap in the 
benchmark is assessed by the intersection-over-union value 
(also known as Jaccard index), which is IoU =

|rt∪rGT |
|rt∩rGT |

 , where 
rt is the location of the object (rectangle) reported by the 
tracker, and rGT is the ground-truth location [18]. The accu-
racy measures the average overlap for all frames and all 
video sequences in the benchmark where the tracking was 
acknowledged successful (robust). The robustness is the 
mean number of tracker re-initializations (fails) caused by 
the loss of object. The fact of the object loss is established 
on the basis of the zero overlap value between the bounding 
box predicted by the tracker and the ground-truth object 
location. The expected average overlap is the average over-
lap, which the tracker is expected to achieve on a large set of 
video sequences of some identical length and visual proper-
ties [1, 4]. This measure accounts for the increase in the 
variance and bias of the average overlap for video sequences 
of variable lengths. The VOT Challenge 2018 results are 
arranged in accordance with the EAO measure [4].

The VOT Challenge 2018 benchmark includes three sub-
challenges: the baseline, the unsupervized, and the real-time 
ones. The unsupervized sub-challenge does not imply re-
initialization when tracker fails, therefore, the only no-reset 
average overlap (AO) is estimated within this sub-chal-
lenge. In the real-time sub-challenge, the frames of video 
sequences are sent to the tracker with constant framerate of 
20 fps, and if the tracker does not respond in time, the last 

Fig. 2  Generalized view of the regularization matrix w: the dark 
region contains the low values and corresponds to the object-bound-
ing box in the feature space: the light region contains the high values 
and defines the area in the filter that have to be suppressed
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object position is considered as the tracker output for the 
current frame [4].

The results of our CISRDCF tracker on the VOT Chal-
lenge 2018 benchmark are shown in Table 1. For compari-
son, we also extended the table with the results of some 
other trackers of the same class or similar performance. 
These results are completely consistent with the ones in [4] 
and were downloaded from the official VOT Challenge web 
page.

As can be seen from Table 1, the suggested approach 
(CISRDCF) by the EAO measure is able to surpass some 
state-of-the-art trackers of the same category: Staple, 
SRDCF, STBACF, and KCF. In addition, by the same 
parameter the CISRDCF tracker approaches and even goes 

slightly beyond the more powerful neural network-based 
trackers, such as DCFNet and DensSiam. At the same time, 
the accuracy of the CISRDCF tracker is in the last place in 
the baseline sub-challenge (Table 1, A column of the Base-
line experiment), while it takes the second place by robust-
ness: right after the DCFNet tracker (Table 1, R column of 
the Baseline sub-challenge). In the real-time sub-challenge, 
the EAO of the suggested approach is in the second place 
(again, after the DCFNet tracker). In the unsupervized sub-
challenge, the CISRDCF tracker takes place slightly ahead 
of STBACF, but behind the ANT tracker (see, last column of 
the Table 1). It should be noted that the SAPKLTF, ASMS 
and Staple trackers, which share the first places in the unsu-
pervized sub-challenge, explicitly use colour information, 
while the suggested CISRDCF tracker employs only the 
greyscale information.

The expected average overlaps for the tested trackers 
depending on the sequence length are shown in Fig. 3. From 
these curves, one can see that the CISRDCF tracker has one 
of the highest values of EAO for sequences longer than 100 
frames. It means that the suggested approach tends to have 
relatively high precision of object localization for longer 
sequences in comparison with other tested trackers.

Figure 4 illustrates some examples of the tracking of 
objects in video sequences from the VOT Challenge [4] that 
were obtained by the CISRDCF tracker. The first row (a–d) 
of Fig. 4 shows the sequence with the object, which signifi-
cantly changes its size during the tracking. The second row 
(e–h) of Fig. 4 gives the example of the tracking of the small 
object (drone), which rotates in- and out- of plane of frame 
during the motion, the object also periodically falls into the 
regions with a cluttered background (frames g, h). The third 
row (i–l) illustrates the sequence, where the object moves 
behind the plant and undergoes significant partial occlu-
sion (frame k). In all these cases, the suggested CISRDCF 
approach managed to track the objects without failures.

Table 1  The comparison results of the tracking quality for the sug-
gested CISRDCF tracker and the similar trackers, which were tested 
in VOT Challenge 2018 benchmark

Cells denoted by bold, bolditalic and italic fonts are the first, the sec-
ond and the third best values in the columns, respectively
↑ means higher better
↓ means lower better

Tracker Baseline Real-time Unsup.

EAO ↑ A ↑ R ↓ EAO ↑ AO ↑

DCFNet 0.1827 0.470 0.543 0.1803 0.3269
DensSiam 0.1732 0.462 0.688 0.1731 0.3037
SAPKLTF 0.1713 0.488 0.613 0.1174 0.3521
Staple 0.1694 0.530 0.688 0.1696 0.3327
ASMS 0.1692 0.494 0.623 0.1669 0.3356
ANT 0.1684 0.464 0.632 0.0590 0.2770
STBACF 0.1548 0.461 0.740 0.0618 0.2447
KCF 0.1349 0.447 0.773 0.1336 0.2671
SRDCF 0.1189 0.490 0.974 0.0584 0.2445
CISRDCF 0.1828 0.426 0.566 0.1774 0.2685

Fig. 3  The expected average overlap curves (EAO depending on the video sequence length) for the trackers from Table 1. The curves are gener-
ated by the VOT 2018 benchmark for the baseline and real-time sub-challenges
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The dependencies of the accuracy and robustness meas-
ures on the visual attributes for the CISRDCF tracker are 
shown in Fig.  5. We used the sensitivity parameter of 
S = 100 for robustness estimation similarly to the [4]. This 
diagram allows us to judge about the influence of visual 
attributes (parameters of video sequence and object motion) 
to the work quality of a given tracker. Namely, as it can be 
seen in Fig. 5, the tracking robustness of CISRDCF evi-
dently drops when illumination changes. At the same time, 
occlusions and changes of object motion affect the robust-
ness less. Camera motion or change of the object size have 
the smallest influence on the CISRDCF robustness. We also 
observe that none of attributes significantly affects the accu-
racy of the CISRDCF.

During the benchmarking, we used the Matlab imple-
mentation of the CISRDCF tracker. Since Matlab is an 
interpreted language, this implementation has reduced per-
formance; thus, we decided to re-implement the tracker in 
the C++ to estimate its speed more adequately. The next 
section is dedicated to this issue.

4.3  Speed evaluation

To estimate the speed of the CISRDCF tracker, we re-
implemented it using C++. This implementation uses the 
same parameters that are described in the “Implementation 
Details” section.

We used the OpenCV library (version 3.4.5) for software 
implementation of the tracker on both PC and ARM-based 
platforms. To achieve the highest possible performance, we 
employed the following software optimmization techniques. 
Firstly, we implemented the modified FHOG features extrac-
tion procedure, which defers from the original one1, mainly 

Fig. 4  Examples of some video sequences from VOT Challenge 
2018, where the CISRDCF algorithm tracked objects without fails: 
green rectangles are the object-bounding boxes reported by the 

CISRDCF tracker; red rectangles are the ground-truth; the numbers 
of the frames in the respective video sequences are shown in the top 
right-hand corners

Fig. 5  The VOT Challenge 2018 accuracy–robustness diagram for 
the CISRDCF tracker depending on different visual attributes

1 https ://githu b.com/rbgir shick /voc-dpm/blob/maste r/featu res/featu 
res.cc.

https://github.com/rbgirshick/voc-dpm/blob/master/features/features.cc
https://github.com/rbgirshick/voc-dpm/blob/master/features/features.cc
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by applying the lookup tables (LUTs) for arctangent and 
square root calculation during the estimation of orientations 
and magnitudes of the gradients. It should be noted that the 
image pixels are usually 8-bit unsigned integers and the 
number of gradients orientations is small (up to few tens), 
thus the arctangents and square roots have limited values, 
which allows making the LUTs of a compact size. Also, we 
used SIMD instructions for the inverse square root calcu-
lation during the histogram bins normalization. For more 
details on the optimization of FHOG features extraction 
procedure, reader may refer to [28, 29]. Secondly, we used 
the twice reduced complex-conjugated symmetric spectrum 
representations (CCS format), which allowed us to simplify 
the most matrix operations by the factor of two. And thirdly, 
since the DCF filter may be calculated for each channel 
independently, we applied the per-channel parallelization. 
Moreover, we also computed the features for each scale in 
parallel during the object localization.

We implemented and tested the CISRDCF tracker on a 
few platforms including the embedded ones. Fig. 6 illus-
trates the impact of the mentioned software optimizations 
on the tracker performance for some selected platforms. The 
complete results for all tested platforms including parallel 
implementation are shown in Table 2. During the tests, we 
used the video sequence, in which the object in the feature 
space had maximally allowed resolution of 38 × 38 pixels 
(according to the implementation details described above). 
Note that the average frame processing time in Table 2 does 
not include the time for the image input–output.

As can be seen in Fig. 6, the use of CCS spectrum repre-
sentation format does not give any notable advantages on a 
PC, while it increases the performance roughly by 10% on 
the ARM platform. The application of look-up tables (LUTs) 
during the feature extraction brings 15–30% improvement 

in performance on all tested platforms. Again, the results of 
optimization are more evident on the ARM. Furthermore, 
the portion of FFT calculations is larger for the ARM plat-
form, which is probably caused by the better OpenCV opti-
mization for the Intel processors (OpenCV employs com-
ponents of the IPP library). The parallel implementation, 
together with all mentioned above improvements, increases 
the tracker performance approximately 2 times on all plat-
forms (compare first and last bars of each diagram).

The performance of CISRDCF tracker on PC in Table 2 
is given for the reference. Generally, there are no doubts that 
the tracker is able to operate in the real-time on modern, 
but not the most powerful PCs. It was confirmed on the x86 
64-bit processor downclocked to 0.78 GHz: when only one 
thread of this processor is used, the frame rate of 37 fps is 
achieved (see Table 2, third row, column 1). At the same 
time, the CISRDCF tracker can operate at approximately 
15 fps using a single thread of the mid-range ARM Cor-
tex-A53 processor, which runs at 1.2 GHz (Table 2, fourth 
row, column 1). When multiple threads in this processor are 
employed, the frame rate can be increased up to 21–23 fps 
(see Table 2, ARM Cortex-A53, 4 Cores 1.2 GHz row, col-
umn 2), and when it is additionally overclocked to 1.3–1.4 
GHz, it is possible to achieve up to 25–26 fps. The more 
productive platform, such as ARM Cortex-A57, is capable 
of 27 fps at 1.2 GHz and up to 40 fps at 2.0 GHz without 
parallelization (see first column of Table 2 for ARM Cortex-
A57 processor rows).

It is interesting to note that the performance of the tracker 
on the Jetson TX2 platform becomes lower, when two addi-
tional Denver cores are engaged (see last two rows of the 
Table 2). It may be caused by the power limitations of the 
SoC or by some peculiarities of the scheduler of the Linux 
operating system.

Fig. 6  The impact of suggested optimizations on the average frame 
processing speed of CISRDCF tracker. The bars in the diagrams 
denoted as “Non-optimized”, “CCS”, “LUTs, CCS”, and “LUTs, 
CCS, Parallel” correspond the basic unimproved implementation, 
the implementation that uses reduced complex-conjugated symmet-
ric spectrum format (CCS format), the implementation that employs 

CCS format and look-up tables (LUTs) during feature calculations, 
and the multi-threaded (parallel) implementation, which uses CCS 
format and look-up tables, respectively. Each section in the bar is 
a portion of the time taken by some principal operations: feature 
extraction, FFT computations, and other operations, including matrix 
manipulations during DCF filter calculation
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5  Conclusions

In this paper, we have suggested and tested the modifications 
for the tracking methods based on discriminative correlation 
filters (DCF). These modifications consist in introducing of 
the channel-independent spatially regularized method for 
calculation of the DCF filter using the alternating direction 
method of multipliers (ADMM), and also in applying the 
features based on the backprojection of normalized object 
histogram. The study has shown benefits of using the pro-
posed modifications that allow increasing the tracking per-
formance in terms of robustness, which was confirmed on 
the VOT Challenge 2018 benchmark. We have shown that 
the CISRDCF tracker that uses the proposed improvements 
achieves the expected average overlap measure of EAO = 
0.1828, surpassing some state-of-the-art methods of the 
same category, and even putting it on a par with certain 
more powerful, but at the same time, more computationally 
complex approaches based on convolutional neural features. 
It should be emphasized that the CISRDCF tracker does not 
use any colour information, which may be important for 
some applications. The experiments also confirmed that the 
C++ optimized implementation of the suggested CISRDCF 
tracker can process frames in a real-time on modern PCs 
(from 37 fps when using single thread of downclocked x86 
processor to 220 fps on the same processor at the full speed) 
as well as on embedded platforms, which are based on the 
mid-range ARM processors (at least at 15 fps in a single 
thread of Cortex-A53 processor).
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