
Vol.:(0123456789)1 3

Journal of Real-Time Image Processing (2021) 18:143–156 
https://doi.org/10.1007/s11554-020-00959-y

ORIGINAL RESEARCH PAPER

Parallel hashing‑based matching for real‑time aerial image mosaicing

Roberto de Lima1 · Aldrich A. Cabrera‑Ponce2 · Jose Martinez‑Carranza2,3

Received: 2 September 2019 / Accepted: 9 March 2020 / Published online: 19 March 2020 
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
This paper presents a GPU-based real-time approach for generating high-definition (HD) aerial image mosaics. The cumber-
some process of registering HD images is addressed by a parallel scheme that rapidly matches binary features. The proposed 
feature matcher takes advantage of the fast ORB (oriented FAST and rotated BRIEF) descriptor and its attainable arrange-
ment into hash tables. By exploiting the best functionalities of binary descriptors and hashing-based data structures, the 
process of creating HD mosaics is accelerated. On average, real-time performance of 14.5 ms is achieved in a frame-to-frame 
process, for input images of 2.7 K resolution (2704 × 1521). For evaluation purposes in terms of robustness and speed, we 
selected two image registration methods for comparison. The first method uses the feature extractor and matcher modules of 
the well-known ORB-SLAM. The second comparison is carried out against the standard KNN-based matcher of OpenCV. 
The experiments were conducted under different conditions and scenarios, and the proposed approach exhibits a speed-up 
of 10.5 times compared to ORB-SLAM-based approach and 36.5 times compared to the OpenCV matcher. Therefore, this 
research widens the range of applications for aerial mosaicing, since the proposed system is capable of creating high-detail 
panoramas of large sites while acquiring data.

Keywords  Image stitching · Feature matching · CUDA · Binary descriptors

1  Introduction

In the recent decade, with the increase in unmanned aerial 
vehicles, the task of aerial mapping through image mosaic-
ing has become the core of several applications. For exam-
ple, construction progress monitoring [1], post-disaster 
assessment [2], 3D reconstruction of earth-moving con-
struction sites [3], etc. The performance of these applica-
tions heavily relies on both the quality of the obtained image 
and the processing time. On the one hand, high-resolution 
mosaics enable experts to infer high-level information from 
the obtained data. On the other hand, real-time processing 

allows the operator to carry out on-site inspections and to 
make decisions while capturing data.

To overcome the mentioned constraints, numerous 
researches have focused on achieving a good trade-off 
between HD mosaics and real-time processing by enhancing 
the image registration process. More specifically, researchers 
have proposed methods to speed up the process of align-
ing aerial images while maintaining stitching accuracy. 
Feature-based image registration is the cornerstone of these 
approaches since there exist various visual descriptors that 
offer both robustness to image deformations and registration 
accuracy. The well-known SIFT algorithm [12] has been 
widely used for image stitching. However, the construction 
of this floating-point descriptor is computationally expen-
sive, preventing aerial mosaics systems from achieving real-
time performance.

Binary descriptors [4–6] have gained popularity over the 
last years as they offer simple computations while perform-
ing similarly to floating-point descriptors. Nevertheless, 
since these fast descriptors have constructed from pair-
wise comparisons of pixel properties, the matching process 
becomes sensitive to affine transformations. This constraint 
negatively affects the alignment of the aerial images that 

 *	 Jose Martinez‑Carranza 
	 carranza@inaoep.mx

	 Roberto de Lima 
	 roberto.delimahernandez@kuleuven.be

	 Aldrich A. Cabrera‑Ponce 
	 aldrichcabrera@inaoep.mx

1	 KU Leuven, Leuven, Belgium
2	 INAOE, Puebla, Mexico
3	 University of Bristol, Bristol, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-020-00959-y&domain=pdf


144	 Journal of Real-Time Image Processing (2021) 18:143–156

1 3

compose the mosaic. Therefore, a denser number of features 
is required to mitigate the registration error. However, this 
time-consuming process prevents the system to operate at 
high frame rates, especially when dealing with HD images 
(more than 1280 × 720 resolution).

In order to produce real-time HD aerial mosaics (Fig. 1), 
we propose a methodology from a GPU-based binary feature 
matching approach. This parallel scheme relies on the robust 
ORB [6] descriptor and on the hashing-based data structure to 
approximate nearest neighbour search [7]. The organisation of 
the binary vectors within the hash tables notably reduces the 
computational burden of the feature matching process, allow-
ing for generating aerial mosaics at frame rates up to 35 ms [8]. 
However, the higher image resolution, the greater the number 
of tables to store the binary vectors. Hence, the real-time per-
formance of the aerial mosaic system speed drastically drops 
bellow 5 fps when processing images with resolution higher 

than 800 × 480 . By parallelising the process of storing and 
searching the binary descriptors in the hash tables, the creation 
of aerial mosaics is performed at 65 fps, considering ultra-HD 
images.

The main contribution of this extended paper is a novel 
data arrangement suitable to match dense sets of binary 
descriptors based on the fundamental aspects of hashing. 
Unlike the sequential process that entails building and 
searching within hash tables, dynamic lists are avoided when 
constructing the tables so that descriptors are efficiently allo-
cated into GPU’s memories. This distribution is fundamental 
for computational cores to compare binary strings in parallel 
massively. As a result, the system is capable of processing 
thousands of key points, which is a critical requirement to 
register HD images in real-time accurately. Moreover, the 
experimental framework is extended by testing the method-
ology for different terrains, drone velocities, paths and image 
resolutions, thereby showing the robustness of the system 
against multiple conditions.

In order to present our work, this paper is organised as 
follows. Section 2 provides a literature study of the feature-
based approaches to generate an aerial image mosaics. Sec-
tion 3 describes the step-by-step process to generate aerial 
mosaics. The parallel architecture to store and arrange the 
binary vectors is conveyed in detail in Sect. 4. Section 5 
describes the experimental design and the comparison of our 
approach against fast registration implementations. Finally, 
conclusions and future work are outlined in Sect. 6.

2 � Related work

Image mosaicing is a challenging area of study since it 
involves various image processing steps: visual descrip-
tors, registration, stitching and blending. The registration 
stage plays a crucial role in the creation of seamless aerial 
mosaics. This computational module computes a matrix that 
numerically relates a pair of images. This is a relation in the 
form of a rigid transformation, meaning that the images are 
related based solely on rotation and translation. This geo-
metric relation is typically computed on the basis of cor-
respondences of image characteristics extracted from either 
frequency domain or spatial domain. The proposed research 
fall within the latter category, due to aerial images are regis-
tered by estimating correspondences between pixel proper-
ties. Seeking to draw the differences and advantages of our 
system over the state of the art, the related work focuses on 
spatial domain-based registration techniques.

2.1 � Spatial domain‑based aerial image mosaicing 
approaches

In general terms, spatial domain-based approaches aim to 
compute a geometric relationship between a pair of images 

Fig. 1   Aerial mosaic performed on a 100 m high flight, using hash 
table in a GPU architecture. The distance travelled by the drone for 
the generation of the mosaic was 1.7 km. A video of this work for 
reviewing purposes is found at https​://youtu​.be/CRT3v​1n6xt​Q

https://youtu.be/CRT3v1n6xtQ


145Journal of Real-Time Image Processing (2021) 18:143–156	

1 3

based on the information provided by their pixels. Fre-
quently, the correspondence problem is tackled by compar-
ing templates or local features. The former approach finds 
correspondences by calculating similarity metrics [9, 10] 
between grouped pixels, generally known as windows or 
templates. The latter approach computes numerical rep-
resentations of key points in the form of floating-point or 
binary vectors, to later find matches between them. Feature-
based aerial mosaicing systems are described in this section.

2.1.1 � Feature‑based image mosaicing approaches

Feature-based image registration methods have been widely 
used to be the main core of several computer vision applica-
tions. Their popularity lies in the robustness against affine 
transformations, such as rotation, translation, illumination 
and scale. Over the last years, the computational burden of 
these algorithms has been significantly reduced. As a result, 
these approaches have been broadly used to perform real-
time applications. More concretely, image mosaicing sys-
tems have leveraged feature-based registration not only to 
improve the image alignment accuracy but also to acceler-
ate the processing time [11]. The general workflow of these 
approaches is listed as follows. First, local descriptors are 
extracted and matched. Afterwards, the set of correspond-
ences are used to find a rigid transformation between the 
images. Finally, the images are aligned into a standard ref-
erence frame. This process is repeated every key frame, 
obtaining like a result an aerial mosaic.

SIFT [12] is a floating-point descriptor that has played a 
seminal role in feature-based applications, in such degree 
that some studies [13] consider it as one of the most power-
ful descriptors. As a consequence, the SIFT descriptor has 
been used to be the central computational module for image 
mosaicing systems [14, 15]. Given the fact that SIFT offers 
robustness at the cost of a heavy computational burden, these 
approaches exhibit high accuracy in terms of image align-
ment, but a slow frame rate.

From the need of speeding-up the feature extraction and 
matching process, binary descriptors [16] emerged as an 
alternative to floating-point features, offering low memory 
footprint, lighter computational burden, and fast descriptors 
comparison. ORB [6] is an example of which that derived 
from the seminal binary descriptor BRIEF [5]. Given its 
robustness and fast matching, this binary descriptor has been 
recently used for real-time aerial image mosaicing. In [17], 
ORB descriptors are extracted and matched by using a brute 
force approach. Accordingly, once outliers are removed 
using RANSAC, a perspective transformation in the form 
of either a homography or a rigid transformation matrix is 
computed to stitch the images. In [18], RANSAC is substi-
tuted by the spatial–temporal coherent filter method to accel-
erate the outliers removal stage, generating aerial mosaics 

in real time. In [19], the process from extracting matches to 
finding correspondences is naively parallelised, by splitting 
the images in the number of CPU threads available. More 
recently, in [8] the feature matching process is accelerated by 
arranging ORB descriptors into hash tables, achieving a real-
time performance up to 30fps. However, the computational 
burden of the presented approaches becomes a bottleneck as 
the aerial image is resolution is higher since the registration 
process requires a dense matching.

Appropriate to cope with the correspondence problem 
of thousands of descriptors, several works have focused on 
speeding the matching process itself for a wide range of 
applications. For instance, in [20] epipolar geometry and 
hash tables are leveraged to match BRIEF vectors and to 
perform a dense stereo reconstruction. A remarkable robust 
matching approach is reported in [21], which exploits the 
vocabulary tree data structure to notably speed up the match-
ing of binary vectors. This fast approach has drawn the atten-
tion of numerous researchers, in a way that it is a key com-
ponent of the feature matching stage of ORB-SLAM [22], 
the well-known navigation and mapping system. With the 
advent of sophisticated hardware architectures, researches 
have turned their focus to parallel-based feature matching 
implementations. In [23], a novel GPU-based architecture 
was proposed to accelerate the brute force matching without 
taking into consideration epipolar geometry assumptions. 
By using a lower-level design, in [24], a low-cost FPGA 
implementation of the ORB descriptor is proposed, nota-
bly speeding up the extraction and matching process. Even 
though different application domains have benefited from 
these algorithmic and hardware-based alternatives, image 
mosaicing systems have not fully exploited them.

Therefore, in this work, the generation of HD image 
mosaics is conducted by employing a massive parallel GPU-
based architecture. This quick scheme takes the advantages 
of arranging the binary descriptors into hash tables to max-
imise the real-time performance of the feature matching pro-
cess. For the sake of a fair comparison, the aerial mosaicing 
system is also implemented with the feature extractor and 
matcher of the ORB-SLAM. Although the OBB-SLAM-
based aerial mosaicing approach exhibits promising results, 
the proposed system is capable of processing 2.7K resolu-
tion images at 60 fps, which is the standard frame rate of 
modern cameras.

3 � Aerial image mosaic approach

As mentioned in Sect. 1, this work is an extension of the 
proposed methodology presented in [8], where we under-
scored the impact of arranging binary image descriptors into 
hash tables to accelerate the feature matching process. For 
a clearer understanding of the whole approach, this section 



146	 Journal of Real-Time Image Processing (2021) 18:143–156

1 3

describes the workflow to generate an aerial mosaic, from 
reading the image frames, the hash-based search approach, 
to the image registration process.

The general overview of the proposed system is shown 
in Fig. 2. This process is summarised in the flow diagram 
depicted in Fig. 3. This scheme describes the frame-to-frame 
computational process to generate aerial mosaic. The base-
line of the proposed strategy is composed of twofold: i) fea-
ture extraction and matching, ii) image registration.

3.1 � Feature extraction and matching

As it was mentioned, binary descriptors are well suited for 
real-time systems. The ORB descriptor is an example of 
which that has gained its place as the most used binary fea-
ture since it offers: ease to compute, fast comparison, low 
memory footprint, and robustness to affine transformations. 
The feature extraction module of the proposed approach 
relies on this robust descriptor, given the aforementioned 
characteristics. The ORB binary vector is constructed from 
pairwise pixel values tests. The BRIEF descriptor [5] intro-
duced this way of describing features. However, ORB dif-
fers from BRIEF in the sense that the former descriptor is 
capable of handling in-plane rotations. Besides, a learning 
algorithm is incorporated in the construction of the binary 
vectors to enhance their distinctiveness. This characteristic, 
in particular, makes the ORB descriptors well suited to be 
organised into hashing tables. The benefits of arranging the 
binary vectors into this fast data structure are twofold. First, 
the binary representation of ORB involves a low memory 
footprint, dramatically reducing memory resources. Second, 
as feature searching lies in the Hamming space, the vectors 
are fast to compare by using hardware instructions such as 
popcount, which are intrinsically implemented on Nvidia 
and Intel processors. These properties are fundamental 
to reduce the computational burden of the feature match-
ing stage. Moreover, in [6], authors have tested the feature 
matching performance when the binary vectors are arranged 
into a Local Sensitivity Hashing data structure LSH [7]. The 
obtained results are comparable to the performance of SURF 
and SIFT descriptors. Hence this fast binary descriptor has 

been widely used for ample applications that entail image 
registration.

3.2 � Image transformation estimation and stitching

Following the typical pipeline for image stitching, the next 
step after finding matches between two images consists of 
estimating a rigid transformation. The computed matrix 
represents a non-singular relationship between image 
planes [25]. That is to say, the rigid transformation matrix 
describes the transformation that relates the set of matched 
points in terms of rotation and translation. This matrix is 
computed based on the relationship of at least four corre-
spondences. However, the more correspondences estimated, 
the more accurate the transformation is. RANSAC [26] is 
used to compute the best transformation that relates the 
matched points of the current frame to the reference frame. 
Finally, the images are stitched and loaded into a canvas for 
visualisation.

As indicated in [8], binary descriptors and hash-based 
search notably reduce the computational burden of the 
image registration stage. Nevertheless, the processing time 
increases exponentially as the resolution becomes higher. 
The bottleneck has to do with the sequential construction of 

Fig. 2   General overview of the proposed approach to generate an aer-
ial image mosaicing (image taken from [8])

Fig. 3   Flow diagram of the proposed approach (image taken from 
[8]). In the last step, the current frame turns into the reference frame, 
and the process is repeated



147Journal of Real-Time Image Processing (2021) 18:143–156	

1 3

hash tables since the number of buckets needed to build up 
the tables relies on the quantity of extracted features.

4 � Parallel architecture to store and retrieve 
ORB descriptors into multiple hash tables

In order to speed up the hash-based feature search, a novel 
way of structuring and searching by means of a parallel 
approach is presented in this section. The feature match-
ing approach is described in two parts. Firstly, the organi-
sation of the binary vectors into the hash tables, including 
the storing criteria, number of tables and searching space. 
Secondly, the CUDA-based architecture to rapidly com-
pute correspondences. This description includes not only 
the algorithmic components of the storing and searching 
processes but also the data arrangement into the different 
memories of the GPU.

4.1 � Registration based on hashing techniques

Hashing techniques include two main algorithmic processes, 
filling and searching tables. These are carried out based on 
a hashing function, which indicates the index address of the 
tables where the data is either stored or searched. The filling 
stage is performed for the reference frame, and the search-
ing process is carried out for the current frame, as shown 
in Fig. 3.

The data organisation is performed following an LSH 
strategy. As the ORB descriptors are already in the Ham-
ming space, the hashing function consists of a subset of 8 
bits out of 256-bits vector, selected by taking a consecutive 
subset of 8 bits. Once the tables are filled, the process to 
match a single feature of the current frame w.r.t. the refer-
ence frame is listed as follows: 

1.	 Find the hashing keys for the different tables.

2.	 For each table, find the Hamming distance against all the 
descriptors in the bucket:

•	 Compute the XOR operation between bits.
•	 Count the number of one-bits by using the pop count 

processor instruction.

3.	 Find the minimum distance provided for each table.
4.	 If the minimum distance is less than a threshold, then 

consider it as a match.

4.2 � Parallel hashing‑based binary matching

This subsection describes the parallel CUDA-based imple-
mentation of two crucial processes: filling and searching 
tables. The image mosaicing workflow remains as presented 
in Fig. 3, meaning that only those functions FillHashTables 
and SearchHashingMatching are parallelised. The latter 
function is an embarrassingly parallel workload since a sin-
gle processor can process each hash table at the same time. 
However, the task of arranging binary descriptors into hash 
tables requires a strictly sequential process. Therefore, the 
parallel computational logic differs considerably from the 
sequential approach. The parallel design of the mentioned 
processes are illustrated in Figs. 4 and 5 respectively. The 
description of both diagrams is detailed in the following 
paragraphs.

Filling tables function In order to alleviate the lack of 
dynamic data structures presented on GPU’s ecosystems, 
the binary descriptors are stored into a large vector of binary 
strings and sorted based on their hashing key value. This 
way of arranging the data differs from the index-vector data 
structure but helps to process the data independently. The 
step-by-step process for the binary arrangement organisation 
is enumerated as follows: 

Fig. 4   Process of arranging binary descriptors suitably to perform parallel searching. This is done every time the reference frame is updated



148	 Journal of Real-Time Image Processing (2021) 18:143–156

1 3

1.	 ORB descriptors are computed.
2.	 256-bit binary vectors are split into 64-bits arrays.
3.	 M 8-bits hashing keys are selected and sorted for each 

descriptor (M is the number of hash tables).
4.	 M histograms of hashing keys are computed.
5.	 A prefix-sum vector is calculated for each histogram.

For the sake of clarity, Fig. 4 depicts the above process for 
three descriptors and hash tables, respectively. Firstly, the 
extraction of binary descriptors is implemented on the GPU 
by using OpenCV. These distinctive features are marked in 
red, green and yellow in Fig. 4 extreme top-left. The numeric 
representation of the ORB descriptor is given in the form of 
an 8-bits unsigned integer array of 32 elements. However, 
to fully exploit the popcount processor function, descriptors 
are converted into a 64-bits format, resulting in a binary 
descriptor in the form of an integer array of 4 elements. 
The popcount instruction of the GPU yields the number of 
bits that are set to 1 in a 64-bit integer, allowing for rapidly 
computing the hamming distance between two binary vec-
tors in the matching stage. The next step consists of arrang-
ing the set of vectors on the basis of a hashing structure. 
This means that the vectors are grouped by hashing keys 
so that the searching process is carried out among the ele-
ments of a bucket instead of the whole set. In order to avoid 
a sequential memory arrangement and search, we propose 
to construct two arrays to store and retrieve the binary bins. 
One long vector in which the descriptors are sorted by their 
respective key, and a string that contains the prefix sum of 
the histogram of keys. The former vector alone represents 
the hashing structure, while the later array supports the data 
access. The prefix-sum vector P indicates the initial index of 
every key k so that the range within which a descriptor might 
be found is delimited by the index P(k) and P(k + 1) − 1 . An 

example of how this vector may be constructed and deployed 
is depicted in Fig. 4 button-right. For instance, the descrip-
tors that belong to the key 1 are found from the index 2 and 4 
of the first hashing array (top-right). The operations to build 
up these arrays are embarrassingly parallel. The descriptor 
keys are sorted by means of the radix sort parallel algorithm, 
and the histogram and prefix-sum are computed by deploy-
ing atomic operations to avoid race conditions.

Searching tables function The hashing-based matching par-
allelisation relies on the fact that each table can be processed 
by an independent computational core. Figure 5 shows a 
matching example between the reference frame descrip-
tors shown in Fig. 4 and a new set of descriptors arranged 
into 10 hashing tables which are extracted from the current 
frame. Figure 5 top-left represents the current frame, and 
its descriptors. Next to it, the rectangles and curly arrows 
showcase the threads and blocks of the GPU, respectively. 
Lastly, the same figure top-right illustrates the kernel pro-
cess for four CUDA threads. As noted, every created hash 
table is processed by each column of the grid of threads. For 
example, the threads marked with dotted lines in red, blue 
and green compute their corresponding Nearest Descriptor 
(ND) from the first, second and third tables, respectively. 
Therefore the GPU architecture is designed as follows: 
number of blocks = #Descriptors∕64 , number of threads 
per block = (64, #Tables) threads per block. The algorithmic 
description of this process is depicted in Algorithm 1. This 
computational module requires as input the vectors obtained 
in the previous step and the set of current descriptors. This 
parallel strategy focuses on arranging the descriptors in such 
a manner that shared memory is exploited, accelerating the 
process of fetching data from memory. First, the computed 
descriptors of the current frame are converted into a 64-bits 

Fig. 5   Massively parallel approach to retrieve NN descriptors from the hash tables. The rectangles and curly narrows represent the blocks and 
threads that compose the GPU architecture. This is an example to retrieve the NN descriptors from the tables created in Fig. 4



149Journal of Real-Time Image Processing (2021) 18:143–156	

1 3

format. After that, the binary vectors are temporarily stored 
in shared memory. Next (line 10–15), the ”bucket” keys are 
selected, and a brute force matching based on Hamming 
distance is carried out to find the closest feature between 
the current descriptors and the reference descriptors. The 
obtained output is a list of Hamming distances that indicates 
the M potential matching candidates (M is the number of 
tables). The final set of correspondences is obtained through 
a Hamming-based comparison between a defined threshold 
and the distance of matching candidates obtained from dif-
ferent hash tables. Based on this criterion, the best match is 
estimated while avoiding conflicts among hash table results. 

5 � Experiments and results

The carried out experiments focus on assessing the impact 
of hash tables on the feature matching process and the image 
mosaicing system as a whole. Therefore, the experimental 
design is divided into two sections: an evaluation of the 
number of tables used for storing/searching and the real-
time performance of the system when compared to similar 
methods. The first evaluation is crucial to measure how the 
nosiness of binary features impacts on the matching process. 
The second experiment allows us to locate the proposed 
approach in comparison to other fast matching approaches. 
To this end, different feature extractors and matches are 
incorporated into our workflow, more specifically, the KNN 

matcher of OpenCV and the feature extractor and matcher 
modules of ORB-SLAM.

All the experiments were performed on the follow-
ing system: Intel Core i7-6700 at 2.6 GHz, 32 GB RAM, 
Graphic card Nvidia GTX1070, 1056 MHz GPU clock, 1920 
CUDA cores, 8 GB memory. For the experimental setup 
(see Fig. 6), the drone Matrice 100 with the 4 K monocular 
camera Zenmuse X3 on-board is used to acquire the data. 
The frames are transferred directly to the remote control 
and then to the workstation connecting the HDMI output to 
Frame Grabber AV.io 4K where is compressed and decoded 
there to grabbed it to the workstation. This way, we were 
able to decode the data and to convert the drone’s images 
into a compatible format, like a video streaming of an USB 
camera. Besides, this acquiring data system enabled us to 
operate with different resolution images while preserving 
the aspect ratio of the original image.

The synchronisation of the algorithmic modules was con-
ducted by the Robotic Operating System (ROS) [27]. As 
depicted in Fig. 6, two nodes of ROS are required to gener-
ate the aerial image mosaic. The first node performs the 
following tasks: (1) to read the image from the workstation, 
(2) to extract and to estimate correspondences of the binary 
descriptors, (3) to compute the rigid transformation matrix. 
The output of this node is the key-frame along with the rigid 
transformation w.r.t. the previous keyframe. This informa-
tion is published to the second node, whose primary task 
consists of stitching the images and generating the mosaic. 
Given the flexibility of this structure, the system is easily 
adapted, so that different algorithmic modules could be 
loaded into the nodes—for example, the modules of feature 
extractor and matcher of ORB-SLAM.

5.1 � Impact of the number of tables on feature 
matching

As the number of tables to arrange the binary descriptors 
increases, the quantity of potential matches becomes higher. 
Computational complexity wise, increasing the number of 
tables does not impact the real-time performance of search-
ing potential binary descriptor correspondences from hash 
tables, as this process is carried out in parallel. However, 
in terms of data storage, the system performance might be 
affected due to the fact that fast data stream storage units 
have memory footprint constraints. Consequently, it is vital 
to determine the optimal number of tables needed to retrieve 
discriminative features. To this end, the feature searching 
approach is tested for different numbers of hashing tables. 
Figure 7 shows the contrast between the quantity of obtained 
correspondences against the number of tables. As noted, it is 
clear that from 10 tables on, the number of true correspond-
ences slightly changes. This plot confirms the distinctiveness 
of the ORB descriptors and provide us with an insight into 



150	 Journal of Real-Time Image Processing (2021) 18:143–156

1 3

the tendency of the number of matches w.r.t. the number of 
hashing tables.

5.2 � GPU results in different environments

The proposed method is tested in different scenarios consid-
ering different image resolutions: WVGA ( 853 × 480 ), HD 

( 1280 × 720 ), UHD ( 1920 × 1080 ) and 2.7K ( 2704 × 1521 ). 
To avoid bias, the extension of the mapped area as well as 
the drone’s altitude is different for each scenario. For the 
sake of comparison, the frames of the recorded trajectories 
are processed by different image registration approaches. 
These include: OpenCV ORB extractor + OpenCV matcher, 
ORB-SLAM feature extractor + ORB-SLAM matcher, 
OpenCV ORB extractor + Hash-Table matcher (CPU), 
OpenCV ORB extractor + Hash-Table matcher (GPU).

First scenario: Instituto Nacional de Astrofisica, Optica 
y Electronica (INAOE) Figure 8 shows the traversed path 
along with the generated panoramas. The flight was per-
formed at 100 m height at 4.0 m/s. Table 1 shows the real-
time performance for different resolution images, processing 
time (feature matching + rigid transformation) and stitching 
time that is the average time that takes to perform the entire 
process outlined in the flow diagram of Fig. 3. As noted, 
when dealing with WVGA images, both the sequential and 
parallel hashing-based approaches exhibit a high frame rate. 
When HD images are processed, the ORB-SLAM and the 
sequential hashing approach perform fairly similar. How-
ever, the impact of the GPU-based approach becomes notice-
able when dealing with 2.7 K resolution images. The most 
remarkable out of this experiment is the ability of the sys-
tem to deal with a fast drone’s speed, a 577 m distance was 
mapped in 2.4 min roughly.

Second scenario: Tlalancaleca This flight was carried 
out on an archaeological site in Puebla, Mexico, at 90 m 
height. Following the same scheme as the previous experi-
ment, Fig. 9 shows the set of generated mosaics. As noted 
in Table 2, the real-time performance follows the same pat-
tern as the previous flight. Approximately, when processing 
2.7 K resolution images, the proposed system is 1:6 time 

Fig. 6   Setup for the real-time 
image mosaicing approach: 
digital acquisition system and 
algorithmic modules synchro-
nised by the Robot Operating 
System (ROS) [27]. The com-
ponents performed on the GPU 
are both the ORB extractor and 
Feature Matching. The latter 
encompasses the proposed GPU 
architecture

Fig. 7   Top image: mean processing time results for different number 
of hash tables; Bottom image: mean number of found matches, con-
sidering 2200 extracted features (image taken from [8])



151Journal of Real-Time Image Processing (2021) 18:143–156	

1 3

faster than the ORB-SLAM-based approach. It is important 
to note that both flights do not present significant drifting 
errors. However, the image shows that white construction 
has a small delay due to the stitching time for each method, 
being more noticeable with OpenCV.

Third scenario: open field In order to test the system on 
larger distances, we conducted two open field flights (see 
Figs. 10, 11). The drone’s path covered distances of 1.17 
Km and 2 Km, respectively, at 100 m height. As expected, 
for both flights, the real-time performance tendency remains 

Fig. 8   From left to right. a Satellite image and drone’s path (Latitude: 
19.032416, Longitude: −  98.314594), travelled distance 576.95 m. 
b Mosaic generated with the OpenCV matcher, c Mosaic generated 

with ORB-SLAM feature extractor and matcher, d Mosaic generated 
with our approach CPU, e Mosaic generated with our approach GPU 
( 1210 × 1920 resolution for each mosaic)

Table 1   GPU results in INAOE 
to 576.95 m of distance 
travelled

The numbers in bold highlight that our proposed method, the Hash-Table GPU, achieved the least process-
ing time w.r.t to the other methods, in all the cases

Method Matches Frames Keyframes Average (fps) Processing (ms) Stitching (ms)

Resolution of WVGA ( 853 × 480)
 OpenCV 448 4536 318 1.7159 582.771 625.129
 ORB-SLAM 432 4536 51 13.1874 75.8298 48.6579
 Hash table CPU 647 4536 173 23.9595 41.7370 72.8210
 Hash table GPU 706 4536 391 91.984 10.8714 49.0051

Resolution of HD ( 1280 × 720)
 OpenCV 383 4536 300 1.6463 607.407 670.002
 ORB-SLAM 461 4536 67 15.8730 63.0000 71.0002
 Hash table CPU 725 4536 161 15.6180 64.0285 105.718
 Hash table GPU 1051 4536 865 81.833 12.2221 64.7929

Resolution of UHD ( 1920 × 1080)
 OpenCV 334 4536 299 1.7414 574.240 884.510
 ORB-SLAM 281 4536 66 8.8870 112.523 216.8701
 Hash table CPU 626 4536 129 8.4569 118.526 284.133
 Hash table GPU 568 4536 577 67.167 14.8882 183.435

Resolution of 2.7 K ( 2704 × 1521)
 OpenCV 241 4536 220 1.3412 745.562 1030.762
 ORB-SLAM 89 4536 121 11.622 86.0410 265.723
 Hash table CPU 401 4536 75 4.3437 230.216 539.503
 Hash table GPU 647 4536 443 54.549 18.3320 262.580



152	 Journal of Real-Time Image Processing (2021) 18:143–156

1 3

Fig. 9   From left to right. a Satellite image and drone’s path (Latitude: 
19.3147168, Longitude: − 98.5227814), travelled distance 340.45 m. 
b Mosaic generated with the OpenCV matcher, c Mosaic generated 

with ORB-SLAM feature extractor and matcher, d Mosaic generated 
with our approach CPU, e Mosaic generated with our approach GPU 
( 683 × 1920 resolution for each mosaic)

Table 2   GPU results in 
Tlalancaleca to 340.45 m of 
distance travelled

The numbers in bold highlight that our proposed method, the Hash-Table GPU, achieved the least process-
ing time w.r.t to the other methods, in all the cases

Method Matches Frames Keyframes Average (fps) Processing (ms) Stitching (ms)

Resolution of WVGA ( 853 × 480)
 OpenCV 118 2664 264 2.0956 477.183 553.025
 ORB-SLAM 348 2664 58 10.2590 97.4751 52.5785
 Hash table CPU 562 2664 223 29.9943 33.3396 73.5690
 Hash table GPU 348 2664 955 134.136 7.4551 59.8288

Resolution of HD ( 1280 × 720)
 OpenCV 42 2664 274 2.6293 380.323 570.394
 ORB-SLAM 273 2664 71 8.1311 122.984 121.891
 Hash table CPU 538 2664 177 18.0802 55.3090 167.537
 Hash table GPU 420 2664 487 89.838 11.1311 162.961

Resolution of UHD ( 1920 × 1080)
 OpenCV 40 2664 217 1.7551 569.758 777.495
 ORB-SLAM 160 2664 102 7.7197 129.538 265.518
 Hash table CPU 291 2664 102 10.6442 93.9470 423.633
 Hash table GPU 481 2664 473 71.193 14.0463 182.393

Resolution of 2.7K ( 2704 × 1521)
 OpenCV 18 2664 180 1.5150 660.057 1127.482
 ORB-SLAM 39 2664 120 12.391 80.7032 630.019
 Hash table CPU 218 2664 72 6.2028 161.215 452.409
 Hash table GPU 510 2664 249 62.391 16.0278 292.619



153Journal of Real-Time Image Processing (2021) 18:143–156	

1 3

similar to previous examples. However, from Fig. 10, it is 
noticeable that mosaics exhibit minor drift errors. The aerial 
image misplacement is prominent when using the OpenCV 
matcher and less visible in the mosaic produced by the 
ORB-SLAM approach. This error is caused by the terrain 
similarity, which negatively influences the distinctiveness of 
the descriptors (Table 3). As a consequence, the number of 

false-positives rises, preventing the system from computing 
accurate image transformations. Finally, Fig. 11 shows the 
results for a 2 Km distance flight. As well as the previous 
flight, imperceptible drifting errors are exhibited. However, 
the average frame rate of the GPU approach exceeds the 
other methods more than ten times, considering 2.7 K reso-
lution images (Table 4).

Fig. 10   From left to right. a Satellite image and drone’s path (Lati-
tude: 21.9869028, Longitude: −  102.2804471), travelled distance 
1.17 Km. b Mosaic generated with the OpenCV matcher, c Mosaic 

generated with ORB-SLAM feature extractor and matcher, d Mosaic 
generated with our approach CPU, e Mosaic generated with our 
approach GPU ( 1210 × 1920 resolution for each mosaic)

Table 3   GPU results in an open 
field to 1.17 km of distance 
travelled

The numbers in bold highlight that our proposed method, the Hash-Table GPU, achieved the least process-
ing time w.r.t to the other methods, in all the cases

Method Matches Frames Keyframes Average (fps) Processing (ms) Stitching (ms)

Resolution of WVGA ( 853 × 480)
 OpenCV 389 4896 399 3.6461 274.115 688.614
 ORB-SLAM 234 4896 115 12.3361 81.0628 55.888
 Hash table CPU 547 4896 303 34.4131 29.0587 88.750
 Hash table GPU 347 4896 840 127.250 7.8585 84.196

Resolution of HD ( 1280 × 720)
 OpenCV 548 4896 385 1.5710 636.537 746.893
 ORB-SLAM 267 4896 76 11.1233 89.9008 221.284
 Hash table CPU 660 4896 184 19.2777 51.8733 190.231
 Hash table GPU 597 4896 631 100.687 9.9317 170.634

Resolution of UHD ( 1920 × 1080)
 OpenCV 353 4896 355 1.4140 707.167 868.692
 ORB-SLAM 272 4896 118 8.9678 111.510 347.217
 Hash table CPU 631 4896 126 10.8272 92.3598 428.107
 Hash table GPU 1252 4896 356 65.435 15.2822 350.792

Resolution of 2.7K ( 2704 × 1521)
 OpenCV 216 4896 302 1.2163 822.120 1122.80
 ORB-SLAM 69 4896 147 6.9946 142.967 754.490
 Hash table CPU 461 4896 98 5.9307 168.612 550.424
 Hash table GPU 1541 4896 356 65.619 15.2394 383.070



154	 Journal of Real-Time Image Processing (2021) 18:143–156

1 3

6 � Conclusions

A real-time parallel-based approach for creating aerial 
image mosaics was proposed. This rapid system can gen-
erate high-definition aerial panoramas at high frame rates 
up to 122 fps, considering 1280 × 720 resolution images. 

The main contribution of this approach relies on the fast 
registration method from binary descriptors and a GPU-
hashing-based matcher. More concretely, a CUDA-based 
scheme is designed to rapidly store and search the binary 
vectors within several hashing tables. Based on this par-
allel image registration, the process of creating aerial 

Fig. 11   From left to right. a Satellite image and drone’s path (Lati-
tude: 21.9869028, Longitude: − 102.2804471), travelled distance 2.0 
Km. b Mosaic generated with the OpenCV matcher, c Mosaic gener-

ated with ORB-SLAM feature extractor and matcher, d Mosaic gen-
erated with our approach CPU, e Mosaic generated with our approach 
GPU ( 1210 × 1920 resolution for each mosaic)

Table 4   GPU results in an 
open field to 2.0 km of distance 
travelled

The numbers in bold highlight that our proposed method, the Hash-Table GPU, achieved the least process-
ing time w.r.t to the other methods, in all the cases

Method Matches Frames Keyframes Average (fps) Processing (ms) Stitching (ms)

Resolution of WVGA ( 853 × 480)
 OpenCV 193 8640 749 2.1195 471.809 530.083
 ORB-SLAM 425 8640 180 9.0495 110.502 161.881
 Hash table CPU 469 8640 455 37.2345 26.8568 174.293
 Hash table GPU 364 8640 1033 130.696 7.6513 173.208

Resolution of HD ( 1280 × 720)
 OpenCV 117 8640 984 1.6599 602.441 746.624
 ORB-SLAM 254 8640 201 5.9579 167.844 523.698
 Hash table CPU 508 8640 283 20.7923 48.0946 378.101
 Hash table GPU 495 8640 1112 122.375 8.1716 246.020

Resolution of UHD ( 1920 × 1080)
 OpenCV 72 8640 568 1.58000 632.909 813.134
 ORB-SLAM 114 8640 269 3.2545 307.261 978.207
 Hash table CPU 481 8640 221 11.4935 87.0055 480.629
 Hash table GPU 666 8640 704 86.419 11.5714 345.700

Resolution of 2.7K ( 2704 × 1521)
 OpenCV 28 8640 673 1.8763 532.959 817.358
 ORB-SLAM 44 8640 401 6.5755 152.078 1023.894
 Hash table CPU 293 8640 188 6.7586 147.958 495.826
 Hash table GPU 1005 8640 673 68.528 14.5925 361.736



155Journal of Real-Time Image Processing (2021) 18:143–156	

1 3

mosaics is completed by stitching the images and organ-
ising them into a canvas for real-time visualisation. To 
show the effectiveness of this approach, various high-res-
olution mosaics were generated under different scenarios 
and conditions.

In order to situate the real-time performance of the 
proposed approach in comparison with fast broadly used 
registration methods, these computational components 
are instantiated into the system’s pipeline. The evaluation 
results show that the presented method is suitable to pro-
cess image resolutions from 1280 × 720 onward. For exam-
ple, the obtained processing time is 7.6 times faster than 
the ORB-SLAM-based approach when pondering results 
for input images of 2704 × 1521 resolution. Besides, the 
real-time matching performance highly benefits the seam-
less creation of aerial image mosaics since it makes the 
system robust against turbulence caused by either wind 
conditions or flight control inputs.

To envisage the potential applications that become 
attainable with the proposed research, different types of 
terrains were recorded. For all the tested scenarios, the 
resulted aerial mosaics are comparable to their respec-
tive satellite images. The optimised process of generating 
aerial image mosaics allows for incorporating sophisti-
cated algorithms into the pipeline, i.e. object detection, 
segmentation, anomaly monitoring and so on. However, in 
order to rely on these mosaics for surveying applications, 
alignment accuracy is a factor to consider for future work. 
To this end, image registration might be enhanced by 
incorporating GPS coordinates to mitigate the drift error.

Acknowledgements  This work has been partially funded by the Royal 
Society through the Newton Advanced Fellowship with reference 
NA-140454 and by the CONACYT-INEGI research project 268528.

Compliance with ethical standards 

 Conflict of interest  The authors declare that they have no conflict of 
interest.

References

	 1.	 Ham, Y., Han, K.K., Lin, J.J., Golparvar-Fard, M.: Visual 
monitoring of civil infrastructure systems via camera-equipped 
unmanned aerial vehicles (UAVs): a review of related works. 
Vis. Eng. 4(1), 1 (2016)

	 2.	 Ezequiel, C.A.F., Cua, M., Libatique, N.C.,Tangonan, G.L., 
Alampay, R., Labuguen, R.T., Favila, C.M., Honrado, J.L.E., 
V. Canos, Devaney, C. et al.: UAV aerial imaging applications 
for post-disaster assessment, environmental management and 
infrastructure development. In: International Conference on 
Unmanned Aircraft Systems (ICUAS), pp. 274–283. IEEE 
(2014)

	 3.	 Siebert, S., Teizer, J.: Mobile 3D mapping for surveying earth-
work projects using an unmanned aerial vehicle (UAV) system. 
Autom. Constr. 41, 1–14 (2014)

	 4.	 Leutenegger, S., Chli, M., Siegwart, R.Y.: Brisk: Binary robust 
invariant scalable keypoints. In: IEEE International Conference 
on Computer Vision (ICCV), pp. 2548–2555. IEEE (2011)

	 5.	 Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary 
robust independent elementary features. Comput. Vis. ECCV 
2010, 778–792 (2010)

	 6.	 Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an effi-
cient alternative to SIFT or SURF. In: IEEE International Confer-
ence on Computer Vision (ICCV), pp. 2564–2571. IEEE (2011)

	 7.	 Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-
sensitive hashing scheme based on p-stable distributions. In: Pro-
ceedings of the Twentieth Annual Symposium on Computational 
Geometry, pp. 253–262. ACM (2004)

	 8.	 de Lima, R., Martinez-Carranza, J.: Real-time aerial image mosa-
icing using hashing-based matching. In: Workshop on Research, 
Education and Development of Unmanned Aerial Systems (RED-
UAS), pp. 144–149. IEEE (2017)

	 9.	 Cover, T.M., Thomas, J.A.: Elements of Information Theory. 
Wiley, New York (2012)

	10.	 Lewis, J.P.: Fast normalized cross-correlation. Vis. Interface 10, 
120–123 (1995)

	11.	 Kokate, M.D., Wankhede, V.A., Patil, R.S.: Survey: image mosa-
icing based on feature extraction. Int. J Comput. Appl. 165(1), 
26–30 (2017). https​://doi.org/10.5120/ijca2​01791​3776

	12.	 Lowe, D.G.: Distinctive image features from scale-invariant key-
points. Int. J. Comput. Vis. 60(2), 91–110 (2004)

	13.	 Khan, N., McCane, B., Mills, S.: Better than SIFT? Mach. Vis. 
Appl. 26(6), 819–836 (2015)

	14.	 Liqian, D., Yuehui, J.: Moon landform images fusion and mosaic 
based on SIFT method. In: International Conference on Computer 
and Information Application (ICCIA), pp. 29–32. IEEE (2010)

	15.	 Nemra, A., Aouf, N.: Robust invariant automatic image mosaic-
ing and super resolution for UAV mapping. In: ISMA’09. 6th 
International Symposium on Mechatronics and its Applications, 
pp. 1–7. IEEE (2009)

	16.	 Bekele, D., Teutsch, M., Schuchert, T.: Evaluation of binary 
keypoint descriptors. In: 20th IEEE International Conference on 
Image Processing (ICIP), pp. 3652–3656. IEEE (2013)

	17.	 Kern, A., Bobbe, M., Bestmann, U.: Towards a real-time aerial 
image mosaicing solution. In: International Micro-Air Vehicle 
Conference and Competition (IMAV) (2016)

	18.	 Li, J., Yang, T., Yu, J., Lu, Z., Lu, P., Jia, X., Chen, W.: Fast aerial 
video stitching. Int. J. Adv. Robot. Syst. 11(10), 167 (2014)

	19.	 Wang, G., Zhai, Z., Xu, B., Cheng, Y.: A parallel method for aerial 
image stitching using ORB feature points. In: IEEE/ACIS 16th 
International Conference on Computer and Information Science 
(ICIS), pp. 769–773. IEEE (2017)

	20.	 Heise, P., Jensen, B., Klose, S., Knoll, A.: Fast dense stereo cor-
respondences by binary locality sensitive hashing. In: IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp. 
105–110. IEEE (2015)

	21.	 Gálvez-López, D., Tardos, J.D.: Bags of binary words for fast 
place recognition in image sequences. IEEE Trans. Robot. 28(5), 
1188–1197 (2012)

	22.	 Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: an open-source slam 
system for monocular, stereo, and rgb-d cameras. IEEE Trans. 
Robot. 33(5), 1255–1262 (2017)

	23.	 de Lima, R., Martinez-Carranza, J., Morales-Reyes, A., Mayol-
Cuevas, W.: Toward a smart camera for fast high-level structure 
extraction. J. Real-Time Image Proc 14, 685–699 (2018). https​://
doi.org/10.1007/s1155​4-017-0704-5

	24.	 Weberruss, J., Kleeman, L., Drummond, T.: ORB feature extrac-
tion and matching in hardware. In: Proceedings of the Australasian 

https://doi.org/10.5120/ijca2017913776
https://doi.org/10.1007/s11554-017-0704-5
https://doi.org/10.1007/s11554-017-0704-5


156	 Journal of Real-Time Image Processing (2021) 18:143–156

1 3

Conference on Robotics and Automation, pp. 2–4. The Australian 
National University, Canberra (2015)

	25.	 Agarwal, A., Jawahar, C., Narayanan, P.: A survey of planar 
homography estimation techniques. Technical Report IIIT/
TR/2005/12. Centre for Visual Information Technology (2005)

	26.	 Fischler, M.A., Bolles, R.C.: Random sample consensus: a para-
digm for model fitting with applications to image analysis and 
automated cartography. Commun. ACM 24(6), 381–395 (1981)

	27.	 Quigley, M., Conley, K., Gerkey, B.P., Faust, J.: ROS: an open-
source robot operating system. ICRA Workshop Open Source 
Softw. 3(3.2), 5 (2009)

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Roberto de Lima  is a Ph.D. candidate in the Geomatics Research 
Group at KU Leuven, in Belgium. He obtained a BSc in Electronic 
Engineering from the Benemerita Universidad Autonoma de Puebla 
and a M.Sc. in Computer Science from the Instituto Nacional de Astro-
fisica Optica y Electronica, in Mexico. At the latter institute, he also 
worked as a research assistant in the Computer Science Department. 
His research interests include high-performance computing, computer 
vision and graphical user interfaces.

Aldrich A. Cabrera‑Ponce  is Master Student in the Computer Science 
Department at the Instituto Nacional de Astrofisica, Optica y Electron-
ica (INAOE). He obtained a B.Eng. in Mechatronics from the Instituto 
Tecnologico Superior de Atlixco, Puebla, Mexico. He is part of the 
Mexican team QuetzalC++ that has obtained awards in International 
Drone Competitions: 1st Place in the IROS 2017 Autonomous Drone 
Racing competition; 2nd Place in the International Micro Air Vehicle 
competition (IMAV) 2016 and ranked 4th in the IMAV 2017.

Jose Martinez‑Carranza  is Associate Professor in the Computer Sci-
ence Department at the Instituto Nacional de Astrofisica, Optica y 
Electronica (INAOE) and Honorary Senior Research Fellow at the 
Computer Science Department in the University of Bristol. He obtained 
a BSc in Computer Science (Cum Laude) from the Benemerita Uni-
versidad Autonoma de Puebla in 2004, and an M.Sc. in Computer Sci-
ence (Best Student) from INAOE in 2007, both institutions in Mexico. 
In 2012, he received his Ph.D. from the University of Bristol in the 
UK, where he also worked as Postdoctoral Researcher from 2012 to 
2014. He received the highly prestigious Newton Advanced Fellow-
ship (2015–2018), granted by the Royal Society in the UK to work 
with autonomous drones in GPS-denied environments. He also leads a 
Mexican team that has achieved outstanding performance in Interna-
tional Drone Competitions: 1st Place in the IROS 2017 Autonomous 
Drone Racing competition; 2nd Place in the International Micro Air 
Vehicle competition (IMAV) 2016; and ranked 4th in the IMAV 2017.


	Parallel hashing-based matching for real-time aerial image mosaicing
	Abstract
	1 Introduction
	2 Related work
	2.1 Spatial domain-based aerial image mosaicing approaches
	2.1.1 Feature-based image mosaicing approaches


	3 Aerial image mosaic approach
	3.1 Feature extraction and matching
	3.2 Image transformation estimation and stitching

	4 Parallel architecture to store and retrieve ORB descriptors into multiple hash tables
	4.1 Registration based on hashing techniques
	4.2 Parallel hashing-based binary matching

	5 Experiments and results
	5.1 Impact of the number of tables on feature matching
	5.2 GPU results in different environments

	6 Conclusions
	Acknowledgements 
	References




