
Vol.:(0123456789)1 3

Journal of Real-Time Image Processing (2021) 18:99–112
https://doi.org/10.1007/s11554-020-00951-6

ORIGINAL RESEARCH PAPER

Real‑time maximally stable homogeneous regions

Tobias Böttger1 

Received: 10 July 2019 / Accepted: 29 January 2020 / Published online: 20 February 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
In this paper, we present the concept of maximally stable homogeneous regions (MSHR). MSHR are conceptually very
similar to maximally stable extremal regions but can be segmented in images with an arbitrary number of channels. The
computation of the presented MSHR relies on the construction of a quasi-flat zone hierarchy. We present a fast algorithm
for computing the hierarchy that overcomes the runtime restrictions of existing approaches. The proposed algorithm can
construct the quasi-flat zone hierarchy efficiently in real time, scales linearly in the number of pixels and, in practice, sub-
linearly in the number of channels. In the experiments, we display how MSHR can be used to improve the results of optical
character recognition systems and to perform 3D object segmentation. We further demonstrate the universality and speed of
the proposed algorithm for three example applications: image segmentation, object tracking, and image filtering.

Keywords  Quasi-flat zone hierarchy · Component-trees · Multi-valued component-trees · Image segmentation · Object
tracking

1  Introduction

The component-tree (also known as dendrone [11], con-
finement tree [29] or max-tree [7]) is a hierarchical data
structure that models gray-scale images by considering the
connected components of their binary level sets obtained
from successive thresholdings [26]. It has a wide range of
applications: image filtering [21, 41], motion extraction [41],
feature and region extraction with maximally stable extre-
mal regions (MSER) [28], astronomical imagery [2], object
tracking [3, 14] and 3D visualization [46]. For gray-scale
images, efficient algorithms exist that enable the construc-
tion of the component-tree in linear time [7].

The success of component-trees for gray-scale images
and the increasing demand for image processing techniques
devoted to color, motivates their extension to multi-channel
images. A common approach to computing component-
trees for multi-channel images are those based on a compo-
nent-trees computed on an edge-weighted graph [13]. The
respective approaches create morphological hierarchies of
connected pixels [43], also known as quasi-flat zone hierar-
chies [30, 31]. The respective hierarchies are very general

and algorithms devoted to the gray-value component-tree
can be adapted to the more general quasi-flat zone hierarchy.

In this work, we present an efficient algorithm to com-
pute the quasi-flat zone hierarchy based on a local flooding
immersion. The algorithm is truly linear in the number of
pixels and considerably faster than the existing union-find-
based algorithms in the experiments. The hierarchy con-
struction is generic and does not require the definition of a
partial or total ordering relation. We further introduce the
concept of maximally stable homogeneous regions (MSHR),
which are conceptually very similar to MSER but can be
computed for multi-channel images. They can be used for
OCR applications, where MSER character extraction fails, as
is displayed in Fig. 1. As for MSER, the runtime of MSHR
is linear in the number of pixels and furthermore scales sub-
linearly with the number of image channels. We display the
universality of the proposed tree construction algorithm and
of MSHR by presenting further example applications: 3D
object segmentation, object tracking and image filtering.

This work extends our previous work [3], which intro-
duces object tracking in component-trees. This paper addi-
tionally presents the flooding-based quasi-flat zone hierarchy
construction for multi-channel images in a profound manner
and highlights implementation details to enable the tree to
be constructed in real time. Furthermore, to highlight the
universality and speed of the algorithm, we evaluate the

 *	 Tobias Böttger
	 boettger@mvtec.com

1	 MVTec Software GmbH, 80469 Munich, Germany

http://orcid.org/0000-0002-5404-8662
http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-020-00951-6&domain=pdf

100	 Journal of Real-Time Image Processing (2021) 18:99–112

1 3

proposed approach for image segmentation, object track-
ing, and image filtering.

2 � Related work

In general, component-trees have been used for a diverse
set of applications and some efforts have been undertaken
to enable their efficient computation [7]. There are essen-
tially three different kinds of component-tree computation
algorithms: immersion algorithms, flooding algorithms and
merge-based algorithms. Carlinet and Géraud [7] present an
extensive comparison of the main approaches and show that
the flooding-based approaches of Wilkinson [47], Salembier
et al. [41] and Nistér and Stewénius [35] are superior in
terms of speed for 8-bit and 16-bit images. Although many
applications for gray-scale component-trees have been pre-
sented, most are devoted to image segmentation and filtering
[21, 27, 41]. For example, MSER can be extracted efficiently
using component-trees [35]. MSER have a wide range of
applications, ranging from stereo feature point extraction
[28] over optical character recognition (OCR) [34] to image
tracking [14].

Motivated by their success on gray-scale image process-
ing applications, there have also been attempts to extend
MSER specifically to multi-channel images. Chavez and
Gustafson [10] transform the RGB image to the HSV color
space and extract gray-scale MSER on the single chan-
nels separately. Forssén [17] overcomes the problem that
multi-channel images cannot be totally ordered using pixel
differences of neighboring RGB values as opposed to the
RGB values directly. This allows the extraction of so-
called maximally stable color regions (MSCR). Although
no component-tree is constructed in the process, the idea
of using differences is appealing, since it does not require
a user-defined partial ordering and can further be trivially
extended to images with an arbitrary number of channels.

Unfortunately, the approach is computationally demanding
and, although theoretically very closely related to MSER,
MSCR have completely different parameters. This makes
it difficult to compare the performance of both approaches.
Similarly, Donoser et al. [15] construct the component-tree
of an RGB image from the gradient magnitudes of the input
image. Stable regions are then extracted by comparing the
shape of regions at different levels using a shape matching
method. While computing MSER from the gradient mag-
nitude images allows the use of an ordinary MSER imple-
mentation, it has several disadvantages for applications. The
central differences at the image coordinates used to compute
the gradient magnitude image make the edges at least two
pixels wide. As a consequence, the extracted regions are
smaller than the actual regions and very slim regions cannot
be extracted. As shown in Fig. 2, especially for applications
like OCR, where characters are generally only a few pixels
wide, this is a crucial disadvantage.

A more general approach to extending MSER to multi-
channel images is to formulate them on a component-tree
structure that is defined for multi-channel images. In general,
the component-tree algorithms devoted to single-channel
images assume that the values of the images can be equipped
with a binary relation to form a totally ordered set. Unfortu-
nately, multi-channel images are not canonically equipped
with total orders, but with partial ones. Existing work tries
to circumvent this restriction by either splitting the value
space into several totally ordered sets, or by defining a total
order relation [1]. A further variant is that of the component-
graph, which extends the notation of component-trees to
multi-channel images in a generic way [38]. Unfortunately,
the multi-channel component-graph construction is compu-
tationally demanding and requires a suitable, user-defined,

(a) Original Image (b) MSER (c) MSHR (our ap-
proach)

Fig. 1   Image a is from the ICDAR 2015 “Focused Scene Text” [23]
challenge. The colored regions in b are extracted using MSER on the
corresponding gray-scale image, those in c using MSHR. In contrast
to MSER, MSHR can be segmented in images with an arbitrary num-
ber of channels and also work for characters that simultaneously have
a lighter and a darker background. The regions touching the image
border are not displayed

Fig. 2   The top row displays an example input image (left) and the
respective gradient magnitude image (right). The second row displays
the regions that are extracted from our method (left) and those by
[15] (right), which uses the gradient magnitude image as input and
applies an ordinary MSER algorithm

101Journal of Real-Time Image Processing (2021) 18:99–112	

1 3

piecewise ordering of the multi-channel image data that is
specific to the target application [33]. A further extension
of the component-tree to multi-channel images that is con-
ceptually similar to ours is the Multivariate tree of shapes
(MToS) [8, 49]. The MToS is a five-step process which
first computes a tree of shapes (ToS) [9] for each channel
individually. Hence, the runtime has a large linear factor
in the number of image channels. In contrast to the above
approaches, the proposed algorithm constructs the hierarchy
using pixel differences and is applicable to images of differ-
ent domains and numbers of channels and does not require
any pre-defined partial ordering. As a consequence, fewer
parameters are required and the tree construction is signifi-
cantly faster. We compared our approach to the binaries of
MToS and are 9 times faster for a three-channel image. The
performance advantage should be even more prominent for
hyper-spectral images, which contain significantly more
channels.

As mentioned above, approaches based on constructing
an edge-weighted graph [13] do not require a piece-wise
ordering and scale favorably for images with many channels.
The respective approaches create morphological hierarchies
of connected pixels [43]. Hereby, any two pixels are con-
nected if there exists a path linking these pixels, such that
the maximal edge weight does not exceed a given threshold
value. For a varying threshold, the resulting regions form a
hierarchy. The concept originates from the single linkage
clustering method [18] used for data analysis. It was intro-
duced to image processing by Nagao et al. [33] in 1979.
Prominent examples include �-components and �-trees [36,
43], and (in mathematical morphology) quasi-flat zones and
the quasi-flat zone hierarchy [30, 31].

In contrast to the aforementioned approaches, we propose
a flooding-based immersion for the generation of the quasi-
flat zone hierarchy. The presented immersion is significantly
faster than a union-find-based immersion and allows an effi-
cient computation that is linear in the number of pixels and
scales favorably in the number of channels. Furthermore, we
extend the concept of MSER from component-trees to the
hierarchy constructed from the edge-weighted graph.

3 � Flooding‑based quasi‑flat zone hierarchy

For gray-scale images, the component-tree is constructed
by considering the binary level sets of the input image. The
level sets are obtained from successive thresholds, e.g., for
byte images, the thresholds are selected to include all pix-
els within [0, �] or [�, 255] . Hereby, � is either increased
incrementally from 0 to 255 or decreased incrementally from
255 to 0. The evolution of the connected components of the
respective level sets are then encoded in the component-tree.
Hereby, each component in the tree represents an extremal

region. These are identified by the fact that all pixels in the
region have a gray value strictly larger or strictly smaller
than the pixels in the outer boundary of the region. In the
context of multi-channel images, the concept of larger or
smaller is not well defined and the component-tree cannot
be trivially constructed in the same fashion.

To overcome this limitation, the quasi-flat zone hierarchy
considers the derivatives between neighboring pixels in x
(column) and y (row) direction. The derivatives at the image
coordinates between two pixels are approximated by central
differences. Hence for each image pixel at the coordinate
(x, y), four differences are computed: two vertical ones ( �upper
and �lower ) and two horizontal ones ( �left and �right ). They are
calculated as

where I(x, y) is the pixel value of the image I at coordi-
nate (x, y). Independent on the number of channels of I  ,
the magnitude (absolute value for single channel and the
Euclidean norm for multi-channel images) of the deriva-
tives is totally ordered and can be used for the tree construc-
tion. Conceptually, instead of computing the level sets from
successive thresholds of the pixel values, the level sets are
obtained from thresholds of the derivative magnitudes. As a
consequence, the components are characterized by the fact
that each pixel within them has a derivative with a magni-
tude that is smaller than the derivatives at the boundary of
the region. We denote such regions as homogeneous regions.

The concept of the resulting hierarchy is illustrated in
the toy example in Fig. 3. Homogeneous regions (e.g.,
regions with the same color) are identified by the fact that
the pixels are connected by derivatives with a very small
magnitude. Hence, the child nodes consist of disjunct and
differently colored regions. With a growing derivative mag-
nitude threshold, similar colored regions merge into single
components (e.g., red and pink, light-green and green) and,
eventually, the whole image is connected.

3.1 � Local flooding tree construction

The tree can be efficiently constructed by a flooding-based
immersion. The concept is very similar to the flooding-based
immersion of the ordinary component-tree [35], with the
exception, that the derivatives are flooded instead of the
image pixels and need to be mapped to the image pixels in

(1)�leftI(x, y) = I(x − 1, y) −I(x, y)

(2)�rightI(x, y) = I(x, y) −I(x + 1, y)

(3)�upperI(x, y) = I(x, y − 1) −I(x, y)

(4)�lowerI(x, y) = I(x, y) −I(x, y + 1),

102	 Journal of Real-Time Image Processing (2021) 18:99–112

1 3

the construction process. An overview of the flooding-based
tree construction is visualized in Fig. 4.

In an initial step, starting from an arbitrary derivative,
the flooding-based immersion searches for a derivative
with a local minimal magnitude. Hereby, the local mini-
mum does not need to be strict. It is sufficient to find a
plateau (a derivative where the neighboring derivatives
have the same or larger magnitude). In general, this step
requires the notion of the neighborhood of a derivative.
This is essentially determined by the two pixels it con-
nects. Each of these pixels has 4 derivatives, two vertical
ones and two horizontal ones. However, since they share
the derivative that connects them, both pixels only have
three unique derivatives. Furthermore, the neighbors of
vertical and horizontal derivatives are different. They are
both displayed in Fig. 5 for clarification. The alternating
6-connected structure is the edge graph of the Khalimsky
grid [12]. To ensure that each true inner distance has 6
neighbors and that no explicit border treatment is required,
the derivatives at the border of the image are artificially

added with an infinite magnitude. Therefore, there are
w + 1 horizontal derivatives within each row of the image
and w vertical derivatives, where w is the width of original
image.

Starting from an arbitrary derivative, its magnitude is
compared to the magnitude of its six neighboring deriva-
tives. As soon as a derivative with a lower magnitude is
encountered, the process stops checking the other neigh-
bors and floods into the respective derivative. This process
is continued until a derivative that has a locally minimal
magnitude (not strictly minimal) is encountered. Then,
the two pixels belonging to the respective derivative are
merged into a new component of the component-tree. Dur-
ing this process, all visited derivatives are stored in a heap.
As a consequence, each derivative needs to be visited once
during the tree construction. Hence, the flooding-based
immersion is linear in the number of pixels.

In the next step, the derivative with the lowest magni-
tude in the heap is removed and compared to its neighbors.
Either the process floods towards a new local minimum,
or if all neighbors have been visited, merges the respec-
tive pixels to existing components. More precisely, every
emerging derivative has four possibilities:

1.	 It connects two pixels that have not yet been visited ⇒ a
new child node is generated.

2.	 It connects a pixel that has not been visited yet to an
existing component ⇒ if the derivative magnitude is
larger than those generating the respective component,
a new parent node is generated. Otherwise, it is merely
added to the component.

3.	 It connects two existing components ⇒ a new parent
node connecting both components is generated.

4.	 It connects two pixels already within the same com-
ponent ⇒ nothing needs to be done for this derivative.
Continue with the next element in the heap

Fig. 3   (Best viewed in color) Toy example of the quasi-flat zone hier-
archy for a three-channel image. Conceptually, the tree is constructed
by iteratively thresholding the derivative magnitudes and connecting
the resulting connected components. Hence, in an early stage, each
of the uniquely colored regions is connected in a component (child
node). In a next step, the most similar colors are connected in parent
components. Since the orange region has a similar ”distance” to the
red and green regions it is connected to these components in a later
step. Finally, the white region, having the largest distance to all the
colors, is connected to the other components in the root node, which
represents the complete image

Fig. 4   Flow chart of the proposed flooding-based immersion. The
single steps are explained in detail in Sect. 3.1

Vertical Edges Horizontal Edges

Fig. 5   The derivatives are between two pixels (gray boxes) and each
have 6 neighbors. On the left, the 6 neighbors of a vertical (red)
derivative are displayed and on the right, the 6 neighbors of a hori-
zontal derivative (blue) are displayed

103Journal of Real-Time Image Processing (2021) 18:99–112	

1 3

It is important to note that the resulting hierarchy is inde-
pendent of the choice of the starting point and of the order
in which the neighboring derivatives are visited for the local
flooding-based immersion. As soon as all derivatives have
been visited (hence, the heap is empty), the process termi-
nates. A toy example of the tree construction that displays
the horizontal and vertical derivatives and the respective
local flooding-based approach is displayed in Fig. 6.

Although the flooding immersion walks through all of
the image derivatives, the pixels belonging to the deriva-
tives are added to the component-tree. The derivatives can
be efficiently mapped to the pixel values by their linearized
image index �l . The mapping is different for vertical and
horizontal derivatives and can be computed as:

where w is the image width, Phorz. are the index of the two
image pixel for a horizontal derivative, Pvert. the index of the
two image pixel for a vertical derivative, and ⌊⋅⌋ represents
the floor function, respectively.

3.2 � Characteristics of the gradient‑based
component‑tree

The granularity of the component-tree can be configured by
discretizing the derivative magnitudes. We achieve this by
quantizing the derivative magnitudes into a certain number
of bins. However, since the distribution of the derivative
magnitude is far from uniform in natural images, it is rea-
sonable to not bin the derivatives equidistantly. This was

(5)

Phorz.(�
l) = {�l − (w + 1)(⌊�l∕(2w + 1)⌋ + 1),

�l − (w + 1)(⌊�l∕(2w + 1)⌋ + 1) + 1}

Pvert.(�
l) = {�l − (w + 1)(⌊�l∕(2w + 1)⌋) − w,

�l − (w + 1)(⌊�l∕(2w + 1)⌋)},

also observed by Forssén [17] when extracting the so-called
maximally stable color regions (MSCR). For the quasi-flat
zone hierarchy, a very coarse binning leads to very compact
trees; while, a more fine binning leads to more complex and
descriptive trees. As shown in Fig. 7, although less descrip-
tive, the coarse trees have the advantage that they can be
computed significantly faster and that they reduce the com-
putational complexity of the image processing techniques
applied to them.

To ensure that the regions in the single components of
the component-tree are pixel precise and include each pixel
within a homogeneous region, it is essential to consider the
derivatives at their true position between two pixels. Other
approaches flood the gradient magnitude image directly for
simplicity [15]. Although this enable to assume a 4-con-
nected neighborhood of the derivatives and use an ordinary
component-tree construction algorithm, the resulting com-
ponents do not contain the true pixels of each homogene-
ous region. The differences between two pixels are added to
both pixels. As a consequence, every edge is it least 2 pixels
wide in the resulting images and only regions that are sig-
nificantly large can be extracted. Furthermore, the resulting
homogeneous regions are smaller than the actual homogene-
ous regions in the input image. For example, when flooding
the gradient magnitude image of the toy example in Fig. 3
directly (as in [15]), it is not possible to extract the small
regions. The gradient magnitude image has a high value at
each pixel and has no valleys to flood. This is highlighted
in Fig. 8.

3.3 � Implementation details

The described quasi-flat zone hierarchy has the same struc-
ture as the gray-value component-tree. Therefore, the same
algorithms may be applied. Nevertheless, the following
modifications help to improve the algorithm’s robustness:

Fig. 6   (Best viewed in color) In the flooding-based immersion, start-
ing from an arbitrary derivative, the immersion floods along the
smallest neighboring derivative. When it finds a local minimum, the
pixels belonging to the derivative are merged. In this example, the
path first follows the zero derivatives within the red region, creating a
red component within the component-tree. The next smallest deriva-
tive is at the border to the pink region; hence, the path floods into the
pink area

0 250 500 750 1,000
0

25

50

75

100

bin number

tim
e
(m

s)

Fig. 7   The granularity of the component-tree can be configured by
quantizing the derivative magnitudes into bins. The number of bins
influences the runtime and the granularity of the possible segmenta-
tions. The measurements were obtained for 50 random images from
PASCAL VOC 2007 [16]. Since the variation of the runtime was very
small ( ≈ 0.3 ), error bars have not been added

104	 Journal of Real-Time Image Processing (2021) 18:99–112

1 3

1.	 Since the algorithm works on pixel differences, it is sus-
ceptible to image noise. This was also observed by Fors-
sén [17] who proposed to perform Gaussian smoothing
as a preprocessing step. Unfortunately, this may add arti-
ficial components at strict vertical or horizontal image
derivatives. We found that edge-preserving smoothing,
such as bilateral or guided image filtering [20] helps to
remove these artifacts. An example is shown in Fig. 9.

2.	 Furthermore, since very small image regions are rarely
of interest, we found it very useful to restrict the mini-
mal area a component must have to create a node within
the tree. This leads to more compact trees and can sig-
nificantly reduce the runtime, while it has virtually
no impact on later queries of the component-tree. As
opposed to [45], we do not delete the regions from the
tree explicitly and then apply a region growing algo-
rithm to extend the remaining components. Instead, the
flooding-based immersion allows to merge these regions
into their parent component during the tree construction

implicitly. For this, each component is only added to the
tree once it is big enough. Until then, the connecting
pixels are added to the component without creating par-
ent components. This allows to filter the regions without
adding any computational overhead. Each derivative still
only needs to be visited once by the algorithm.

In our experiments, we also use both concepts for the gray-
scale component-tree, since they are equally applicable.

In general, our approach has a larger computational over-
head than that of the gray-scale component-tree. First of all,
there are around twice as many image derivatives as there
are pixels. Furthermore, each derivative has to consider 6
derivative neighbors compared to 4 pixel neighbors. Hence,
the construction process is expected to be approximately 3
times slower than that of the gray-scale component-tree for
a single polarity (plus the overhead of calculating the image
derivatives). However, since the quasi-flat zone hierarchy
implicitly captures all regions which are lighter or darker
than their background (for gray-scale images), the runtime
is essentially only 1.5 times slower when extracting regions
of both polarities. This factor is confirmed empirically in
Fig. 10.

Furthermore, the union-find data structure (with path
compression) that is also shown in Fig. 10 supports quasi-
linear time in the number of pixels [17]. More specifically,
the time is bounded by O(n�(n)) , where n is the number of
pixels and �(n) is the inverse of the Ackermann function,
whose value is smaller than 5 if n is of the order 1080 . The
flooding-based approach has a complexity of O(n�) , where
� is independent of n, since each pixel is only considered

Fig. 8   The gradient magnitude image (left) and the derivatives
between the image pixels (right) of the toy image in Fig. 3 are indi-
cated. The gradient magnitude image has the problem that it spreads
derivatives into all adjacent pixel values. It is not suited for extract-
ing small homogeneous regions and generates eroded versions of the
actual homogeneous regions in an image

Fig. 9   In the top row, Gaussian smoothing (left) and edge-preserv-
ing bilateral filtering (right) are applied to a vertical image edge.
The resulting homogeneous regions are shown in the bottom row.
Gaussian smoothing adds artifacts that create artificial homogeneous
regions

Fig. 10   The runtime and variance of constructing the tree with the
proposed flooding-based immersion and the standard union-find-
based algorithm (Kruskal). The average runtimes are computed using
30 randomly selected pictures from the Pascal VOC 2007 dataset
[16]. The computation time of the ordinary gray-scale component-
tree is added as orientation

105Journal of Real-Time Image Processing (2021) 18:99–112	

1 3

once. Furthermore, the representation is less memory inten-
sive, since the data structure does not require each pixel to
be represented by an element of a data structure before it is
visited by the flooding process.

Please note, the complexity of the tree traversal is the
same for both component-trees. All of the routines presented
in this paper are implemented in C and the code is optimized
and parallelized where possible. In general, the tree con-
struction is very efficient and requires less than 250ms for a
800 × 1000 image on an IntelCore i7-4810 CPU @2.8GHz
with 16GB of RAM with Windows 7 (x64).

3.4 � Multiple disconnected component‑trees

To speed up the construction process even further, it is pos-
sible to restrict the maximal derivative magnitude to be
considered during the tree construction. A large derivative
magnitude indicates that the difference between the two pix-
els is very large. However, many image processing applica-
tions focus on finding regions that are very homogeneous
and are not concerned with representing the complete image
in the component-tree. Furthermore, since pixels may be
connected over different paths of derivatives, the complete
image is often represented within the component-tree with-
out needing to consider all derivatives. However, restricting
the maximal derivative magnitude may yield multiple, sepa-
rated, trees. In this case, the image processing algorithms
described later are applied to the single trees independently.
Again, the concept is also applicable to gray-value compo-
nent-trees. In this case, the minimal and/or maximal gray-
value threshold to be considered is set. This may reduce the
number of pixels that need to be considered considerably.
Please note, the parametrization of both concepts is highly
application specific.

4 � Maximally stable homogeneous regions

The constructed hierarchy can essentially be used for the
same image processing tasks as the gray-scale component-
tree. For example, the tree can be used to efficiently extract
stable regions similar to MSER. The only difference is that
the tree nodes do not consist of extremal regions but of
homogeneous regions. As mentioned above, homogeneous
regions are characterized by the fact that each pixel within
the region has a vertical or horizontal derivative with a
smaller magnitude than all outer derivatives of the region.
Otherwise, the concept of stable regions is the same. Hence,
both approaches share the same parameters and scale equally
with growing image sizes. Let R1,… ,Ri−1,Ri,Ri+1 … be a
set of nested homogeneous or extremal regions, respectively
(hence Ri ⊂ Ri+1 ). In the context of component-trees, the
index i encodes the gray-value threshold or the derivative

magnitude threshold that generated the region. A maximally
stable region Ri∗ in the context of MSER and MSHR is a
region that has a local minimum of

at i ∗ . Here, | ⋅ | denotes the cardinality and � is a parameter
of the method. The parameter � encodes how stable a region
is over ±� thresholds. The larger the value, the more stable
the regions need to be.

In a component-tree, the sequence of ancestor and
descendant nodes for a node is a set of nested regions. To
simplify the computation, each node in the tree stores its
area and the smallest derivative magnitude that connects its
inner points (these can be adapted on the fly during the tree
construction). Hence, s(i) can be computed for each node by
checking the area of the ancestor and descendant nodes at a
distance of � , respectively. The resulting maximally stable
homogeneous regions (MSHR) are possibly overlapping
regions that do not change their area significantly over a
given derivative magnitude range.

An example of MSHR for an image from PASCAL
VOC 2007 [16] is shown in Fig. 11. For all MSHR exam-
ples, we use a guided image filter with a radius of 3 and

(6)s(i) =
|Ri+� ⧵ Ri−�|

|Ri|
,

Fig. 11   The quasi-flat zone hierarchy can be used to extract stable
regions from color images. The images b–d display the extracted
MSHR from image a for different settings of � . Larger values of �
lead to a coarser segmentation

106	 Journal of Real-Time Image Processing (2021) 18:99–112

1 3

an amplitude threshold of 20 (denoted as � in [20]) for
preprocessing. The parameter � in (6) determines the sta-
bility of the segmented regions. An advantage of using the
derivative magnitude-based component-tree for the MSHR
extraction process is that various different parameter set-
tings of � can be used to extract a large collection of dif-
ferent regions without significantly increasing the runtime.
As shown in Fig. 12, the runtime of the tree traversal is
negligible to the time required for the tree construction.
Hence, regions for multiple values of � can be extracted
from an image at little cost. The displayed preprocessing
time includes the guided filtering step and the derivative
calculation. For the evaluation, we used hyper-spectral
image data obtained from the Stanford Center for Image
Systems Engineering (SCIEN) [42]. We randomly chose a
subset of channels and evaluated the runtime for 50 runs.

4.1 � MSHR vs MSER

The building blocks of MSER are extremal regions that
either have gray-scales strictly larger or strictly smaller
than their outer border. This means that some regions of
interest can never be segmented with the help of MSER. In
contrast, the building blocks of MSHR are homogeneous
regions, which require that each inner pixel has a smaller
derivative than all outer derivatives of the region. Hence,
as shown in Fig. 13, our approach is able to extract regions
that simultaneously have a lighter and darker background.
In the applications section, we show how this attribute
can be very helpful in applications such as OCR, where
MSER-based approaches fail.

4.2 � MSHR for stereo feature‑point matching

As their gray-value counterpart, MSHR can also be used
for stereo feature matching. Forssén [17] showed that color-
based MSER are superior to the original MSER [28] in terms
of repeatability in wide-baseline stereo feature-point match-
ing on a set of 8 image sets [37]. We conducted extensive
experiments and were able to repeat the results. Neverthe-
less, we observed that the repeatability of the stereo features
of MSER, MSCR and MSHR depend more on the parameter
settings (mostly on � ) than on the chosen method. Hence,
we omit our experiments on stereo feature point mapping.

5 � Applications

5.1 � Optical character recognition

One of most common applications of the gray-scale com-
ponent-tree is the extraction of maximally stable extremal
regions (MSER) [29]. Although initially proposed as stereo
features [28], they are used extensively as a preprocessing
step for optical character recognition (OCR) systems [24,
34]. Please note, although the performance of MSER-based
OCR systems can be outperformed by techniques building
on convolutional and recurrent neural networks [6, 40], they
are still used in many running OCR systems. This is due to
the fact that they have a much lower computational complex-
ity and can be computed in real time on embedded devices
and machines without a GPU.

Since MSER assume the regions to be extremal, they can-
not extract characters that have a lighter and darker back-
ground (see Figs. 1 and 13). This can be a problem in OCR

Fig. 12   The runtime of constructing and traversing the tree is inde-
pendent of the number of channels. Only the preprocessing step
scales linearly if additional channels are added to an image. The aver-
age runtimes and variances displayed use channels with 801 x 1000
pixels

(a) (b)

(c)

The MSHR of (a)

The light and dark MSER of (a)

Fig. 13   The center region of a is no extremal region. Hence, regard-
less of the parameter settings, it will never be an MSER (c). For
MSHR, on the other hand, the inner derivatives of the center region
are smaller than its outer class derivatives, and hence it is a homoge-
neous region (b). The whole image is an MSER as well as an MSHR
but is omitted in b and c for the sake of clarity

107Journal of Real-Time Image Processing (2021) 18:99–112	

1 3

systems, since most approaches fail if the characters cannot
be segmented in an early stage. We evaluate the text segmen-
tation capabilities of MSER [29], MSCR [17] and MSHR
regions on the ICDAR 2015 ”Focused Scene Text challenge“
[23] dataset. As in common in the ICDAR challenges [22],
we consider a character to be found if it overlaps the ground
truth bounding box according to the PASCAL overlap cri-
terion [16] by more than 50%. As shown in Table 1, MSHR
clearly outperforms MSCR. However, when applied alone,
both methods are weaker than MSER.

The different approaches of either flooding the derivatives
or the image pixels essential create regions with comple-
mentary attributes. This can be leveraged to improve the
segmentation results. For this, the union of the proposed
character regions of MSHR and MSER (MSER + MSHR),
and of MSHR and MSER (MSER + MSHR) is computed.
As expected, the combination of MSHR and MSER is able
to significantly improve the segmentation obtained by only
MSER. Please note, the initial recall of the segmentation
is an important indicator of how well an OCR system can
perform. Later steps are usually concerned with grouping
and filtering out undesired regions, hence what is not found
in an initial step will not be found. A handful of example
images where MSHR are superior to MSER is presented in
Figs. 1 and 14.

The runtimes of the approaches are displayed in Table 2.
As expected, MSER slightly outperforms MSHR. However,
since both approaches construct a component-tree, charac-
ters for different settings of � can be extracted extremely effi-
ciently. As a consequence, both approaches are significantly
faster than MSCR.

5.2 � Tracking

The efficient tracking of regions in component-trees was first
proposed for gray-scale trees in [14] and then extended to
multi-channel images [3]. The tracking algorithm consists
of three steps: model initialization, model tracking, and the
model update.

Model initialization In the first step, we extract MSHR
from the given target location. MSHR divide the image into
multiple, possibly overlapping, connected components. The
tracking can either be restricted to the largest, the most sta-
ble or all MSHR regions within the template.

Table 1   The segmentation results of MSER [29], MSCR [17] and
MSER augmented with MSHR on the ICDAR 2015 “Focused Scene
Text challenge“ [23] dataset are displayed

The proposed approach clearly outperforms MSCR and is able to
improve the segmentation obtained by only MSER
The best performing method is highlighted in bold

Method � = 1 � = 5 � = 10

MSER [29] 89.69 85.44 79.88
MSCR [17] 80.75 71.41 57.28
MSHR 88.73 83.69 76.21
MSER + MSCR 90.84 87.68 80.76
MSER + MSHR 93.64 89.12 84.46

Table 2   The average computation time of MSER [29], MSCR [17]
and MSER augmented with MSHR on the ICDAR 2015 “Focused
Scene Text challenge“ [23] dataset are displayed

The runtime is averaged over all images (which have varying size and
complexity)

Method ∅ runtime in ms.

MSER [29] 93.34
MSCR [17] 841.71
MSHR 133.13
MSER + MSCR 951.0
MSER + MSHR 227.28

Fig. 14   The MSER segmentation in the first row has difficulties with
characters that are simultaneously lighter and darker than their back-
ground. The MSHR segmentation is able to extract all relevant char-
acter regions and displayed in the second row

108	 Journal of Real-Time Image Processing (2021) 18:99–112

1 3

Model tracking In the successive frames, the compo-
nent-tree is constructed and the MSHR regions are matched
against all regions in the respective tree. The tree is con-
structed for a rectangular search domain that is twice the size
of the objects bounding box in the prior frame.

To enable efficient matching, we compute a handful of
region and gray-scale features for each MSHR. We solely
use features that can efficiently be calculated by region and
gray-scale moments. The advantage of using moments, is
that they can be computed incrementally during the tree
construction. The moment of order (p, q) of a region R is
defined as

where r and c represent the row and the column coordinates,
respectively, and p, q ≥ 0 . Since the flooding-based immer-
sion considers each image pixel in the tree construction any-
way, our choice of features can be calculated without add-
ing significant computational complexity. We use the area
of the region ( m0,0 ), the center of gravity ( m1,1∕m0,0 ) and
the ellipse parameters r1, r2 and � as tracking features. The
ellipse parameters can be calculated with the normalized
moments, please see [19] for details. Analogously, for each
channel, we use gray-scale moments to calculate the average
gray-scale and the gray-scale deviation as further features.
Please note, our selection of features makes the approach
invariant to rotations of the MSHR.

To further improve the robustness, the single features in
the matching step can be weighted for specific applications.
For example, if the object undergoes heavy deformations,
but has a relatively constant color, the weight of the region
moments is reduced and the gray-scale features weights are
increased. The weights are estimated automatically from
the variation of the color and the variation of the region
moments within the first five frames.

In the tracking step, we do not extract the most stable
MSHR and match their features to those from the initial
frame. Instead, we compare the features of the initial MSHR
to the features of all the homogeneous regions in the com-
ponent-tree nodes. This helps to improve the robustness and
ensures we do not restrict the search to only maximally sta-
ble homogeneous regions.

Model update As opposed to [14], we update the region
features incrementally in each frame. This enables to han-
dle short occlusions and detection failures in single frames.
Furthermore, it allows the object to change its appearance
throughout the sequence and allows more robust tracking.
Hence, after successfully locating the node that best fits
the to-be-tracked MSHR at time step t, the feature vector
(denoted as F  ) is updated as

(7)mp,q =
∑

(r,c)∈R

rpcq,

In our experiments, we used � = 0.5.

Results The proposed MSHR tracking approach is not
restricted to bounding boxes. Hence, to evaluate the qual-
ity of the tracking results, we manually annotated dense
by-pixel segmentations of scenes from the OTB [48] and
VOT2016 [25] datasets. Otherwise, the given bounding
box ground truth would introduce an undesired bias when
measuring the overlap scores of by-pixel segmentations. As
accuracy measure, we use the commonly used Intersection
over Union (IoU) criterion.

To bring the results into perspective, we compute the best
possible overlap an axis-aligned tracker could obtain for the
segmentation of a given scene. By this means, the perfor-
mance gain of using segmentations can be highlighted with-
out introducing a bias by choosing a specific set of state-of-
the-art axis-aligned trackers to compete against. We refer to
this tracker as the Best box. Please note, the Best box
is an upper performance bound for all box-based trackers.
Hence, it outperforms the current state-of-the-art of deep-
learning-based trackers, since these are all restricted to axis-
aligned boxes. Please see [4, 5] for details on how the Best
box can be efficiently computed.

For the gray-scale sequence dress from OTB [48],
the MSER tracker, Best box and the MSHR tracker all
perform similarly, as is displayed in Fig. 15. In the respec-
tive sequence, the MSER tracker is able to track the head
and the dress of the dancer, while the MSHR tracker only
tracks the dress. Hence, the overlap scores of MSER are

(8)Ft+1 = (1 − �)Ft + �Ft+1.

Fig. 15   dress from OTB [48]. For this gray-scale scene, the MSER
tracker (average �

IoU
 = 0.71) is able to outperform the MSHR tracker

(average �
IoU

 = 0.69). The ground truth segmentation of the torso is
visualized for reference (green). The MSER tracker also outperforms
the best possible overlap an axis-aligned tracker (Best box, aver-
age �

IoU
 = 0.64) can achieve for the segmentations within the scene

109Journal of Real-Time Image Processing (2021) 18:99–112	

1 3

slightly superior. Nevertheless, it is important to note that
both approaches are compared against the best possible
axis-aligned tracker and, accordingly, the overlap scores are
impressive.

For color images, the difference of MSER and MSHR
becomes more evident. In the book sequence from
VOT2016 [25], the MSER tracker fails, as is shown in
Fig. 16. The book is, per definition, not an extremal region
in the gray-scale image. Hence, the initialization is not suc-
cessful and the MSER tracker fails. Nevertheless, the book
is a homogeneous region in both the gray-scale and the color
image, and accordingly, the MSHR tracker is successful. In
most frames, the MSHR tracker is even able to outperform
the Best box and obtains an average IoU of 0.7.

For the book sequence, the MSHR tracking requires at
most of 24ms per frame and for the dress sequence at most
19ms per frame on an Intel Core i7-4810 CPU @2.8GHz
with 16GB of RAM with Windows 7 (x64).

5.3 � 3D segmentation

In the third application, we reconstruct organs in 3D by
tracking a slice of an Computed Tomography (CT) scan
along the axis orthogonal to the image data. We use the CT
data provided in the 3DIRCADb dataset [44].

To initialize the tracking process, the organ is marked
in an arbitrary slice of the CT data by a bounding box. The
most stable MSHR is then automatically segmented in
the initialization process for tracking. An example of the
tracked regions is visualized for two examples in Fig. 17.
Given the segmentations of the single slices, the organ can

be reconstructed in 3D. We compare the reconstruction for
MSER and MSHR tracking in Fig. 18. To enhance the vis-
ualization, the datapoints are triangulated and the surface
normals are calculated. Since the contrast of the organs can
be very low in CT images, the MSER tracking has difficul-
ties catching the organ boundaries. Furthermore, the organ
is sometimes partly lighter and darker than the background,
which may lead to MSER tracking failure. The proposed
MSHR tracking copes well with these difficulties, and the
reconstructions are significantly better.

Please note, the tracking of the regions in the CT slices
is extremely efficient and only requires an average of 5ms
per slice. Hence, for the 45 slices in Fig. 18 the complete
3D reconstruction process, which includes the triangulation
( ≈ 1 s ), the calculation of the surface normals ( ≈ 130ms ),
and the segmentation ( ≈ 220ms ), requires only around 1.5 s.

The average �IoU for MSER and MSHR is displayed
for a selection of organs in the 3DIRCADb dataset [44] in
Table 3. As expected, the proposed MSHR significantly
outperforms MSER on CT images. MSER struggles with
the fact that the organs are sometimes partly lighter and

Fig. 16   book from VOT2016 [25]. Since the gray-scale region is not
an MSER, it cannot be tracked with MSER tracking (average �

IoU
 =

0.0) . The overlap scores of the MSHR tracking (average �
IoU

 = 0.71)
are comparable and sometimes even better than the overlap the best
possible axis-aligned tracker (Best box, average �

IoU
 = 0.72) could

theoretically achieve

Table 3   The average �
IoU

 scores of MSER [29] our proposed MSHR
on the 3DIRCADb dataset [44] are displayed

Method ∅ �
IoU

∅ Runtime
per frame in
ms.

MSER [29] 0.51 3.62
MSHR 0.87 4.89

Fig. 17   Two example sequences from the 3DIRCADb dataset [44].
Given an initial selection of a single slice (the middle image in a and
b) of the right kidney, the proposed MSHR tracking tracks the region
forward and backwards in space. The segmented slices can be used to
reconstruct the organ, see Fig. 18 for an example reconstruction

110	 Journal of Real-Time Image Processing (2021) 18:99–112

1 3

darker than the background. Both methods are extremely
fast, since the component-tree only needs to be con-
structed for a small part of the image.

5.4 � Image filtering

A popular application for gray-value component-trees is
image filtering or simplification [21, 41]. Since the com-
ponent-tree inherently incorporates the connectedness
of the different image components, smaller regions can
be easily removed or single components filtered without
being influenced by other components. As opposed to
approaches that build on component graphs [27, 32], the
gray-value based concepts can be applied to the quasi-
flat zones hierarchy without adaptation. For example, by
restricting the maximum derivative magnitude, we can
construct a collection of component-trees from the input
image. Each component within the trees consists of pix-
els that are connected by an derivative smaller than the
defined maximum size. We can filter these components
without influencing the filter results by the large deriva-
tives. An example which sets each component smaller
than a certain area to its mean pixel values is shown in
Fig. 19. The schemes within [21] or [41] can be applied
equivalently.

6 � Conclusion

In this paper we proposed an efficient algorithm to construct
the quasi-flat zone hierarchy of an input image. As opposed
to the ordinary component-tree, the presented approach can
be applied to images with an arbitrary number of channels.
The presented algorithm is extremely efficient and opens the
door for a number of gray-scale image processing techniques
to multi-channel images. To highlight the universality of
the proposed algorithm, we present a number of example
applications: object tracking, 3D segmentation, and image
filtering.

Furthermore, we introduce the concept of maximally
stable homogeneous regions for image segmentation. The
extension of an existing gray-scale component-tree algo-
rithm is straightforward and runs efficiently in linear time

Fig. 18   In the first row, the reconstruction of the right kidney is dis-
played for MSER tracking. The low contrast and the fact that the
background is partly darker and lighter than the objects makes the
reconstruction noisy. The proposed MSHR tracking can cope with
these situations and the reconstruction is significantly better

Fig. 19   The quasi-flat zones hierarchy can be used to filter images.
The images (top row) are filtered by setting the pixel value to the
mean pixel value of the respective component (bottom row)

111Journal of Real-Time Image Processing (2021) 18:99–112	

1 3

(in the number of pixels). We show how maximally stable
homogeneous regions can be used to improve OCR results
on the ICDAR 2015 ”Focused Scene Text challenge“ and
display a number of examples.

In future work, we intend to investigate tightening the
connectivity of homogeneous regions to require multiple
vertical or horizontal derivatives with a smaller magnitude
than the current threshold. Although this adds algorithmic
complexity, it should help to tackle segmentation tasks with-
out the need of prior image pre-processing. Secondly, we
intend to proceed towards an automatic estimation of the
� parameter in the MSHR computation. This should allow
to improve the usability of the approach for generic OCR
applications.

References

	 1.	 Angulo, J.: Geometric algebra colour image representations and
derived total orderings for morphological operators-part i: col-
our quaternions. J. Vis. Commun. Image Represent. 21(1), 33–48
(2010)

	 2.	 Berger, C., Géraud, T., Levillain, R., Widynski, N., Baillard, A.,
Bertin, E.: Effective component tree computation with application
to pattern recognition in astronomical imaging. In: IEEE Interna-
tional Conference on Image Processing (ICIP), pp. 40–44 (2007)

	 3.	 Böttger, T., Eisenhofer, C.: Efficiently tracking homogeneous
regions in multichannel images. In: International Conference on
Pattern Recognition Systems (ICPRS), pp. 14–22 (2017)

	 4.	 Böttger, T., Follmann, P.: The benefits of evaluating tracker per-
formance using pixel-wise segmentations. In: IEEE International
Conference on Computer Vision (ICCV), pp. 1983–1991 (2017)

	 5.	 Böttger, T., Follmann, P., Fauser, M.: Measuring the accuracy of
object detectors and trackers. In: German Conference on Pattern
Recognition (GCPR), pp. 415–426. Springer (2017)

	 6.	 Bušta, M., Neumann, L., Matas, J.: Deep textspotter: an end-to-
end trainable scene text localization and recognition framework.
In: IEEE International Conference on Computer Vision (ICCV),
pp. 22–29 (2017)

	 7.	 Carlinet, E., Géraud, T.: A comparison of many max-tree compu-
tation algorithms. In: Mathematical Morphology and Its Applica-
tions to Signal and Image Processing (ISMM), pp. 73–85 (2013)

	 8.	 Carlinet, E., Géraud, T.: Mtos: a tree of shapes for multivariate
images. IEEE Trans. Image Process. 24(12), 5330–5342 (2015)

	 9.	 Carlinet, E., Crozet, S., Géraud, T.: Mtos: the tree of shapes turned
into a max-tree: a simple and efficient linear algorithm. IEEE
International Conference on Image Processing, pp. 1488–1492
(2018)

	10.	 Chavez, A., Gustafson, D.: Color-based extensions to MSERs. In:
Advances in Visual Computing—7th International Symposium
(ISVC), pp. 358–366 (2011)

	11.	 Chen, L., Berry, M.W., Hargrove, W.W.: Using dendronal sig-
natures for feature extraction and retrieval. Int. J. Imaging Syst.
Technol. 11(4), 243–253 (2000)

	12.	 Cousty, J., Bertrand, G., Couprie, M., Najman, L.: Fusion graphs:
merging properties and watersheds. J. Math. Imaging Vis. 30(1),
87–104 (2008)

	13.	 Cousty, J., Najman, L., Perret, B.: Constructive links between
some morphological hierarchies on edge-weighted graphs. In:
Mathematical Morphology and Its Applications to Signal and

Image Processing, pp. 86–97 (2013). https​://doi.org/10.1007/978-
3-642-38294​-9_8

	14.	 Donoser, M., Bischof, H.: Efficient maximally stable extremal
region (MSER) tracking. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 553–560 (2006)

	15.	 Donoser, M., Riemenschneider, H., Bischof, H.: Linked edges
as stable region boundaries. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 1665–1672 (2010)

	16.	 Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zis-
serman, A.: The PASCAL Visual Object Classes Challenge 2007
(VOC2007) Results (2007). http://www.pasca​l-netwo​rk.org/chall​
enges​/VOC/voc20​07/works​hop/index​.html

	17.	 Forssén, P.: Maximally stable colour regions for recognition and
matching. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2007)

	18.	 Gower, J.C., Ross, G.J.: Minimum spanning trees and single link-
age cluster analysis. Appl. Stat. 18(1), 54–64 (1969)

	19.	 Haralick, R.M., Shapiro, L.G.: Computer and Robot Vision, vol.
1. Addison-Wesley Longman Publishing Co., Inc, Boston (1991)

	20.	 He, K., Sun, J., Tang, X.: Guided image filtering. In: European
Conference on Computer Vision (ECCV), pp. 1–14 (2010)

	21.	 Jones, R.: Connected filtering and segmentation using component
trees. Comput. Vis. Image Underst. 75(3), 215–228 (1999)

	22.	 Karatzas, D., Gomez-Bigorda, L., Nicolaou, A., Ghosh, S., Bag-
danov, A., Iwamura, M., Matas, J., Neumann, L., Chandrasekhar,
V.R., Lu, S., et al.: Icdar 2015 competition on robust reading. In:
International Conference on Document Analysis and Recognition
(ICDAR), pp. 1156–1160. IEEE (2015)

	23.	 Karatzas, D., Gomez-Bigorda, L., Nicolaou, A., Ghosh, S.K.,
Bagdanov, A.D., Iwamura, M., Matas, J., Neumann, L., Chan-
drasekhar, V.R., Lu, S., Shafait, F., Uchida, S., Valveny, E.:
ICDAR 2015 competition on robust reading. In: 13th International
Conference on Document Analysis and Recognition (ICDAR), pp.
1156–1160 (2015)

	24.	 Koo, H.I., Kim, D.H.: Scene text detection via connected compo-
nent clustering and nontext filtering. IEEE Trans. Image Process.
22(6), 2296–2305 (2013)

	25.	 Kristan, M., Leonardis, A., Matas, J., Felsberg, M., Pflugfelder,
R.P., Cehovin, L., Vojír, T., Häger, G.: The visual object tracking
VOT2016 challenge results. In: European Conference on Com-
puter Vision Workshops (ECCVW), pp. 777–823 (2016). https​://
doi.org/10.1007/978-3-319-48881​-3_54

	26.	 Kurtz, C., Naegel, B., Passat, N.: Connected filtering based on
multivalued component-trees. IEEE Trans. Image Process. 23(12),
5152–5164 (2014)

	27.	 Kurtz, C., Naegel, B., Passat, N.: Multivalued component-tree
filtering. In: International Conference on Pattern Recognition
(ICPR), pp. 1008–1013 (2014)

	28.	 Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline
stereo from maximally stable extremal regions. In: Proceedings of
the British Machine Vision Conference (BMVC), pp. 1–10 (2002)

	29.	 Mattes, J., Demongeot, J.: Efficient algorithms to implement the
confinement tree. In: Discrete Geometry for Computer Imagery
(DGCI), pp. 392–405 (2000)

	30.	 Meyer, F., Maragos, P.: Morphological scale-space representa-
tion with levelings. In: Scale-Space Theories in Computer Vision,
Second International Conference, Scale-Space’99, Corfu, Greece,
September 26-27, 1999, Proceedings, pp. 187–198 (1999). https​
://doi.org/10.1007/3-540-48236​-9_17

	31.	 Meyer, F., Maragos, P.: Nonlinear scale-space representation
with morphological levelings. J. Vis. Commun. Image Represent.
11(2), 245–265 (2000). https​://doi.org/10.1006/jvci.1999.0447

	32.	 Naegel, B., Passat, N.: Towards connected filtering based on
component-graphs. In: Mathematical Morphology and Its Appli-
cations to Signal and Image Processing (ISMM), pp. 353–364
(2013)

https://doi.org/10.1007/978-3-642-38294-9_8
https://doi.org/10.1007/978-3-642-38294-9_8
http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html
https://doi.org/10.1007/978-3-319-48881-3_54
https://doi.org/10.1007/978-3-319-48881-3_54
https://doi.org/10.1007/3-540-48236-9_17
https://doi.org/10.1007/3-540-48236-9_17
https://doi.org/10.1006/jvci.1999.0447

112	 Journal of Real-Time Image Processing (2021) 18:99–112

1 3

	33.	 Nagao, M., Matsuyama, T., Ikeda, Y.: Region extraction and shape
analysis in aerial photographs. Comput. Graph. Image Process.
10(3), 195–223 (1979)

	34.	 Neumann, L., Matas, J.: Real-time scene text localization and rec-
ognition. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 3538–3545 (2012)

	35.	 Nistér, D., Stewénius, H.: Linear time maximally stable extremal
regions. In: European Conference on Computer Vision (ECCV),
pp. 183–196 (2008)

	36.	 Ouzounis, G.K., Soille, P.: The alpha-tree algorithm. JRC Scien-
tific and Policy Report (2012)

	37.	 http://www.robot​s.ox.ac.uk/~vgg/resea​rch/affin​e/
	38.	 Passat, N., Naegel, B.: Component-trees and multivalued images:

structural properties. J. Math. Imaging Vis. 49(1), 37–50 (2014)
	39.	 Passat, N., Naegel, B., Benoît, K.: Component-graph construction.

J. Math. Imaging Vis. 61, 1–26 (2019)
	40.	 Qin, S., Manduchi, R.: A fast and robust text spotter. In: IEEE

Winter Conference on Applications of Computer Vision (WACV),
pp. 1–8 (2016)

	41.	 Salembier, P., Oliveras-Vergés, A., Garrido, L.: Antiextensive con-
nected operators for image and sequence processing. IEEE Trans.
Image Process. 7(4), 555–570 (1998)

	42.	 Skauli, T., Farrell, J.: A collection of hyperspectral images for
imaging systems research. In: Digital Photography IX, vol. 8660,
p. 86600C. International Society for Optics and Photonics (2013)

	43.	 Soille, P.: Constrained connectivity for hierarchical image decom-
position and simplification. IEEE Trans. Pattern Anal. Mach.
Intell. 30(7), 1132–1145 (2008). https​://doi.org/10.1109/TPAMI​
.2007.70817​

	44.	 Soler, L., Hostettler, A., Agnus, V., Charnoz, A., Fasquel, J.,
Moreau, J., Osswald, A., Bouhadjar, M., Marescaux, J.: 3d image
reconstruction for comparison of algorithm database: a patient-
specific anatomical and medical image database (2012). http://
ircad​.fr/resea​rch/3D-ircad​b-01

	45.	 Weber, J., Lefèvre, S.: Fast quasi-flat zones filtering using area
threshold and region merging. J. Vis. Commun. Image Represent.
24(3), 397–409 (2013). https​://doi.org/10.1016/j.jvcir​.2013.01.011

	46.	 Westenberg, M.A., Roerdink, J.B.T.M., Wilkinson, M.H.F.: Volu-
metric attribute filtering and interactive visualization using the
max-tree representation. IEEE Trans. Image Process. 16(12),
2943–2952 (2007)

	47.	 Wilkinson, M.H.F.: A fast component-tree algorithm for high
dynamic-range images and second generation connectivity. In:
IEEE International Conference on Image Processing (ICIP), pp.
1021–1024 (2011)

	48.	 Wu, Y., Lim, J., Yang, M.: Object tracking benchmark. IEEE
Trans. Pattern Anal. Mach. Intell. 37(9), 1834–1848 (2015). https​
://doi.org/10.1109/TPAMI​.2014.23882​26

	49.	 Xu, Y., Carlinet, E., Géraud, T., Najman, L.: Hierarchical segmen-
tation using tree-based shape spaces. IEEE Trans. Pattern Anal.
Mach. Intell. 39(3), 457–469 (2017)

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Tobias Böttger  studied Mathe-
matics in Science and Engineer-
ing at the Technische Universität
München (TUM) and received
his MSc degree in 2013. In 2013,
he joined the Research Depart-
ment at MVTec Software GmbH.
He received the PhD degree from
the Department of Informatics at
the TUM in 2019. His research
interests spread between the
areas of machine learning and
computer vision, with special
focus on visual object tracking,
image segmentation, and scene
text detection.

http://www.robots.ox.ac.uk/%7evgg/research/affine/
https://doi.org/10.1109/TPAMI.2007.70817
https://doi.org/10.1109/TPAMI.2007.70817
http://ircad.fr/research/3D-ircadb-01
http://ircad.fr/research/3D-ircadb-01
https://doi.org/10.1016/j.jvcir.2013.01.011
https://doi.org/10.1109/TPAMI.2014.2388226
https://doi.org/10.1109/TPAMI.2014.2388226

	Real-time maximally stable homogeneous regions
	Abstract
	1 Introduction
	2 Related work
	3 Flooding-based quasi-flat zone hierarchy
	3.1 Local flooding tree construction
	3.2 Characteristics of the gradient-based component-tree
	3.3 Implementation details
	3.4 Multiple disconnected component-trees

	4 Maximally stable homogeneous regions
	4.1 MSHR vs MSER
	4.2 MSHR for stereo feature-point matching

	5 Applications
	5.1 Optical character recognition
	5.2 Tracking
	5.3 3D segmentation
	5.4 Image filtering

	6 Conclusion
	References

