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Abstract
In this paper, we present the concept of maximally stable homogeneous regions (MSHR). MSHR are conceptually very 
similar to maximally stable extremal regions but can be segmented in images with an arbitrary number of channels. The 
computation of the presented MSHR relies on the construction of a quasi-flat zone hierarchy. We present a fast algorithm 
for computing the hierarchy that overcomes the runtime restrictions of existing approaches. The proposed algorithm can 
construct the quasi-flat zone hierarchy efficiently in real time, scales linearly in the number of pixels and, in practice, sub-
linearly in the number of channels. In the experiments, we display how MSHR can be used to improve the results of optical 
character recognition systems and to perform 3D object segmentation. We further demonstrate the universality and speed of 
the proposed algorithm for three example applications: image segmentation, object tracking, and image filtering.

Keywords  Quasi-flat zone hierarchy · Component-trees · Multi-valued component-trees · Image segmentation · Object 
tracking

1  Introduction

The component-tree (also known as dendrone [11], con-
finement tree [29] or max-tree [7]) is a hierarchical data 
structure that models gray-scale images by considering the 
connected components of their binary level sets obtained 
from successive thresholdings [26]. It has a wide range of 
applications: image filtering [21, 41], motion extraction [41], 
feature and region extraction with maximally stable extre-
mal regions (MSER) [28], astronomical imagery [2], object 
tracking [3, 14] and 3D visualization [46]. For gray-scale 
images, efficient algorithms exist that enable the construc-
tion of the component-tree in linear time [7].

The success of component-trees for gray-scale images 
and the increasing demand for image processing techniques 
devoted to color, motivates their extension to multi-channel 
images. A common approach to computing component-
trees for multi-channel images are those based on a compo-
nent-trees computed on an edge-weighted graph [13]. The 
respective approaches create morphological hierarchies of 
connected pixels [43], also known as quasi-flat zone hierar-
chies [30, 31]. The respective hierarchies are very general 

and algorithms devoted to the gray-value component-tree 
can be adapted to the more general quasi-flat zone hierarchy.

In this work, we present an efficient algorithm to com-
pute the quasi-flat zone hierarchy based on a local flooding 
immersion. The algorithm is truly linear in the number of 
pixels and considerably faster than the existing union-find-
based algorithms in the experiments. The hierarchy con-
struction is generic and does not require the definition of a 
partial or total ordering relation. We further introduce the 
concept of maximally stable homogeneous regions (MSHR), 
which are conceptually very similar to MSER but can be 
computed for multi-channel images. They can be used for 
OCR applications, where MSER character extraction fails, as 
is displayed in Fig. 1. As for MSER, the runtime of MSHR 
is linear in the number of pixels and furthermore scales sub-
linearly with the number of image channels. We display the 
universality of the proposed tree construction algorithm and 
of MSHR by presenting further example applications: 3D 
object segmentation, object tracking and image filtering.

This work extends our previous work [3], which intro-
duces object tracking in component-trees. This paper addi-
tionally presents the flooding-based quasi-flat zone hierarchy 
construction for multi-channel images in a profound manner 
and highlights implementation details to enable the tree to 
be constructed in real time. Furthermore, to highlight the 
universality and speed of the algorithm, we evaluate the 
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proposed approach for image segmentation, object track-
ing, and image filtering.

2 � Related work

In general, component-trees have been used for a diverse 
set of applications and some efforts have been undertaken 
to enable their efficient computation [7]. There are essen-
tially three different kinds of component-tree computation 
algorithms: immersion algorithms, flooding algorithms and 
merge-based algorithms. Carlinet and Géraud [7] present an 
extensive comparison of the main approaches and show that 
the flooding-based approaches of Wilkinson [47], Salembier 
et al. [41] and Nistér and Stewénius [35] are superior in 
terms of speed for 8-bit and 16-bit images. Although many 
applications for gray-scale component-trees have been pre-
sented, most are devoted to image segmentation and filtering 
[21, 27, 41]. For example, MSER can be extracted efficiently 
using component-trees [35]. MSER have a wide range of 
applications, ranging from stereo feature point extraction 
[28] over optical character recognition (OCR) [34] to image 
tracking [14].

Motivated by their success on gray-scale image process-
ing applications, there have also been attempts to extend 
MSER specifically to multi-channel images. Chavez and 
Gustafson [10] transform the RGB image to the HSV color 
space and extract gray-scale MSER on the single chan-
nels separately. Forssén [17] overcomes the problem that 
multi-channel images cannot be totally ordered using pixel 
differences of neighboring RGB values as opposed to the 
RGB values directly. This allows the extraction of so-
called maximally stable color regions (MSCR). Although 
no component-tree is constructed in the process, the idea 
of using differences is appealing, since it does not require 
a user-defined partial ordering and can further be trivially 
extended to images with an arbitrary number of channels. 

Unfortunately, the approach is computationally demanding 
and, although theoretically very closely related to MSER, 
MSCR have completely different parameters. This makes 
it difficult to compare the performance of both approaches. 
Similarly, Donoser et al. [15] construct the component-tree 
of an RGB image from the gradient magnitudes of the input 
image. Stable regions are then extracted by comparing the 
shape of regions at different levels using a shape matching 
method. While computing MSER from the gradient mag-
nitude images allows the use of an ordinary MSER imple-
mentation, it has several disadvantages for applications. The 
central differences at the image coordinates used to compute 
the gradient magnitude image make the edges at least two 
pixels wide. As a consequence, the extracted regions are 
smaller than the actual regions and very slim regions cannot 
be extracted. As shown in Fig. 2, especially for applications 
like OCR, where characters are generally only a few pixels 
wide, this is a crucial disadvantage.

A more general approach to extending MSER to multi-
channel images is to formulate them on a component-tree 
structure that is defined for multi-channel images. In general, 
the component-tree algorithms devoted to single-channel 
images assume that the values of the images can be equipped 
with a binary relation to form a totally ordered set. Unfortu-
nately, multi-channel images are not canonically equipped 
with total orders, but with partial ones. Existing work tries 
to circumvent this restriction by either splitting the value 
space into several totally ordered sets, or by defining a total 
order relation [1]. A further variant is that of the component-
graph, which extends the notation of component-trees to 
multi-channel images in a generic way [38]. Unfortunately, 
the multi-channel component-graph construction is compu-
tationally demanding and requires a suitable, user-defined, 

(a) Original Image (b) MSER (c) MSHR (our ap-
proach)

Fig. 1   Image a is from the ICDAR 2015 “Focused Scene Text” [23] 
challenge. The colored regions in b are extracted using MSER on the 
corresponding gray-scale image, those in c using MSHR. In contrast 
to MSER, MSHR can be segmented in images with an arbitrary num-
ber of channels and also work for characters that simultaneously have 
a lighter and a darker background. The regions touching the image 
border are not displayed

Fig. 2   The top row displays an example input image (left) and the 
respective gradient magnitude image (right). The second row displays 
the regions that are extracted from our method (left) and those by 
[15] (right), which uses the gradient magnitude image as input and 
applies an ordinary MSER algorithm
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piecewise ordering of the multi-channel image data that is 
specific to the target application [33]. A further extension 
of the component-tree to multi-channel images that is con-
ceptually similar to ours is the Multivariate tree of shapes 
(MToS) [8, 49]. The MToS is a five-step process which 
first computes a tree of shapes (ToS) [9] for each channel 
individually. Hence, the runtime has a large linear factor 
in the number of image channels. In contrast to the above 
approaches, the proposed algorithm constructs the hierarchy 
using pixel differences and is applicable to images of differ-
ent domains and numbers of channels and does not require 
any pre-defined partial ordering. As a consequence, fewer 
parameters are required and the tree construction is signifi-
cantly faster. We compared our approach to the binaries of 
MToS and are 9 times faster for a three-channel image. The 
performance advantage should be even more prominent for 
hyper-spectral images, which contain significantly more 
channels.

As mentioned above, approaches based on constructing 
an edge-weighted graph [13] do not require a piece-wise 
ordering and scale favorably for images with many channels. 
The respective approaches create morphological hierarchies 
of connected pixels [43]. Hereby, any two pixels are con-
nected if there exists a path linking these pixels, such that 
the maximal edge weight does not exceed a given threshold 
value. For a varying threshold, the resulting regions form a 
hierarchy. The concept originates from the single linkage 
clustering method [18] used for data analysis. It was intro-
duced to image processing by Nagao et al. [33] in 1979. 
Prominent examples include �-components and �-trees [36, 
43], and (in mathematical morphology) quasi-flat zones and 
the quasi-flat zone hierarchy [30, 31].

In contrast to the aforementioned approaches, we propose 
a flooding-based immersion for the generation of the quasi-
flat zone hierarchy. The presented immersion is significantly 
faster than a union-find-based immersion and allows an effi-
cient computation that is linear in the number of pixels and 
scales favorably in the number of channels. Furthermore, we 
extend the concept of MSER from component-trees to the 
hierarchy constructed from the edge-weighted graph.

3 � Flooding‑based quasi‑flat zone hierarchy

For gray-scale images, the component-tree is constructed 
by considering the binary level sets of the input image. The 
level sets are obtained from successive thresholds, e.g., for 
byte images, the thresholds are selected to include all pix-
els within [0, �] or [�, 255] . Hereby, � is either increased 
incrementally from 0 to 255 or decreased incrementally from 
255 to 0. The evolution of the connected components of the 
respective level sets are then encoded in the component-tree. 
Hereby, each component in the tree represents an extremal 

region. These are identified by the fact that all pixels in the 
region have a gray value strictly larger or strictly smaller 
than the pixels in the outer boundary of the region. In the 
context of multi-channel images, the concept of larger or 
smaller is not well defined and the component-tree cannot 
be trivially constructed in the same fashion.

To overcome this limitation, the quasi-flat zone hierarchy 
considers the derivatives between neighboring pixels in x 
(column) and y (row) direction. The derivatives at the image 
coordinates between two pixels are approximated by central 
differences. Hence for each image pixel at the coordinate 
(x, y), four differences are computed: two vertical ones ( �upper 
and �lower ) and two horizontal ones ( �left and �right ). They are 
calculated as

where I(x, y) is the pixel value of the image I  at coordi-
nate (x, y). Independent on the number of channels of I  , 
the magnitude (absolute value for single channel and the 
Euclidean norm for multi-channel images) of the deriva-
tives is totally ordered and can be used for the tree construc-
tion. Conceptually, instead of computing the level sets from 
successive thresholds of the pixel values, the level sets are 
obtained from thresholds of the derivative magnitudes. As a 
consequence, the components are characterized by the fact 
that each pixel within them has a derivative with a magni-
tude that is smaller than the derivatives at the boundary of 
the region. We denote such regions as homogeneous regions.

The concept of the resulting hierarchy is illustrated in 
the toy example in Fig.  3. Homogeneous regions (e.g., 
regions with the same color) are identified by the fact that 
the pixels are connected by derivatives with a very small 
magnitude. Hence, the child nodes consist of disjunct and 
differently colored regions. With a growing derivative mag-
nitude threshold, similar colored regions merge into single 
components (e.g., red and pink, light-green and green) and, 
eventually, the whole image is connected.

3.1 � Local flooding tree construction

The tree can be efficiently constructed by a flooding-based 
immersion. The concept is very similar to the flooding-based 
immersion of the ordinary component-tree [35], with the 
exception, that the derivatives are flooded instead of the 
image pixels and need to be mapped to the image pixels in 

(1)�leftI(x, y) = I(x − 1, y) −I(x, y)

(2)�rightI(x, y) = I(x, y) −I(x + 1, y)

(3)�upperI(x, y) = I(x, y − 1) −I(x, y)

(4)�lowerI(x, y) = I(x, y) −I(x, y + 1),
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the construction process. An overview of the flooding-based 
tree construction is visualized in Fig. 4.

In an initial step, starting from an arbitrary derivative, 
the flooding-based immersion searches for a derivative 
with a local minimal magnitude. Hereby, the local mini-
mum does not need to be strict. It is sufficient to find a 
plateau (a derivative where the neighboring derivatives 
have the same or larger magnitude). In general, this step 
requires the notion of the neighborhood of a derivative. 
This is essentially determined by the two pixels it con-
nects. Each of these pixels has 4 derivatives, two vertical 
ones and two horizontal ones. However, since they share 
the derivative that connects them, both pixels only have 
three unique derivatives. Furthermore, the neighbors of 
vertical and horizontal derivatives are different. They are 
both displayed in Fig. 5 for clarification. The alternating 
6-connected structure is the edge graph of the Khalimsky 
grid [12]. To ensure that each true inner distance has 6 
neighbors and that no explicit border treatment is required, 
the derivatives at the border of the image are artificially 

added with an infinite magnitude. Therefore, there are 
w + 1 horizontal derivatives within each row of the image 
and w vertical derivatives, where w is the width of original 
image.

Starting from an arbitrary derivative, its magnitude is 
compared to the magnitude of its six neighboring deriva-
tives. As soon as a derivative with a lower magnitude is 
encountered, the process stops checking the other neigh-
bors and floods into the respective derivative. This process 
is continued until a derivative that has a locally minimal 
magnitude (not strictly minimal) is encountered. Then, 
the two pixels belonging to the respective derivative are 
merged into a new component of the component-tree. Dur-
ing this process, all visited derivatives are stored in a heap. 
As a consequence, each derivative needs to be visited once 
during the tree construction. Hence, the flooding-based 
immersion is linear in the number of pixels.

In the next step, the derivative with the lowest magni-
tude in the heap is removed and compared to its neighbors. 
Either the process floods towards a new local minimum, 
or if all neighbors have been visited, merges the respec-
tive pixels to existing components. More precisely, every 
emerging derivative has four possibilities: 

1.	 It connects two pixels that have not yet been visited ⇒ a 
new child node is generated.

2.	 It connects a pixel that has not been visited yet to an 
existing component ⇒ if the derivative magnitude is 
larger than those generating the respective component, 
a new parent node is generated. Otherwise, it is merely 
added to the component.

3.	 It connects two existing components ⇒ a new parent 
node connecting both components is generated.

4.	 It connects two pixels already within the same com-
ponent ⇒ nothing needs to be done for this derivative. 
Continue with the next element in the heap

Fig. 3   (Best viewed in color) Toy example of the quasi-flat zone hier-
archy for a three-channel image. Conceptually, the tree is constructed 
by iteratively thresholding the derivative magnitudes and connecting 
the resulting connected components. Hence, in an early stage, each 
of the uniquely colored regions is connected in a component (child 
node). In a next step, the most similar colors are connected in parent 
components. Since the orange region has a similar ”distance” to the 
red and green regions it is connected to these components in a later 
step. Finally, the white region, having the largest distance to all the 
colors, is connected to the other components in the root node, which 
represents the complete image

Fig. 4   Flow chart of the proposed flooding-based immersion. The 
single steps are explained in detail in Sect. 3.1

Vertical Edges Horizontal Edges

Fig. 5   The derivatives are between two pixels (gray boxes) and each 
have 6 neighbors. On the left, the 6 neighbors of a vertical (red) 
derivative are displayed and on the right, the 6 neighbors of a hori-
zontal derivative (blue) are displayed



103Journal of Real-Time Image Processing (2021) 18:99–112	

1 3

It is important to note that the resulting hierarchy is inde-
pendent of the choice of the starting point and of the order 
in which the neighboring derivatives are visited for the local 
flooding-based immersion. As soon as all derivatives have 
been visited (hence, the heap is empty), the process termi-
nates. A toy example of the tree construction that displays 
the horizontal and vertical derivatives and the respective 
local flooding-based approach is displayed in Fig. 6.

Although the flooding immersion walks through all of 
the image derivatives, the pixels belonging to the deriva-
tives are added to the component-tree. The derivatives can 
be efficiently mapped to the pixel values by their linearized 
image index �l . The mapping is different for vertical and 
horizontal derivatives and can be computed as:

where w is the image width, Phorz. are the index of the two 
image pixel for a horizontal derivative, Pvert. the index of the 
two image pixel for a vertical derivative, and ⌊⋅⌋ represents 
the floor function, respectively.

3.2 � Characteristics of the gradient‑based 
component‑tree

The granularity of the component-tree can be configured by 
discretizing the derivative magnitudes. We achieve this by 
quantizing the derivative magnitudes into a certain number 
of bins. However, since the distribution of the derivative 
magnitude is far from uniform in natural images, it is rea-
sonable to not bin the derivatives equidistantly. This was 

(5)

Phorz.(�
l) = {�l − (w + 1)(⌊�l∕(2w + 1)⌋ + 1),

�l − (w + 1)(⌊�l∕(2w + 1)⌋ + 1) + 1}

Pvert.(�
l) = {�l − (w + 1)(⌊�l∕(2w + 1)⌋) − w,

�l − (w + 1)(⌊�l∕(2w + 1)⌋)},

also observed by Forssén [17] when extracting the so-called 
maximally stable color regions (MSCR). For the quasi-flat 
zone hierarchy, a very coarse binning leads to very compact 
trees; while, a more fine binning leads to more complex and 
descriptive trees. As shown in Fig. 7, although less descrip-
tive, the coarse trees have the advantage that they can be 
computed significantly faster and that they reduce the com-
putational complexity of the image processing techniques 
applied to them.

To ensure that the regions in the single components of 
the component-tree are pixel precise and include each pixel 
within a homogeneous region, it is essential to consider the 
derivatives at their true position between two pixels. Other 
approaches flood the gradient magnitude image directly for 
simplicity [15]. Although this enable to assume a 4-con-
nected neighborhood of the derivatives and use an ordinary 
component-tree construction algorithm, the resulting com-
ponents do not contain the true pixels of each homogene-
ous region. The differences between two pixels are added to 
both pixels. As a consequence, every edge is it least 2 pixels 
wide in the resulting images and only regions that are sig-
nificantly large can be extracted. Furthermore, the resulting 
homogeneous regions are smaller than the actual homogene-
ous regions in the input image. For example, when flooding 
the gradient magnitude image of the toy example in Fig. 3 
directly (as in [15]), it is not possible to extract the small 
regions. The gradient magnitude image has a high value at 
each pixel and has no valleys to flood. This is highlighted 
in Fig. 8.

3.3 � Implementation details

The described quasi-flat zone hierarchy has the same struc-
ture as the gray-value component-tree. Therefore, the same 
algorithms may be applied. Nevertheless, the following 
modifications help to improve the algorithm’s robustness: 

Fig. 6   (Best viewed in color) In the flooding-based immersion, start-
ing from an arbitrary derivative, the immersion floods along the 
smallest neighboring derivative. When it finds a local minimum, the 
pixels belonging to the derivative are merged. In this example, the 
path first follows the zero derivatives within the red region, creating a 
red component within the component-tree. The next smallest deriva-
tive is at the border to the pink region; hence, the path floods into the 
pink area
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Fig. 7   The granularity of the component-tree can be configured by 
quantizing the derivative magnitudes into bins. The number of bins 
influences the runtime and the granularity of the possible segmenta-
tions. The measurements were obtained for 50 random images from 
PASCAL VOC 2007 [16]. Since the variation of the runtime was very 
small ( ≈ 0.3 ), error bars have not been added
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1.	 Since the algorithm works on pixel differences, it is sus-
ceptible to image noise. This was also observed by Fors-
sén [17] who proposed to perform Gaussian smoothing 
as a preprocessing step. Unfortunately, this may add arti-
ficial components at strict vertical or horizontal image 
derivatives. We found that edge-preserving smoothing, 
such as bilateral or guided image filtering [20] helps to 
remove these artifacts. An example is shown in Fig. 9.

2.	 Furthermore, since very small image regions are rarely 
of interest, we found it very useful to restrict the mini-
mal area a component must have to create a node within 
the tree. This leads to more compact trees and can sig-
nificantly reduce the runtime, while it has virtually 
no impact on later queries of the component-tree. As 
opposed to [45], we do not delete the regions from the 
tree explicitly and then apply a region growing algo-
rithm to extend the remaining components. Instead, the 
flooding-based immersion allows to merge these regions 
into their parent component during the tree construction 

implicitly. For this, each component is only added to the 
tree once it is big enough. Until then, the connecting 
pixels are added to the component without creating par-
ent components. This allows to filter the regions without 
adding any computational overhead. Each derivative still 
only needs to be visited once by the algorithm.

In our experiments, we also use both concepts for the gray-
scale component-tree, since they are equally applicable.

In general, our approach has a larger computational over-
head than that of the gray-scale component-tree. First of all, 
there are around twice as many image derivatives as there 
are pixels. Furthermore, each derivative has to consider 6 
derivative neighbors compared to 4 pixel neighbors. Hence, 
the construction process is expected to be approximately 3 
times slower than that of the gray-scale component-tree for 
a single polarity (plus the overhead of calculating the image 
derivatives). However, since the quasi-flat zone hierarchy 
implicitly captures all regions which are lighter or darker 
than their background (for gray-scale images), the runtime 
is essentially only 1.5 times slower when extracting regions 
of both polarities. This factor is confirmed empirically in 
Fig. 10.

Furthermore, the union-find data structure (with path 
compression) that is also shown in Fig. 10 supports quasi-
linear time in the number of pixels [17]. More specifically, 
the time is bounded by O(n�(n)) , where n is the number of 
pixels and �(n) is the inverse of the Ackermann function, 
whose value is smaller than 5 if n is of the order 1080 . The 
flooding-based approach has a complexity of O(n�) , where 
� is independent of n, since each pixel is only considered 

Fig. 8   The gradient magnitude image (left) and the derivatives 
between the image pixels (right) of the toy image in Fig. 3 are indi-
cated. The gradient magnitude image has the problem that it spreads 
derivatives into all adjacent pixel values. It is not suited for extract-
ing small homogeneous regions and generates eroded versions of the 
actual homogeneous regions in an image

Fig. 9   In the top row, Gaussian smoothing (left) and edge-preserv-
ing bilateral filtering (right) are applied to a vertical image edge. 
The resulting homogeneous regions are shown in the bottom row. 
Gaussian smoothing adds artifacts that create artificial homogeneous 
regions

Fig. 10   The runtime and variance of constructing the tree with the 
proposed flooding-based immersion and the standard union-find-
based algorithm (Kruskal). The average runtimes are computed using 
30 randomly selected pictures from the Pascal VOC 2007 dataset 
[16]. The computation time of the ordinary gray-scale component-
tree is added as orientation
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once. Furthermore, the representation is less memory inten-
sive, since the data structure does not require each pixel to 
be represented by an element of a data structure before it is 
visited by the flooding process.

Please note, the complexity of the tree traversal is the 
same for both component-trees. All of the routines presented 
in this paper are implemented in C and the code is optimized 
and parallelized where possible. In general, the tree con-
struction is very efficient and requires less than 250ms for a 
800 × 1000 image on an IntelCore i7-4810 CPU @2.8GHz 
with 16GB of RAM with Windows 7 (x64).

3.4 � Multiple disconnected component‑trees

To speed up the construction process even further, it is pos-
sible to restrict the maximal derivative magnitude to be 
considered during the tree construction. A large derivative 
magnitude indicates that the difference between the two pix-
els is very large. However, many image processing applica-
tions focus on finding regions that are very homogeneous 
and are not concerned with representing the complete image 
in the component-tree. Furthermore, since pixels may be 
connected over different paths of derivatives, the complete 
image is often represented within the component-tree with-
out needing to consider all derivatives. However, restricting 
the maximal derivative magnitude may yield multiple, sepa-
rated, trees. In this case, the image processing algorithms 
described later are applied to the single trees independently. 
Again, the concept is also applicable to gray-value compo-
nent-trees. In this case, the minimal and/or maximal gray-
value threshold to be considered is set. This may reduce the 
number of pixels that need to be considered considerably. 
Please note, the parametrization of both concepts is highly 
application specific.

4 � Maximally stable homogeneous regions

The constructed hierarchy can essentially be used for the 
same image processing tasks as the gray-scale component-
tree. For example, the tree can be used to efficiently extract 
stable regions similar to MSER. The only difference is that 
the tree nodes do not consist of extremal regions but of 
homogeneous regions. As mentioned above, homogeneous 
regions are characterized by the fact that each pixel within 
the region has a vertical or horizontal derivative with a 
smaller magnitude than all outer derivatives of the region. 
Otherwise, the concept of stable regions is the same. Hence, 
both approaches share the same parameters and scale equally 
with growing image sizes. Let R1,… ,Ri−1,Ri,Ri+1 … be a 
set of nested homogeneous or extremal regions, respectively 
(hence Ri ⊂ Ri+1 ). In the context of component-trees, the 
index i encodes the gray-value threshold or the derivative 

magnitude threshold that generated the region. A maximally 
stable region Ri∗ in the context of MSER and MSHR is a 
region that has a local minimum of

at i ∗ . Here, | ⋅ | denotes the cardinality and � is a parameter 
of the method. The parameter � encodes how stable a region 
is over ±� thresholds. The larger the value, the more stable 
the regions need to be.

In a component-tree, the sequence of ancestor and 
descendant nodes for a node is a set of nested regions. To 
simplify the computation, each node in the tree stores its 
area and the smallest derivative magnitude that connects its 
inner points (these can be adapted on the fly during the tree 
construction). Hence, s(i) can be computed for each node by 
checking the area of the ancestor and descendant nodes at a 
distance of � , respectively. The resulting maximally stable 
homogeneous regions (MSHR) are possibly overlapping 
regions that do not change their area significantly over a 
given derivative magnitude range.

An example of MSHR for an image from PASCAL 
VOC 2007 [16] is shown in Fig. 11. For all MSHR exam-
ples, we use a guided image filter with a radius of 3 and 

(6)s(i) =
|Ri+� ⧵ Ri−�|

|Ri|
,

Fig. 11   The quasi-flat zone hierarchy can be used to extract stable 
regions from color images. The images b–d display the extracted 
MSHR from image a for different settings of � . Larger values of � 
lead to a coarser segmentation
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an amplitude threshold of 20 (denoted as � in [20]) for 
preprocessing. The parameter � in (6) determines the sta-
bility of the segmented regions. An advantage of using the 
derivative magnitude-based component-tree for the MSHR 
extraction process is that various different parameter set-
tings of � can be used to extract a large collection of dif-
ferent regions without significantly increasing the runtime. 
As shown in Fig. 12, the runtime of the tree traversal is 
negligible to the time required for the tree construction. 
Hence, regions for multiple values of � can be extracted 
from an image at little cost. The displayed preprocessing 
time includes the guided filtering step and the derivative 
calculation. For the evaluation, we used hyper-spectral 
image data obtained from the Stanford Center for Image 
Systems Engineering (SCIEN) [42]. We randomly chose a 
subset of channels and evaluated the runtime for 50 runs.

4.1 � MSHR vs MSER

The building blocks of MSER are extremal regions that 
either have gray-scales strictly larger or strictly smaller 
than their outer border. This means that some regions of 
interest can never be segmented with the help of MSER. In 
contrast, the building blocks of MSHR are homogeneous 
regions, which require that each inner pixel has a smaller 
derivative than all outer derivatives of the region. Hence, 
as shown in Fig. 13, our approach is able to extract regions 
that simultaneously have a lighter and darker background. 
In the applications section, we show how this attribute 
can be very helpful in applications such as OCR, where 
MSER-based approaches fail.

4.2 � MSHR for stereo feature‑point matching

As their gray-value counterpart, MSHR can also be used 
for stereo feature matching. Forssén [17] showed that color-
based MSER are superior to the original MSER [28] in terms 
of repeatability in wide-baseline stereo feature-point match-
ing on a set of 8 image sets [37]. We conducted extensive 
experiments and were able to repeat the results. Neverthe-
less, we observed that the repeatability of the stereo features 
of MSER, MSCR and MSHR depend more on the parameter 
settings (mostly on � ) than on the chosen method. Hence, 
we omit our experiments on stereo feature point mapping.

5 � Applications

5.1 � Optical character recognition

One of most common applications of the gray-scale com-
ponent-tree is the extraction of maximally stable extremal 
regions (MSER) [29]. Although initially proposed as stereo 
features [28], they are used extensively as a preprocessing 
step for optical character recognition (OCR) systems [24, 
34]. Please note, although the performance of MSER-based 
OCR systems can be outperformed by techniques building 
on convolutional and recurrent neural networks [6, 40], they 
are still used in many running OCR systems. This is due to 
the fact that they have a much lower computational complex-
ity and can be computed in real time on embedded devices 
and machines without a GPU.

Since MSER assume the regions to be extremal, they can-
not extract characters that have a lighter and darker back-
ground (see Figs. 1 and 13). This can be a problem in OCR 

Fig. 12   The runtime of constructing and traversing the tree is inde-
pendent of the number of channels. Only the preprocessing step 
scales linearly if additional channels are added to an image. The aver-
age runtimes and variances displayed use channels with 801 x 1000 
pixels

(a) (b)

(c)

The MSHR of (a)

The light and dark MSER of (a)

Fig. 13   The center region of a is no extremal region. Hence, regard-
less of the parameter settings, it will never be an MSER (c). For 
MSHR, on the other hand, the inner derivatives of the center region 
are smaller than its outer class derivatives, and hence it is a homoge-
neous region (b). The whole image is an MSER as well as an MSHR 
but is omitted in b and c for the sake of clarity
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systems, since most approaches fail if the characters cannot 
be segmented in an early stage. We evaluate the text segmen-
tation capabilities of MSER [29], MSCR [17] and MSHR 
regions on the ICDAR 2015 ”Focused Scene Text challenge“ 
[23] dataset. As in common in the ICDAR challenges [22], 
we consider a character to be found if it overlaps the ground 
truth bounding box according to the PASCAL overlap cri-
terion [16] by more than 50%. As shown in Table 1, MSHR 
clearly outperforms MSCR. However, when applied alone, 
both methods are weaker than MSER.

The different approaches of either flooding the derivatives 
or the image pixels essential create regions with comple-
mentary attributes. This can be leveraged to improve the 
segmentation results. For this, the union of the proposed 
character regions of MSHR and MSER (MSER + MSHR), 
and of MSHR and MSER (MSER + MSHR) is computed. 
As expected, the combination of MSHR and MSER is able 
to significantly improve the segmentation obtained by only 
MSER. Please note, the initial recall of the segmentation 
is an important indicator of how well an OCR system can 
perform. Later steps are usually concerned with grouping 
and filtering out undesired regions, hence what is not found 
in an initial step will not be found. A handful of example 
images where MSHR are superior to MSER is presented in 
Figs. 1 and 14.

The runtimes of the approaches are displayed in Table 2. 
As expected, MSER slightly outperforms MSHR. However, 
since both approaches construct a component-tree, charac-
ters for different settings of � can be extracted extremely effi-
ciently. As a consequence, both approaches are significantly 
faster than MSCR.

5.2 � Tracking

The efficient tracking of regions in component-trees was first 
proposed for gray-scale trees in [14] and then extended to 
multi-channel images [3]. The tracking algorithm consists 
of three steps: model initialization, model tracking, and the 
model update.

Model initialization In the first step, we extract MSHR 
from the given target location. MSHR divide the image into 
multiple, possibly overlapping, connected components. The 
tracking can either be restricted to the largest, the most sta-
ble or all MSHR regions within the template.

Table 1   The segmentation results of MSER [29], MSCR [17] and 
MSER augmented with MSHR on the ICDAR 2015 “Focused Scene 
Text challenge“ [23] dataset are displayed

The proposed approach clearly outperforms MSCR and is able to 
improve the segmentation obtained by only MSER
The best performing method is highlighted in bold

Method � = 1 � = 5 � = 10

MSER [29] 89.69 85.44 79.88
MSCR [17] 80.75 71.41 57.28
MSHR 88.73 83.69 76.21
MSER + MSCR 90.84 87.68 80.76
MSER + MSHR 93.64 89.12 84.46

Table 2   The average computation time of MSER [29], MSCR [17] 
and MSER augmented with MSHR on the ICDAR 2015 “Focused 
Scene Text challenge“ [23] dataset are displayed

The runtime is averaged over all images (which have varying size and 
complexity)

Method ∅ runtime in ms.

MSER [29] 93.34
MSCR [17] 841.71
MSHR 133.13
MSER + MSCR 951.0
MSER + MSHR 227.28

Fig. 14   The MSER segmentation in the first row has difficulties with 
characters that are simultaneously lighter and darker than their back-
ground. The MSHR segmentation is able to extract all relevant char-
acter regions and displayed in the second row
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Model tracking In the successive frames, the compo-
nent-tree is constructed and the MSHR regions are matched 
against all regions in the respective tree. The tree is con-
structed for a rectangular search domain that is twice the size 
of the objects bounding box in the prior frame.

To enable efficient matching, we compute a handful of 
region and gray-scale features for each MSHR. We solely 
use features that can efficiently be calculated by region and 
gray-scale moments. The advantage of using moments, is 
that they can be computed incrementally during the tree 
construction. The moment of order (p, q) of a region R is 
defined as

where r and c represent the row and the column coordinates, 
respectively, and p, q ≥ 0 . Since the flooding-based immer-
sion considers each image pixel in the tree construction any-
way, our choice of features can be calculated without add-
ing significant computational complexity. We use the area 
of the region ( m0,0 ), the center of gravity ( m1,1∕m0,0 ) and 
the ellipse parameters r1, r2 and � as tracking features. The 
ellipse parameters can be calculated with the normalized 
moments, please see [19] for details. Analogously, for each 
channel, we use gray-scale moments to calculate the average 
gray-scale and the gray-scale deviation as further features. 
Please note, our selection of features makes the approach 
invariant to rotations of the MSHR.

To further improve the robustness, the single features in 
the matching step can be weighted for specific applications. 
For example, if the object undergoes heavy deformations, 
but has a relatively constant color, the weight of the region 
moments is reduced and the gray-scale features weights are 
increased. The weights are estimated automatically from 
the variation of the color and the variation of the region 
moments within the first five frames.

In the tracking step, we do not extract the most stable 
MSHR and match their features to those from the initial 
frame. Instead, we compare the features of the initial MSHR 
to the features of all the homogeneous regions in the com-
ponent-tree nodes. This helps to improve the robustness and 
ensures we do not restrict the search to only maximally sta-
ble homogeneous regions.

Model update As opposed to [14], we update the region 
features incrementally in each frame. This enables to han-
dle short occlusions and detection failures in single frames. 
Furthermore, it allows the object to change its appearance 
throughout the sequence and allows more robust tracking. 
Hence, after successfully locating the node that best fits 
the to-be-tracked MSHR at time step t, the feature vector 
(denoted as F  ) is updated as

(7)mp,q =
∑

(r,c)∈R

rpcq,

In our experiments, we used � = 0.5.

Results The proposed MSHR tracking approach is not 
restricted to bounding boxes. Hence, to evaluate the qual-
ity of the tracking results, we manually annotated dense 
by-pixel segmentations of scenes from the OTB [48] and 
VOT2016 [25] datasets. Otherwise, the given bounding 
box ground truth would introduce an undesired bias when 
measuring the overlap scores of by-pixel segmentations. As 
accuracy measure, we use the commonly used Intersection 
over Union (IoU) criterion.

To bring the results into perspective, we compute the best 
possible overlap an axis-aligned tracker could obtain for the 
segmentation of a given scene. By this means, the perfor-
mance gain of using segmentations can be highlighted with-
out introducing a bias by choosing a specific set of state-of-
the-art axis-aligned trackers to compete against. We refer to 
this tracker as the Best box. Please note, the Best box 
is an upper performance bound for all box-based trackers. 
Hence, it outperforms the current state-of-the-art of deep-
learning-based trackers, since these are all restricted to axis-
aligned boxes. Please see [4, 5] for details on how the Best 
box can be efficiently computed.

For the gray-scale sequence dress from OTB [48], 
the MSER tracker, Best box and the MSHR tracker all 
perform similarly, as is displayed in Fig. 15. In the respec-
tive sequence, the MSER tracker is able to track the head 
and the dress of the dancer, while the MSHR tracker only 
tracks the dress. Hence, the overlap scores of MSER are 

(8)Ft+1 = (1 − �)Ft + �Ft+1.

Fig. 15   dress from OTB [48]. For this gray-scale scene, the MSER 
tracker (average �

IoU
 = 0.71) is able to outperform the MSHR tracker 

(average �
IoU

 = 0.69). The ground truth segmentation of the torso is 
visualized for reference (green). The MSER tracker also outperforms 
the best possible overlap an axis-aligned tracker (Best box, aver-
age �

IoU
 = 0.64) can achieve for the segmentations within the scene
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slightly superior. Nevertheless, it is important to note that 
both approaches are compared against the best possible 
axis-aligned tracker and, accordingly, the overlap scores are 
impressive.

For color images, the difference of MSER and MSHR 
becomes more evident. In the book  sequence from 
VOT2016 [25], the MSER tracker fails, as is shown in 
Fig. 16. The book is, per definition, not an extremal region 
in the gray-scale image. Hence, the initialization is not suc-
cessful and the MSER tracker fails. Nevertheless, the book 
is a homogeneous region in both the gray-scale and the color 
image, and accordingly, the MSHR tracker is successful. In 
most frames, the MSHR tracker is even able to outperform 
the Best box and obtains an average IoU of 0.7.

For the book sequence, the MSHR tracking requires at 
most of 24ms per frame and for the dress sequence at most 
19ms per frame on an Intel Core i7-4810 CPU @2.8GHz 
with 16GB of RAM with Windows 7 (x64).

5.3 � 3D segmentation

In the third application, we reconstruct organs in 3D by 
tracking a slice of an Computed Tomography (CT) scan 
along the axis orthogonal to the image data. We use the CT 
data provided in the 3DIRCADb dataset [44].

To initialize the tracking process, the organ is marked 
in an arbitrary slice of the CT data by a bounding box. The 
most stable MSHR is then automatically segmented in 
the initialization process for tracking. An example of the 
tracked regions is visualized for two examples in Fig. 17. 
Given the segmentations of the single slices, the organ can 

be reconstructed in 3D. We compare the reconstruction for 
MSER and MSHR tracking in Fig. 18. To enhance the vis-
ualization, the datapoints are triangulated and the surface 
normals are calculated. Since the contrast of the organs can 
be very low in CT images, the MSER tracking has difficul-
ties catching the organ boundaries. Furthermore, the organ 
is sometimes partly lighter and darker than the background, 
which may lead to MSER tracking failure. The proposed 
MSHR tracking copes well with these difficulties, and the 
reconstructions are significantly better.

Please note, the tracking of the regions in the CT slices 
is extremely efficient and only requires an average of 5ms 
per slice. Hence, for the 45 slices in Fig. 18 the complete 
3D reconstruction process, which includes the triangulation 
( ≈ 1 s ), the calculation of the surface normals ( ≈ 130ms ), 
and the segmentation ( ≈ 220ms ), requires only around 1.5 s.

The average �IoU for MSER and MSHR is displayed 
for a selection of organs in the 3DIRCADb dataset [44] in 
Table 3. As expected, the proposed MSHR significantly 
outperforms MSER on CT images. MSER struggles with 
the fact that the organs are sometimes partly lighter and 

Fig. 16   book from VOT2016 [25]. Since the gray-scale region is not 
an MSER, it cannot be tracked with MSER tracking (average �

IoU
 = 

0.0) . The overlap scores of the MSHR tracking (average �
IoU

 = 0.71) 
are comparable and sometimes even better than the overlap the best 
possible axis-aligned tracker (Best box, average �

IoU
 = 0.72) could 

theoretically achieve

Table 3   The average �
IoU

 scores of MSER [29] our proposed MSHR 
on the 3DIRCADb dataset [44] are displayed

Method ∅ �
IoU

∅ Runtime 
per frame in 
ms.

MSER [29] 0.51 3.62
MSHR 0.87 4.89

Fig. 17   Two example sequences from the 3DIRCADb dataset [44]. 
Given an initial selection of a single slice (the middle image in a and 
b) of the right kidney, the proposed MSHR tracking tracks the region 
forward and backwards in space. The segmented slices can be used to 
reconstruct the organ, see Fig. 18 for an example reconstruction
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darker than the background. Both methods are extremely 
fast, since the component-tree only needs to be con-
structed for a small part of the image.

5.4 � Image filtering

A popular application for gray-value component-trees is 
image filtering or simplification [21, 41]. Since the com-
ponent-tree inherently incorporates the connectedness 
of the different image components, smaller regions can 
be easily removed or single components filtered without 
being influenced by other components. As opposed to 
approaches that build on component graphs [27, 32], the 
gray-value based concepts can be applied to the quasi-
flat zones hierarchy without adaptation. For example, by 
restricting the maximum derivative magnitude, we can 
construct a collection of component-trees from the input 
image. Each component within the trees consists of pix-
els that are connected by an derivative smaller than the 
defined maximum size. We can filter these components 
without influencing the filter results by the large deriva-
tives. An example which sets each component smaller 
than a certain area to its mean pixel values is shown in 
Fig. 19. The schemes within [21] or [41] can be applied 
equivalently.

6 � Conclusion

In this paper we proposed an efficient algorithm to construct 
the quasi-flat zone hierarchy of an input image. As opposed 
to the ordinary component-tree, the presented approach can 
be applied to images with an arbitrary number of channels. 
The presented algorithm is extremely efficient and opens the 
door for a number of gray-scale image processing techniques 
to multi-channel images. To highlight the universality of 
the proposed algorithm, we present a number of example 
applications: object tracking, 3D segmentation, and image 
filtering.

Furthermore, we introduce the concept of maximally 
stable homogeneous regions for image segmentation. The 
extension of an existing gray-scale component-tree algo-
rithm is straightforward and runs efficiently in linear time 

Fig. 18   In the first row, the reconstruction of the right kidney is dis-
played for MSER tracking. The low contrast and the fact that the 
background is partly darker and lighter than the objects makes the 
reconstruction noisy. The proposed MSHR tracking can cope with 
these situations and the reconstruction is significantly better

Fig. 19   The quasi-flat zones hierarchy can be used to filter images. 
The images (top row) are filtered by setting the pixel value to the 
mean pixel value of the respective component (bottom row)
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(in the number of pixels). We show how maximally stable 
homogeneous regions can be used to improve OCR results 
on the ICDAR 2015 ”Focused Scene Text challenge“ and 
display a number of examples.

In future work, we intend to investigate tightening the 
connectivity of homogeneous regions to require multiple 
vertical or horizontal derivatives with a smaller magnitude 
than the current threshold. Although this adds algorithmic 
complexity, it should help to tackle segmentation tasks with-
out the need of prior image pre-processing. Secondly, we 
intend to proceed towards an automatic estimation of the 
� parameter in the MSHR computation. This should allow 
to improve the usability of the approach for generic OCR 
applications.
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