
Vol.:(0123456789)1 3

Journal of Real-Time Image Processing (2020) 17:1421–1446
https://doi.org/10.1007/s11554-019-00901-x

ORIGINAL RESEARCH PAPER

A memory and area‑efficient distributed arithmetic based modular
VLSI architecture of 1D/2D reconfigurable 9/7 and 5/3 DWT filters
for real‑time image decomposition

Anirban Chakraborty1 · Ayan Banerjee1

Received: 20 November 2018 / Accepted: 15 July 2019 / Published online: 25 July 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
In this article, we have proposed the internal architecture of a dedicated hardware for 1D/2D convolution-based 9/7 and
5/3 DWT filters, exploiting bit-parallel ‘distributed arithmetic’ (DA) to reduce the computation time of our proposed DWT
design while retaining the area at a comparable level to other recent existing designs. Despite using memory extensive bit-
parallel DA, we have successfully achieved 90% reduction in the memory size than that of the other notable architectures.
Through our proposed architecture, both the 9/7 and 5/3 DWT filters can be realized with a selection input, mode. With
the introduction of DA, we have incorporated pipelining and parallelism into our proposed convolution-based 1D/2D DWT
architectures. We have reduced the area by 38.3% and memory requirement by 90% than that of the latest remarkable designs.
The critical-path delay of our design is almost 50% than that of the other latest designs. We have successfully applied our
prototype 2D design for real-time image decomposition. The quality of the architecture in case of real-time image decom-
position is measured by ‘peak signal-to-noise ratio’ and ‘computation time’, where our proposed design outperforms other
similar kind of software- and hardware-based implementations.

Keywords DWT · Distributed arithmetic · Memory efficient · Digital VLSI design · Parallelism · Image decomposition ·
PSNR

1 Introduction

Now-a-days, ‘discrete wavelet transform’ (DWT) has gained
popularity among signal-processing engineers and research-
ers. This is mainly because of its capability of presenting
time-domain as well as frequency-domain information of a
signal simultaneously [1]. Until date, various kinds of tech-
niques have been proposed for the implementation of DWT
algorithm in terms of a dedicated hardware which facilitates
real-time signal processing. All these hardware implemen-
tations of DWT can be broadly classified into two heads,
viz., designs based on convolution-based DWT and designs
based on lifting-based DWT [2, 3]. These can again be cat-
egorized into several sub-heads. Some of the notable and

recent hardware implementations of DWT are presented in
the subsequent paragraphs.

In the work of [4], the authors proposed two DWT
architectures for 1D 9/7 DWT filters. Those architectures
are based on bit-serial and bit-parallel ‘distributed arith-
metic’ (DA). Though their bit-serial DA-based 1D DWT
architecture of 9/7 filter requires less hardware compared
to other contemporary works, the architecture is very slow
and thereby ineligible to be used for real-time applica-
tions demanding high-frame-processing rate. On the other
hand, their bit-parallel DA-based design is faster than the
bit-serial one. However, bit-parallel DA-based design con-
sumes almost eight times more memory resources than that
of bit-serial DA-based design. Therefore, their designs are
either area efficient and slow or memory consuming and fast.
Their designs fail to address some serious design-related
inefficiencies which restricts their design’s applicability in
real-time signal processing.

Mahajan et al. [5] proposed a DA-based 1D DWT archi-
tecture. They used ‘carry save full adder’ (CSFA) and carry
save accumulator to reduce their design’s critical-path delay.

 * Anirban Chakraborty
 chakraborty.sab@gmail.com

1 Electronics and Telecommunication Engineering
Department, Indian Institute of Engineering Science
and Technology, Shibpur, Howrah, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-019-00901-x&domain=pdf

1422 Journal of Real-Time Image Processing (2020) 17:1421–1446

1 3

In this way, they achieved a design, whose maximum operat-
ing frequency is satisfactory. Their design is also claimed to
be area efficient. However, the speed of operation of their
proposed architecture is not at all up to the mark as their
‘computation time’ (CT) and ‘cycle period’ (CP) are pro-
portionally related to the input data width ‘L’. Therefore,
for achieving a good data precision, their design stumbles in
terms of speed and maximum operating frequency. Moreo-
ver, there is also scope of reducing memory requirement
further.

The authors of the work [6] presented a three-level 2D
DWT architecture for Daubechies 9/7 as well as bi-orthog-
onal filters. They successfully managed to reduce memory
size to a great extent. They eliminated frame buffer and
introduced line buffer in place of that. They also achieved
high speed. However, all their advantages come at the cost of
severe area overhead and power requirement. For example,
for three-level 2D DWT decomposition of 512 × 512 image,
their Daub-4 architecture requires 152 more multipliers and
114 more adders just to reduce 82414 memory words. There-
fore, in spite of their praiseworthy memory efficiency, their
designs suffer from significant area and power inefficiency.

Meher et al. [7] proposed 9/7 and 5/3 filter architec-
tures. They proposed pipelined, without pipelined and also
reconfigurable 9/7 and 5/3 architectures. They focused on
reducing the area and memory size significantly. Though
their design is area efficient and the operating speed is also
satisfactory, there is further scope of reducing their CP and
thereby enhancing the maximum operating frequency which
is an important design aspect for real-time signal processing.

Lai et al. [8] presented a lifting-based 2D DWT architec-
ture for JPEAG 2000 applications. They used two 1D DWT
cores and one transposing unit for realizing 2D DWT archi-
tecture. For single-level DWT decomposition of an N × N
image, 4N temporal memory is required in their proposed
design which can be considered as a memory inefficient
design. Apart from this, their design consumes large silicon
area, as their design is not multiplier less. Due to existence
of multipliers, their proposed architecture’s CP is also larger
compared to other recent works.

In the work of [9], an optimized lifting-based 1D DWT
architecture is proposed based on embedded decimation
technique. They further extended their designs for 2D. They
used a vertical and two horizontal filter modules working in
parallel and pipelined for realizing 2D DWT. Though they
put marks of novelty in their proposed design strategy, their
design falls far behind recent DWT architecture in terms
of some important performance parameters such as area
requirements, memory requirement, CP, etc.

Mohanty et al. [10] designed a lifting-based multi-level
2D DWT architecture. The authors presented several innova-
tive design techniques and thereby managed to reduce frame
buffer size, total silicon area requirement. They also focused

on reducing the area delay product by appropriate portioning
and scheduling of the computations performed in different
decomposition levels. Their architecture is also configurable
for area constrained and high-throughput application. How-
ever, while comparing their designs numerically in terms of
various performance parameters, the quality of their design
is found to be of low level in comparison with other similar
kind of works. Their design consumes a large number of
multipliers, adders, and ROM words. The maximum operat-
ing frequency of their design is also not satisfactory.

Tian et al. [11] proposed a VLSI architecture of multi
input/multi output 2D DWT architecture based on lifting
DWT. They focused on reducing the computation time. The
main disadvantage of their design is that the factor by which
they reduced the computation time is the same to the factor
by which the corresponding area requirement and memory
consumption increase. Therefore, basically, they achieved
to reduce the computation time at the cost of proportional
increase in area and memory requirements.

In the work of [12], three generic architectures are pro-
posed for constructing 2D DWT architectures by the usage
of line-based method for any hardware implementation such
as convolution-based or lifting-based implementations. First,
1D architecture is based on single-level decomposition and
it introduces internal line buffers and the optimization of the
buffer size. The second architecture is for multi-level DWT
and it is based on recursive pyramid algorithm. The third
architecture is the combination of the first two architectures.
In spite of all such novelties, their design’s performance is
not satisfactory in comparison with other works, as it con-
sumes large number of multipliers and ROM words.

In the paper of [13], the authors proposed a systolic
modular architecture for 2D DWT. The data processing has
two distinct phases, viz., column processing (stage 1) and
row processing (stage 2). Both of these stages are performed
concurrently by mean of innovative data access techniques.
In this way, using a novel folding techniques and a new data
access scheme, the authors presented a transposition-free
architecture. According to numerical analysis of their work’s
performance, their design requires a number of frame buffers
and multipliers. The CP of their design is also large of the
order of one multiplier delay.

Darji et al. [14] proposed a multiplier less 1D/2D DWT
architecture based on lifting DWT. They used innovative
z-scanning method to reduce transposing buffer size to
0. However, their temporal buffer size is directly propor-
tional to input data points. Their adder requirement is also
high. Their architecture’s performance in case of real-time
image decomposition can also be outshined by other recent
methods.

Dillen et al. [15] proposed combined line-based 5/3,
9/7 DWT filter architecture for JPEG2000 standard. Their
design is claimed to be area and memory efficient and of

1423Journal of Real-Time Image Processing (2020) 17:1421–1446

1 3

high speed. However, their work had been proposed long
time ago. In recent times, there are many works which sur-
passes their design’s specifications. Their architecture can
operate at the maximum operating frequency of 110 MHz
which is not at all considered as high operating frequency
now-a-days.

Banerjee et al. [16] proposed lifting-based 3D DWT
architecture for video processing. Their architecture has fea-
tures such as low power consumption, area efficiency, high
operating speed, and high maximum operating frequency.
However, there is scope of enhancing those features further
and overtaking their design’s performance numerically.

In the work of Hegde et al. [17], the authors proposed
one lifting- and flipping-based DWT architecture which is
memory and power efficient. They used area consumption,
critical-path delay, and power consumption as the main per-
formance metrics. They proposed ‘look-up table’ (LUT)-
based multiplier to reduce area and critical-path delay. They
developed the architecture using gate-level HDL language
and provided the ASIC implementation details. By pro-
posing LUT-based multiplier, they successfully achieved
to reduce the critical-path delay and area consumption of
their multiplier than any conventional popular multiplier.
However, they did not completely omit multipliers from
their designs. Therefore, their design’s critical-path delay
and power consumption are greater than any other multi-
plierless design. Moreover, LUT-based design uses a lot of
registers or memory. Therefore, their design is also memory
extensive.

In the paper [18], a multiplier less lifting-based 2D
DWT architecture was proposed. In the same paper [18], a
flipping-based 2D DWT architecture was also proposed. It
was established in the paper [18] that the inherent low crit-
ical-path delay of flipping-based architecture could also be
achieved using lifting-based DWT design. Both the designs
were compared with other existing works to substantiate
the contributions. Though the designs presented in [18] are
claimed to reduce the critical-path delay significantly, still,
the critical-path delays of both the lifting- and flipping-based
architectures are much higher than that of any convolutional
DWT architecture. Therefore, there exists enough scope of
further enhancing the timing performance.

Having described certain latest and benchmark works in
the domain of DWT architecture design, we are now focused
on briefly mentioning some of the most recent works in the
same domain. In the work [19], the authors presented 1D/2D
DWT architectures using floating-point ‘multiply and accu-
mulator circuit’ (MAC) units. The design was implemented
using 45 nm CMOS technology. Though the validation and
verification of the work [19] are praiseworthy, the perfor-
mance can be improved further in terms of critical-path
delay, CT, and memory requirement. The work presented in
[20] deals with DA-based DWT architecture of LeGall 5/3

DWT filter. The work had been implemented onto Altera
FPGA and the quality of the design was compared with
other DWT-based works to prove its superiority. However,
there remains ample scope of further optimizing the DWT
architecture in terms of area consumption, power consump-
tion, and speed of operation. The authors of the work [21]
presented a 1D DWT architecture of LeGall 5/3 DWT filter
using ‘canonical sign digit’ (CSD)-based DA. The CSD-
based DA method helped the authors proposing hardware
efficient DWT architecture requiring only 7 adders, a few
shift registers and multiplexers. However, from Fig. 5 of
the paper [21], it is evident that their clock period is 100 ns.
This indicates that their design’s operating frequency is only
10 MHz which is not at all acceptable for many real-time
applications. Another significant and most recent DWT
architecture was presented in the work of [22]. In the paper
[22], a dual-memory controller-based 2D DWT architec-
ture had been presented with a focus on real-time image
processing. The memory requirement of the design had
been claimed to be optimized to facilitate real-time image
processing. The architecture was also implemented using
FPGA. Though the design was claimed to be area and mem-
ory efficient, the delay of the design was 11.577 ns which
restricted the design to be used in high-speed applications.
The power consumption of the design had been reported as
0.306 W which could also be reduced with proper design
methodology.

Apart from all the hardware-based DWT implementations
stated above, we have also surveyed certain software-based
DWT realizations using ‘graphics processing unit’ (GPU).
The software-based DWT implementations are presented in
[23, 24]. The work of [23] is a standard work focused on
accelerating the DWT part of JPEG2000 using GPU-based
computations. The authors used ‘compute unified device
architecture’ (CUDA) platform to realize the DWT imple-
mentation on NVidia GeForce GTX 295. The authors of the
paper [23] suggested a DWT algorithm with proper mem-
ory treatment for enhancing the timing performance. The
DWT implementation can decompose a 512 × 512 image
in 0.12 ms. The work of [24] proposed a recent 2D DWT
implementation on NVidia GeForce GTX TITAN Black
GPU. A register-based strategy was followed by the authors
of the work [24] to propose their DWT algorithm which
was claimed to be four times faster than other GPU-based
software implementations of DWT.

In our paper, we have focused on implementing Daubechies
9/7 and 5/3 DWT filters [2] based on convolution-based DWT.
We have extended our design for 2D after initially implement-
ing it into 1D. We have exploited bit-parallel DA to make our
design multiplierless. We have optimized our memory require-
ment which is less than what generally is needed for any bit-
parallel DA-based 2D DWT architectures. We have made
our design tunable for 9/7 and 5/3 filters by means of a mode

1424 Journal of Real-Time Image Processing (2020) 17:1421–1446

1 3

selection input. We have also tested our prototype design for
multi-level DWT analysis in case of real-time image decom-
position. The supremacy of our design is established in terms
of various design-related parameters as well as in case of real-
time image decomposition.

The rest of this paper is organized as follows. In Sect. 2,
overview of DWT algorithm has been discussed. The math-
ematical formula for DA-based DWT is also mentioned in that
section. Then, our proposed 1D/2D DWT architectures are
presented in Sect. 3. Section 4 deals with the analysis of the
comparison results and discussion. In this section, the output-
decomposed images from our prototype proposed DWT filter
are also provided. Finally, we conclude in Sect. 5.

2 Overview of DWT

In DWT, an input signal is passed through a series of high-pass
filters to analyze the high frequencies and through a series of
low-pass filters to analyze the low frequencies. The resolution
and scale of the signal are changed by this filtering operation.
The DWT analyzes the signal at different frequency bands
with different resolutions by decomposing the signal into a
coarse approximation. The decomposition of the signal into
different frequency bands is obtained by passing the original
signal x[n] through a half-band high-pass filter g[n] and a low-
pass filter h[n]. After the filtering, half of the samples can be
eliminated according to the Nyquist’s rule, since the signal
now has the highest frequency which is half of that of the
original signal. This decomposition can be mathematically
expressed as

where yh[k] and yl[k] are the outputs of the high-pass and
low-pass filters, respectively, after sub-sampling by 2.

The DWT of the original signal is then obtained by concat-
enating all coefficients starting from the last level of decom-
position (remaining two samples). The DWT will then have
the same number of coefficients as the original signal. The
reconstruction formula for the DWT is

2.1 Mathematical background of DWT

The high-pass and low-pass filters of the Daube-
chies 9/7 wavelet filter [2] with filter coefficients
(h(i),−3 ≤ i ≤ 3; l(i),−4 ≤ i ≤ 4) and the high-pass and

(1)yh[k] =
∑

n

x[n] ⋅ g[2k − n],

(2)yl[k] =
∑

n

x[n] ⋅ h[2k − n],

(3)x[n] =

∞∑

k=−∞

(
yh[k] ⋅ g[2k − n]

)
+
(
yl[k] ⋅ h[2k − n]

)
.

low-pass filters of the Daubechies 5/3 wavelet filter [3]
with filter coefficients (h�(i),−1 ≤ i ≤ 1; l�(i),−2 ≤ i ≤ 2)
satisfy the symmetry property (h(n) = h(N − n − 1)),
where N is the filter order.

The low-pass and high-pass components of Daubechies
9/7 wavelet filters, vh(9∕7)[n] and vl(9∕7)[n] , respectively, are
given by [7]

In addition

where x[n] is the input data stream. The 9/7 filter coefficients
[7] are given in Table 1.

Using the symmetry property of the coefficients of 9/7
filters as shown in Table 1, the low-pass and high-pass
DWT outputs can be expressed as

In addition

where

Similarly, the low-pass and high-pass components
of Daubechies 5/3 wavelet filters, vh(5∕3) and vl(5∕3) , are
expressed in the similar form of Eqs. 6 and 7 as

In addition

(4)

vh(9∕7)[n] = h[−3]x[n + 3] + h[−2]x[n + 2] + h[−1]x[n + 1]

+ h[0]x[n] + h[1]x[n − 1] + h[2]x[n − 2] + h[3]x[n − 3].

(5)

v
l(9∕7)[n] = l[−4]x[n + 4] + l[−3]x[n + 3] + l[−2]x[n + 2]

+ l[−1]x[n + 1] + l[0]x[n] + l[1]x[n − 1]

+ l[2]x[n − 2] + l[3]x[n − 3] + l[4]x[n − 4],

(6)
vh(9∕7)[n] = h[0]sn[0] + h[1]sn[1] + h[2]sn[2] + h[3]sn[3].

(7)
vl(9∕7)[n] = l[0]sn[0] + l[1]sn[1] + l[2]sn[2] + l[3]sn[3] + l[4]sn[4],

(8)

s
n
[0] = x[n], s

n
[1] = x[n − 1] + x[n + 1],

s
n
[2] = x[n − 2] + x[n + 2],

s
n
[3] = x[n − 3] + x[n + 3],

s
n
[4] = x[n − 4] + x[n + 4].

(9)vh(5∕3)[n] = h�[0]sn[0] + h[1]sn[1].

(10)vl(5∕3)[n] = l�[0]sn[0] + l[1]sn[1] + l[2]sn[2],

Table 1 High- and low-pass coefficients of 9/7 filter [7]

i Low-pass filter, l(i) High-pass filter, h(i)

0 0.6029490 1.1150870
± 1 0.2668641 − 0.5912718
± 2 − 0.0782233 − 0.0575435
± 3 − 0.0168641 0.0912717
± 4 0.0267487

1425Journal of Real-Time Image Processing (2020) 17:1421–1446

1 3

where the 5/3 filter coefficients [7] are given in Table 2.
Equations 6, 7 and 9, 10 may be rewritten in summation

form as

For introducing DA, we have assumed the signal samples
(l(i), h(i), sn(i)) to be L-bit numbers in 2’s complement repre-
sentation. Each of the intermediate signals sn(i) for 0 ≤ i ≤ 4
of Eq. 6 may thus be expressed in expanded form as

Substituting Eqs. 15 in 11 and rearranging the order of sum-
mation, Eq. 11 can be rewritten as

Equation 16 may also be expressed as

where cl = 1 for 1 ≤ l ≤ L − 1 and cl = −1 for l = 0.
Similarly, Eq. 12 can be rewritten as

(11)vh(9∕7)[n] =

3∑

i=0

h[i]sn(i),

(12)vl(9∕7)[n] =

4∑

i=0

l[i]sn(i),

(13)vh(5∕3)[n] =

1∑

i=0

h�[i]sn(i),

(14)vl(5∕3)[n] =

2∑

i=0

l�[i]sn(i).

(15)sn(i) = −
(
sn(i)

)
0
+

L−1∑

l=1

2−l(sn(i))l,

(16)

vh(9∕7)[n] =

L∑

l=1

[
3∑

i=0

h[i]
(
sn(i)

)
l

]
2−l +

3∑

i=0

h[i]
[
−
(
sn[i]

)
l

]
.

(17)vh(9∕7) =

L−1∑

l=0

cl

[
3∑

i=0

h[i]
(
sn(i)

)
l

]
2−l,

(18)vl(9∕7) =

L−1∑

l=0

cl

[
4∑

i=0

l[i]
(
sn(i)

)
l

]
2−l.

In a similar way, Eqs. 13 and 14 can be rewritten as

The intermediate signals sn(i)l, 0 ≤ i ≤ 4, 0 ≤ l ≤ L − 1
are fed as addresses to memory units, where the pre-com-
puted partial inner product values are stored.

3 Proposed DWT architectures

We have realized Eqs. 17–20 in terms of a dedicated
hardware which is capable of processing 1D/2D signals
in real time. In this section, a memory efficient and low
area architecture of 1D and 2D convolution-based 9/7 and
5/3 DWT filter is proposed. The novelty of our design
is that we have exploited the inherent high-speed nature
of convolution-based DWT approach while mitigating
its disadvantages judiciously. The main disadvantages of
convolution-based DWT approach are area inefficiency,
incapability of being pipelined, and huge memory require-
ment. First, two of these demerits are dealt with using DA
configured with bit-parallel mode. However, bit-parallel
DA requires extensive memory. Therefore, it can be said
that the solution for alleviating some of the disadvantages
of convolution-based DWT design, in turn, exaggerating
the other disadvantages of convolution-based DWT. Per-
haps, that is the main reason as to why researchers focus
on lifting-based design leaving the inherent advantages of
convolution-based DWT unexplored. Another significant
achievement of our design is that we have successfully
reduced the huge memory requirement of bit-parallel DA-
based convolutional DWT filters by our own innovative
method and fully enjoyed the virtues of convolution-based
DWT. Initially, we have designed a 1D DWT architecture
exploiting bit-parallel DA. Then, we have extended the
1D DWT architecture for 2D using our proposed design
strategy. We have efficiently introduced universality in our
proposed architecture, so that the same architecture can be
tuned for 9/7 as well as 5/3 DWT filters. We have men-
tioned our proposed design as dual mode in some places
of rest of the paper. Our proposed 1D/2D architecture not
only outperforms other convolution-based DWT architec-
tures, but also it outshines most of the other lifting-based
DWT architectures.

(19)vh(5∕3) =

L−1∑

l=0

cl

[
1∑

i=0

h�[i]
(
sn(i)

)
l

]
2−l,

(20)vl(5∕3) =

L−1∑

l=0

cl

[
2∑

i=0

l�[i]
(
sn(i)

)
l

]
2−l.

Table 2 High- and low-pass coefficients of 5/3 filter [7]

i Low-pass filter, l′(i) High-pass
filter, h′(i)

0 0.75 1
1 0.25 − 0.5
± 2 − 0.125

1426 Journal of Real-Time Image Processing (2020) 17:1421–1446

1 3

3.1 Design 1D DWT architecture

Our proposed convolution-based dual mode 1D DWT design
is based on the essence of bit-parallel DA. Here, ‘L’ bits of
the intermediate signal values, i.e., sn(i) for 0 ≤ i ≤ 4 , are
used as address bits and applied in parallel to ‘L’ identi-
cal memory units, each of which containing the same data,
i.e., the partial inner products. The partial products obtained
from the memory unit are accumulated in the accumulator
in the next clock cycle. After the accumulation has been
done, we get the final low-pass and high-pass outputs. The
advantage of this structure is its simplicity, modularity,
and speed of operation. However, the main disadvantage
of this type of design method is the size of the memory
which increases linearly with the number of bits of inter-
mediate signal value, i.e., sn(i) . So far, all the works which
have been proposed based on bit-parallel DA, suffer from
extensive memory requirement. Though our proposed design
is based on bit-parallel DA, we have successfully eradicated
the extensive memory requirement by our own method. The
block diagram of the overall VLSI architecture for 1D DWT
is shown in Fig. 1. The dashed lines in Fig. 1 represent the
decomposition of the structure into pipeline stages by incor-
porating registers to break the critical path. The overall block
diagram of Fig. 1 is composed of three main sub-blocks, i.e.,
‘intermediate signal generation’, ‘memory’, and ‘pipelined

and structured adders’ (PSA). Each of these sub-blocks is
again modularized into several units. All these sub-blocks
and their constituent units are described in the following
sub-sections.

3.1.1 ‘Intermediate signal generation’ sub‑block

The ‘Intermediate Signal Generation’ sub-block is com-
prised of a unit of shift registers, followed by an adder unit.
The shift-register unit has nine ‘parallel-in-parallel-out’
(PIPO) shift registers. The input data sequence, i.e., x[n] is
fed to the shift-register unit. In every clock cycle, the out-
puts from the shift-register unit are fed to the adder unit to
calculate the intermediate signal values sn(i) , for 0 ≤ i ≤ 4 ,
according to Eq. 8. The adder unit consists of four L-bit
‘parallel adders’ (PA) and performs the addition operation
concurrently such that the values of sn(i) , for 0 ≤ i ≤ 4 , for
a particular value of n are calculated in parallel. The inter-
nal architecture of the ‘intermediate signal generation’ sub-
block is shown in Fig. 2.

3.1.2 ‘Memory’ sub‑block

In most of the bit-parallel DA-based architecture, the
‘Memory’ sub-block is used to store the partial products.
In our case, 12 numbers of identical single-word ROMs

Fig. 1 Block diagram of the
proposed bit-parallel DA-based
1D DWT architecture

1427Journal of Real-Time Image Processing (2020) 17:1421–1446

1 3

are used to store the partial inner products for computation
of the high-pass filter output. The ROMs are numbered as
ROM-0, ROM-1, ROM-2, and so on. ROM-0 to ROM-3
stores the possible partial inner products depending on
the intermediate signals sn(0) and sn(1) for Daubechies 9/7
DWT filter. ROM-4 to ROM-7 stores the possible partial
inner products depending on the intermediate signals sn(0)
and sn(1) for Daubechies 5/3 DWT filter. Finally, ROM-8
to ROM-11 stores the possible partial inner products
depending on the intermediate signals sn(2) and sn(3) for
Daubechies 9/7 DWT filter. The organization of the ROMs
and their respective data is shown in Fig. 3a.

Similarly, 12 numbers of identical single-word ROMs
are used to store the partial inner- products for computa-
tion of the low-pass filter output. These ROMs are num-
bered as ROM-12, ROM-13, and so on. ROM-12 stores the
partial product to be used for the signal sn(0) , for Daube-
chies 9/7 DWT filter. ROM-13 to ROM-14 stores the pos-
sible partial inner products depending on the intermedi-
ate signals sn(1) and sn(2) for Daubechies 9/7 DWT filter.
ROM-16 stores the partial product to be used for the signal
sn(0) , for Daubechies 5/3 DWT filter. ROM-17 to ROM-
19 stores the possible partial inner products depending on
the intermediate signals sn(1) and sn(2) for Daubechies 5/3
DWT filter. In addition, finally, ROM-20 to ROM-23 stores
the possible partial inner products depending on the inter-
mediate signals sn(3) and sn(4) for Daubechies 9/7 DWT
filter. The organization of the ROMs and their respective
data is shown in Fig. 3b.

Here, we can see that ROM-0 to ROM-3 and ROM-4 to
ROM-7 stores the partial inner products for the high-pass fil-
ter output of 9/7 and 5/3 wavelet filters, respectively, for the
same set of inter mediate signals, i.e., sn(0) and sn(1) . Since
we use only one mode, i.e., either 9/7 or 5/3 filter at a time,
so the output port of the corresponding ROMs, for example,
ROM-0 and ROM-4, ROM-1 and ROM-5, and so on, are
passed through separate multiplexers, to select the required
one. The select line of this multiplexer is denoted as ‘mode’.

3.1.2.1 Multiplexing and addition unit (MAU) Separate
multiplexing units are used in our proposed architecture
for high-pass and low-pass filters, denoted by MAU-1 and
MAU-2, respectively. The internal architecture of this ‘mul-
tiplexing and addition unit’ MAU is shown in Fig. 4, where
the dashed line represents the decomposition of the struc-
ture into pipelined stages.

For high-pass filter, ‘L’ numbers of ‘multiplexing sub-
cells’ (MUXSC) are used. They are denoted as MUXSC-1,
MUXSC-2, and so on. The bit of a particular position of
intermediate signals, i.e.,

(
sn(i)

)
l
 , for 0 ≤ i ≤ 3 is used as

the select inputs of the MUXSC. The MUXSCs are organ-
ized, such that the (l + 1) th MUXSC receives l th bit of the
intermediate signals, i.e.,

(
sn(i)

)
l
 , for 0 ≤ i ≤ 3 , such that the

first MUXSC processes the MSBs of intermediate signals,
i.e.,

(
sn(i)

)
0
 for 0 ≤ i ≤ 3 , and the L th MUXSC, processes

the LSBs of intermediate signals, i.e.,
(
sn(i)

)
L
 for 0 ≤ i ≤ 3 .

Each of the MUXSCs contains two 4 × 1 multiplexers and
one adder. The 4 × 1 multiplexers are denoted as MUX-1
and MUX-2.

The select lines of the MUX-1 are
(
sn(0)

)
l
 and

(
sn(1)

)
l
 .

This MUX-1 selects one of the four partial products corre-
sponding to these signals depending on the combination of
the select inputs. The select lines of the MUX-2 are

(
sn(2)

)
l

and
(
sn(3)

)
l
 . Therefore, MUX-2 selects one of the four par-

tial products corresponding to these signals depending on
the combination of the select inputs. The intermediate sig-
nals sn(0) and sn(1) are used for both 9/7 and 5/3 filters.
Therefore, MUX-1 is active for the computation of both 9/7
as well as 5/3 DWT filters. However, the intermediate sig-
nals sn(2) and sn(3) are not used for 5/3 filter computation.
Therefore, MUX-2 is activated only for computation using
9/7 wavelet filter. The ‘chip select’ (CS) input of MUX-2
is an active low input. Therefore, the ‘mode’ signal is con-
nected to the ‘CS’ input of MUX-2. The ‘mode’ signal is ‘0’
during the computation using 9/7 filter, enabling the MUX-
2. However, during the computation using 5/3 filter; ‘mode’
signal is ‘1’, disabling the MUX-2. In this way, though we

Fig. 2 Internal architecture of ‘intermediate signal generation’ sub-block

1428 Journal of Real-Time Image Processing (2020) 17:1421–1446

1 3

have proposed a tunable design for both 9/7 and 5/3 DWT
filters, we have retained the power consumption as required
by a single non-tunable design.

The output of the MUX-1 and MUX-2 is added using a
simple two input adder before they are transferred to the
PSA sub-block. The structure of the (l + 1) th MUXSC for
high-pass filter is shown in Fig. 5. The unit of MUX-1 and
MUX-2 and the adder are connected in pipeline, as shown
by the dashed line in Fig. 5.

Similarly, for low-pass filter, ‘L’ numbers of multiplex-
ing sub-cells (MUXSC) are used and each sub-cell con-
tains MUX-1 and MUX-2, the same as that for the high-
pass filter. Here, the select lines of the MUX-1 are

(
sn(1)

)
l

and
(
sn(2)

)
l
 . In addition, the select lines of the MUX-2

are
(
sn(3)

)
l
 and

(
sn(4)

)
l
 . Here, the signal

(
sn(0)

)
l
 is not

connected to the select lines of any of the two MUXes. It
is connected to the select input of ‘selector’, a simple com-
binational logic block. The data bus from the ROM-12/
ROM-16 is fed to this selector. If

(
sn(0)

)
l
 is ‘0’, the output

of this ‘selector’ is also ‘0’. In addition, when
(
sn(0)

)
l
 is

‘1’, the data, i.e., partial product that should be gener-
ated due to

(
sn(0)

)
l
 , is obtained at the output. The VLSI

architecture of the (l + 1) th MUXSC for low-pass filter is
shown in Fig. 6.

The next part of this MAU is an adder. In case of high-
pass filter, the data obtained from the two multiplexers,
MUX-1 and MUX-2, are added using a two input adder.
This adder adds two ‘L’ bit 2’s complement numbers. In
case of low-pass filter, the data obtained from the two
multiplexers, MUX-1 and MUX-2, and from the ‘selector’

Fig. 3 Organization of the ROMs and their respective data; a for high-pass filter, b for low-pass filter

1429Journal of Real-Time Image Processing (2020) 17:1421–1446

1 3

are added using a three input adder. This adder adds three
‘L’ bit 2’s complement numbers. The output of the adder
unit is delivered to the PSA sub-block

3.1.3 PSA sub‑block

Each of the MUXSCs delivers the required partial inner
products to the PSA. Since each of the MUXSCs corre-
sponds to different positions of bits of the intermediate sig-
nals, the partial inner products have increasing weightage
starting from LSB to MSB. Therefore, during accumulation,
according to Eqs. 17–20, these partial inner products must
be right shifted to the proper bit positions. Internal architec-
ture of the PSA sub-block is shown in Fig. 7b. Accumulation
is done in the adder tree comprising of K = log2 L stages.
The adders in each of the stages are connected with the
adders of their adjacent stages in pipelined manner. Stage-1
consists of

((
L∕2

)
− 1

)
 numbers of ‘adder cells’ (ADDC)

and one ‘subtractor-cell’ (SUBC). Stage-2 consists of
(
L∕4

)

numbers of ADDC, Stage-3 consists of
(
L∕8

)
 numbers of

ADDC, and so on. In addition, the last stage, i.e., Kth stage
contains only one ADDC. Function of the ADDC in the kth
pipelined stage is shown in Fig. 7a.

The ADDC in kth stage, where, 1 ≤ k ≤ K, performs right-
shift of the right operand by k bit positions, and add that with

Fig. 4 Internal architecture of the MAU

From data buses BusH0 – Bus HL

MUX-1
4×1 (0)

(1)

MUX-2
4×1 (2)

(3)

(+ 1)-th MUXSC

En
CS

mode

Fig. 5 Structure of (l + 1) th MUXSC for high-pass filter

Fig. 6 Structure of (l + 1) th
MUXSC for low-pass filter

(4)

From data bus BusL0

From data buses BusL1 – BusLL

MUX-1
4×1 (1)

(2)

MUX-2
4×1 (3)

(4)

Selector

(+ 1)-th MUXSC

En
CS

mode
CS

1430 Journal of Real-Time Image Processing (2020) 17:1421–1446

1 3

the left operand. That is, each of the adder cells in the first
stage, right shifts their right operand by 1 bit position, and
add that with the left operand. In addition, the adder cells in
the second-stage right shifts their right operand by two-bit
position, and add that with the left operand and so on. The
subtractor cell in the first-stage performs the same operation
as the adder cell, except that it performs subtraction of its
operands instead of addition. The SUBC subtracts its left
operand, i.e., the partial product obtained due to the sign
bit, i.e., MSB, from that one, obtained due to the next MSB.

3.2 Design of 2D DWT architecture

Computation of 2D DWT of the elements of a 2D matrix
is performed in two stages. In the first stage, 1D DWT is
performed rowwise; the output of the first stage is stored in
an intermediate buffer, i.e., a delay unit, to provide the nec-
essary column delay. Then, 1D DWT of these intermediate
output is performed in columnwise manner in the second
stage. The proposed bit-parallel DA-based 2D DWT archi-
tecture is shown in Fig. 8.

The bit-parallel DA-based design consists of two stages.
Input data sequence is entered to Div-1 in the first stage.
Div-1 consists of register unit, adder unit to produce the
intermediate signals, multiplexing and addition unit, to gen-
erate the partial inner products corresponding to the high-
pass and low-pass 1-D DWT outputs, and finally the PSA to
accumulate the inner products. Div-1 produces one low-pass

vl(n) and one high-pass vh(n) intermediate output in every
clock cycle, and delivers them to Div-2 and Div-3, respec-
tively, in the second stage. Each of the Div-2 and Div-3
consists of delay unit, adder unit, multiplexing and addition
unit, and finally, the PSA. Div-2 produces low-pass vll(n) and
high-pass vlh(n) outputs of the intermediate low-pass signal
vl(n) . Div-3 produces low-pass vhl(n) and high-pass vhh(n)
outputs of the intermediate high-pass signal vh(n) . Here, par-
tial inner products for the high-pass filter coefficients are
stored in nine single-word ROMs, and partial inner products
for the high-pass filter coefficients are stored in 11 single-
word ROMs. These ROMs are always ‘active’ and data buses
from these ROMs are connected to the MAU of both the
stages. The different parts of this design are discussed in the
following sub-section.

3.2.1 Memory unit and data distribution

We have assumed an arbitrary 16 × 16 matrix as our input 2D
sample data. Each element of the matrix can be represented
by an 8-bit binary number. These elements are stored in 16
numbers of RAMs, each having 16 locations. All of these
RAMs are single-port RAMs. Suppose the rows are repre-
sented as Ri, 0 ≤ i ≤ 15, and the columns are represented as
Ci, 0 ≤ i ≤ 15. We have used four DWT channels to provide
an optimization between the numbers of hardware required
and throughput rate of the system.

Fig. 7 a Function of the ADDC.
b Internal architecture of a PSA
sub-block

1431Journal of Real-Time Image Processing (2020) 17:1421–1446

1 3

Now, following Eqs. 4 and 5, we can see that, to compute
1D DWT for one point, we have to take four points from
the left and four points from the right of that point from the
input data sequence, according to the structure of the DWT
filter, i.e., according to symmetry about the origin. There-
fore, while calculating the 1D DWT of the first column C0,
taking the first element of the first row-first column R0C0,
as the origin point, we have four elements in the right side
of the origin, which are the elements of the first row of the
second, third, fourth, and fifth columns, respectively. How-
ever, in the left side, we do not have any element. We can use
zero padding, but multiplying filter coefficients with zero,
gives zero, resulting in unnecessary loss of boundary infor-
mation. Therefore, we have considered elements from the
columns C12, C13, C14, and C15, which are stored in RAM-
12, RAM-13, RAM-14, and RAM-15, respectively, as the
elements of the left side of the origin, performing modulo
N operation, which takes care of cyclic extension. This data
padding can be done by inserting four extra RAMs in the left
side of the original matrix. However, this will increase the
memory requirement. The memory unit and data distribution
is shown in Fig. 9.

Therefore, we have to put the elements from the columns
C0, C2, C4, C6, and so on as the center point of the filter.
While processing, we have to process all the rows of the
column taken as the center of the filter, then have to start the
processing of a new column. While processing the column
C0, the set of columns required to be connected to the regis-
ter unit are C12, C13, C14, C15, C0, C1, C2, C3, and C4. While
processing the column C2, the set of columns required to be

connected to the register unit are C14, C15, C0, C1, C2, C3,
C4, C5, and C6. While processing the column C4, the set of
columns required to be connected to the register unit are C0,
C1, C2, C3, C4, C5, C6, C7, and C8. This procedure continues
up to the processing of the column C14. Therefore, we can
see that each input of the register unit requires eight dif-
ferent sets of columns while processing the entire 16 × 16
matrix. Therefore, nine 8 × 1 multiplexers are used for each
of the inputs to the register unit, to select the eight different
columns during the processing.

3.2.2 Memory address generation unit

Now comes the one of the most important part of our design,
the memory address generation unit. We have seen that data
padding is required while processing the elements of the
boundary columns to prevent the loss of boundary informa-
tion. The same data padding is required while processing the
elements of boundary rows during the computation in the
second DWT unit. While processing the elements of differ-
ent rows of the same column, processing of 1D dwt results
of the first row requires four additional rows of data, which
we can obtain from the processing of elements of the rows
R12, R13, R14, and R15, respectively. Therefore, these rows
must be processed before R0. We can store these data points
in four extra memory locations, but these will unnecessar-
ily increase the memory size. Therefore, we have designed
our memory address generation unit, so that it generates
addresses to select the row in the order R12, R13, R14, R15,
R0, R1, R2, and so on.

Fig. 8 Block diagram of the
proposed bit-parallel 2D DWT
architecture

()

• •

ℎℎ ()ℎ ()
ℎ()()

• •

MEMORY
FOR

LOW-PASS
FILTER

ADDER UNIT

MULTIPLEXING
AND

ADDITION UNIT

PSA

MEMORY
FOR

HIGH-PASS
FILTER DELAY UNIT-1

ADDER UNIT

MULTIPLEXING
AND

ADDITION UNIT

PSA

DELAY UNIT-2

ADDER UNIT

MULTIPLEXING
AND

ADDITION UNIT

PSA

() ℎ()

REGISTER UNIT Div-1

Div-2 Div-3

1432 Journal of Real-Time Image Processing (2020) 17:1421–1446

1 3

This address generation unit is nothing, but a 4-bit
asynchronous upcounter using positive edge triggered
T-flip-flop, providing the states of ‘0000’, ‘0001’, up to
‘1111’. Then, it returns back to the initial state ‘0000’ and
counting starts again. According to our scheme, we have
to start processing from 13th row, i.e., R12. To select that
row of each of the 16 RAMs, the output bits of the counter
must be ‘1100’ at the beginning of the operation. If we
denote the output bits of the counter of the address genera-
tion block as Qi, then Q3 and Q2 these two bits should be
‘1’. This can be done by making the asynchronous ‘SET’
input of T-FF3 and T-FF2 as ‘1’ while making the asyn-
chronous ‘CLR’ input of T-FF0 and T-FF1 as ‘1’. There-
after, as the clock signal oscillates, the counter proceeds
through its states.

Similar data padding is required while processing the
16th row, R15. Now, the elements from R0, R1, R2, and R3
are to be padded. Therefore, during the processing of first
set of columns, the address generator generates addresses,
as ‘1100’, ‘1101’, ‘1110’, and ‘1111’ then proceeds through
‘0000’ to ‘1111’, again returns back to ‘0000’, and proceeds
up to ‘0011’. Then, the address bits are reset to ‘1100’, and
starts processing the second set of columns. To exemplify
the proposed data-scanning/memory address generation pro-
cedure, mentioned above, we have taken an example of one
arbitrary 16 × 16 2D data matrix, as shown in Fig. 10a. The
data padded version of this 2D data matrix is presented in
Fig. 10b.

In Fig. 10b, the original 16 × 16 2D data matrix is
depicted within thick black borders. From Fig. 10b, we can
see that data have been padded in all the four sides of the
original 2D data matrix. In each side, (4 × 16) numbers of
data have been padded. Therefore, total 4 × (4 × 16), i.e.,
256 data have been padded incurring 256 extra memory
locations. Likewise, it can undoubtedly be stated that total
numbers of extra memory locations needed for storing the
padded data are [4 × (4 × N)] = 16N for any (N × N) data
matrix. Therefore, in memory-based data-scanning tech-
niques, the numbers of extra memory locations needed for
storing the padded data increase linearly with the size of
original 2D data matrix. In Fig. 10b, the elements inside
red circles indicate two exemplary boundary elements that
require data padding before being processed by DWT filter.
For the element ‘2’ inside the top left red circle, data from
the last four rows of the first column of are required to be
padded which are [1, 3–5], as shown in Fig. 10b. The pro-
cessing window for the element ‘2’ is highlighted in Fig. 10b
by green rectangular section. Similarly, for the boundary
element ‘3’ inside the bottom left red circle, the processing
window, which requires four data points to be padded from
the top four rows of the first column, is highlighted using
green rectangular section. For performing 1D DWT of the
first column of the 2D data matrix, total data points needed
to be scanned sequentially ranges from the extreme top ele-
ment of the upper green rectangular box to the extreme bot-
tom element of the lower green rectangular box, as shown

Fig. 9 Memory unit and data distribution system

1433Journal of Real-Time Image Processing (2020) 17:1421–1446

1 3

in Fig. 10b. Therefore, total 24 memory locations need to be
scanned sequentially. This 1D DWT of the first column can
also be performed by scanning only 16 memory locations in
a cyclic manner using our proposed method. Our proposed
cyclic data-scanning technique for all row elements of the
first column is depicted in Fig. 11a.

In Fig. 11a, two boundary elements of the first column
are highlighted by green circle. The top boundary element
requires four data from last four rows of the first column
which are denoted by double underline in red. Similarly,
the bottom boundary element requires four data from top

four rows of the first column which are denoted by single
underline in red. Now, instead of storing the padded data, we
choose to scan the data cyclically in the clockwise direction
from the starting point, as mentioned in Fig. 11a. The end
point of the proposed cyclic scanning is also denoted in the
same figure, i.e., Fig 11a.

The proposed cyclic data-scanning technique has been
realized through our proposed memory address genera-
tion unit, the internal architecture of which is depicted
in Fig. 11b. From Fig. 11b, it can be visualized that the
proposed cyclic data scanning incurs some extra hardware

Fig. 10 a Exemplary 2D data matrix; b data padded matrix

Fig. 11 a Proposed cyclic data-scanning technique; b proposed memory address generating unit

1434 Journal of Real-Time Image Processing (2020) 17:1421–1446

1 3

elements (4 AND gate, 1 NAND gate and a 2 bit up counter)
along with a 4-bit asynchronous up counter which is required
by any conventional memory address generation technique.
Therefore, we have successfully reduced the memory size
required by other conventional memory address generation
techniques at the cost of few extra hardware elements. The
comparative analysis between our proposed cyclic data-scan-
ning-based memory address generation method and the con-
ventional memory address generation method, in terms of
hardware resources and extra memory locations required for
data padding is presented in Table 3 for varying image size.

From Table 3, it is clear that by proposing the cyclic data-
scanning-based memory address generation technique, we
have saved huge memory resources, which increases linearly
with image size, at the cost of some mere logic gates and one
extra asynchronous up counter.

3.2.3 Delay unit

In the block diagram of Fig. 8, we can see that after the
PSA unit of Div-1, two delay units are placed at each of the
Div-2 and Div-3. PSA unit of Div-1 contains an accumulator

which produces two outputs simultaneously (vl(n) and vh(n)).
These two outputs get transferred to the Div-2 and Div-3,
respectively. As our proposed VLSI architecture of 2D DWT
is a pipelined design, there should be two pipeline registers
between Div-1, Div-2 and Div-1, Div-3 to break the critical
path. Delay units inside Div-2 and Div-3 essentially serve
the purpose of the pipeline registers. Div-2 and Div-3 pro-
cess the intermediate results, i.e., low-pass and high-pass
1D DWT outputs (vl(n) and vh(n) , respectively) produced
by Div-1, respectively. The structure of the delay unit is the
same, as shown in Fig. 12. The delay unit is nothing, but
a combination of nine word-level ‘parallel-in-parallel-out
shift registers’ (PIPOSR), connected in series. Processing
of the first DWT unit requires 1 clock cycle. First-processed
data of R12 is obtained after 1 clock pulse. Second-processed
data from the next row, i.e., from R13, are obtained after the
second clock pulse. Similarly, the processed data from R14
are obtained after the third clock pulse. These PIPOSRs are
designed to get triggered at the negative edge of the first,
second, third, etc. clock pulses. After nine clocks, all the
rows required to be processed to start the second-level pro-
cessing of R0 is done. After initial nine clock pulses, nine

Table 3 Comparison of our proposed address generation method with conventional memory-based address generation method

Image size Resources utilized Proposed method Conventional method

16 × 16 1. Logic gates 4 AND, 1 NAND 0
2. Counter One 2 bit and one 4 bit up counter One 4 bit up counter
3. Extra memory for data padding 0 256

256 × 256 1. Logic gates 4 AND, 1 NAND 0
2. Counter One 5 bit and one 8 bit up counter One 8 bit up counter
3. Extra memory for data padding 0 4096

512 × 512 1. Logic gates 4 AND, 1 NAND 0
2. Counter One 6 bit and one 9 bit up counter One 9 bit up counter
3. Extra memory for data padding 0 8192

1024 × 1024 1. Logic gates 4 AND, 1 NAND 0
2. Counter One 7 bit and one 10 bit up counter One 10 bit up counter
3. Extra memory for data padding 0 16,384

Fig. 12 Internal architecture of the delay unit

1435Journal of Real-Time Image Processing (2020) 17:1421–1446

1 3

intermediate data elements, constituting a processing win-
dow, get stored in the nine PIPOSR. Then, these nine inter-
mediate data are passed to the second DWT unit simultane-
ously in the immediate next clock cycle. Thereafter, in every
clock pulses, the processing window gets shifted further by
one element and the present nine constituent elements are
passed to the second DWT unit simultaneously. Therefore,
after an initial delay of 9 clock pulses, the second DWT unit
gets a set of 9 elements in every clock pulses. Therefore, it
can be inferred, from the above discussion, that the proposed
delay units serve both the purpose of the pipeline registers
by breaking the critical path between Div-1, Div-2, and Div-
1, Div-3 as well as the purpose of the shift registers by stor-
ing and shifting intermediate data coming from Div-1, thus
providing inputs to the subsequent unit. By catering such
joint purposes, the proposed delay units successfully save
a lot of hardware resources. It also eradicates the one clock
pulse delay as required by a separate pipeline register. Two
delay units are used for the low-pass and high-pass outputs
of the first DWT unit.

4 Results and discussion

The proposed VLSI architecture of 1D∕2D dual mode DWT
filter has been initially designed as a prototype with 16 bit
fixed-point binary data format in which 9 bits are used for
integer part and 7 bits are used for fractional part of the
data. At a later stage, for enhancing the data precision while
retaining the area and memory overload at a reasonable
level, we have extended the design for 32 bit fixed-point
binary data format, where 24 bits and 8 bits are, respectively,
used for representing the integer and fractional part of the
data. Though we could have increased the data precision
further by exploiting single precision (32 bit) floating-point
binary representation (IEEE-754 format) [25], still, the pro-
posed design has been implemented in a fractional fixed-
point format instead of its floating-point counterpart for

enhancing the performance in terms of hardware resources,
latency, and power consumption. The range and precision
of a fractional fixed-point binary representation mainly
depend upon its fractional bit width and integer bit width,
respectively. Suppose, in any arbitrary unsigned binary,
fixed-point representation x bits are allocated for integer
part and y bits are allocated for fractional part. Then, the
range of values representable by that binary format will be
0 to [(2x − 1) +

∑y

i=1
2−i] and the corresponding precision

will be 2−y . Likewise, in our case, the 32 bit fixed-point
representation has a range of 0 to

�
(224 − 1

�
+
∑8

i=1
2−8] and

precision of 2−8 . If we want to increase the precision fur-
ther, then more number of bits must be provided to represent
the fractional part which, in turn, decreases the bit width
representing integer part, thus reducing the range. There-
fore, in fractional fixed-point binary format, there exists a
trade-off between the range and the precision. On the other
hand, in case of 32 bit normalized floating-point represen-
tation, as described in IEEE-754 format, the range is 0 to
3.4028 × 1038 and the precision is dynamic, i.e., changing.
Using 32 bit normalized floating-point format, the value as
low as 1.1755 × 10−38 can be represented. The characteristic
of dynamic precision of 32 bit floating-point representation
is represented in Fig. 13. In Fig. 13, the precision decreases
in the direction of the positive y axis.

From the above discussion, it is clear that the range and
precision, achieved using 32 bit normalized floating-point
format, outshine the range and precision corresponds to our
32 bit fixed-point representation, where 24 bits are used to
represent the integer part and remaining bits are utilized for
denoting the fractional part. Therefore, naturally, it can be
inferred that the accuracy of any VLSI architecture using
32 bit normalized floating-point arithmetic is more lucra-
tive than that of its 32 bit fractional fixed-point counterpart.
However, in terms of hardware resources, timing, and power
efficiency, the 32 bit fractional fixed-point binary representa-
tion is far superior to that of the 32 bit normalized floating-
point representation which is evident from Fig. 14a–c.

Fig. 13 Dynamic precision of 32 bit floating-point number in IEEE-754 format

1436 Journal of Real-Time Image Processing (2020) 17:1421–1446

1 3

In Fig. 14, we have displayed the comparative evaluations
between the 32 bit fixed-point representation (24 bit integer
and 8 bit fraction) and 32 bit floating-point representation
(IEEE-754) by means of a single addition operation using
a 32 bit adder. As the main basic arithmetic unit in our pro-
posed 1D/2D DWT architecture is adder, we compared the
performance of a 32 bit adder both using fixed-point and
floating-point arithmetic. Other basic units in our proposed
1D/2D DWT design are multiplexers, PIPO registers, flip-
flops, and memory which are less or not at all sensitive to
fixed to floating-point transition as long as the total bit width
remains the same. From the above discussion, it is clear that
unless the high accuracy is of utmost importance, fixed-point
arithmetic based VLSI architectures are preferred for any
real-time application. DWT is being predominantly utilized
in case of image compression or image fusion, where high
accuracy is desirable, but not at the cost of other perfor-
mance metrics such as area, latency, and power. Naturally,
for any dedicated hardware of DWT, fixed-point arithmetic
gets priority over its floating-point counterpart. Therefore,
we have chosen fixed-point representation for designing our
proposed 1D/2D DWT architecture.

After we have prototyped our proposed VLSI architecture
of 1D/2D DWT in 32 bit fractional fixed-point represen-
tation, we have analytically compared the performance of
our proposed 1D/2D DWT architecture with other notable
works of similar kinds, as shown in Tables 4 and 5. After
accomplishing the analytical evaluation, we have reconfig-
ured our 2D DWT design using 32 bit normalized float-
ing-point representation (IEEE-754) also. Then, we have
implemented both the proposed fixed-point as well as float-
ing-point 2D DWT architectures onto Spartan-6 and Zynq
UltraScale + MPSoC FPGA. All the fixed- as well as float-
ing-point-based implementation reports for both the FPGAs
are reported and compared with that of the other notable
works to justify the superiority of our 32 bit fixed-point-
based 2D DWT design in terms of hardware complexity.
Finally, we have applied our prototype 2D-DWT architec-
tures (32 bit fixed-point and floating point) in case of real-
time image decomposition. The performance of our design

in case of real-time application is presented both quantita-
tively as well as qualitatively.

Therefore, basically, we have evaluated the performance
of our prototype DWT architecture in three layers. First, we
have analytically assessed the performance of our prototype
1D/2D DWT architectures configured in 32 bit fractional
fixed-point representation. Second, our prototype 2D DWT
architecture is reconfigured using 32 bit normalized floating-
point representation (IEEE 754 format). Then, both the 32
bit fixed-point as well as floating-point-based proposed 2D
DWT architectures are dumped onto Spartan-6 and Zynq
UltraScale + MPSoC FPGAs for on-board testing which
ensures the feasibility of our proposed 2D DWT architec-
ture to be successfully utilized in case of real-time image
decomposition. The results of on-board testing are compared
with some latest and notable works of similar kind. Finally,
we have also compared the performance of our prototype
FPGA-based hardware implementations of 2D DWT with
that of the ‘general purpose processor’ (GPP) and ‘digi-
tal signal processor’ (DSP)-based software realisation (in
Python) of 2D DWT in case of real-time image decomposi-
tion. All these three layers of rigorous performance evalua-
tions are detailed in the following.

4.1 Analytical evaluation

The proposed bit-parallel DA-based 1D DWT structure
involves one intermediate signal generation sub-block; two
multiplexing and addition unit, one for high-pass filter and
the other for low-pass filter; two memory sub-blocks, one for
storing high-pass filter coefficients and the other for storing
low-pass filter coefficients; and two PSA. The intermedi-
ate signal generation sub-block consists of a shift-register
unit, followed by an adder unit. As discussed in the previous
section, the shift-register unit is comprised of nine PIPO,
while the adder unit is comprised of four L-bit PA. Here,
12 single-word ROMs are used for storing the partial inner
products for the high-pass filter coefficients and 12 identi-
cal single-word ROMs are used for storing the partial inner
products for the low-pass filter coefficients. Therefore, total

Fig. 14 32 bit fixed vs. floating-point arithmetic; a hardware resources; b latency; c power consumption

1437Journal of Real-Time Image Processing (2020) 17:1421–1446

1 3

memory requirement for our proposed 1D DWT architecture
is 24 words. All the stages, i.e., intermediate signal genera-
tion sub-block, adder unit, multiplexing unit, and PSA, are
connected in pipeline. In addition, the adders in the PSA are
connected in pipeline. Therefore, in this bit-parallel DA-
based DWT design, duration of one bit-cycle is, Tb = TA,
and since in bit-parallel architecture, all of the L bits of the
intermediate signal values are processed concurrently, so the
duration of one cycle period is T = Tb, i.e., T = TA. The per-
formance comparison of our proposed 1D/2D DWT archi-
tectures with other existing architectures in terms of ROM
words, number of adders, multipliers, registers, multiplex-
ers, cycle period, throughput rate, and computation time are
given in Tables 4 and 5.

Table 4 depicts the comparison of our proposed 1D
DWT architecture with other existing works. From Table 4,
it is clear that our proposed work outperforms other recent
works in terms of various design-related parameters. Our
bit-parallel DA-based 1D DWT design uses 32 numbers
of multiplexers, whereas this number is 0 for [4], but our
memory requirement, in number of words, is only 5% of
that of the design in [4] and can provide the same throughput
rate for both of the 9/7 and 5/3 wavelet filter. Our require-
ment of ROM words and multiplexers are more than that of
the architecture presented in [7], but our critical-path delay,
i.e., cycle period is nearly one-fourth than that of the design
presented in [7]. Though the hardware complexity of the
work of [20, 21] is less than that of our proposed 1D DWT
architecture, the cycle period, throughput rate and computa-
tion time of our proposed architecture is far superior to the
work of [20, 21]. The cycle period (in nano seconds), as
shown in Table 4, indirectly indicates our proposed design’s
superiority in terms of maximum operating frequency over
other existing works.

Table 5 provides the comparative analysis of our pro-
posed 2D DWT architecture with other notable similar kind
of designs. Our multiplierless bit-parallel DA-based 2D
DWT design involves 160 numbers of multiplexers which
is 82% more than that of [6], but our proposed architecture
involves 49 numbers of adders, which is only 17% of that of
[6], only 28% of that of [10] and 38.3% of that of [11]. Total
memory requirement is much less than all of the designs
listed above (only 4% and 6% of that of the designs in [6,
10], respectively. Critical-path delay, i.e., cycle period of this
design is also much less (nearly half) than the multiplier-
based designs [8–11], because the path delay of an adder
is much less than that of any fastest multiplier. And last but
not the least; our proposed design is made a dual mode one,
unlike the other designs, as listed in Table 5.

To full proof the analytical evaluation of our proposed
32 bit fixed-point-based DWT design, we have compared
the cycle period or critical-path delay of our proposed
design with some most recent DWT designs [17–19] which Ta

bl
e

4
 C

om
pa

ris
on

 o
f e

xi
sti

ng
 1

D
 D

W
T

ar
ch

ite
ct

ur
es

 w
ith

 o
ur

s

‘M
od

e’
 in

di
ca

te
s

w
hi

ch
 fi

lte
r

do
es

 th
e

de
si

gn
 u

se
 fo

r
co

m
pu

ta
tio

n
of

 D
W

T
co

effi
ci

en
ts

, w
he

re
, ‘

Si
ng

le
 M

od
e’

 r
ef

er
s

to
 th

at
 th

e
de

si
gn

 o
pe

ra
te

s
us

in
g

on
ly

 o
ne

, 9
/7

 o
r

5/
3

w
av

el
et

 fi
lte

r,
an

d
‘D

ua
l M

od
e’

 re
fe

rs
 to

 th
at

 th
e

de
si

gn
 c

an
 o

pe
ra

te
 u

si
ng

 e
ith

er
 9

/7
 o

r 5
/3

 w
av

el
et

 fi
lte

r i
n

th
e

sa
m

e
ar

ch
ite

ct
ur

e
TR

 th
ro

ug
hp

ut
 ra

te
, C

T
co

m
pu

ta
tio

n
tim

e
in

 n
um

be
r o

f c
lo

ck
 c

yc
le

s,
RE

G
 n

um
be

r o
f d

at
a

re
gi

ste
rs

 a
nd

 p
ip

el
in

e
re

gi
ste

rs
, L

 in
pu

t w
or

d
le

ng
th

, N
 si

ze
 o

f t
he

 in
pu

t d
at

a,
 T

A
ad

di
tio

n
tim

e
of

 L
-b

it-
pa

ra
lle

l a
dd

er
, T

FA
 fu

ll
ad

de
r t

im
e,

 T
M

R
m

em
or

y
re

ad
 ti

m
e,

 T
M

 ti
m

e
re

qu
ire

d
fo

r o
ne

 m
ul

tip
lic

at
io

n
op

er
at

io
n

St
ru

ct
ur

es
RO

M
M

ul
tip

lie
r

A
dd

er
M

U
X

R
EG

C
yc

le
 p

er
io

d
C

yc
le

 p
er

io
d

(n
s)

TR
C

T
M

od
e

M
oh

an
ty

 e
t a

l.
[4

] (
bi

t s
er

ia
l)

48
0

9
11

2
L(

T M
R
 +

 T
FA

)
32

 ×
 3.

24
3 =

 10
3.

77
6

2/
L

N
L/

2
Si

ng
le

M
oh

an
ty

 e
t a

l.
[4

] (
bi

t p
ar

al
le

l)
38

4
0

21
0

12
T A

3.
24

3
2

N
/2

Si
ng

le
A

nu
ra

g
et

 a
l.

[5
]

48
0

2 +
 (2

L
+

 7)
4

10
L[

m
ax

(T
M

R
,T

FA
)]

(3
2 ×

 6.
3)

 =
 20

1.
6

2
N

/2
Si

ng
le

M
oh

an
ty

 e
t a

l.
[6

] (
w

ith
ou

t p
ip

el
in

in
g)

0
9

14
0

0
T M

 +
 T

A
 +

 T
FA

35
2

N
/2

Si
ng

le
M

oh
an

ty
 e

t a
l.

[6
] (

w
ith

 p
ip

el
in

in
g)

0
9

14
0

9
T M

25
2

N
/2

Si
ng

le
M

eh
er

 e
t a

l.
(9

/7
 st

ru
ct

ur
e)

 [7
] (

w
ith

ou
t p

ip
el

in
in

g)
0

0
19

0
0

T A
 +

 7T
FA

39
2

N
/2

Si
ng

le
M

eh
er

 e
t a

l.
(9

/7
 st

ru
ct

ur
e)

 [7
] (

w
ith

 p
ip

el
in

in
g)

0
0

19
0

8
T A

 +
 3T

FA
19

2
N

/2
Si

ng
le

M
eh

er
 e

t a
l.

(5
/3

 st
ru

ct
ur

e)
 [7

] (
w

ith
ou

t p
ip

el
in

in
g)

0
0

6
0

0
T A

 +
 2T

FA
14

2
N

/2
Si

ng
le

M
eh

er
 e

t a
l.

(r
ec

on
fig

ur
ab

le
 st

ru
ct

ur
e)

 (w
ith

 p
ip

el
in

in
g)

 [7
]

0
0

20
2

10
T A

 +
 3T

FA
19

2
N

/2
D

ua
l

[2
0]

–
0

14
1

–
4T

FA
28

0.
5

2N
Si

ng
le

[2
1]

–
0

7
1

–
3T

FA
21

0.
4

5N
/2

Si
ng

le
Pr

op
os

e
bi

t-p
ar

al
le

l (
w

ith
 p

ip
el

in
in

g)
20

0
18

32
12

T A
2.

54
2

N
/2

D
ua

l

1438 Journal of Real-Time Image Processing (2020) 17:1421–1446

1 3

specifically concentrated on reduction of the critical-path
delay. The comparison details are listed in Table 6. From
Table 6, it can be realized that the critical-path delay of
our proposed design is much less than that of the designs
of [17–19]. Naturally, our proposed design’s maximum
operating speed should also be much greater than those
designs of [17–19]. Any real-time signal-processing
application demands a dedicated VLSI architecture hav-
ing low critical-path delay and high-frame-processing rate.

Therefore, in this respect, our proposed design outshines
the designs of [17–19]. In terms of other performance
parameter, such as area consumption and power consump-
tion, our design outperforms those designs [17–19] as our
design is totally multiplierless and has not utilized any
LUTs. We have not numerically showed the comparison
of our proposed architecture with [17, 18] in terms of the
area and power consumption, because they presented their
results in terms of ASIC implementation, while we have
implemented our design using FPGA.

Table 5 Comparison of existing 2D DWT architectures with ours

‘Mode’ indicates which filter does the design use for computation of DWT coefficients, where, ‘Single Mode’ refers to that the design operates
using only one, 9/7 or 5/3 wavelet filter, and ‘Dual Mode’ refers to that the design can operate using either 9/7 or 5/3 wavelet filter in the same
architecture
LF lifting scheme, CV convolution scheme, Bi-ortho bi-orthogonal, Daub Daubechies, L input word length, N × N size of the input 2D data,
TA addition time of L-bit-parallel adder, TMR memory read time, TM time required for one multiplication operation, TFMAC critical-path delay of
floating-point MAC of [19]

Structures DWT scheme Multiplier Adder ROM words Frame buffers MUX/DEMUX Cycle period Cycle period (ns) Mode

Lai [8] (bi-ortho) LF 10 16 108 104 12 TM + TA 33.71 Single
Xiong [9] (bi-

ortho)
LF 18 32 94 80 4 TM + 2TA 39 Single

Mohanty [10] (bi-
ortho)

LF 99 176 336 0 78 TM + 2TA 34 Single

Tian [11] (bi-
ortho)

LF 96 128 352 104 96 TM + 2TA 37 Single

Huang [12] (Daub) CV 16 16 44 80 4 TM 27 Single
Meher [13] (Daub) CV 16 12 6 128 16 TM 24.59 Single
Mohanty [6] (bi-

ortho)
CV 144 14 16 0 24 TM 25 Single

Mohanty [6]
(Daub)

CV 168 126 306 0 88 TM 25 Single

[19] CV 6 MACs 0 – 5N2

4

N
2

2
+ 2 TFMAC 13.78 Single

Proposed bit-
parallel (bi-ortho)

CV 0 49 20 0 160 TA 2.54 Dual

Table 6 Comparison of critical-
path delay

T
BE

 delay of Booth’s encoder, T
P
 delay of partial product generation, T

FA
 delay of full adder, TA delay of

an adder, TLUT delay of LUT (25 locations for lifting-based design, 24 locations for flipping-based design),
TFMAC delay of an MAC unit of [19], W word length

Architectures Critical-path delay Critical-path delay (ns) Design type

Design 1 [17]
TLUT +

(
W

4
+ 3

)
⋅ TFA + TA

53 (for W = 32) Lifting

Design 2 [17]
TLUT +

(
W

4
− 1

)
⋅ TFA + 2 ⋅ TA

42 (for W = 32) Lifting

[17]
TLUT +

(
W

4

)
⋅ TFA + TA

39 (for W = 32) Flipping

[18]
TBE + TP +

(
W

2
− 1

)
⋅ TFA + TA

95 (for W = 32) Flipping

[18]
T
BE

+ T
P
+
(

W

2
+ 1

)
.T

FA
+ T

A

103 (for W = 32) Lifting

[19] TFMAC 13.78 Convolution
Proposed TA 2.54 Convolution

1439Journal of Real-Time Image Processing (2020) 17:1421–1446

1 3

4.2 Performance in real‑time image decomposition

After performing the post-routing simulation using Xilinx
ISE 14.7, we have implemented our proposed 2D DWT
design onto Spartan-6 series FPGA, XC6LS45T. We have
also simulated our proposed architecture using Xilinx
Vivado 18.2 and implemented the prototype 2D DWT design
onto Zynq UltraScale + MPSoC series FPGA, XCZU7EV-
2FFVC1156. For implementing our prototype 2D DWT
architecture onto both the FPGAs, we have connected the
individual FPGA board with host ‘Personal Computer’
(PC) by means of a JTAG cable. We have configured both
the FPGAs in boundary scan mode configuration in which
the bit file of the proposed 2D DWT architecture is directly
transferred from host PC to FPGA in a serial fashion. The
maximum data transfer rate through the JTAG cable is only
66 MHz. This rate is inconsequential, because the bit file
of the proposed design is required to be downloaded in the
FPGA only once as long as the power supply is in the ‘ON’
mode. After the FPGAs get configured in accordance with
the bit file of our proposed design, we have applied our pro-
totype 2D DWT design implemented on both the FPGAs,
mentioned above, to real-time image decomposition. The test
setup for supplying input images to the individual FPGA and
displaying the output-decomposed image from the FPGA is
detailed later in this section. Here, we have estimated the
quality of our proposed 2D DWT architecture by comparing
it with that of the other existing hardware-based works, in
case of real-time image decomposition. The comparison is
performed for the proposed architectures configured in both
the 32 bit fractional fixed-point and floating-point formats
(IEEE-754 format). We have also reported the compara-
tive results of the performance of our prototype 2D DWT
architecture implemented onto both the Spartan-6 and Zynq
UltraScale + MPSoC series FPGA with that of the software-
based implementations of 2D DWT using GPP and DSP.
This comparative performance evaluation with software-
based 2D DWT realisation is also performed and reported
for both the 32 bit fractional fixed-point representation (24

bit for integer part and 8 bit for fractional part) as well as 32
bit floating-point representation (IEEE-754 format).

4.2.1 Experimental setup

We have implemented our proposed design onto two dif-
ferent FPGAs, as discussed above. Therefore, we have two
different experimental setups. Moreover, for comparing the
performance of our proposed VLSI architecture with its soft-
ware counterpart, we have run the Python program of 2D
DWT on GPP and DSP. For GPP-based implementation, we
have used the inbuilt quad-core Arm Cortex-A53 processor
of Zynq UltraScale + MPSoC. For DSP-based implemen-
tation, we have used inbuilt DSP unit of STM32F446RE
microcontroller. For floating-point-based software imple-
mentations, we make use of the ‘floating-point processing
unit’ (FPU) of the above-mentioned GPP and DSP. The
experimental setups for the FPGA-based implementations
are depicted in Fig. 15

In Fig. 15a, the experimental setup using Spartan-6
FPGA (XC6LS45T) is shown. After the configuration
of Spartan-6 FPGA has been accomplished using JTAG
cable, we have focussed on connecting the FPGA chip with
the host PC. Our aim is to verify the usefulness of our pro-
posed design in terms of a tangible real-time application.
For that, we have planned to utilise the prototype hard-
ware of the 2D DWT in real-time image decomposition.
We have placed the test images, i.e. ,images to be decom-
posed, in MATLAB bin directory of host PC. Then, we
have established the connection between the host PC and
the external RAM of the Spartan-6 FPGA board with the
help of a high-speed ethernet connection. The speed of this
connection can be approximately up to 1Gbps. We also
configure the inbuilt GTP trans-receivers and PCI Express
interface of the FPGA to achieve a high-speed data transfer
between external RAM and FPGA block RAM. Fig 15a
represents a pictorial description of data transfer between
host PC, external RAM, and FPGA. In general, the size of
the real-life images surpasses the maximum size of block

Fig. 15 Experimental setups. a for Spartan-6 FPGA XC6LS45T; b for Zynq UltraScale + MPSoC FPGA

1440 Journal of Real-Time Image Processing (2020) 17:1421–1446

1 3

RAM resources of the FPGA. To mitigate the problem, we
tune the inbuilt interfaces of the FPGA, so that we may
use the external RAM block of the FPGA board also. The
sequence of operation for this external RAM-based data
transfer is indicated by numerals in Fig. 15a inside bracket;
‘()’. The sequences are described below using the sequence
number given in Fig. 15a. (1) Seeking permission for start-
ing data transfer from host PC to external RAM. (2) A flag
is sent from memory controller block of FPGA to host PC
indicating the permission of data transfer. (3) 6-bit start-
ing address of the external RAM, from where the data
need to be stored, is sent by Memory controller block to
host PC. (4) Upon receiving the starting address, host PC
starts sending 32 bit data to external RAM through 32 bit
data bus.

In Fig. 15b, the experimental setup using Zynq
UltraScale + MPSoC FPGA is presented. The same
setup is utilized for implementing Python-based 2D
DWT program in the Arm Cortex-A53 GPP of the Zynq
UltraScale + MPSoC board. However, the connection estab-
lishment and data transfer procedures between host PC and
the Zynq UltraScale + MPSoC are different for both the
FPGA-based hardware implementation and GPP-based
software implementation. Both of these procedures are
explained in the following.

• Connection to GPP in Zynq UltraScale + MPSoC board
from host PC.

(a) Debian linux-based ‘operating system’ (OS) is loaded
in micro SD card and put it on micro SD card slot of
Zynq UltraScale + MPSoC evaluation board.

(b) JTAG cable is connected between the Zynq
UltraScale + MPSoC evaluation board and host PC for
accessing the board through terminal in host PC via
UART (serial) protocol.

(c) The Zynq UltraScale + MPSoC board is booted with
Debian linux using appropriate command through ter-
minal. Through this step, Debian linux-based OS is
essentially installed onto Arm Cortex A-53 GPP.

(d) 1Gbps Ethernet connection is established between the
Zynq UltraScale + MPSoC board and host PC by con-
necting Ethernet cable and providing appropriate com-
mand through terminal in host PC.

(e) MOBAXTERM software is utilized to send the
test images from host PC to micro SD card in Zynq
UltraScale + MPSoC board via ‘file transfer protocol’
(FTP).

(f) Then, the Python file containing 2D DWT program
is sent to micro SD card from host PC along with a
C ++ programing file containing instructions of run-
ning the Python file onto Arm Cortex A-53 processor.

(g) The C ++ file also contains instructions for providing
the test images to the inputs of the Arm Cortex-A53
GPP from microSD card and for taking the outputs
(decomposed images) from the GPP back to the micro
SD card.

(h) After that, the output-decomposed images are sent back
from micro SD card to host PC using command from
terminal.

• Connection to FPGA in Zynq UltraScale + MPSoC board
from host PC.

1. Steps A–E stated above are performed invariably.
2. The bit file generated by Xilinx Vivado 18.2 for the pro-

posed 2D DWT architecture is transferred to the FPGA
of the Zynq UltraScale + MPSoC by the JTAG connec-
tion.

3. C++ programming file is sent to the micro SD card.
The C++ file contains instructions for providing the test
images to the inputs of the Zynq UltraScale + MPSoC
FPGA from microSD card and for taking the outputs
from the FPGA back to the micro SD card.

4. Decomposed images are sent back to the host PC from
micro SD card.

4.2.2 Performance evaluation and comparison

After the Spartan-6 and Zynq UltraScale + MPSoC FPGAs
have been configured with the bit file of our proposed 2D
DWT design, test images are sent to the inputs of the FPGAs
through the procedures mentioned above. Those test images
get decomposed by the implemented designs on both the
FPGAs. The outputs from both the FPGAs are taken back
to the host PC by the procedures stated in the above sub-sec-
tion. Then the DWT coefficients of the decomposed images
are used to reconstruct the test images using Python coding
on PyCharm IDE in host PC. Obviously, the reconstructed
test images and the original test images will not be exactly
same, as quantization noise and binary data truncation error
will be added, while processing by the proposed VLSI archi-
tectures implemented on the FPGAs. The accuracy of our
proposed implemented designs are estimated in terms of
‘peak signal-to-noise ratio’ (PSNR) [26] between restored
and original test images following equation:

(21)

PSNR = 20 log10
MAXz�

1

MN

∑M−1

x=0

∑N−1

y=0
�z(x, y) − ẑ(x, y)�2

dB,

1441Journal of Real-Time Image Processing (2020) 17:1421–1446

1 3

where z and ẑ are the original test image and the recon-
structed test image, respectively. (x, y) denotes the image
coordinates and (M × N) is the image size.

This PSNR calculation is also performed in host PC using
Python on PyCharm IDE. In Table 7, we have compared the
accuracy of our prototype 2D DWT designs implemented
using both Spartan-6 and Zynq UltraScale + MPSoC, in
terms of PSNR, with the latest notable existing designs of
[14, 19, 22] for real-time image decomposition for some
popular test images (256 × 256). This performance compari-
son is performed using both 32 bit fixed point (24 bit for the
integer part and 8 bit for the fractional part) as well as 32 bit
normalized floating-point representation (IEEE-754 format).

From Table 7, it is seen that our proposed 2D DWT
architectures (both in 32 bit fixed and floating-point format)
implemented on Spartan-6 and Zynq UltraScale + MPSoC
FPGAs produce higher PSNR in comparison to the notable
and latest works of [14, 19, 22]. The lowest PSNR obtained
for our proposed architecture configured in 32 bit fixed-
point format and implemented on Spartan-6 FPGA is 39.48
which is still 16.40% higher than the work of [14], 6.27%
higher than the work of [19] and 6.64% higher than the work
of [22]. The original test images (256 × 256), decomposed
images by proposed 2D DWT design in 32 bit fixed-point
format implemented on Spartan-6 FPGA and also the recon-
structed images are shown in Fig. 16.

After implementing our proposed 2D DWT architecture,
we have also compared our prototype design with other
prominent existing designs in terms of various design-related
parameters which are obtained directly from FPGA resource
utilization report. We have also used the implemented 2D
DWT designs for real-time three-level image decomposition
of 512 × 512 sized test images and then compared the results
with that of the other significant designs. This comparison
results are presented in a tabular form in Table 8. Table 9
describes the comparison in terms of resource utilization
details of FPGA.

Therefore, we have vigorously compared the performance
of our proposed 1D as well as 2D DWT architectures with
other prominent designs of similar kind. We have analyzed

the quality of our proposed design in terms of its perfor-
mance in real-time image decomposition. The resource
utilization details of our proposed work are also taken into
consideration after implementing it onto Spartan 6 and Zynq
UltraScale + MPSoC series FPGA. We have presented the
numerical results of comparison in tabular format and we
have also provided the outputs of real-time image decompo-
sition operation for visual inspection. In this way, we have
extensively evaluated the working quality of our proposed
architecture for both the 32 bit fixed-point and floating-point
representations and established our prototype 32 bit fixed-
point-based 2D DWT design to be the most suitable for real-
time applications.

Having compared the performance of our proposed VLSI
architecture of 2D DWT in both 32 bit fixed and floating-
point configuration with other similar hardware imple-
mentations of 2D DWT, we are now focused on compar-
ing the performance with that of the 32 bit fixed-point and
floating-point-based software implementations of 2D DWT.
For that, we have used PyWavelets package of Python to
decompose test images. The pywt.dwt2() function of the
PyWavelet package is modified using 32 bit floating-point-
based arithmetic (IEEE-754 format) for the implementation
of 32 bit floating-point-based 2D DWT. We also have con-
verted the data type of 512 × 512 sized test image ‘Lena’
into 32 bit floating-point format before being decomposed
using floating-point arithmetic based 2D DWT. Then, we
have run the Python code of 2D DWT in 32 bit fixed-point
as well as floating-point format in ‘central processing unit’
(CPU), GPP and DSP for decomposing the 512 × 512 sized
test image ‘Lena’. We have run the python code in inter(R)
Core(TM) i3-2310M CPU operating at 2.10 GHz, in the
quad-core Arm Cortex-A53 GPP operating at 1.5 GHz
inside Zynq UltraScale + MPSoC evaluation board and also
in DSP units of STM32F446RE Microcontroller operating
at maximum 180 MHz. The comparative analysis of the per-
formance of these software-based implementations with that
of our proposed VLSI architectures in terms of ‘computation
time’ (CT) and PSNR is presented in Table 10 as well as in
Fig. 17.

Table 7 Real-time performance comparison of proposed 2D DWT architecture

Image (256 × 256) PSNR (dB)

[14] [19] [22] Proposed (32 bit
fixed) in Spar-
tan-6

Proposed (32 bit
floating) in Spar-
tan-6

Proposed (32 bit fixed) in
Zynq UltraScale + MPSoC

Proposed (32 bit floating) in
Zynq UltraScale + MPSoC

Lena 34.89 38.12 37.29 41.35 45.87 42.97 47.82
Cameraman 34.50 39.36 38.12 41.08 44.96 40.93 45.77
Pepper 34.53 40.03 37.43 40.85 44.01 41.04 45.53
Boat 34.80 40.59 38.89 41.81 46.12 42.33 46.17
Satellite image 33.92 37.15 37.02 39.48 43.64 38.79 44.43

1442 Journal of Real-Time Image Processing (2020) 17:1421–1446

1 3

Fig. 16 a Original images; b 2D DWT decomposed images using Spartan-6, and c reconstructed images

1443Journal of Real-Time Image Processing (2020) 17:1421–1446

1 3

From Table 10 and Fig. 17, it is clear that our proposed
VLSI architectures configured in both fixed-point and float-
ing-point format outperform all the corresponding software
implementations in terms of speed (in CT) at an almost com-
parable PSNR.

We have also compared the performance of our pro-
posed VLSI design with two existing notable software-
based implementations [23, 24] of 2D DWT realized
on ‘graphics processing unit’ (GPU). The performance
comparison results are listed down in Table 11. From
Table 11, it is clear that the performance of our proposed
VLSI architecture of 2D DWT is the best with respect to

[23, 24] in terms of CT (in second) and PSNR (in dB)
for the case of single-level 2D DWT decomposition of a
standard 512 × 512 image, ‘Lena’. The results presented
in Table 11 establish that the timing performance of our
proposed VLSI architecture outshines the performance of
[23, 24] at a comparable PSNR.

The top level RTL schematic of our proposed 1D and
2D DWT architectures configured in 32 bit fixed-point
format are shown in Fig. 18a, b, respectively. Figure 19
depicts the post-routing simulation results of our 32 bit
fixed-point 2D DWT architecture in Xilinx Vivado 18.2

Table 8 Analysis of our proposed design for real-time three-level 2D DWT decomposition for 512 × 512 images

Design param-
eters

Architectures

[13] [8] [6] [14] [22] Proposed (32
bit fixed) in
Spartan-6

Proposed (32
bit floating) in
Spartan-6

Proposed (32 bit
fixed) in Zynq
UltraScale + MPSoC

Proposed (32 bit
floating) in Zynq
UltraScale + MPSoC

DWT scheme CV LF CV LF LF CV CV CV CV
Multiplier 16 10 189 0 – 0 0 0 0
Adder 12 16 294 34 – 49 49 49 49
ROM 6 65,565 81,920 65,565 73,728 24 24 24 24
Critical path/

cycle period
TM TM TM TA – TA TA TA TA

Critical path/
cycle period
(ns)

7.897 6.543 6.896 2.830 11.577 2.720 159.640 2.540 147.972

Table 9 Comparison in terms of implemetation details of FPGA

Item [15] [16] [14] [22] Proposed (32
bit fixed)

Proposed (32
bit floating)

Proposed (32 bit fixed) Proposed (32 bit floating)

FPGA Virtex-E Virtex-4 Virtex-4 Artix-7 Spartan-6 Spartan-6 Zynq
UltraScale + MPSoC

Zynq UltraScale + MPSoC

Device XCV1000E-8 XCVFX140-12 XCVFX100-12 XC7Z020 XC6SLX25T XC6SLX25T XCZU7EV-2FFVC1156 XCZU7EV-2FFVC1156
Slice 1741 (14%) 973 630 (1%) 1124 (2%) 470 (12.50%) 752 (20%) 557 (0.0012%) 952 (0.0018%)
Memory – 10N

2

4N 73,728 24 24 24 24

Maximum
operating
fre-
quency

110 MHz 321 MHz 353.12 MHz 300 MHz 367.19 MHz 6.26 MHz 393.7 MHz 6.76 MHz

Power – – 139 mW 306 mW 115 mW 220 mW 97 mW 185 mW

Table 10 Comparison of CT (s) and PSNR (dB) for 512 × 512 image (‘LENA’) decomposition

Parameter Binary representation Different implementations

CPU Cortex-A53 GPP DSP unit in STM-
32F446RE

Proposed architecture in Zynq
UltraScale + MPSoC FPGA

CT (s) 32 bit fixed 0.288 0.059 0.043 0.0000188
32 bit floating 0.389 0.107 0.086 0.0000491

PSNR (dB) 32 bit fixed 44.01 43.19 42.87 42.97
32 bit floating 48.85 48.69 47.96 47.82

1444 Journal of Real-Time Image Processing (2020) 17:1421–1446

1 3

5 Conclusion

In this article, we have demonstrated our proposed 1D/2D
DWT architecture. A dedicated VLSI architecture for

real-time DWT decomposition is a much sought after thing
now-a-days. As DWT is used in many signal-processing
algorithms, therefore, our proposed DWT architecture’s
applicability is easily realizable. Though not sufficient in
accordance with requirement, till date, a number of DWT
architectures have been proposed. After studying the exist-
ing architectures, we have pointed out that each one of
the architecture is designed for catering certain purposes
while overlooking other purposes. For example, some of
the well-known architectures are designed only for appli-
cations that require high-speed dedicated hardware. In that
hardware memory requirement and area consumption is
totally overlooked. We have tried to mitigate this prob-
lem by proposing our own DWT designs where we have
tried to balance all the performance parameters, so that our
architecture can be used as general purpose DWT hard-
ware. In our architecture, we have introduced DA-based
design strategy to make it multiplierless, thereby area
efficient. We have chosen bit-parallel DA, so that the pro-
posed architecture can be parallelized and pipelined. The
memory requirement is also taken into account success-
fully. We have also introduced provisions to reconfigure

Fig. 17 Comparison of CT (in s) for different software implementa-
tions with proposed VLSI design

Table 11 Performance
comparison of proposed VLSI
architecture with [23, 24]

Parameter Binary representation [23] [24] Proposed architecture in Zynq
UltraScale + MPSoC FPGA

CT (s) 32 bit fixed 0.0000795 0.0000315 0.0000188
32 bit floating 0.00011 0.0000583 0.0000491

PSNR (dB) 32 bit fixed 41.59 42.07 42.97
32 bit floating 46.23 48.54 47.82

Fig. 18 a Top level RTL schematic of 1D DWT; b top level RTL schematic of 2D DWT

1445Journal of Real-Time Image Processing (2020) 17:1421–1446

1 3

our proposed architecture for 9/7 as well as 5/3 DWT filter
by providing mode selection input. The supremacy of our
proposed architecture has been established in terms of var-
ious design parameters by comparing it with other recent
DWT architectures. While our proposed DWT design

outshines all other architectures in some design param-
eters, it provides comparable results with respect to other
design parameters. After statistical performance analysis,
we have also applied our prototype DWT hardware in case
of real-time image decomposition. The comparison results

Fig. 19 Post-routing simulation of proposed 32 bit fixed-point architecture of 2D Dwt in Xilinx Vivado 18.2

1446 Journal of Real-Time Image Processing (2020) 17:1421–1446

1 3

for this real-time image decomposition also establish the
superiority of our architecture.

References

 1. Meyer, Y.: Wavelets: Algorithms and Applications. SIAM, Phila-
delphia (1993)

 2. Daubechies, I., Sweldens, W.: J. Fourier Anal. Appl. 4, 247 (1998)
 3. Jou, J.M., Shiau, Y.-H., Liu, C.-C.: Efficient VLSI architectures

for the biorthogonal wavelet transform by filter bank and lifting
scheme. In: ISCAS 2001. The 2001 IEEE International Sympo-
sium on Circuits and Systems (Cat. No. 01CH37196), Sydney,
vol. 2, pp. 529–532 (2001)

 4. Mohanty, B.K., Meher, P.K.: Efficient multiplierless designs for
1-D DWT using 9/7 filters based on distributed arithmetic. In:
Proceedings of the 2009 12th International Symposium on Inte-
grated Circuits, Singapore, pp. 364–367 (2009)

 5. Mahajan, A., Mohanty, B.K.: Efficient VLSI architecture for
implementation of 1-D discrete wavelet transform based on dis-
tributed arithmetic. In: IEEE Asia Pacific Conference on Circuits
and Systems, Kuala Lumpur, pp. 1195–1198 (2010)

 6. Mohanty, B.K., Meher, P.K.: Memory-efficient high-speed con-
volution-based generic structure for multilevel 2-D DWT. IEEE
Trans. Circ. Syst. Video Technol. 23(2), 353–363 (2013)

 7. Meher, P.K., Mohanty, B.K., Swamy, M.M.S.: Low-area and
low-power reconfigurable architecture for convolution-based 1-D
DWT using 9/7 and 5/3 filters. In: 28th International Conference
on VLSI Design, Bangalore, pp. 327–332 (2015)

 8. Lai, Y., Chen, L., Shih, Y.: A high-performance and memory-
efficient VLSI architecture with parallel scanning method for 2-D
lifting-based discrete wavelet transform. IEEE Trans. Consum.
Electron. 55(2), 400–407 (2009)

 9. Xiong, C., Tian, J., Liu, J.: Efficient architectures for two-dimen-
sional discrete wavelet transform using lifting scheme. IEEE
Trans. Image Process. 16(3), 607–614 (2007)

 10. Mohanty, B.K., Meher, P.K.: Memory efficient modular vlsi archi-
tecture for high throughput and low-latency implementation of
multilevel lifting 2-D DWT. IEEE Trans. Signal Process. 59(5),
2072–2084 (2011)

 11. Tian, X., Wu, L., Tan, Y., Tian, J.: Efficient multi-input/multi-
output VLSI architecture for two-dimensional lifting-based dis-
crete wavelet transform. IEEE Trans. Comput. 60(8), 1207–1211
(2011)

 12. Huang, C.-T., Tseng, P.-C., Chen, L.-G.: Generic RAM-based
architectures for two-dimensional discrete wavelet transform with
line-based method. IEEE Trans. Circ. Syst. Video Technol. 15(7),
910–920 (2005)

 13. Meher, P.K., Mohanty, B.K., Patra, J.C.: Hardware-efficient
systolic-like modular design for two-dimensional discrete wave-
let transform. IEEE Trans. Circ. Syst. II Express Briefs 55(2),
151–155 (2008)

 14. Darji, A., Arun, R., Merchant, S.N., Chandorkar, A.: Multiplier-
less pipeline architecture for lifting-based two-dimensional dis-
crete wavelet transform. IET Comput. Dig. Tech. 9(2), 113–123
(2015)

 15. Dillen, G., Georis, B., Legat, J.D., Cantineau, O.: Combined
line-based architecture for the 5-3 and 9-7 wavelet transform of
JPEG2000. IEEE Trans. Circ. Syst. Video Technol. 13(9), 944–
950 (2003)

 16. Das, A., Hazra, A., Banerjee, S.: An efficient architecture for 3-D
discrete wavelet transform. IEEE Trans. Circ. Syst. Video Tech-
nol. 20(2), 286–296 (2010)

 17. Hegde, G., Reddy, K.S., Ramesh, T.K.S.: A new approach for 1-D
and 2-D DWT architectures using LUT based lifting and flipping
cell. AEU Int. J. Electron. Commun. 97, 165–177 (2018)

 18. Mohanty, B.K., Meher, P.K., Srikanthan, T.: Critical-path opti-
mization for efficient hardware realization of lifting and flipping
DWTs. In: IEEE International Symposium on Circuits and Sys-
tems (ISCAS), Lisbon, pp. 1186–1189 (2015)

 19. Mohamed Asan Basiri, M., Noor Mahammad, S.: An efficient
VLSI architecture for convolution based DWT using MAC. In:
31st International Conference on VLSI Design and 2018 17th
International Conference on Embedded Systems (VLSID), Pune,
pp. 271–276 (2018)

 20. Aziz, F., Javed, S., Iftikhar Gardezi, S.E., Jabbar Younis, C.,
Alam, M.: Design and implementation of efficient DA architec-
ture for LeGall 5/3 DWT. In: International Symposium on Recent
Advances in Electrical Engineering (RAEE), Islamabad, pp. 1–5
(2018)

 21. Gardezi, S.E.I., Aziz, F., Javed, S., Younis, C.J., Alam, M., Mas-
soud, Y.: Design and VLSI implementation of CSD based DA
architecture for 5/3 DWT. In: 16th IEEE International Bhurban
Conference on Applied Sciences and Technology (IBCAST), pp.
548–552 (2019)

 22. Naik, P., Guhilot, H., Tigadi, A., Ganesh, P.: Reconfigured VLSI
architecture for discrete wavelet transform. In: Soft Computing
and Signal Processing. Springer, Singapore, pp. 709–720 (2019)

 23. Matela, J.: GPU-based DWT acceleration for JPEG2000. In:
Annual Doctoral Workshop on Mathematical and Engineering
Methods in Computer Science, pp. 136–143(2009)

 24. Enfedaque, P., Auli-Llinas, F., Moure, J.C.: Implementation of
the DWT in a GPU through a register-based strategy. IEEE Trans.
Parallel Distrib. Syst. 26(12), 3394–3406 (2014)

 25. https ://www3.ntu.edu.sg/home/ehchu a/progr ammin g/java/datar
epres entat ion.html. Accessed 6 July 2019

 26. Al-Najjar, Y.A., Soong, D.C.: Comparison of image quality
assessment: PSNR, HVS, SSIM, UIQI. Int. J. Sci. Eng. Res. 3(8),
1–5 (2012)

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Anirban Chakraborty is pursuing Ph.D. in the Dept. of Electronics
and Telecommunication Engineering from IIEST, Shibpur, India. He
has completed his M.E. with specialization in Nuclear Engineering
from Jadavpur University, India. He has obtained B. Tech from Netaji
Subhash Engineering College, Kolkata, India in Electronics and Com-
munication Engineering. His research interest includes Digital Signal,
Image Processing and VLSI design.

Ayan Banerjee is presently working as an Associate Professor in the
Department of Electronics and Telecommunication Engineering at
IIEST, Shibpur, India. He has obtained B.E. on 1994 from Bengal
Engineering College, Shibpur, Calcutta University and M. Tech. from
IIT, Kharagpur in Electronics and Electrical Communication Engineer-
ing with specialization in Integrated Circuits and Systems Engineering
on 1999. He has completed his Ph.D. from IIT, Kharagpur on 2013 suc-
cessfully. His research area includes Digital Signal/Image Processing,
VLSI Architectures for Communication and Biomedical Engineering,
CORDIC-based DSP architectures etc. He has authored a number of
Journal and Conference papers of International repute.

https://www3.ntu.edu.sg/home/ehchua/programming/java/datarepresentation.html
https://www3.ntu.edu.sg/home/ehchua/programming/java/datarepresentation.html

	A memory and area-efficient distributed arithmetic based modular VLSI architecture of 1D2D reconfigurable 97 and 53 DWT filters for real-time image decomposition
	Abstract
	1 Introduction
	2 Overview of DWT
	2.1 Mathematical background of DWT

	3 Proposed DWT architectures
	3.1 Design 1D DWT architecture
	3.1.1 ‘Intermediate signal generation’ sub-block
	3.1.2 ‘Memory’ sub-block
	3.1.2.1 Multiplexing and addition unit (MAU)

	3.1.3 PSA sub-block

	3.2 Design of 2D DWT architecture
	3.2.1 Memory unit and data distribution
	3.2.2 Memory address generation unit
	3.2.3 Delay unit

	4 Results and discussion
	4.1 Analytical evaluation
	4.2 Performance in real-time image decomposition
	4.2.1 Experimental setup
	4.2.2 Performance evaluation and comparison

	5 Conclusion
	References

