
Vol.:(0123456789)1 3

Journal of Real-Time Image Processing (2020) 17:1375–1387
https://doi.org/10.1007/s11554-019-00894-7

ORIGINAL RESEARCH PAPER

CUDA implementation of fractal image compression

Abir Al Sideiri1,2,3 · Nasser Alzeidi2 · Mayyada Al Hammoshi4 · Munesh Singh Chauhan5 · Ghaliya AlFarsi1

Received: 29 November 2018 / Accepted: 24 June 2019 / Published online: 3 July 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Fractal coding is a lossy image compression technique, which encodes the image in a way that would require less storage
space using the self-similar nature of the image. The main drawback of fractal compression is the high encoding time. This
is due to the hard task of finding all fractals during the partition step and the search for the best match of fractals. Lately,
GPUs (Graphical Processing Unit) have been exploited to implement fractal image compression algorithms due to their high
computational power. The prime aim of this paper is to design and implement a parallel version of the Fisher classification
scheme using CUDA to exploit the computational power available in the GPUs. Fisher classification scheme is used to reduce
the encoding time of fractal images by limiting the search for the best match of fractals. Encoding time, compression ratio
and peak signal-to-noise ratio was used as metrics to assess the correctness and the performance of the developed algorithm.
Eight images with different sizes (512 × 512, 1024 × 1024 and 2048 × 2048) have been used for the experiments. The con-
ducted experiments showed that a speedup of 6.4 × was achieved in some images using NVIDIA GeForce GT 660 M GPU.

Keywords  Fractal image compression · Quad-tree partitioning · GPU · Parallel processing · CUDA

1  Introduction

Due to the advances in information systems and technolo-
gies, there is an essential need for efficient data storage and
fast data transmission. Digital images possess the charac-
teristic of being data intensive [1, 2]. Thus, storing these
images in less memory leads to a direct reduction in data
transmissions and storage costs. Therefore, data compression
has always been an active area of research to offer solutions
for these critical issues.

There are two general categories of data compression
methods, namely lossless and lossy methods. A lossless
method will produce an image that is identical to the origi-
nal image when decompressed. On the other hand, a lossy
method will produce an image that closely resembles the
original image. The main drawback of lossless methods
is that they cannot achieve very high compression ratios.
Hence, lossy methods are mostly used for image compres-
sion applications because the losses of very minor graphic
details are not critical. Nonetheless, for certain applications,
lossless compression is a necessity such as the compression
of text files or executable codes [1]. One example of the
lossy image compression methods currently available is the
method of fractal image compression, developed by Michael
Barnsley and his associates [1]. Fractal image compression

 *	 Abir Al Sideiri
	 abir@buc.edu.om

	 Nasser Alzeidi
	 alzidi@squ.edu.om

	 Mayyada Al Hammoshi
	 mhammoshi@viu.edu

	 Munesh Singh Chauhan
	 munesh.sal@cas.edu.om

	 Ghaliya AlFarsi
	 galfarsi@buc.edu.om

1	 Department of Information Technology, Buraimi University
College, Al‑Buraimi, Oman

2	 Department of Computer Science, Sultan Qaboos University,
Muscat, Oman

3	 Department of Systems and Networks, Universiti Tenaga
National (UniTen), Kajang, Malaysia

4	 School of Computer Information System, Virginia
International University, Fairfax, VA, USA

5	 Department of Information Technology, College of Applied
Science, Salalah, Oman

http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-019-00894-7&domain=pdf

1376	 Journal of Real-Time Image Processing (2020) 17:1375–1387

1 3

methods seek for a way to represent images in terms of iter-
ated functions that describe how parts of an image are self-
similar to other parts. An encoding stores information about
an image which can always be decoded at a prescribed level
of details, in spite of the size of the decoded image and
without the regular scaling artefacts such as pixilation. The
size of the resulting encoding is based on the encoding algo-
rithm’s ability to achieve the self-similarity of the image,
theoretically leading to more efficient encodings.

Despite its advantages like fast decoding, resolution inde-
pendence and high compression ratio, fractal image com-
pression requires enormous execution time as searching all
domain blocks for a matching range block is very time con-
suming. Researchers proposed different schemes to improve
the searching process such as classification methods. A clas-
sification method is a pre-process executed before the search
phase and aims to reduce the size of the domain pool [3–5].
The most commonly used classification scheme is the one
proposed by Fisher [3]. Nonetheless, the encoding phase still
suffers from extensive time. New trends have been studied
for speeding up the encoding phase including different paral-
lel processing schemes [3].

The rapid increase in the peak performance of the GPUs
has motivated researchers to study the use of GPUs for frac-
tal image coding [4–9]. In [10] and [11], the authors pre-
sented the systolic architecture approach where each range
block is compared with a different domain blocks at any
given step. Domain blocks are shifted to the next processor
for further comparison step in the pipeline once the compari-
son step is completed. When all domain blocks have passed
through the pipeline, the comparison step is complete for
all range blocks.

The majority of parallel algorithms that have been devel-
oped tend to use some forms of dynamic load balancing
as in [11]. This approach involves a master process and a
large number of slave processes. In [7, 12], the master pro-
cess divides the image blocks amongst the slaves equally.
Therefore, each slave is responsible for its own subset of
the overall domain pool. Then the master transmits range
blocks to any idle slaves and waits for them to return the best
match from their subset of the domain pool. Depending on
whether this is a satisfactory match or not, this range block
may or may not be sent to another processor. The master
process ensures that all slaves are kept busy until the task
is completed.

An Open MP parallelization for Fisher’s fractal image
encoding method was proposed in [13, 14]. The parallel exe-
cution procedure is applied to partition the data involved in
range. Therefore, several slice areas are formed, and a multi-
core thread is responsible for searching the fractal codes at
every slice region of every range block involved in range
block. The final fractal codes are combined with the ones of
each slice region [13, 14].

The authors in [15] implemented adaptive fractal image
coding algorithm on GPUs using CUDA (Compute Uni-
fied Device Architecture) to achieve a given quality of a
compressed image. The original adaptive fractal image
coding algorithm consists of three loops which include no
data dependences. This eased parallelizing the coding algo-
rithm by distributing the loop elements on multiple com-
puting cores [15]. The proposed algorithm utilized a vector
of pointers to range blocks whose quality is less than the
required level to improve the efficiency of the parallelism
on the GPU environment. An improved parallel algorithm
is described in [16]. Whilst original implementation carries
out the computation by 1 thread, the improved version cal-
culates it by 16 threads. Despite that the number of threads
in a thread block can increase to enhance the occupancy; the
communication between the threads within the thread block
may increase the overhead.

A parallel model using CUDA has been presented to
parallelized fractal encoding algorithm in [17]. This model
states that the parallelization can be done in levels. First,
the range blocks can be processed in parallel to find the best
matching domain block. Second, whilst finding the scaling
and offset, all pixel values in a block can be processed in
parallel. This model considers each domain/range block as
a corresponding to a block of threads on the CUDA model;
the processing of one pixel values from the domain block
is handled by a single thread along with the corresponding
single pixel values in the range block.

A new parallel implementation for fractal image compres-
sion for medical imaging using GPU platform was presented
in [18]. The implementation launches a thread for each range
block. Also, this model utilizes CUDA’s texture fetching to
load range and domain data.

In this research work, we propose a CUDA parallel imple-
mentation for one of the most commonly used classification
schemes in fractal image compression (i.e. Fisher scheme).
The validity and the performance of the proposed scheme
have been empirically assessed using NVIDIA GeForce
GT660 M GPU. To the best of our knowledge, this is the
first attempt to provide CUDA implementation for this
classification scheme. The rest of this paper is organized
as follows. Section 2 provides basic preliminary informa-
tion whilst Sect. 3 presents the proposed parallel scheme.
The experimental evaluation of the scheme is outlined in
Sect. 4. Section 5 concludes the paper and presents some
future directions.

2 � Preliminaries

The basic scheme of fractal image compression is to parti-
tion a given image into non-overlapping blocks, called range
blocks and overlapped blocks of double size of range blocks

1377Journal of Real-Time Image Processing (2020) 17:1375–1387	

1 3

called domains [3]. The range is obtained from the quad-
tree partitioning (a method to partition an image into quad-
rants) of the original image that needs to be compressed. The
domains, on the other hand, are obtained from the domain
library (also called domain pool). The first step is to reduce
the domain size to that of the range size, since the domain
is double the range size (in other words, the number of pix-
els in the given domain is four times the number of pixels
that is in the range as shown in Fig. 1). After the averag-
ing, for each range block, the scheme exhaustively searches
the domain pool for a best-matched domain block using the
root mean square (RMS) error function to determine how
closely a transformed domain block is approximating a cor-
responding range block. If the RMS value is minimum (or
not greater than the maximum threshold), the mapping (w) is
saved. The mapping consists of the quantized value scaling
(contrast s) and offset (brightness o) of the affine transfor-
mations (a group of transformations such as scaling, rota-
tion, and brightness) [3] plus the quad-tree partition levels.
Otherwise, a new domain is taken, and the same process is
repeated again to compare it with the range. The following
subsections provide some basic information about fractal
image compression.

2.1 � GPUs and CUDA

A CUDA compatible device is a set of multiprocessor cores,
which are able to execute a large number of threads concur-
rently. Each multiprocessor has a single instruction multiple
thread (SIMT) architecture (i.e. means that each processor of
multiprocessor executes different threads, but all the threads
run the same instructions) that operates on different data
based on its thread ID, at any clock cycle [16]. A CUDA
compatible device has its own memory (DRAM) which is
divided into three different types: global memory, constant
memory and texture memory. These memories can be read
from or written to by the host CPU and they all are persistent
throughout the life of the application. The multiprocessors
have on-chip memories such as registers, shared memory,
constant cache and texture cache. Since these memories are

on chip, they are very fast as compared to off-chip memories
such as DRAM (global memory). The registers (32-bit) are
the fastest available but only support a limited amount of
space (32–64 KB). Shared memory is limited to 48 KB and
it is shared by all processors. A constant cache speeds up
reads from the constant memory. Similarly, texture cache
speeds up read from the texture memory [16]. Figure 2 illus-
trates the CUDA memory model.

The scalable programming model provides for the parallel
execution of certain portion of an application on a device
called Kernel. Kernel Function is executed on the device by
many threads running on different processors of the multi-
processors. A thread block is a batch of threads which use
shared memory to synchronize their execution. Each thread
block executes on one multiprocessor and is limited only
with 512 threads. A group of thread blocks of same size
and dimensions execute the same kernel batched together
into a grid of blocks. A grid consists of one or maybe two-
dimensional array of blocks. A block is further one-, two- or
three-dimensional array of threads as illustrated in Fig. 3. In
CUDA, a thread is the basic unit of processing. Threads are
organized into warps of 32 threads, and then executing all
threads in a warp in parallel. CUDA includes C/C++ soft-
ware development tools to help programmers to combine
host code with the device code. Tto do that, CUDA program-
ming requires a single program (i.e. kernel) written in C/
C++ with some extension. CUDA nvcc compiler is used to
compile the source code containing these extensions [19].

2.2 � Range and domain blocks

A range block consists of fixed-size partitions of the
image based on quad tree. A quad-tree partitioning is a

Range Domain

Fig. 1   Range vs. domain size

Fig. 2   CUDA Memory Model [16]

1378	 Journal of Real-Time Image Processing (2020) 17:1375–1387

1 3

tree representation of an image in which each range node
(square portion of the image) contains four sub-nodes (four
quadrants of the square). The initial image is the root of the
tree. In this method, maximum and minimum depth of the
quad tree is set and a maximum allowable error to govern
domain-range match needs to be set before partitioning. The
next step is to partition an image into four square ranges of
the same size until the maximum depth is met. An optimum
matching domain block will be searched using an error func-
tion such as RMS for each range block on the level. RMS
computed as RMS =

√

minE(R,D)∕n , where E is the dis-
tance between the range (R) and transformed domain (D), n
is the number of pixels in the range (R). If such pair is found,
the best matching range block with the domain block will
be stored, and further partitioning is ceased. Otherwise, the
quad tree is partitioned again, and the process is repeated to
find the best match. This process continues till the maximum
depth is met [20]. Figures 4 and 5 illustrate the image parti-
tioning into ranges and domains, respectively.

Fig. 3   CUDA thread execution model [16]

Fig. 4   Range partitioning

Fig. 5   Domain partitioning

1379Journal of Real-Time Image Processing (2020) 17:1375–1387	

1 3

The domain pool is crucial to an efficient representation.
In the basic fractal image coding, there are a lot of domain
blocks that represent the domain pool. As a result, search-
ing through a large pool for every range block is a very
time-consuming process. So, if the image size is 256 × 256,
the number of ranges, if the range size is 4 × 4, will be
(256 × 256)/(4 × 4) = 4096. Whereas the numbers of domains
which are twice the range size will be (256 − 8 + 1) × (256
− 8 × 1) = 62,001 and 8 symmetric transformations need
to be applied for each of these 62,001 domain blocks (i.e.
4 rotation directions and 4 mirror directions) resulting in
a total of 496,008 domain blocks. Each of the 4096 range
blocks needs to be compared with every transformed domain
block. This is why most researchers have concentrated on
making the search process faster in reducing complexity of
computation [20].

2.3 � Fisher classification scheme

There are several approaches proposed to reduce the time
to search for domain-range match in FIC. The most popu-
lar approach is the classification scheme. Classification
scheme is part of a pre-process executed before the search
phase which aims to reduce the size of the domain pool
and, hence, reducing the encoding time [3–5]. The Fisher
classification scheme is the most widely used classification
scheme. All the domains in the domain pool are classified
before encoding phase and this will avoid reclassification
of the domains later. A potential range block is classified
during the encoding and only the domains with the same
classification are compared with the range. According to
Fisher [3], the classification of the blocks in the domain pool
is done as following:

1.	 The sub-image (called Domain D) is divided into four
quadrants.

2.	 For each quadrant, average of pixels is calculated
separately (A1,A2,A3,A4).

3.	 Then the domain D is re-organized in three classes as
shown below:

4.	 Each class can further be organized in 4! ways as described
below, so all the classes will have 3 × 24 = 72 classes.
Consider Class 1: A1 ≥ A2 ≥ A3 ≥ A4 , as one fixed
domain state. For each quadrant i, also variance is calcu-
lated with the following formula: Vi =

∑n

j=1

�

ri
j

�2

− A2
i
 ,

where n is the number of pixels in the quadrant and
Vi =

∑n

j=1

�

ri
j

�2

− A2
i
 . So for Class 1 domain, four calcu-

lated variances for each of its quadrants V1,V2,V3,V4 can
be placed in four factorial ways. Meaning that, V1 can be
placed in any one of the four quadrants (i.e. V2 can be
placed in any one of the remaining three quadrants, V3 in
any one of the remaining two quadrants, V4 in the last
remaining quadrant). So 4 × 3 × 2 × 1 = 24 ways, from the
3 total classes, thus 3 × 24 = 72 different classes.

2.4 � The sequential FIC algorithm

Figure 6 illustrates the steps of compression algorithm
based on Fisher scheme. The basis for the encoding proce-
dure as stated before is: an image is divided into parts that
are resembled by other parts in the same image after some

A1 ≥ A2 ≥ A3 ≥ A4

A1 ≥ A2 ≥ A4 ≥ A3

A1 ≥ A4 ≥ A2 ≥ A3.

Fig. 6   Fisher scheme for fractal
image compression (sequential
algorithm). 1tol: is the tolerance
level which is a loose target
for the final RMS error of the
encoded image. In this algo-
rithm it is stated as 1

� Read the image to be compressed
� Domain partitioning and initial classification:

� Split the image into domains
� Each domain block:

• Averaged to be reduced to range size
• Rotated and flips (8 new domains are produced)

� domains with same size are classified
� Quad tree

� Partition same image into four quadrants to the maximum depth recursively
� Range_Domain comparison

� Pick up a range
� Pick up the first domain from domain pool with same size

• Calculate best RMS error from the domain:
♦ If RMS meets tol1 levels (tolerance value), output the results the file-

system
• If no domain matches, then we split the current range and proceed
• If we cannot split further, then we pick up the best domain that we have

found from the list of domains

1380	 Journal of Real-Time Image Processing (2020) 17:1375–1387

1 3

scaling. The result is a set of transformations which, when
iterated from any initial image, have a fixed point of approxi-
mation (attractor). A flow chart of the sequential algorithm is
illustrated in Fig. 7. RMS is an error function, determining
how closely a transformed domain blocks approximate to
a corresponding range block. Precisely, the error between
two equal-sized collections of pixels is the sum of the errors
between each corresponding pairs of pixels. Each domain
block is compared against each range block and the error
between the range block and the transformed domain block
is calculated [3].

3 � The CUDA parallel scheme

As mentioned earlier, the problem of fractal image cod-
ing is the large encoding time. In this section, we pro-
pose an approach towards parallelizing the encoding step
to reduce the overall compression time. The basic Fractal
Image Compression algorithm serves as a good candidate
for parallelization because of the huge amount of computa-
tion involved in finding the best match between the domain
block for each range block [17]. When complemented with
Fisher classification scheme, the FIC algorithm also would
require careful memory optimization. Figures 8 and 9 illus-
trate the proposed parallel compression algorithm based on
Fisher classification scheme. The main difference between

No

Yes

Yes

Start

Define tol, max &
min Quadtree

Compute domain sums

Classify domains

Quadtree par��on
image into ranges

Classify ranges

RMS < tol & size
of Range <= min

QT depth

Si & Oi for the range, domain
mapped to it & symmetry

opera�on

Last range

Fractal code, Quadtree
par��on & other

parameter

Stop

Ran through ranges

Compare range with all
domains of the same class

to find least RMS error

No

Fig. 7   Flow chart of Fisher scheme (sequential algorithm)

� Read the image to be compressed
� Domain partitioning and initial classification:

� Split the image into domains
♦ Each domain block:

• Averaged to be reduced to range size
• Rotated and flips (8 new domains are produced)

� domains with same size are classified
� Quad tree

� Partition same image into four quadrants (ranges)
� Quad Tree is linearized by formula 4n + 1

� Launch kernels for all nodes of the quad tree at the same time
� A reduction process is done

� Range Domain comparison
� Pick up a range
� Pick up the first domain from domain pool with same size

♦ Calculate best RMS error from the domain:
� If RMS meets tol levels, then output to memory buffer the quad

transformations
� Otherwise output to the memory buffer the fact that we are recursively

going down
� Do a gather operation of the data that was output in the memory buffer recursively

� Check what the parallel version outputted and write it in the file

Fig. 8   Fisher scheme for fractal image compression (parallel algorithm)

1381Journal of Real-Time Image Processing (2020) 17:1375–1387	

1 3

the sequential algorithm and the parallel algorithm is that in
quad-tree traversal the decision to split is based on the RMS
value. Whereas in parallel CUDA, all results are stored in
the memory and these stored results are subsequently parsed
and output as compression results to the file system. The
algorithm uses tree-like structure, data-dependent instruc-
tions and divergent branches. These three components are
explained in more details in the following subsections.

3.1 � Mapping tree structure to parallel architecture

The quad tree is linearized by formula (4n + 1) due to the
memory address mappings. For example, if a node has
address i, then its four children have indices 4 × i + 1,
4 × i + 2, 4 × i + 3, and 4 × i + 4 as shown in Fig. 10. In this
way, the tree is mapped to a linear buffer. When the quad-
tree recursion is done in parallel, every node or leaf outputs
into a linear buffer. Then the linear buffer with a recursion is
gathered after the parallel process finishes. These buffers are
runtime memory buffers which are initialized dynamically
and are part of heap area of the runtime memory.

3.2 � Using parallel reduction

Reduction is a well-known operation that has relevance
in many engineering applications. It involves applying an
operator on a range of values residing in a linear memory
or vector and accumulating the final result in a single loca-
tion that, in most cases, is the first element of the vector as
described in Fig. 11. For the reduction to work with high
performance on a GPU, the input vector size should be large
[21]. In our proposed scheme, the parallel algorithm does the
reduction operations when it iterates on pixels of an image
and accumulates results. As shown in fig. 4.3, when a quad
tree is traversed initially (level 0), the image size (node) is
quite large 1024 × 1024. At the next level (level 1), quad tree
operates on 4 images of size 512 × 512 and accumulates the
sum of all pixels. On second level, 16 images 256 × 255, on
third level 64 images of size 128 × 128 and so on. If kernels
are launched on every level of the tree, then at the first level
there will be 4 cores working on sizes of 512 × 512 = 262,144
and at the last level, will be 64 cores working on block of
16 × 16 each. Clearly, the quad tree is slow in the beginning

Fig. 9   Flow chart of proposed
parallel algorithm

Yes

No

Yes

No

Start

Define tol, max &
min Quadtree

Compute domain sums

Classify domains

Quadtree par��on
image into ranges

Quad Tree is linearized
by formula 4n + 1

RMS < tol & size
of Range <= min

QT depth

Si & Oi for the range, domain
mapped to it & symmetry

opera�on to a buffer

Last range

Fractal code, Quadtree
par��on & other

parameter

Stop

Ran through ranges

Compare range with all
domains of the same class

to find least RMS error

Classify ranges

Launch kernels for
nodes of the quad tree

at the same �me

Reduc�on process

Reduc�on process

Write to a buffer that
recursively going down

Gather opera�on of the data from
the memory buffer recursively

1382	 Journal of Real-Time Image Processing (2020) 17:1375–1387

1 3

in terms of cores utilized and it is irregular. To regularize
it a bit, the following have to be done: at the lower levels
of tree traversals, a reduction is done for accumulation. For
example, spawn one kernel over a set of 512 × 512 pix-
els with many threads; it accumulates results in the shared
memory (of the GPU device) and outputs the result in the
main memory. At the higher levels, normal fork join model
is done; spawn kernels over the small sets of size 16 × 16
and 32 × 32.

3.3 � Removing divergent branches

The GPU architecture runs threads in groups of 32 threads,
called warps, which are executed in a SIMD fashion [9]. All
threads within a warp must execute the same instruction at
any given time with different data sets. Branch divergence, as
shown in Fig. 12, occurs when threads inside warps branches
to different execution paths. This could lead to a situation
where each branch had thousands of instructions for compar-
ing domains with ranges in sequential implementation and,
consequently, adversely affecting the performance. Branch
divergence occurrences can be minimized by reducing long
divergent paths to smaller ones [21]. In our implementation,
this issue of thread divergence was considerably reduced by
changing algebraic expressions through re-arrangement of
the loops in parallel implementation. In the original code,

there were seven loops and they lead to divergent paths and
different steps, but in the modification, they are put as com-
mon structures.

4 � Experimental evaluation

We have done few improvements to the implementation of
the fractal image compression algorithm based on Fisher
classification scheme. First, a class was developed to handle
the loading of images from the file system. Free Image [22]
library is chosen to load the images. Free Image is an open
source library written in C++. This library uses a unique
Free Image IO structure to load different types of images.
Second, another class was developed to validate the loaded
image. It makes sure that the loaded image is a square 8-bit
gray scale image and of dimensions 2i, otherwise, an error
message will be generated.

Once the validated image is supplied to the algorithm,
two tasks are performed; the first one is the classification
of domains for the picture and the second one is the quad-
tree partitioning. The classification is done by splitting the
image into sub-images (e.g. an image of size 1024 is split

Fig. 10   Linear quad tree
……………

i

4*i+1 4*i+2

4*i+3 4*i+4

i

4*i

4*i

4*i

4*i

Linearized the Quad tree by

formula 4n + 1

For an image:
Level 1 to 4
Sub-images parallel for (0 : 3){

average on 512x512
}

Level 6 to 4096
Sub-images parallel for (0: 4095) {

average on 16x16
}

Reduction process Illustration [34]

Fig. 11   Reduction process

Fig. 12   Branch divergence [21]

1383Journal of Real-Time Image Processing (2020) 17:1375–1387	

1 3

into sub images of sizes 1024 × 1024, 512 × 512, 256 × 256,
128 × 128, 64 × 64, 32 × 32, 16 × 16). In every split, we cal-
culated its sum and squared sum. This will be used for cal-
culating the averages and variance. As mentioned before,
Fisher algorithm classifies the domains into 72 classes based
on average and variance values [3].

The quad-tree decomposition is used to partition the
image into ranges that are classified into classes. Each range
is then compared with domains of the same class. If there
is a match, the transformation will be output to the match-
ing domain. Otherwise, the range will be partitioned into
four quadrants. If the range size is 16 × 16, it will not be
partitioned further, the closest domain will be considered
as a match. The output from the compression phase is a
compressed image consisting of the following:

•	 For each range, the corresponding mapped domain (only
positions).

•	 Affine transformation values for each range.
•	 The final quad-tree partition of the image, each level is

represented by 1 bit.
•	 The symmetry orientation operations for mapping each

range to a domain.

The following points were considered before the algo-
rithm is programmed in CUDA:

•	 Memory allocation is slow in CUDA, the cuda Malloc
Managed function (same as Malloc in C/C++) costs
around 2–3 ms [22]. This problem is fixed by allocat-
ing one big buffer at the beginning of the algorithm and
subsequently allocating from it. Finally, it is freed at the
end of the algorithm. Besides, fast memory allocation on
the CPU side, significant amount of cuda Memcpy (CPU
to GPU and vice versa expensive memory transfers) are
avoided.

•	 Launching CUDA kernel is slow. In the implementation,
this problem is fixed by launching as few kernels as pos-
sible. As mentioned before, the reduction is only done for
lower level (larger ranges blocks).

•	 Normally, 2D data are fetched as arrays. GPUs have tex-
ture cache, which is separated from the L1 cache (were
stack and shared memory goes). Tto utilize it, the 2D
arrays should be seen as textures to read from and as
surfaces to write on. Initial domain images obtained from
domain partitioning of FIC algorithm, are scaled down
in a kernel function implementation that averages 2 × 2
texture. It works with textures, not with c arrays of pixels.
Using textures utilizes the L2 cache of the hardware for
read-only memory. The texture cache is optimized for
2D spatial locality, so threads of the same warp that read
texture addresses that are close together will achieve best
performance.

4.1 � Hardware and software setup

The implementation of sequential algorithm has been pro-
grammed using C/C++ programming language, whereas
the parallel algorithm has been programed using mix of C/
C++ and CUDA programming languages. The program-
ming has been done using Microsoft Visual Studio 2013
and CUDA Toolkit 6.5. The experiments were conducted
in a stand-alone machine with the following specification:

•	 Operating System: Windows 7 Professional 64 bit.
•	 Processor: Intel(R) Core(TM) i5 Quad CPU (four pro-

cessing cores).
•	 Memory: 6 GB RAM NVIDIA GeForce GT 660 M GPU

with 960 cores.

The GPU configuration used for the experiments is shown
in Table 1. The following images with different sizes are
used for the experiments:

•	 Barbara and Lena: 512 × 512.
•	 Lamp_post, London and Satellite1: 1024 × 1024.
•	 River, Lake and Satellite2: 2048 × 2048.

Each one of these images is loaded to both sequential
and parallel programmes. Three metrics were then used to
assess the validity of the algorithm and its performance.
These metrics are:

•	 The encoding time is the time taken to compress the
image.

•	 The compression ratio (CR) is the ratio between the size
of the source file and the size of the compressed file. This

Table 1   GPU configuration

CUDA driver version/runtime version 6.5/5.5
CUDA capability major/minor version number 3.0
Threads per warp 32
Max warps per multiprocessor 64
Max thread blocks per multiprocessor 16
Max threads per multiprocessor 2048
Maximum thread block size 1024
Registers per multiprocessor 65,536
Max registers per thread block 65,536
Max registers per thread 63
Shared memory per multiprocessor (bytes) 49,152
Max shared memory per block 49,152
Register allocation unit size 256
Register allocation granularity Warp
Shared memory allocation unit size 256
Warp allocation granularity 4

1384	 Journal of Real-Time Image Processing (2020) 17:1375–1387

1 3

evaluates the effectiveness of compression algorithm
using file size. Lowering the compression ratio does not
increase the reconstructed image quality significantly [3].

•	 Peak signal-to-noise ratio (PSNR) measures the difference
between the original (without noise) and reconstructed
image. This is most widely used to measure the quality/
distortion for an image and it is calculated after the decod-
ing phase [2]. PSNR measures the distortion of the image
using the following equation: PSNR = 10 log10

(

2562

MSE

)

MSE values between two images are calculated as:
MSE =

1

MN

∑M

y=1

∑N

x=1

�

I(x, y) − I�(x, y)
�2 , where I(x, y)

is I�(x, y) . The original image, I′(x, y) is the approximated
version (which is actually the decoded image) and M, N
are the dimensions of the images. It is worth mentioning
at this stage that we have also implemented the FIC
decoding algorithm. The decoding phase starts with an
image (black image) of the same size as the original
image, applies the transformations and finally an image
close to the original image is produced. This is necessary
to calculate PSNR.

4.2 � Validation of the parallel algorithm

It is very important to validate the correctness of the pro-
posed parallel implementation. Therefore, the compression
ratio (CR) and peak signal-to-noise ratio (PSNR) were cal-
culated for all test images for both sequential and parallel
algorithms. Table 2 shows the results of the compression
ratio for each test image from both sequential and parallel
implementations. As it can be seen from table, the com-
pression ratio of both sequential and parallel implementa-
tions for each image is the same. Similarly, Table 3 shows
the PSNR results for each test image for both sequential
and parallel implementations. The results of PSNR for
both sequential and parallel implementations for each
image are the same. The above table clearly demonstrates
the validity of the parallel implementation as both metrics

produce same results for both the parallel and the sequential
implementations.

4.3 � Encoding time

Encoding time is calculated for each test image for both
sequential and parallel implementations. The experiments
were carried out with the size of the range block of 16 × 16
as mentioned before. This is the optimal range block size as
shown in [5], [21]. The following table shows the speedup
for each test image. The speedup is calculated as:

The results clearly show that the performance gain for
parallel image coding. The kernel utilized CUDA’s tex-
ture fetching to load range and domain data that is cached.
Therefore, a texture fetch costs one device memory read
only on a cache miss; otherwise, it just costs one read from
the texture cache. Also, using parallel reduction for larger
range blocks help speeding up the process. Functions are
reworked to do reduction for the lower levels of the quad tree
(big sizes). This involved using shared memory to exchange
data between threads within the same thread block which
involves writing data to shared memory, synchronizing,
and then reading the data back from shared memory. The
experiments were done using Kepler having shuffle instruc-
tion (SHFL) which enables a thread to directly read a reg-
ister from another thread in the same warp (32 threads) and
that allows threads in a warp to collectively exchange or
broadcast data. Batching kernel parameters in big buffers
to save cuda Memcpy when launching kernels and removal
of divergent branches in the compare function all help in
speeding up the encoding time.

From Table 4 and Fig. 13, several tests were run of the
same program with same images and the average results
show that the speedup is increasing from 1.3 × for 512 × 512
image size, to around 5 × for 1024 × 1024 image size. For
images of size 2048 × 2048, the algorithm achieves speedup
up to 6.4 × in some image like satellite images due to the

Speedup = sequential time(ms)∕parallel time(ms).

Table 2   Compression ratio results from sequential and parallel algo-
rithm

Image Image size Sequential Parallel

Lena 512 × 512 4.68 4.68
Barbara 512 × 512 4.68 4.68
Lamp_posts 1024 × 1024 18.79 18.79
London 1024 × 1024 20.41 20.41
Satellite1 1024 × 1024 18.89 18.89
River 2048 × 2048 17.58 17.58
Lake 2048 × 2048 18.18 18.18
Satellite2 2048 × 2048 18.16 18.16

Table 3   PSNR results from sequential and parallel algorithm

Image Image size Sequential Parallel

Lena 512 × 512 39.6 39.6
Barbara 512 × 512 34.14 34.14
Lamp_posts 1024 × 1024 31.12 31.12
London 1024 × 1024 36.31 36.31
Satellite1 1024 × 1024 29.47 29.47
River 2048 × 2048 35.02 35.02
Lake 2048 × 2048 40.57 40.57
Satellite2 2048 × 2048 39.42 39.42

1385Journal of Real-Time Image Processing (2020) 17:1375–1387	

1 3

SIMD fashion where there should be huge amount of data
needed to be done on the GPU.

4.4 � GPU occupancy

GPU occupancy is defined as the ratio of active warps on
an SM to the maximum number of active warps supported
by the SM [23] and it is calculated using CUDA Occupancy
Calculator provided by NVidia [24]. In Figs. 14 and 15, we
see that our program maximizes GPU occupancy without
causing register spillage. This indicates that our kernel
launches are at near-maximum efficiency.

Figure 14 shows how varying the block size whereas
holding different parameters constant would influence the
tenancy. The red triangle shows the current number of
threads per block and the current upper limit of active warps.
Note that the quantity of active warps is not the number of
warps per block (that is threads per block divided by warp
size, rounded up). Figure 15 shows how varying the record
count whereas holding different parameters constant would
influence the occupancy.

Figure 16 shows the achieved occupancy for every SM.
The values reported are the average across all warp schedul-
ers for the duration of the kernel execution.

Table 4   Average of encoding time results from sequential and paral-
lel algorithm

Image Image size Sequential Parallel Speedup

Lena 512 × 512 470.97 364.83 1.3×
Barbara 512 × 512 475.69 366.67 1.3×
Lamp_posts 1024 × 1024 1029.55 208.965 4.9×
London 1024 × 1024 1100.23 242.197 4.5×
Satellite1 1024 × 1024 891.093 180.059 4.9×
River 2048 × 2048 24,295.7 3950.68 6.1
Lake 2048 × 2048 22267.9 4001.63 5.6×
Satellite2 2048 × 2048 22948.3 3596.61 6.4×

0
5000

10000
15000
20000
25000
30000

Fig. 13   Average of encoding time results from sequential and parallel
algorithm

Fig. 14   Estimated occupancy as
a function of threads per block

0
8

16
24
32
40
48
56
64

0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

M
ul

tip
ro

ce
ss

or
 W

ar
p

O
cc

up
an

cy

(#
 w

ar
ps

)

Threads Per Block

Impact of Varying Block Size

Fig. 15   Estimated occupancy as
a function of registers per thread

0
8

16
24
32
40
48
56
64

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

M
ul

tip
ro

ce
ss

or
 W

ar
p

O
cc

up
an

cy

(#
 w

ar
ps

)

Registers Per Thread

Impact of Varying Register Count Per Thread

1386	 Journal of Real-Time Image Processing (2020) 17:1375–1387

1 3

5 � Conclusions

In this research, we have proposed a new parallel implemen-
tation for fractal image compression based on Fisher clas-
sification scheme using CUDA. The implementation is based
on three main components; linearizing the tree structure to
fit the parallel architecture, getting read of the divergent
branches and using parallel reduction to reduce the num-
ber of launched kernels. The performance of the proposed
implementation has been evaluated on NVIDIA GeForce GT
660 M GPU using CUDA. Eight images with different sizes
were used for the experiments with block of size 16 × 16
pixels. The compression ratio and peak signal to noise ratio
results prove the validity of the parallel implementation. The
encoding time for parallel implementation is better com-
pared to the sequential implementation and speedups of up
to 6.4 are recorded with some test images. The results also
demonstrate that the parallel algorithm was able to achieve
better performance when the image size is large due to the
SIMD mode of execution.

The contribution of this chapter is to parallelize Fisher
algorithms with six different images on one GPU. For future
work, this parallel algorithm can be run on different GPUs
and comparison can be done between the proposed one and
the others. Also, the decoding process was implemented
but the time was not considered in this research. It will be
considered after running the same algorithm on different
GPUs and then check the results and compare. Also, this
implementation will be extended to exploit CUDA dynamic
parallelism to launch kernels from the GPU, not only the
CPU. This is expected to further decrease the encoding time.

Funding  This work was financially supported by The Research Coun-
cil/Sultanate of Oman, Grant ORG/ICT/10/003.

References

	 1.	 Sashikala, Y.M., Arunodhayan, S.S.: A survey of compression
techniques. Int. J. Recent Technol. Eng. 2(1), 152–156 (2013)

	 2.	 Liu, D., Jimack, P.K.: A survey of parallel algorithms for fractal
image compression. J. Algorithms Comput. Technol. 1, 171–186
(2007)

	 3.	 Fisher, Y.: Fractal Image Compression Theory and Application.
Springer, Berlin (1995)

	 4.	 Wu, X., Jackson, D.J., Chen, H.-C.: A fast fractal image encoding
method based on intelligent search of standard deviation. Comput.
Electr. Eng. 31(6), 402–421 (2005)

	 5.	 El-Khamy, S., Khedr, M., Al-Kabbany, A.: Efficient fractal image
coding using adaptive domain pool reduction technique. In: IEEE
Pacific Rim Conference on Communications, Computers and Sig-
nal Processing (PacRim) (2007)

	 6.	 Kaur, M., Kaur, G.: A survey of lossless and lossy image compres-
sion Techniques. IJARCSSE Int. J. Adv. Res. Comput. Sci. Softw.
Eng. 3(2), 323–326 (2013)

	 7.	 Jackson, T.B.: A parallel fractal image compression algorithm
for hypercube multiprocessors. In: 27th Southern Symposium on
System Theory (1995)

	 8.	 Kulkarni, M.V., Kulkarni, D.B.: Parallel computing using CUDA-
GPU in fractal video coding introduction. In: Video & Image
Processing, p. 2008, (2008)

	 9.	 Park, I.K.: Design and performance evaluation of image process-
ing algorithms on GPUs. IEEE Trans. Parallel Distrib. Syst. 22,
91–104 (2011)

	10.	 Lee, S., Omachi, S., Aso, H.: A parallel architecture for quadtree-
based fractal image coding. In: Proceedings of the International
Conference on Parallel Processing, vol. 2000, pp. 15–22 (2000)

	11.	 Zalan, B.: Maximal processor utilization in parallel quadtree-
based fractal image compression on MIMD architectures, vol.
XLIX, no. 2 (2004)

	12.	 Thao, N.T.: Local search fractal image compression for fast inte-
grated implementation. IEEE Int. Symp. Circuits Syst. ISCAS 2,
1333–1336 (1997)

	13.	 Hua Cao, X.-J.G.: OpenMP parallelization of jacquin fractal
image encoding. In: International Conference on E-Product
E-Service and E-Entertainment (ICEEE) (2010)

	14.	 Hua Cao, X.-Q.G.: Implement research of fractal image encod-
ing based on open MP parallelization model. In: Presented at the
International Conference Electric Information and Control Engi-
neering (ICEICE) (2011)

Fig. 16   The CUDA occupancy calculator

1387Journal of Real-Time Image Processing (2020) 17:1375–1387	

1 3

	15.	 Wakatani, A.: Improvement of adaptive fractal image coding on
GPUs. In: IEEE International Conference on Consumer Electron-
ics (ICCE) (2012)

	16.	 Wakatani, A.: Preliminary implementation of two parallel pro-
gram for fractal image coding on GPUs. In: Presented at the IEEE
International Conference Consumer Electronics (ICCE) (2011)

	17.	 Khan., A.N.S.: Parallelization of fractal image compression over
CUDA. In International Conference on Trends in Information,
Telecommunication and Computing (2013)

	18.	 Haque, Md.E., Al Kaisan, A., Saniat, M.R., Rahman, A.: GPU
accelerated fractal image compression for medical imaging in par-
allel computing platform. Comput. Vis. Pattern Recognit. (2014).
arXiv preprint arXiv​:1404.0774

	19.	 Bohong Liu, Y.Y.: An improved fractal image coding based on
the quad tree. In: IEEE 3rd International Congress on Image and
Signal Processing (2010)

	20.	 Yu, H., Li, L., Liu, D., Zhai, H., Dong, X., Based on quadtree
fractal image compression improved algorithm for research.
In: 2010 International Conference on E-Product E-Service and
E-Entertainment. IEEE, pp. 1–3 (2010)

	21.	 Harris, M.: Optimizing Parallel Reduction in CUDA, NNVIDIA
Developer Technology. NVIDIA Developer Technology. http://
devel​oper.downl​oad.nvidi​a.com/compu​te/cuda/1.1-Beta/x86_websi​
te/proje​cts/reduc​tion/doc/reduc​tion.pdf. Accessed 03 Jan 2016

	22.	 Media, S.: Freeimage. https​://sourc​eforg​e.net/proje​cts/. Accessed
03 Jan 2016

	23.	 NVIDIA Corporation: Achieved Occupancy. https​://docs.nvidi​
a.com/gamew​orks/conte​nt/devel​opert​ools/deskt​op/analy​sis/repor​
t/cudae​xperi​ments​/kerne​lleve​l/achie​vedoc​cupan​cy.htm

	24.	 CUDA Occupancy Calculator. http://devel​oper.downl​oad.nvidi​
a.com/compu​te/cuda/CUDA_Occup​ancy_calcu​lator​.xls

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Abir Al Sideiri  Abir Al Sideiri is a Master in Computer Science at
Sultan Qaboos University in Oman. She is a lecturer in Information
Technology department in ALBuraimi University College, Oman. Her
research interests are in the area of parallel computing on high perfor-
mance computing, date-intensive computing, image analysis and Big
data analysis.

Nasser Alzeidi  Nasser Alzeidi is a PhD holder in Computer Science,
University of Glasgow in UK; he is an Assistant Professor, Department
of Computer Science, College of Science, Sultan Qaboos University.
He is currently an Assistant Professor of Computer Science and the
director of the Centre for Information Systems at Sultan Qaboos Uni-
versity, Oman. His research interests include performance evaluation of
communication systems, wireless networks, interconnection networks,
System on Chip architectures and parallel and distributed computing.
He is a member of the IEEE.

Mayyada Al Hammoshi  Mayyada Al Hammoshi is a PhD holder in
Computer Science from Mosul University in Iraq; she is a Professor
and a program chair at the School of Computer Information Systems
at Virginia International University, VA, USA. Her research interests
include cybersecurity, wireless networking, cryptography and distrib-
uted systems. She is an editorial board member in many international
journals and conferences and an IEEE member.

Munesh Singh Chauhan  Munesh Singh Chauhan has a PhD in Com-
puter Science from Pacific Paher University, India with a research focus
in GPU multicore computing. Currently, he is working as a Lecturer in
Information Technology department at College of Applied Sciences,
Salalah, Oman. His research interests involve leveraging parallel
multicores to accelerate high compute intensive applications. He has
worked on the application of parallel machines in deep learning, large
graph analytics, flight route chartering for drones and fractal image
compression.

Ghaliya AlFarsi  Ghaliya AlFarsi is a Master in Computer Science at
Sohar University in Oman. She is a Lecturer in Information Technol-
ogy department in ALBuraimi University College, Oman. Most of her
publications were indexed under Scopus. Her current research interests
include e-learning, m-learning, technology adoption and acceptance,
academic performance and image processing.

http://arxiv.org/abs/1404.0774
http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf
http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf
http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf
https://sourceforge.net/projects/
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls

	CUDA implementation of fractal image compression
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 GPUs and CUDA
	2.2 Range and domain blocks
	2.3 Fisher classification scheme
	2.4 The sequential FIC algorithm

	3 The CUDA parallel scheme
	3.1 Mapping tree structure to parallel architecture
	3.2 Using parallel reduction
	3.3 Removing divergent branches

	4 Experimental evaluation
	4.1 Hardware and software setup
	4.2 Validation of the parallel algorithm
	4.3 Encoding time
	4.4 GPU occupancy

	5 Conclusions
	References

