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Abstract
Fractal coding is a lossy image compression technique, which encodes the image in a way that would require less storage 
space using the self-similar nature of the image. The main drawback of fractal compression is the high encoding time. This 
is due to the hard task of finding all fractals during the partition step and the search for the best match of fractals. Lately, 
GPUs (Graphical Processing Unit) have been exploited to implement fractal image compression algorithms due to their high 
computational power. The prime aim of this paper is to design and implement a parallel version of the Fisher classification 
scheme using CUDA to exploit the computational power available in the GPUs. Fisher classification scheme is used to reduce 
the encoding time of fractal images by limiting the search for the best match of fractals. Encoding time, compression ratio 
and peak signal-to-noise ratio was used as metrics to assess the correctness and the performance of the developed algorithm. 
Eight images with different sizes (512 × 512, 1024 × 1024 and 2048 × 2048) have been used for the experiments. The con-
ducted experiments showed that a speedup of 6.4 × was achieved in some images using NVIDIA GeForce GT 660 M GPU.

Keywords Fractal image compression · Quad-tree partitioning · GPU · Parallel processing · CUDA

1 Introduction

Due to the advances in information systems and technolo-
gies, there is an essential need for efficient data storage and 
fast data transmission. Digital images possess the charac-
teristic of being data intensive [1, 2]. Thus, storing these 
images in less memory leads to a direct reduction in data 
transmissions and storage costs. Therefore, data compression 
has always been an active area of research to offer solutions 
for these critical issues.

There are two general categories of data compression 
methods, namely lossless and lossy methods. A lossless 
method will produce an image that is identical to the origi-
nal image when decompressed. On the other hand, a lossy 
method will produce an image that closely resembles the 
original image. The main drawback of lossless methods 
is that they cannot achieve very high compression ratios. 
Hence, lossy methods are mostly used for image compres-
sion applications because the losses of very minor graphic 
details are not critical. Nonetheless, for certain applications, 
lossless compression is a necessity such as the compression 
of text files or executable codes [1]. One example of the 
lossy image compression methods currently available is the 
method of fractal image compression, developed by Michael 
Barnsley and his associates [1]. Fractal image compression 
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methods seek for a way to represent images in terms of iter-
ated functions that describe how parts of an image are self-
similar to other parts. An encoding stores information about 
an image which can always be decoded at a prescribed level 
of details, in spite of the size of the decoded image and 
without the regular scaling artefacts such as pixilation. The 
size of the resulting encoding is based on the encoding algo-
rithm’s ability to achieve the self-similarity of the image, 
theoretically leading to more efficient encodings.

Despite its advantages like fast decoding, resolution inde-
pendence and high compression ratio, fractal image com-
pression requires enormous execution time as searching all 
domain blocks for a matching range block is very time con-
suming. Researchers proposed different schemes to improve 
the searching process such as classification methods. A clas-
sification method is a pre-process executed before the search 
phase and aims to reduce the size of the domain pool [3–5].
The most commonly used classification scheme is the one 
proposed by Fisher [3]. Nonetheless, the encoding phase still 
suffers from extensive time. New trends have been studied 
for speeding up the encoding phase including different paral-
lel processing schemes [3].

The rapid increase in the peak performance of the GPUs 
has motivated researchers to study the use of GPUs for frac-
tal image coding [4–9]. In [10] and [11], the authors pre-
sented the systolic architecture approach where each range 
block is compared with a different domain blocks at any 
given step. Domain blocks are shifted to the next processor 
for further comparison step in the pipeline once the compari-
son step is completed. When all domain blocks have passed 
through the pipeline, the comparison step is complete for 
all range blocks.

The majority of parallel algorithms that have been devel-
oped tend to use some forms of dynamic load balancing 
as in [11]. This approach involves a master process and a 
large number of slave processes. In [7, 12], the master pro-
cess divides the image blocks amongst the slaves equally. 
Therefore, each slave is responsible for its own subset of 
the overall domain pool. Then the master transmits range 
blocks to any idle slaves and waits for them to return the best 
match from their subset of the domain pool. Depending on 
whether this is a satisfactory match or not, this range block 
may or may not be sent to another processor. The master 
process ensures that all slaves are kept busy until the task 
is completed.

An Open MP parallelization for Fisher’s fractal image 
encoding method was proposed in [13, 14]. The parallel exe-
cution procedure is applied to partition the data involved in 
range. Therefore, several slice areas are formed, and a multi-
core thread is responsible for searching the fractal codes at 
every slice region of every range block involved in range 
block. The final fractal codes are combined with the ones of 
each slice region [13, 14].

The authors in [15] implemented adaptive fractal image 
coding algorithm on GPUs using CUDA (Compute Uni-
fied Device Architecture) to achieve a given quality of a 
compressed image. The original adaptive fractal image 
coding algorithm consists of three loops which include no 
data dependences. This eased parallelizing the coding algo-
rithm by distributing the loop elements on multiple com-
puting cores [15]. The proposed algorithm utilized a vector 
of pointers to range blocks whose quality is less than the 
required level to improve the efficiency of the parallelism 
on the GPU environment. An improved parallel algorithm 
is described in [16]. Whilst original implementation carries 
out the computation by 1 thread, the improved version cal-
culates it by 16 threads. Despite that the number of threads 
in a thread block can increase to enhance the occupancy; the 
communication between the threads within the thread block 
may increase the overhead.

A parallel model using CUDA has been presented to 
parallelized fractal encoding algorithm in [17]. This model 
states that the parallelization can be done in levels. First, 
the range blocks can be processed in parallel to find the best 
matching domain block. Second, whilst finding the scaling 
and offset, all pixel values in a block can be processed in 
parallel. This model considers each domain/range block as 
a corresponding to a block of threads on the CUDA model; 
the processing of one pixel values from the domain block 
is handled by a single thread along with the corresponding 
single pixel values in the range block.

A new parallel implementation for fractal image compres-
sion for medical imaging using GPU platform was presented 
in [18]. The implementation launches a thread for each range 
block. Also, this model utilizes CUDA’s texture fetching to 
load range and domain data.

In this research work, we propose a CUDA parallel imple-
mentation for one of the most commonly used classification 
schemes in fractal image compression (i.e. Fisher scheme). 
The validity and the performance of the proposed scheme 
have been empirically assessed using NVIDIA GeForce 
GT660 M GPU. To the best of our knowledge, this is the 
first attempt to provide CUDA implementation for this 
classification scheme. The rest of this paper is organized 
as follows. Section 2 provides basic preliminary informa-
tion whilst Sect. 3 presents the proposed parallel scheme. 
The experimental evaluation of the scheme is outlined in 
Sect. 4. Section 5 concludes the paper and presents some 
future directions.

2  Preliminaries

The basic scheme of fractal image compression is to parti-
tion a given image into non-overlapping blocks, called range 
blocks and overlapped blocks of double size of range blocks 



1377Journal of Real-Time Image Processing (2020) 17:1375–1387 

1 3

called domains [3]. The range is obtained from the quad-
tree partitioning (a method to partition an image into quad-
rants) of the original image that needs to be compressed. The 
domains, on the other hand, are obtained from the domain 
library (also called domain pool). The first step is to reduce 
the domain size to that of the range size, since the domain 
is double the range size (in other words, the number of pix-
els in the given domain is four times the number of pixels 
that is in the range as shown in Fig. 1). After the averag-
ing, for each range block, the scheme exhaustively searches 
the domain pool for a best-matched domain block using the 
root mean square (RMS) error function to determine how 
closely a transformed domain block is approximating a cor-
responding range block. If the RMS value is minimum (or 
not greater than the maximum threshold), the mapping (w) is 
saved. The mapping consists of the quantized value scaling 
(contrast s) and offset (brightness o) of the affine transfor-
mations (a group of transformations such as scaling, rota-
tion, and brightness) [3] plus the quad-tree partition levels. 
Otherwise, a new domain is taken, and the same process is 
repeated again to compare it with the range. The following 
subsections provide some basic information about fractal 
image compression.

2.1  GPUs and CUDA

A CUDA compatible device is a set of multiprocessor cores, 
which are able to execute a large number of threads concur-
rently. Each multiprocessor has a single instruction multiple 
thread (SIMT) architecture (i.e. means that each processor of 
multiprocessor executes different threads, but all the threads 
run the same instructions) that operates on different data 
based on its thread ID, at any clock cycle [16]. A CUDA 
compatible device has its own memory (DRAM) which is 
divided into three different types: global memory, constant 
memory and texture memory. These memories can be read 
from or written to by the host CPU and they all are persistent 
throughout the life of the application. The multiprocessors 
have on-chip memories such as registers, shared memory, 
constant cache and texture cache. Since these memories are 

on chip, they are very fast as compared to off-chip memories 
such as DRAM (global memory). The registers (32-bit) are 
the fastest available but only support a limited amount of 
space (32–64 KB). Shared memory is limited to 48 KB and 
it is shared by all processors. A constant cache speeds up 
reads from the constant memory. Similarly, texture cache 
speeds up read from the texture memory [16]. Figure 2 illus-
trates the CUDA memory model.

The scalable programming model provides for the parallel 
execution of certain portion of an application on a device 
called Kernel. Kernel Function is executed on the device by 
many threads running on different processors of the multi-
processors. A thread block is a batch of threads which use 
shared memory to synchronize their execution. Each thread 
block executes on one multiprocessor and is limited only 
with 512 threads. A group of thread blocks of same size 
and dimensions execute the same kernel batched together 
into a grid of blocks. A grid consists of one or maybe two-
dimensional array of blocks. A block is further one-, two- or 
three-dimensional array of threads as illustrated in Fig. 3. In 
CUDA, a thread is the basic unit of processing. Threads are 
organized into warps of 32 threads, and then executing all 
threads in a warp in parallel. CUDA includes C/C++ soft-
ware development tools to help programmers to combine 
host code with the device code. Tto do that, CUDA program-
ming requires a single program (i.e. kernel) written in C/
C++ with some extension. CUDA nvcc compiler is used to 
compile the source code containing these extensions [19].

2.2  Range and domain blocks

A range block consists of fixed-size partitions of the 
image based on quad tree. A quad-tree partitioning is a 

Range Domain 

Fig. 1  Range vs. domain size

Fig. 2  CUDA Memory Model [16]
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tree representation of an image in which each range node 
(square portion of the image) contains four sub-nodes (four 
quadrants of the square). The initial image is the root of the 
tree. In this method, maximum and minimum depth of the 
quad tree is set and a maximum allowable error to govern 
domain-range match needs to be set before partitioning. The 
next step is to partition an image into four square ranges of 
the same size until the maximum depth is met. An optimum 
matching domain block will be searched using an error func-
tion such as RMS for each range block on the level. RMS 
computed as RMS =

√

minE(R,D)∕n , where E is the dis-
tance between the range (R) and transformed domain (D), n 
is the number of pixels in the range (R). If such pair is found, 
the best matching range block with the domain block will 
be stored, and further partitioning is ceased. Otherwise, the 
quad tree is partitioned again, and the process is repeated to 
find the best match. This process continues till the maximum 
depth is met [20]. Figures 4 and 5 illustrate the image parti-
tioning into ranges and domains, respectively.

Fig. 3  CUDA thread execution model [16]

Fig. 4  Range partitioning

Fig. 5  Domain partitioning
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The domain pool is crucial to an efficient representation. 
In the basic fractal image coding, there are a lot of domain 
blocks that represent the domain pool. As a result, search-
ing through a large pool for every range block is a very 
time-consuming process. So, if the image size is 256 × 256, 
the number of ranges, if the range size is 4 × 4, will be 
(256 × 256)/(4 × 4) = 4096. Whereas the numbers of domains 
which are twice the range size will be (256 − 8 + 1) × (256 
− 8 × 1) = 62,001 and 8 symmetric transformations need 
to be applied for each of these 62,001 domain blocks (i.e. 
4 rotation directions and 4 mirror directions) resulting in 
a total of 496,008 domain blocks. Each of the 4096 range 
blocks needs to be compared with every transformed domain 
block. This is why most researchers have concentrated on 
making the search process faster in reducing complexity of 
computation [20].

2.3  Fisher classification scheme

There are several approaches proposed to reduce the time 
to search for domain-range match in FIC. The most popu-
lar approach is the classification scheme. Classification 
scheme is part of a pre-process executed before the search 
phase which aims to reduce the size of the domain pool 
and, hence, reducing the encoding time [3–5]. The Fisher 
classification scheme is the most widely used classification 
scheme. All the domains in the domain pool are classified 
before encoding phase and this will avoid reclassification 
of the domains later. A potential range block is classified 
during the encoding and only the domains with the same 
classification are compared with the range. According to 
Fisher [3], the classification of the blocks in the domain pool 
is done as following:

1. The sub-image (called Domain D) is divided into four 
quadrants.

2. For each quadrant, average of pixels is calculated  
separately (A1,A2,A3,A4).

3. Then the domain D is re-organized in three classes as 
shown below:

4. Each class can further be organized in 4! ways as described 
below, so all the classes will have 3 × 24 = 72 classes. 
Consider Class 1: A1 ≥ A2 ≥ A3 ≥ A4 , as one fixed 
domain state. For each quadrant i, also variance is calcu-
lated with the following formula: Vi =

∑n

j=1

�

ri
j

�2

− A2
i
 , 

where n is the number of pixels in the quadrant and 
Vi =

∑n

j=1

�

ri
j

�2

− A2
i
 . So for Class 1 domain, four calcu-

lated variances for each of its quadrants V1,V2,V3,V4 can 
be placed in four factorial ways. Meaning that, V1 can be 
placed in any one of the four quadrants (i.e. V2 can be 
placed in any one of the remaining three quadrants, V3 in 
any one of the remaining two quadrants, V4 in the last 
remaining quadrant). So 4 × 3 × 2 × 1 = 24 ways, from the 
3 total classes, thus 3 × 24 = 72 different classes.

2.4  The sequential FIC algorithm

Figure 6 illustrates the steps of compression algorithm 
based on Fisher scheme. The basis for the encoding proce-
dure as stated before is: an image is divided into parts that 
are resembled by other parts in the same image after some 

A1 ≥ A2 ≥ A3 ≥ A4

A1 ≥ A2 ≥ A4 ≥ A3

A1 ≥ A4 ≥ A2 ≥ A3.

Fig. 6  Fisher scheme for fractal 
image compression (sequential 
algorithm). 1tol: is the tolerance 
level which is a loose target 
for the final RMS error of the 
encoded image. In this algo-
rithm it is stated as 1

� Read the image to be compressed 
� Domain partitioning and initial classification: 

� Split the image into domains 
� Each domain block: 

• Averaged to be reduced to range size 
• Rotated and flips (8 new domains are produced) 

� domains with same size are classified 
� Quad tree 

� Partition same image into four quadrants to the maximum depth recursively 
� Range_Domain comparison 

� Pick up a range 
� Pick up the first domain from domain pool with same size 

• Calculate best RMS error from the domain: 
♦ If RMS meets tol1 levels (tolerance value), output the results the file-

system 
• If no domain matches, then we split the current range and proceed 
• If we cannot split further, then we pick up the best domain that we have 

found from the list of domains 
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scaling. The result is a set of transformations which, when 
iterated from any initial image, have a fixed point of approxi-
mation (attractor). A flow chart of the sequential algorithm is 
illustrated in Fig. 7. RMS is an error function, determining 
how closely a transformed domain blocks approximate to 
a corresponding range block. Precisely, the error between 
two equal-sized collections of pixels is the sum of the errors 
between each corresponding pairs of pixels. Each domain 
block is compared against each range block and the error 
between the range block and the transformed domain block 
is calculated [3].

3  The CUDA parallel scheme

As mentioned earlier, the problem of fractal image cod-
ing is the large encoding time. In this section, we pro-
pose an approach towards parallelizing the encoding step 
to reduce the overall compression time. The basic Fractal 
Image Compression algorithm serves as a good candidate 
for parallelization because of the huge amount of computa-
tion involved in finding the best match between the domain 
block for each range block [17]. When complemented with 
Fisher classification scheme, the FIC algorithm also would 
require careful memory optimization. Figures 8 and 9 illus-
trate the proposed parallel compression algorithm based on 
Fisher classification scheme. The main difference between 

No

Yes

Yes

Start

Define tol, max & 
min Quadtree 

Compute domain sums 

Classify domains

Quadtree par��on 
image into ranges

Classify ranges

RMS < tol & size 
of Range <= min 

QT depth

Si & Oi for the range, domain 
mapped to it & symmetry 

opera�on

Last range

Fractal code, Quadtree 
par��on & other 

parameter

Stop

Ran through ranges

Compare range with all 
domains of the same class 

to find least RMS error

No

Fig. 7  Flow chart of Fisher scheme (sequential algorithm)

� Read the image to be compressed 
� Domain partitioning and initial classification: 

� Split the image into domains 
♦ Each domain block: 

• Averaged to be reduced to range size 
• Rotated and flips (8 new domains are produced) 

� domains with same size are classified 
� Quad tree 

� Partition same image into four quadrants (ranges)  
� Quad Tree is linearized by formula 4n + 1 

� Launch kernels for all nodes of the quad tree at the same time 
� A reduction process is done 

� Range Domain comparison  
� Pick up a range  
� Pick up the first domain from domain pool with same size 

♦ Calculate best RMS error from the domain: 
� If RMS meets tol levels, then output to memory buffer the quad 

transformations 
� Otherwise output to the memory buffer the fact that we are recursively 

going down 
� Do a gather operation of the data that was output in the memory buffer recursively 

� Check what the parallel version outputted and write it in the file 

Fig. 8  Fisher scheme for fractal image compression (parallel algorithm)
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the sequential algorithm and the parallel algorithm is that in 
quad-tree traversal the decision to split is based on the RMS 
value. Whereas in parallel CUDA, all results are stored in 
the memory and these stored results are subsequently parsed 
and output as compression results to the file system. The 
algorithm uses tree-like structure, data-dependent instruc-
tions and divergent branches. These three components are 
explained in more details in the following subsections.

3.1  Mapping tree structure to parallel architecture

The quad tree is linearized by formula (4n + 1) due to the 
memory address mappings. For example, if a node has 
address i, then its four children have indices 4 ×  i + 1, 
4 × i + 2, 4 × i + 3, and 4 × i + 4 as shown in Fig. 10. In this 
way, the tree is mapped to a linear buffer. When the quad-
tree recursion is done in parallel, every node or leaf outputs 
into a linear buffer. Then the linear buffer with a recursion is 
gathered after the parallel process finishes. These buffers are 
runtime memory buffers which are initialized dynamically 
and are part of heap area of the runtime memory.

3.2  Using parallel reduction

Reduction is a well-known operation that has relevance 
in many engineering applications. It involves applying an 
operator on a range of values residing in a linear memory 
or vector and accumulating the final result in a single loca-
tion that, in most cases, is the first element of the vector as 
described in Fig. 11. For the reduction to work with high 
performance on a GPU, the input vector size should be large 
[21]. In our proposed scheme, the parallel algorithm does the 
reduction operations when it iterates on pixels of an image 
and accumulates results. As shown in fig. 4.3, when a quad 
tree is traversed initially (level 0), the image size (node) is 
quite large 1024 × 1024. At the next level (level 1), quad tree 
operates on 4 images of size 512 × 512 and accumulates the 
sum of all pixels. On second level, 16 images 256 × 255, on 
third level 64 images of size 128 × 128 and so on. If kernels 
are launched on every level of the tree, then at the first level 
there will be 4 cores working on sizes of 512 × 512 = 262,144 
and at the last level, will be 64 cores working on block of 
16 × 16 each. Clearly, the quad tree is slow in the beginning 

Fig. 9  Flow chart of proposed 
parallel algorithm
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in terms of cores utilized and it is irregular. To regularize 
it a bit, the following have to be done: at the lower levels 
of tree traversals, a reduction is done for accumulation. For 
example, spawn one kernel over a set of 512 × 512 pix-
els with many threads; it accumulates results in the shared 
memory (of the GPU device) and outputs the result in the 
main memory. At the higher levels, normal fork join model 
is done; spawn kernels over the small sets of size 16 × 16 
and 32 × 32.

3.3  Removing divergent branches

The GPU architecture runs threads in groups of 32 threads, 
called warps, which are executed in a SIMD fashion [9]. All 
threads within a warp must execute the same instruction at 
any given time with different data sets. Branch divergence, as 
shown in Fig. 12, occurs when threads inside warps branches 
to different execution paths. This could lead to a situation 
where each branch had thousands of instructions for compar-
ing domains with ranges in sequential implementation and, 
consequently, adversely affecting the performance. Branch 
divergence occurrences can be minimized by reducing long 
divergent paths to smaller ones [21]. In our implementation, 
this issue of thread divergence was considerably reduced by 
changing algebraic expressions through re-arrangement of 
the loops in parallel implementation. In the original code, 

there were seven loops and they lead to divergent paths and 
different steps, but in the modification, they are put as com-
mon structures.

4  Experimental evaluation

We have done few improvements to the implementation of 
the fractal image compression algorithm based on Fisher 
classification scheme. First, a class was developed to handle 
the loading of images from the file system. Free Image [22] 
library is chosen to load the images. Free Image is an open 
source library written in C++. This library uses a unique 
Free Image IO structure to load different types of images. 
Second, another class was developed to validate the loaded 
image. It makes sure that the loaded image is a square 8-bit 
gray scale image and of dimensions 2i, otherwise, an error 
message will be generated.

Once the validated image is supplied to the algorithm, 
two tasks are performed; the first one is the classification 
of domains for the picture and the second one is the quad-
tree partitioning. The classification is done by splitting the 
image into sub-images (e.g. an image of size 1024 is split 

Fig. 10  Linear quad tree
……………

i

4*i+1 4*i+2

4*i+3 4*i+4

i

4*i 

4*i 

4*i 

4*i 

Linearized the Quad tree by 

formula 4n + 1

For an image: 
Level 1 to 4 
Sub-images parallel for (0 : 3){ 

average on 512x512   
} 

Level 6 to 4096 
Sub-images parallel for (0: 4095) {

average on 16x16  
}

Reduction process Illustration [34]

Fig. 11  Reduction process

Fig. 12  Branch divergence [21]
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into sub images of sizes 1024 × 1024, 512 × 512, 256 × 256, 
128 × 128, 64 × 64, 32 × 32, 16 × 16). In every split, we cal-
culated its sum and squared sum. This will be used for cal-
culating the averages and variance. As mentioned before, 
Fisher algorithm classifies the domains into 72 classes based 
on average and variance values [3].

The quad-tree decomposition is used to partition the 
image into ranges that are classified into classes. Each range 
is then compared with domains of the same class. If there 
is a match, the transformation will be output to the match-
ing domain. Otherwise, the range will be partitioned into 
four quadrants. If the range size is 16 × 16, it will not be 
partitioned further, the closest domain will be considered 
as a match. The output from the compression phase is a 
compressed image consisting of the following:

• For each range, the corresponding mapped domain (only 
positions).

• Affine transformation values for each range.
• The final quad-tree partition of the image, each level is 

represented by 1 bit.
• The symmetry orientation operations for mapping each 

range to a domain.

The following points were considered before the algo-
rithm is programmed in CUDA:

• Memory allocation is slow in CUDA, the cuda Malloc 
Managed function (same as Malloc in C/C++) costs 
around 2–3 ms [22]. This problem is fixed by allocat-
ing one big buffer at the beginning of the algorithm and 
subsequently allocating from it. Finally, it is freed at the 
end of the algorithm. Besides, fast memory allocation on 
the CPU side, significant amount of cuda Memcpy (CPU 
to GPU and vice versa expensive memory transfers) are 
avoided.

• Launching CUDA kernel is slow. In the implementation, 
this problem is fixed by launching as few kernels as pos-
sible. As mentioned before, the reduction is only done for 
lower level (larger ranges blocks).

• Normally, 2D data are fetched as arrays. GPUs have tex-
ture cache, which is separated from the L1 cache (were 
stack and shared memory goes). Tto utilize it, the 2D 
arrays should be seen as textures to read from and as 
surfaces to write on. Initial domain images obtained from 
domain partitioning of FIC algorithm, are scaled down 
in a kernel function implementation that averages 2 × 2 
texture. It works with textures, not with c arrays of pixels. 
Using textures utilizes the L2 cache of the hardware for 
read-only memory. The texture cache is optimized for 
2D spatial locality, so threads of the same warp that read 
texture addresses that are close together will achieve best 
performance.

4.1  Hardware and software setup

The implementation of sequential algorithm has been pro-
grammed using C/C++ programming language, whereas 
the parallel algorithm has been programed using mix of C/
C++ and CUDA programming languages. The program-
ming has been done using Microsoft Visual Studio 2013 
and CUDA Toolkit 6.5. The experiments were conducted 
in a stand-alone machine with the following specification:

• Operating System: Windows 7 Professional 64 bit.
• Processor: Intel(R) Core(TM) i5 Quad CPU (four pro-

cessing cores).
• Memory: 6 GB RAM NVIDIA GeForce GT 660 M GPU 

with 960 cores.

The GPU configuration used for the experiments is shown 
in Table 1. The following images with different sizes are 
used for the experiments:

• Barbara and Lena: 512 × 512.
• Lamp_post, London and Satellite1: 1024 × 1024.
• River, Lake and Satellite2: 2048 × 2048.

Each one of these images is loaded to both sequential 
and parallel programmes. Three metrics were then used to 
assess the validity of the algorithm and its performance. 
These metrics are:

• The encoding time is the time taken to compress the 
image.

• The compression ratio (CR) is the ratio between the size 
of the source file and the size of the compressed file. This 

Table 1  GPU configuration

CUDA driver version/runtime version 6.5/5.5
CUDA capability major/minor version number 3.0
Threads per warp 32
Max warps per multiprocessor 64
Max thread blocks per multiprocessor 16
Max threads per multiprocessor 2048
Maximum thread block size 1024
Registers per multiprocessor 65,536
Max registers per thread block 65,536
Max registers per thread 63
Shared memory per multiprocessor (bytes) 49,152
Max shared memory per block 49,152
Register allocation unit size 256
Register allocation granularity Warp
Shared memory allocation unit size 256
Warp allocation granularity 4
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evaluates the effectiveness of compression algorithm 
using file size. Lowering the compression ratio does not 
increase the reconstructed image quality significantly [3].

• Peak signal-to-noise ratio (PSNR) measures the difference 
between the original (without noise) and reconstructed 
image. This is most widely used to measure the quality/
distortion for an image and it is calculated after the decod-
ing phase [2]. PSNR measures the distortion of the image 
using the following equation: PSNR = 10 log10

(

2562

MSE

)

 
MSE values between two images are calculated as: 
MSE =

1

MN

∑M

y=1

∑N

x=1

�

I(x, y) − I�(x, y)
�2 , where I(x, y) 

is I�(x, y) . The original image, I′(x, y) is the approximated 
version (which is actually the decoded image) and M, N 
are the dimensions of the images. It is worth mentioning 
at this stage that we have also implemented the FIC 
decoding algorithm. The decoding phase starts with an 
image (black image) of the same size as the original 
image, applies the transformations and finally an image 
close to the original image is produced. This is necessary 
to calculate PSNR.

4.2  Validation of the parallel algorithm

It is very important to validate the correctness of the pro-
posed parallel implementation. Therefore, the compression 
ratio (CR) and peak signal-to-noise ratio (PSNR) were cal-
culated for all test images for both sequential and parallel 
algorithms. Table 2 shows the results of the compression 
ratio for each test image from both sequential and parallel 
implementations. As it can be seen from table, the com-
pression ratio of both sequential and parallel implementa-
tions for each image is the same. Similarly, Table 3 shows 
the PSNR results for each test image for both sequential 
and parallel implementations. The results of PSNR for 
both sequential and parallel implementations for each 
image are the same. The above table clearly demonstrates 
the validity of the parallel implementation as both metrics 

produce same results for both the parallel and the sequential 
implementations.

4.3  Encoding time

Encoding time is calculated for each test image for both 
sequential and parallel implementations. The experiments 
were carried out with the size of the range block of 16 × 16 
as mentioned before. This is the optimal range block size as 
shown in [5], [21]. The following table shows the speedup 
for each test image. The speedup is calculated as:

The results clearly show that the performance gain for 
parallel image coding. The kernel utilized CUDA’s tex-
ture fetching to load range and domain data that is cached. 
Therefore, a texture fetch costs one device memory read 
only on a cache miss; otherwise, it just costs one read from 
the texture cache. Also, using parallel reduction for larger 
range blocks help speeding up the process. Functions are 
reworked to do reduction for the lower levels of the quad tree 
(big sizes). This involved using shared memory to exchange 
data between threads within the same thread block which 
involves writing data to shared memory, synchronizing, 
and then reading the data back from shared memory. The 
experiments were done using Kepler having shuffle instruc-
tion (SHFL) which enables a thread to directly read a reg-
ister from another thread in the same warp (32 threads) and 
that allows threads in a warp to collectively exchange or 
broadcast data. Batching kernel parameters in big buffers 
to save cuda Memcpy when launching kernels and removal 
of divergent branches in the compare function all help in 
speeding up the encoding time.

From Table 4 and Fig. 13, several tests were run of the 
same program with same images and the average results 
show that the speedup is increasing from 1.3 × for 512 × 512 
image size, to around 5 × for 1024 × 1024 image size. For 
images of size 2048 × 2048, the algorithm achieves speedup 
up to 6.4 × in some image like satellite images due to the 

Speedup = sequential time(ms)∕parallel time(ms).

Table 2  Compression ratio results from sequential and parallel algo-
rithm

Image Image size Sequential Parallel

Lena 512 × 512 4.68 4.68
Barbara 512 × 512 4.68 4.68
Lamp_posts 1024 × 1024 18.79 18.79
London 1024 × 1024 20.41 20.41
Satellite1 1024 × 1024 18.89 18.89
River 2048 × 2048 17.58 17.58
Lake 2048 × 2048 18.18 18.18
Satellite2 2048 × 2048 18.16 18.16

Table 3  PSNR results from sequential and parallel algorithm

Image Image size Sequential Parallel

Lena 512 × 512 39.6 39.6
Barbara 512 × 512 34.14 34.14
Lamp_posts 1024 × 1024 31.12 31.12
London 1024 × 1024 36.31 36.31
Satellite1 1024 × 1024 29.47 29.47
River 2048 × 2048 35.02 35.02
Lake 2048 × 2048 40.57 40.57
Satellite2 2048 × 2048 39.42 39.42
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SIMD fashion where there should be huge amount of data 
needed to be done on the GPU. 

4.4  GPU occupancy

GPU occupancy is defined as the ratio of active warps on 
an SM to the maximum number of active warps supported 
by the SM [23] and it is calculated using CUDA Occupancy 
Calculator provided by NVidia [24]. In Figs. 14 and 15, we 
see that our program maximizes GPU occupancy without 
causing register spillage. This indicates that our kernel 
launches are at near-maximum efficiency.

Figure 14 shows how varying the block size whereas 
holding different parameters constant would influence the 
tenancy. The red triangle shows the current number of 
threads per block and the current upper limit of active warps. 
Note that the quantity of active warps is not the number of 
warps per block (that is threads per block divided by warp 
size, rounded up). Figure 15 shows how varying the record 
count whereas holding different parameters constant would 
influence the occupancy.

Figure 16 shows the achieved occupancy for every SM. 
The values reported are the average across all warp schedul-
ers for the duration of the kernel execution.

Table 4  Average of encoding time results from sequential and paral-
lel algorithm

Image Image size Sequential Parallel Speedup

Lena 512 × 512 470.97 364.83 1.3×
Barbara 512 × 512 475.69 366.67 1.3×
Lamp_posts 1024 × 1024 1029.55 208.965 4.9×
London 1024 × 1024 1100.23 242.197 4.5×
Satellite1 1024 × 1024 891.093 180.059 4.9×
River 2048 × 2048 24,295.7 3950.68 6.1
Lake 2048 × 2048 22267.9 4001.63 5.6×
Satellite2 2048 × 2048 22948.3 3596.61 6.4×
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Fig. 13  Average of encoding time results from sequential and parallel 
algorithm

Fig. 14  Estimated occupancy as 
a function of threads per block
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Fig. 15  Estimated occupancy as 
a function of registers per thread
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5  Conclusions

In this research, we have proposed a new parallel implemen-
tation for fractal image compression based on Fisher clas-
sification scheme using CUDA. The implementation is based 
on three main components; linearizing the tree structure to 
fit the parallel architecture, getting read of the divergent 
branches and using parallel reduction to reduce the num-
ber of launched kernels. The performance of the proposed 
implementation has been evaluated on NVIDIA GeForce GT 
660 M GPU using CUDA. Eight images with different sizes 
were used for the experiments with block of size 16 × 16 
pixels. The compression ratio and peak signal to noise ratio 
results prove the validity of the parallel implementation. The 
encoding time for parallel implementation is better com-
pared to the sequential implementation and speedups of up 
to 6.4 are recorded with some test images. The results also 
demonstrate that the parallel algorithm was able to achieve 
better performance when the image size is large due to the 
SIMD mode of execution.

The contribution of this chapter is to parallelize Fisher 
algorithms with six different images on one GPU. For future 
work, this parallel algorithm can be run on different GPUs 
and comparison can be done between the proposed one and 
the others. Also, the decoding process was implemented 
but the time was not considered in this research. It will be 
considered after running the same algorithm on different 
GPUs and then check the results and compare. Also, this 
implementation will be extended to exploit CUDA dynamic 
parallelism to launch kernels from the GPU, not only the 
CPU. This is expected to further decrease the encoding time.

Funding This work was financially supported by The Research Coun-
cil/Sultanate of Oman, Grant ORG/ICT/10/003.
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