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Abstract
Foot scanning devices aim to provide information on a patient’s foot and to help in diagnosing issues to be corrected with 
orthoses. The Galaxy foot scanner developed by the Aetrex company aims to provide a computer-aided framework to help 
physicians in their diagnoses. As numerous embedded devices, used for image processing and 3D-reconstruction, it includes 
cameras which provide JPEG pictures of the object to reconstruct. In this framework, an important step is the segmentation of 
the image, to isolate the object of interest, but the JPEG compression introduces artifacts which can lower the performance of 
any segmentation procedure. In this paper, we suggest a model which takes the artifacts stemming from the JPEG compression 
into account. The pixels are first sorted into layers of pixels with similar value V in the HSV color space, and the background 
is modeled by a polygon from an additional picture. Segmentation based on the knowledge of the background and the layer 
to be processed is then performed. Results obtained with the Galaxy foot scanner illustrate that this method provides good 
results for segmentation, while being sufficiently fast to be implemented for near real-time applications.

Keywords Image segmentation · JPEG compression · Embedded devices · HSV color space · Foot scanners

1 Introduction

Foot orthoses are molded pieces of rubber, leather, plastic 
or any other soft synthetic material which are inserted into 
a shoe. They aim to correct some defect in the foot, ankle or 
hip biomechanics. They also aim to attenuate pain symptoms 
(mostly back pains or articulation stress), by balancing the 
foot in a neutral position. Finding the best orthotic device 
shape for a specific symptom is still a complex problem 
and under medical research, as seen in  Telfer et al. [14]. 
However, it is known that well-designed, custom-made foot 
orthoses may control pain for specific problems, such as an 
unusually shaped foot or foot rolling towards the arch (over-
pronation). To determine the correct type of orthoses, prac-
titioners are increasingly utilizing computer-aided foot scan-
ners. These scanners provide information both on pressure 

points of the foot and on its morphology, thus helping in 
diagnosis.

In this line of work, the Galaxy device developed by the 
Aetrex company is a foot scanning device which measures 
human feet for the purpose of determining shoe size and 
insole type. It performs all measurements using electronic 
and optical means, and does not include any lasers, motors 
or moving parts. The Galaxy scanner includes 16 cameras in 
the perimeter of the scanner to capture the view of the foot, 
as well as two additional cameras to capture the alignment of 
the foot and to determine whether the foot is over-pronated 
or supinated (outward roll of the foot during normal motion). 
The Galaxy foot scanner also includes 16 white light LEDs, 
positioned all around the device, to illuminate the scene and 
to remove shadows introduced by the foot and lessen light 
reflections. It is presented in Fig. 1.

When measurements are performed, each camera of the 
Galaxy device takes two kind of shots: during the calibra-
tion stage, background images (denoted by B in the rest of 
the paper) without foot are recorded, and during the meas-
urement stage, foot images (denoted by I in the rest of the 
paper) are captured, as displayed for example in Fig. 2. As 
seen from this figure of foot images, a foot stands in the mid-
dle of the picture, either bare with an unknown skin color, 
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or wearing a sock with unknown colors. To reconstruct a 
reliable 3D-model of the foot, we must isolate the foot from 
the background, by means of an algorithm sufficiently fast 
for the application in mind (the overall procedure, include 
taking the picture and performing the segmentation, cannot 
exceed 30 s).

The problem of efficient background separation from 
still images is of great practical importance in numerous 
applications. One of them, which is becoming increasingly 
present in the industry world, is the three-dimensional 
reconstruction of an object, given a set of still images (a 
thorough discussion in three-dimensional image process-
ing applications can be found in Pears et al. [9]). Common 
methods used for background removal imply a threshold-
ing operation (see, e.g., Gonzalez and Woods [4]), and 
usually perform poorly with complex backgrounds. State-
of-the-art background removal methods focus more on 
good segmentation performances for still pictures in com-
plex backgrounds. In such cases, segmentation can be seen 
as an optimization problem in Markov fields as in Li [6], 
or as an optimization of the flow in graphs as in the Grab-
cut algorithm presented in Rother et al. [10, 11], Boykov 
and Jolly [1], or the use of Bayesian techniques Haines 

and Xiang [5]. The obtained algorithms provide extremely 
good segmentation performances, but are usually par-
tially supervised, in the sense that the result must often 
be refined by the user during the execution. Furthermore, 
the computational complexity makes them less suited for 
embedded applications, e.g., Sigal et al. [12], Li et al. [7], 
Faro et al. [3], Liu and Payeur [8]. Moreover, many of the 
cited approaches apply to video processing, and exploit 
the redundancy of the video frames to infer a statistical 
model of the background. This is not applicable in our 
case, where we only have access to two still images.

Another problem is that most background removal 
algorithms are usually tested on pictures encoded in a 
loss-less format, such as TIFF or PNG. The foot scanner 
device used in our study is based on cameras which encode 
recorded pictures in JPEG with a high, lossy, compression 
rate. This compression step done before the image analy-
sis introduces compression artifacts, and creates distortion 
in the colors of the image (see the example in the next 
section). Therefore, the background removal method in 
our framework should be as robust as possible to these 
distortions.

The objective of this paper is to propose a fast seg-
mentation method suited for our foot scanning application, 
while taking into consideration the distortion brought by 
the JPEG compression. The proposed algorithm splits the 
data into layers related to different values, and deals with 
them one by one. For each layer, a background model is 
learned from a set of pictures without foot. The learning 
is done by building a convex hull around the points of 
each layer separately, which can be done using fast algo-
rithms. This model is then compared with the points of a 
picture which includes a foot for segmentation. The rest 
of the paper is organized as follows: the following section 
describes the mathematical model used and the segmen-
tation procedure suggested, which takes into account the 
JPEG distortion. We present results of simulations per-
formed on a picture database built from the Galaxy foot 
scanner, and discuss the setting of the parameters on which 
the proposed algorithm depends. The obtained results 

Fig. 1  The Galaxy scanner

Fig. 2  Examples of a back-
ground image B (left) and foot 
image I (right)



983Journal of Real-Time Image Processing (2020) 17:981–992 

1 3

show that, with a correct choice of inner parameters, the 
proposed methods can provide excellent segmentation 
results combined with fast execution times.

2  Segmentation based on HSV polygonal 
cuts

In this section, we present both the model and the novel seg-
mentation algorithm used from background removal, from 
two images taken from the device. This new method takes 
into account the distortion stemming from the JPEG com-
pression. Before describing the method itself, we present a 
preliminary discussion on the problems encountered in the 
Hue-Saturation-Value (HSV) space when working on JPEG-
encoded pictures.

2.1  Problems induced by lossy compression 
in the HSV decomposition

For segmentation tasks, choosing a suitable color space is 
very important, since the accuracy of color detection affects 
segmentation results. The HSV color space (Hue, Satura-
tion, Value) is one of the most used color spaces in the 
field. The HSV color space appears frequently in numerous 
applications ranging from image enhancement (see [17]) to 
feature-based classification as in Chen et al. [2], or in addi-
tion to existing segmentation frameworks Silva et al. [13], 
Wei et al. [16]. Given a pixel p = (R,G,B) described in the 
RGB coordinate system, coded with L bits, with a maximum 
component M = max{R,G,B} and minimum component 
m = min{R,G,B} , it can be decomposed into the HSV color 
space accordingly to the following equations:

(1)H =

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if M = m.

60o ×
G − B

M − m
mod 360o if M = R.

60o ×
�
B − R

M − m
+ 2

�
if M = G.

60o ×
�
R − G

M − m
+ 4

�
if M = B.

(2)S =

⎧
⎪⎨⎪⎩

0 ifM = m

M − m

M
otherwise

(3)V =
max{R,G,B}

2L − 1

The HSV color space is more fitted for color-based seg-
mentation tasks, as it corresponds more closely to human 
perception of color. In the HSV coordinate system, Satu-
ration is a measure of the lack of whiteness in the color, 
whereas Hue is defined as the angle from the red color 
axis, and Value refers to the brightness. However, the 
cameras used in our foot scanning device, as it is also the 
case in numerous embedded applications, usually provide 
pictures in JPEG format, that is after a lossy compression. 
This compression step cannot usually be circumvented, 
and yields a significant distortion in the data available 
on the HSV space. Therefore, it can significantly lower 
the performances of segmentation algorithms afterwards. 
This can be intuitively understood from Eq. (1): due to the 
well-known JPEG compression artifacts, the ratio M − m 
is susceptible to slight variation (and varies more around 
the edges of the objects), which causes a large variabil-
ity in the 1∕(M − m) of the Hue term, particularly when 
M is close to m (which is the case for black, white and 
gray tones). For the sake of argument, Fig. 3 illustrates 
the distortion brought by the lossy compression on a sim-
ple, synthetic, example. In this figure, a synthetic image 
is obtained by fixing the Hue to 1

3
 . In the upper figures, the 

Value is fixed to 1, while the Saturation varies from 0 to 
1. In the lower figures, the Saturation is fixed to 1, while 
the Value varies from 0 to 1. Both images are saved in 
JPEG format after moving back to the RGB color space. 
After performing the image compression, the compressed 
image is reloaded and transformed to the HSV color space. 
For simplicity, and due to the image structure, we display 
the variation of the Hue on one line of the picture only, 
and make the y coordinate vary. It can be observed that 
the JPEG compression introduces a distortion of the Hue, 
which is particularly visible for dark and white tones.

Though the level of distortion can be controlled by 
changing the compression level, this solution cannot be 
retained in practice. Indeed, a lower level of compres-
sion increases the execution time required both for the 
transmission of the raw data to the computer which per-
forms the segmentation as well as for the segmentation 
task itself. In practice, there is a trade-off between the 
level of compression, the quality of the segmentation of 
the images and the near real-time aspects of the applica-
tion itself. This distortion can be extremely problematic, 
in particular for the development of a foot scanner based 
on pictures. Indeed, most measurements are done with 
the patient wearing either black or white socks, which are 
the most common sock colors. Consequently, segmenta-
tion algorithms perform poorly in that case. With these 
considerations in mind, it is clear that any segmentation 
method based on the HSV space should take into account 
the fact that compression artifacts introduce a distortion in 
the Hue for clear and dark colors. The next section details 
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the mathematical model used for our algorithm, and the 
proposed method to circumvent the distortion issue.

2.2  Model and notations

In our framework, an image is modeled by a sequence of 
three-dimensional vectors:

In (4), each vector Ik is related to the k-th pixel of the image. 
More specifically, if Hk , Sk , Vk represent, respectively, the 
Hue, Saturation and Value of the k-th pixel, we define

that is, Ik in (5) is a Cartesian representation of the HSV 
components of the k-th pixel. From (2) and (3), it is straight-
forward that 0 ≤ Sk ≤ 1 and 0 ≤ Vk ≤ 1 . As discussed before, 
the JPEG compression of the images at hand introduces 
color distortion, which is more crucial as the Saturation 
decreases or as the Value increases.

(4)I =
{
Ik ∈ ℝ

3, 1 ≤ k ≤ N
}
.

(5)Ik
Δ
=
[
Sk cos(Hk); Sk sin(Hk); Vk

]T
;

From the figures obtained on synthetic data in Fig. 3, 
we can notice that the distortion observed in the Satu-
ration and Value components is not uniformly distrib-
uted. Consequently, we define N layers of pixels, sorted 
accordingly to their Value levels. More precisely, given 
a sequence 0 = a0 < a1 < ⋯ < aN = 1 , the n-th layer of 
pixels is defined as

Recall that the background used for separation is as uni-
formly light green as possible, and that the LEDs provide 
uniform lighting on the scene. Therefore, the pixels in n 
are most likely to be well separated when n is high, whereas 
small n indicates that n is less reliable for good segmenta-
tion. The choice of the number of Value layers N in (6) is 
also important. If N is too large, the polygonal representa-
tions introduced later on are not statistically representative 
enough. In addition, the processing time increases, which is 
problematic in our case. On the other hand, too small a Value 
of N will give poorer segmentation results. It can be noticed 
that the layers may not necessarily be uniform, since the 
distortion introduced by the JPEG encoding is not uniform. 

(6)n(I)
Δ
=
{
Ik ∈ I ; an−1 ≤ Vk ≤ an

}
, 1 ≤ n ≤ N.

Fig. 3  Influence of the compression rate on the Hue of a synthetic image. The Hue of clear and dark tones is noisy due to the compression arti-
facts
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However, the optimal choice of the layer depths an is not 
within the scope of the present paper, and shall be discussed 
in further contributions.

2.3  Image segmentation by means of polygonal 
cuts

The problem at hand can be summarized as follows: given 
one background image B = {Bk ∈ ℝ

3, 1 ≤ k ≤ N} and one 
foot image I = {Ik ∈ ℝ

3, 1 ≤ k ≤ N} , with associated layer 
sets n(B) and n(I) , respectively, we must associate a label 
Lk to each pixel Ik , which is equal to 1 if this pixel belongs 
to the sock and 0 otherwise.

We now detail the background removal procedure. As a 
preliminary processing, the upper part of the picture, whose 
background is not uniformly green, is discarded using a fixed 
mask. Note that though this step seems hard to perform, it 
is not problematic, since the green background of interest is 
made of rigid plastic. Therefore, the dimensions of the lower 
green part are perfectly known, and the mask keeping only 
the lower part of the pictures can be designed manually on 
calibration pictures. The two main steps of the algorithm 
include: a training phase on the background pictures B and 
the segmentation itself performed on I.

The first training step is summarized in the block diagram 
in Fig. 4. It aims to learn a relevant model to characterize the 
background. As mentioned before, most (but not all) of the 
background pixels have a high Value due to LED lighting 
and are green, which corresponds to a Hue approximately 
equal to 0.4. We first classify the pixels of B accordingly to 
the layer n(B) they belong to. The motivation is to group 

together the pixels related to the same lighting condition. 
That way, pixels related to dark or clear tones can be pro-
cessed differently from the others. Given n(B) , the back-
ground’s contribution to n(B) is modeled by a polygon, 
namely the convex hull generated by the points of n(B).

The proposed approach has statistical significance. Indeed, 
it is common to model the background’s contribution to the 
layer n(B) with a bi-dimensional Gaussian mixture den-
sity. The convex hull generated by the points can be consid-
ered as a sub-optimal approximation of the previous model, 
more suited to small algorithmic complexity requirements. 
Furthermore, finding the convex hull in the plane for the 
points in the layer n(B) can be done using fast algorithms 
such as the quickhull, with O(Mn log2 Mn) complexity, where 
Mn is the number of pixels related to the layer n(B) . Fig-
ure 5 represents the 3D shape generated by the polygons n , 
n = 1…N obtained for the background image from Fig. 2. 
In this figure, the two blue circles represent the limit of the 
HSV cylinder.

The second step of the proposed method is the classifica-
tion of the pixels of I, and is summarized in the block dia-
gram presented in Fig. 6. The underlying idea is that pixels 
from I, whose HSV decomposition falls outside the polyhe-
dron representing the background (as in Fig. 5), most likely 
belong to the foot.

We now detail Fig.  6 mathematically. For each 
layer n(I) , we then investigate whether the pixel 
Ik = [Sk cos(Hk); Sk sin(Hk); Vk]

T  belongs to the sock or 
not as follows: if the 2D-point [Sk cos(Hk); Sk sin(Hk)]

T 
has either a low Saturation or lies outside a scaled ver-
sion of n , say �nn we set the label Lk = 1 . Otherwise, we 
set Lk = 0 . The motivation for this labeling is twofold: if 
[Sk cos(Hk); Sk sin(Hk)]

T is inside �nn , then the pixel most 
likely belongs to the background. Furthermore, since the 

n = Hull
{
diag(1, 1, 0) × Bk,Bk ∈ n(B)

}
, n = 1…N.

Fig. 4  Block diagram of the training procedure
Fig. 5  Example of generated volume for one background image B 
with N = 32 layers
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background is green and well lit because of the LEDs, any 
pixel with a low Saturation most likely belongs to a dark 
sock. We therefore summarize the segmentation as

where the parameter �n is a scaling factor depending on 
the layer considered. It should be emphasized that testing 
whether a given pixel lies in n can be done quickly in our 
case, since the polygon to investigate is convex. Therefore, 
this can be addressed using binary search methods, with 
logarithmic complexity.

The parameters sn (defined later on a Saturation threshold) 
and �n in (7) aim to attenuate two different kinds of error in 
the pixel classification. First, it is important to remind that 
pixels with a low Saturation are the most likely to suffer from 
the distortion introduced by the JPEG compression, as dis-
cussed earlier. However, the background of the Galaxy device 
is light green with a high Saturation. It is therefore likely that 
pixels whose Saturation is below the Saturation threshold 
belong to either a black, gray or white sock. A discussion on 
a good empirical choice of sn is detailed in the applications 
section. The parameter �n , on the other hand, is necessary to 
compensate the changes in lighting conditions between back-
ground pictures and pictures with a foot. Indeed, since the 
pictures are taken in near-field conditions, the background in 
pictures including a foot may slightly differ in terms of Satu-
ration and Value from the model inferred on background 

(7)Lk =

{
1 if diag(1, 1, 0) × Ik ∉ 𝛼nn or Sk < sn
0 otherwise

, for all Ik ∈ n(I) ,

pictures. To compensate this discrepancy, we suggest to scale 
each polygon n based on its layer Bn . In practice, in the 
applications presented in the paper, the scaling parameter �n 
is chosen slightly greater than 1, based on the sequence 
�n = 1.2 +

N − n

N
 . Such a choice provides good results in 

practice, and illustrates the fact that we put less confidence 
in our background model as the Value decreases.

3  Applications

In this section, we present the results with pictures taken from 
the Galaxy foot scanner. The presented algorithm was imple-
mented in C♯ using the EMGU computer vision library (a C♯ 
wrapper of the OpenCV library), and the execution time for 
one image on an i7-computer was of the order of magnitude of 
100 ms, making it relevant for near real-time implementation.

3.1  Experimental settings

We investigate results obtained on nine types of feet:

– The Pink and Flower Power datasets A model of the foot 
wearing, respectively, a pink sock and a pink sock with 
green patterns; this can be considered as an easy case, 

for the sock’s Hue is very distinguishable from the light 
green background;

– The Funky Black and Black datasets A model of the foot 
wearing, respectively, a black sock with gray spots, and 
a black sock; this kind of sock is hard to isolate from the 
background with a Hue-based segmentation procedure, 
due to low Saturation and Value;

– The White and Pinkie Pie datasets A model of the foot 
wearing, respectively, a white sock and a light pink sock 
with patterns; as in the Funky Black case, this kind of 
sock is hard to isolate from the background with a Hue-
based segmentation procedure;

– The Light Blue dataset A model of the foot wearing a 
clear blue sock; this kind of sock is hard to isolate from 
the background with a Hue-based segmentation proce-
dure, since this specific tone of blue has a Hue close to 
the background’s.

– The Duboni and Nuni datasets Two children’s bare feet.

Samples from these nine datasets are displayed in Fig. 7. 
Recall that one dataset consists of a foot captured from 16 
angles by different cameras. For each picture, a mask is 

Fig. 6  Block diagram of the segmentation step
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applied to get rid of the upper part of the picture, and the 
results obtained with our segmentation procedure are com-
pared to an ideal segmentation performed manually. The 
error rate is defined as the number of falsely classified pixels 
divided by the overall number of pixels in the picture.

In our experiments, we investigated the influence of two 
parameters of interest in our algorithm, that is, the number 
of layers N and sn , the Saturation threshold under which a 
pixel is systematically classified as a foreground pixel. For 
each dataset, in the first experiment, we perform the seg-
mentation procedure with N ranging from 1 to 256, while sn 
is kept constant and equal to 0.2. These extreme values cor-
respond, respectively, to no decomposition into layers, that 
is, a standard segmentation based on the Hue, and to a layer 
attributed to each possible grayscale. Regarding the second 
experiment on the Saturation threshold sn , we let it vary 
from 0 (no point is automatically retained as a foreground 
pixel) to 1 (all the pixels are retained as background), while 
the number of layers is constant N = 32 . In both cases, for 
each dataset, we computed the average segmentation error 

obtained on the 16 pictures and the associated estimated 90%
-confidence interval. By doing so, we aimed to find a good 
practical choice of the parameters N and sn , which guaran-
teed both low segmentation error and the smallest possible 
variance. Our last experiment presents the results obtained 
with values of N and sn set up according to the two previous 
experiments.

3.2  Results on the choice of the input parameters

Results on the choice of N, the number of layers used in our 
algorithm, are presented in Fig. 8. A quick examination of 
the graphs from Fig. 8a–i shows that choosing a N between 
20 and 50 provides excellent segmentation results, with an 
error rate under 5% . For a small number of layers (under 10), 
we get in all cases the worst results in terms of error rate. 
After attaining a minimum, the error rate increases regularly 
for higher number of layers.

Figure 9a–i illustrates the influence of the Saturation 
threshold sn . They show that, in practice, choosing sn = 0.2 

Fig. 7  Samples of the investigated datasets
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can provide very good segmentation results for all the types 
of socks and bare feet. We notice, in the mean error rate, a 
change of behavior between color socks and black socks. 
This is not surprising, however; for black socks, the pixels 
belonging to the socks have low Saturation as well, so dis-
carding too many pixels with a low Saturation increases the 
segmentation error rate.

3.3  Segmentation results

Examples of results obtained with the proposed segmen-
tation method are displayed in Fig. 10, with N = 30 and 
sn = 0.2 . We chose to present these results without any 

mathematical morphology post-processing involved. It can 
be observed that the proposed approach is quite robust to the 
color of the sock, though the results obtained in favorable 
cases (pink sock and bare foot) are obviously better. On the 
whole database, the average segmentation error lies between 
2% and 4%, which is quite good and sufficient for the pur-
pose of the Galaxy apparatus.

Among the results, it can be noticed that the proposed 
algorithm behaves very well for the light blue database, even 
if the Hue of the sock is close to that of the background. 
The worst error rate was obtained in that case for Black and 
FunkyBlack datasets, as appears clearly in Fig. 10b and c. 
This can be understood easily, since in these cases the most 

Fig. 8  Influence of the number of layers (x axis) used on the segmentation error rate (y axis)—average result (dotted blue) and associated 90% 
confidence interval in light blue



989Journal of Real-Time Image Processing (2020) 17:981–992 

1 3

critical operation in our algorithm is the comparison to sn . 
Obviously, this comparison to a single threshold provides 
poorer results than a more refined, layer-by-layer analysis 
of the pictures.

3.4  Discussion

From the two first experiments, we observe that the datasets 
can be classified into three distinct groups: the first group 
includes the datasets Pink, FlowerPower and LightBlue, the 
second includes the White, PinkyPie, FunkyBlack and Black 
datasets, and the third the Nuni and Duboni datasets. For 
pictures of the first group, when observing the influence of 

the number of layers, we see a decrease of performance until 
20 layers (this degradation can be explained by the overs-
moothing phenomenon, as described later). Above 100 lay-
ers, though the average error remains below a 15% threshold, 
the variability increases. Therefore, the level of confidence 
we put into the presented method decreases as well. The 
Saturation threshold sn , on the other hand, has little influence 
on the results, provided sn < 0.3 . Considering the fact that 
the socks of the Pink and FlowerPower have mostly a red 
Hue, and that it is the furthest from the green background’s 
Hue, it is clear that the segmentation performed depends 
strongly on the Hue parameter, and that a decomposition into 
layers n can greatly decrease the error rate. The LightBlue 

Fig. 9  Influence of the Saturation threshold s
n
 (x axis) used on the segmentation error rate (y axis)—average result (dotted blue) and associated 

90% confidence interval in light blue
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dataset behaves similarly, though results have a larger con-
fidence interval due to the similarities between blue and 
green Hues. For datasets of the second group, the error rate 
remains below 10% for all of them, even for large values of 
N. On the other hand, too small a value of sn yields a larger 
error rate, since we discard more pixels with low Saturation 
as understood from Fig. 5. Notice that this decrease of per-
formances is less critical for white socks since in that case 
the socks’ pixels have a high Value Vk . Therefore, they have a 
larger chance to be identified as foreground pixels than black 
pixels from dark socks. For this group, we can understand 
that the Saturation threshold sn is the main bottleneck of the 
segmentation procedure.

Finally, the third group illustrates a characteristic of the 
human skin whose Hue is close to 0. Therefore, this group 

behaves similarly to the first one, even if the changes of 
tones of the human skin (when compared to a red uniform 
sock) introduce more variability in the results, as seen for 
example from the comparison between Fig. 8e and a. For 
these measurements, due to the bigger discrepancy of the 
human skin when compared to socks, the number of layers 
is a sensible parameter to set, as now detailed.

As aforementioned, the number of layers must be care-
fully chosen. Splitting the data into few layers increases the 
error rate of the segmentation procedure. This is because 
large layers tend to include clusters of both background and 
sock pixels, and are difficult to separate (this phenomenon is 
known as oversmoothing). In that case, results have a small 
variance but a large bias, as shown from the results. On the 
other hand, an overly large number of layers reduces the 

Fig. 10  Results on the sample
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average performances of the segmentation procedure, but at 
the cost of a large variability in the results. This is mainly due 
to the fact that each layer contains few pixels to build a back-
ground model with any statistical significance. The trade-off 
to be attained illustrates the common issue of over-fitting (as 
detailed in the statistical literature, for example in Wasserman 
[15]). From the results displayed in Fig. 8 obtained on the 
presented database, it appears that a good numerical rule-of-
thumb consists of choosing between 20 and 50 layers to obtain 
near to optimal performances. Consequently, the number of 
layers chosen was equal to 20, in practice, for our application. 
This choice speeds up the execution time while guaranteeing 
good segmentation results. It shall be noticed that the results 
presented use numbers an (defining the layers n(I) ) uniformly 
distributed on the Value scale. We conjecture that the opti-
mal layers subdivision depends on the JPEG compression rate 
used, and will investigate this aspects in future contributions.

A parameter of interest is also the Saturation threshold 
sn , below which a point is systematically chosen as belong-
ing to the sock. From the results obtained in Fig. 9, it can 
been observed that this parameter is of less importance for 
colored socks or human skin, while being critical for black, 
white and gray socks. This observation is not surprising, 
however, since black and gray tones are related to the small-
est Saturations or Values. This happens, when the distortion 
introduced by the JPEG compression used is the most dis-
turbing. A good value for overall performance is to set uni-
formly sn = 0.25 . We also notice that the proposed approach 
is relatively steady for colored and bright socks as well as for 
skin color (as can be seen from the small confidence interval 
obtained for such pictures in Fig. 9a, d and e). Not surpris-
ingly, its performances naturally decreases for darker socks 
and gray tones as shown in Fig. 9b.

The final segmentation results presented in Fig. 10 can be 
improved using standard mathematical morphology opera-
tions on the resulting mask, since the small artifacts remain-
ing can be easily discarded this way. From the experiments 
performed, such post-processing operations (involving a 
morphological close, finding the biggest element in the mask 
and applying median filtering to smooth the results) increase 
the required processing time up to 800 ms for one picture, 
which remains relevant for our application. We emphasize 
that these morphological operations must be performed 
with caution, since they can combine background pixels and 
foreground pixels altogether. A more uniform background 
on the device, or the use of more refined algorithms, may 
improve the obtained results, and will be investigated in 
future contributions.

4  Conclusion

In this paper, we have presented a generic algorithm for 
uniform background removal, which is independent of the 
color of the object of interest, and takes into account the 
color distortion inherent to the JPEG compression. When 
applied to our specific application, a foot scanning device, 
we observed that the obtained performances are quite good, 
even for foreground objects considered as difficult, with 
approximately a 2–4% error rate. Further work in that direc-
tion will include background removal from the upper part of 
the image, extraction of features of interest from the fore-
ground objects and full 3D reconstruction of the foot given 
the segmented images. Details on these aspects will appear 
in future contributions.
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