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Abstract
In this paper, we propose two efficient compression schemes for digital images using an adaptive selection mechanism for 
vector quantization (VQ), side match vector quantization (SMVQ), and image inpainting. On the sender side, after the original 
image is divided into blocks, the compression is implemented block by block. In both schemes, blocks in pre-specified loca-
tions are first compressed by VQ. For each remaining block, the optimal compression method (for the first scheme, including 
VQ or inpainting, and for the second scheme, including VQ, SMVQ, and inpainting) is determined by computing the mean 
square error (MSE) between the original block and its inpainted result and then comparing it with a predefined threshold. 
If MSE is greater than the threshold, image inpainting continues to be used to compress the current block. Otherwise, the 
compression mode of VQ or SMVQ is selected to substitute image inpainting to maintain higher visual quality. With the 
assistance of transmitted indicator flags, the receiver side can execute the image inpainting and decompression successfully. 
Experimental results demonstrate the effectiveness and superiority of two proposed schemes.

Keywords  Efficient image compression · Vector quantization · Side match vector quantization · Image inpainting

1  Introduction

With the rapid development of Internet, more and more 
multimedia data needs to be stored in the memory or trans-
mitted through the network, which brings about traffic jam 
for the channel with limited bandwidth. Accordingly, before 
data transmitting, lossless or lossy compression, i.e., source 

coding, can be performed on the sender side to increase 
transmission efficiency [1–4] under the condition that the 
distortion on the data after decompression can be tolerated 
by the receiver. An ideal lossy compression scheme should 
achieve both satisfactory compression ratio and reconstruc-
tion fidelity for the sender and receiver sides, respectively. 
However, these two aspects, i.e., compression ratio and 
reconstruction fidelity, are obviously contradictory with 
each other. In other words, higher compression ratio often 
leads to poorer reconstruction fidelity. Digital images, as the 
important information carrier, are widely used and trans-
mitted through Internet in our daily life, therefore, how to 
design an effective compression scheme for digital images 
deserves in-depth investigation.

Among state-of-the-art image-compression techniques, 
vector quantization (VQ) has been widely studied due to its 
satisfactory rate-distortion performance and high efficiency 
in real-time implementation [5–9] and has been applied in 
fields of image watermarking [10] and image data hiding 
[11]. In addition, block truncation coding (BTC) is widely 
used to compress digital image and generate encoded bits 
[12, 13], whose working mechanism is similar to the VQ 
compression method. In VQ compression, the encoder and 
the decoder both have the same codebook, which consists of 
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a number of codewords. During compression, the original 
image is processed in a block-wise manner. The Euclidean 
distance is calculated to evaluate the similarity between the 
current image block and all codewords in the codebook; 
then, the index of codewords with the smallest distance is 
regarded as the compressed data of the current image block. 
After all nonoverlapping blocks are represented by the index 
values of codewords, an index table consisting of all index 
values is produced as the VQ compressed code of the image. 
Because only index values rather than all pixel values of the 
image are used as the encoded result, VQ compression is 
an effective algorithm. During VQ decompression, because 
each index value in the received index table corresponds to 
an image block, a simple operation of lookup table can be 
performed in the codebook to find the codeword that cor-
responds to the index value; then, the found codeword is 
regarded as reconstructed pixel values of the image block. 
Note that the length of the binary representation for the larg-
est index value is the length of the compressed code for each 
block; that is to say, the size of the codebook can influence 
the compression ratio and the reconstruction quality simul-
taneously. In addition, the greatest weakness of VQ encod-
ing is the neglect of the relationships between neighboring 
image blocks.

In order to improve the defects of VQ and further enhance 
its performance of compression, side match vector quan-
tization (SMVQ) was designed as an improvement of VQ 
[14], which considers the correlation between neighboring 
image blocks effectively. Differently than VQ, the codebook 
and the sub-codebooks are used to generate the index val-
ues in an SMVQ encoding procedure (details of SMVQ are 
given in Sect. 2.1). In recent years, many researchers have 
studied novel image compression schemes based on SMVQ 
[15–17] and applied SMVQ in extended fields such as image 
data hiding [18]. In [15], the sender segmented the original 
image into a series of nonoverlapping blocks and encoded 
the leftmost and upmost blocks through VQ. The residual 
smooth blocks were compressed through SMVQ, and the 
complex blocks were compressed through VQ. In [16], an 
adaptive block classification was presented to achieve lower 
distortions. A remedy scheme was proposed in [17] to solve 
the problem in that the error of the current block may be 
diffused to the following blocks.

In this paper, we propose two efficient compression 
schemes for digital images using an adaptive selection 
mechanism for VQ, SMVQ, and image inpainting. The 
main purpose of the proposed schemes is to achieve a 
higher compression rate while maintaining a reasonable 
visual quality. In both of our schemes, image blocks at the 
pre-specified partial regions are first compressed by VQ. 
For each remaining block, the optimal compression method 
(for the first scheme, including VQ or inpainting and for 
the second scheme, including VQ, SMVQ, and inpainting) 

is determined by computing the mean square error (MSE) 
between the original block and its inpainted result and then 
comparing it with a predefined threshold. If MSE is greater 
than the threshold, image inpainting continues to be used to 
compress the current block. Otherwise, another compression 
mode (VQ for the first scheme, and VQ or SMVQ alterna-
tively for the second scheme) is selected to replace image 
impainting to maintain higher visual quality.

The rest of this paper is organized as follows: Section 2 
introduces the preliminary knowledge of SMVQ and image 
inpainting. Section 3 describes two proposed schemes in 
detail. Experimental results and comparisons are given in 
Sect. 4. Section 5 concludes this paper.

2 � Preliminary knowledge

2.1 � SMVQ

SMVQ is designed to minimize the block effect caused by 
VQ. For original image Io with the size of M × N, blocks with 
the size of B × B in the top row and in the leftmost column 
are regarded as specific regions and first encoded by VQ; the 
remaining blocks with the same size of B × B are treated as 
regular regions and encoded by SMVQ in a raster-scanning 
order. Take the encoding process of one regular block as an 
example: the current to-be-encoded block is denoted as Bi, j, 
where subscripts i and j indicate the row and column indices 
of the block in the entire image, respectively, and 2 ≤ i ≤ M/B, 
2 ≤ j ≤ N/B. Note that, for ease of description, we assume both 
M and N here are divisible by B. The left and upper adjacent 
blocks of Bi,j, i.e., Bi,j−1 and Bi−1,j, respectively, are used to 
generate a reference vector. As shown in Fig. 1, c1,1, {cp,1, 
2 ≤ p ≤ B}, and {c1,q, 2 ≤ q ≤ B} are the top left corner pixel, 
left border, and upper border of Bi,j, respectively. In addition, 

Bi 1, j

Bi, jBi, j 1

c1, 1 c1,B…
…

cB, 1 

……

l1, B

lB, B

uB, 1 uB, B

Fig. 1   Prediction process of SMVQ
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the B pixels in the bottom border of Bi−1,j are denoted as {uB,q, 
1 ≤ q ≤ B}, and B pixels in the right border of Bi,j−1 are denoted 
as {lp,B, 1 ≤ p ≤ B}. The pixel values of c1,1, {cp,1}, and {c1,q} 
are predicted as.

Then, a reference vector composed by {ĉp,1, ĉ1,1, ĉ1,q} is 
generated to search the predefined codebook Ψ to extract 
a sub-codebook ΨS, which includes S closest codewords. 
Specifically, for a codebook Ψ with W codewords {Cw, 
0 ≤ w ≤ W − 1}, the horizontal and vertical side-match dis-
tortion (SMD), denoted as Hw

SMD
 and Vw

SMD
 , respectively, 

between the reference vector and each codeword can be 
calculated by

where cw
p,1

 and cw
1,q

 are the corresponding elements of ĉp,1 and 

ĉ1,q in Cw. Thus, the total SMD of the codeword can be cal-
culated as:

After Ew of all codewords in codebook Ψ are calculated, 
the S codewords with the smallest Ew are selected and com-
posed together to generate the sub-codebook Ψs, and the 
index value of the closest codeword in Ψs is regarded as 
SMVQ-encoded data.

2.2 � Image inpainting

Nowadays, the image inpainting technique is widely used 
to amend an image whose partial region is missing [19, 
20]. Currently, there are three main categories of inpainting 
methods based on different strategies: interpolation-based 
methods, patch-based methods, and partial differential equa-
tion (PDE)-based methods. Compared with the former two 
categories, PDE-based methods have better performance in 
patching, especially for image structure information. There-
fore, in this work, a PDE-based image inpainting technique 
is exploited to obtain the reconstructed image using a total 
variation (TV) model [21, 22], which is essentially an aniso-
tropic diffusion method. By transmitting adjacent gray-scale 
information along the vertical direction of the gradient, the 
image structure information in the target area can be effec-
tively restored, and the iterative repair process is stopped 
when the gray-scale value in the calculation domain reaches 
a stable state [see Eq. (4)]:

(1)

⎧
⎪⎨⎪⎩

ĉ1, 1 = (uB, 1 + l1,B)∕2

ĉp,1 = lp,B
ĉ1,q = uB,q

(2)

�
Hw

SMD
=
∑B

p=1
(ĉp,1 − cw

p,1
)2

Vw
SMD

=
∑B

q=1
(ĉ1,q − cw

1,q
)2

,

(3)Ew = Hw
SMD

+ Vw
SMD

.

where ∇Id(m, n) represents the gradient at the image pixel 
Id(m, n), t is the time index, div(·) is the divergence opera-
tor, and Θ+ denotes the region consisting of all the to-be-
amended pixels Θ and their close neighborhood ∂Θ in the 
current image Id. By using the finite difference method, 
we can obtain a discretized iteration algorithm to solve the 
PDE in Eq. (4). For more details of TV-model-based image 
inpainting, please refer to [22].

3 � Proposed scheme

In this section, we propose two novel image compression 
schemes using two different adaptive selection mechanisms 
for VQ, SMVQ, and image inpainting. In scheme I, an origi-
nal image is divided into nonoverlapping blocks, and the 
image compression is conducted block by block; moreover, 
blocks in predetermined specific regions are compressed by 
VQ, and an optimal compression method (inpainting or VQ) 
is adaptively determined for the remaining blocks accord-
ing to the MSE between the original block and its candidate 
decompression result. In order to further decrease the com-
pression ratio and overcome the block effect, scheme II is 
proposed as an improvement of scheme I, specifically, an 
original image is divided into overlapping blocks with a des-
ignated rule, and compression is conducted block by block. 
For the current block for compression, boundary sub-blocks 
are compressed by VQ, and an optimal compression method 
(inpainting, SMVQ, or VQ) is adaptively determined for 
nonboundary sub-blocks according to the MSE between the 
original sub-block and its candidate reconstructed result. 
After receiving the compressed codes of the image, decom-
pression and TV-inpainting techniques are used to obtain a 
reconstructed image. Details of the proposed schemes are 
presented in the following.

3.1 � Proposed scheme I

As denoted above, Io is an original gray-scale image sized 
M × N. In order to compress Io, we first divide original image Io 
into a series of nonoverlapping blocks sized B × B with a raster-
scanning order, i.e., {Bi, j, i = 1, 2, …, M/B, j = 1, 2, …, N/B}. 
Then, blocks located at all four boarders of the image, and the 
blocks with the indices i and j being even or odd at the same 
time, which are marked by gray blocks (as shown in Fig. 2) and 
are compressed by VQ with codebook Ψ. In scheme I, because 
all blocks are compressed using two strategies, i.e., VQ and 
image inpainting alternatively, to decompress each block dur-
ing the receiver side, a flag to indicate the specific compression 
mode is set and transmitted. For gray blocks, the flag for each 

(4)�

�t
�d(m, n) = div

[
∇�d(m, n)

|∇�d(m, n)|
]
, ∀(m, n) ∈ Θ+,
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block is set as a binary number 02; then, the index of the most 
similar codeword in Ψ is regarded as the compression data for 
the current block. The remaining white blocks in Fig. 2 are 
compressed with an adaptive strategy, as Fig. 3 shows.

Denote the current to-be-compressed remaining block as 
Bi,j, where 2 ≤ i ≤ (M/B − 1), 2 ≤ j ≤ (N/B − 1), and both i and 
j cannot be the odd or even numbers at the same time. Then, 
predict the value of Bi,j through conducting the image inpaint-
ing operation as described in Sect. 2.2. The MSE between Bi,j 
and its predicted version is denoted as Ei,j and calculated as:

where cp,q is the pixel value in block Bi,j, c̃p,q is its corre-
sponding prediction value. Next, we set a threshold T, if 
Ei,j > T, it implies that block Bi,j is a relatively complex 
region and cannot be well represented without using its own 
data; in this case, VQ is used to compress block Bi,j, and 
the corresponding flag is set as 02. Otherwise, if Ei,j ≤ T, it 
implies block Bi,j is in a relatively smooth region and can 
be reconstructed with high quality through merely using its 
neighboring blocks; thus, in this case, Bi,j is compressed 
using an inpainting technique, and its flag is set as 12. 
Finally, all encoded data by VQ and the flag table are trans-
mitted to the receiver.

When receiving the encoded data and the flag table, 
the receiver, who has the same codebook Ψ, performs VQ 
decoding on blocks when the corresponding flag is 02; spe-
cifically, a table lookup operation according to the index 
could obtain the corresponding codeword in Ψ; then, put 
the codeword into a vacant corresponding block to obtain a 
reconstructed block. Otherwise, TV inpainting is performed 
on blocks when the corresponding flag is 12. After the imple-
mentation of TV inpainting, the final decompressed image 
Ir can be reconstructed.

3.2 � Proposed scheme II

To further seek a higher compression ratio, a more sophis-
ticated adaptive compression strategy is used in scheme II. 
First, an original image Io is divided into K × K-sized over-
lapping larger blocks, where K is divisible by B. Thus, a 
block-sized K × K contains (K/B) × (K/B) sub-blocks sized 
B × B. We denote a K × K block as κt, where t is the block 
label. Note that the overlapping area between two adjacent 
larger blocks is mandatorily set at B × K or K × B. That is to 

(5)
Ei,j =

∑B

q=1

∑B

p=1
(cp,q + c̃p,q)

2

B × B
,

Fig. 2   Diagram of to-be-compressed blocks using scheme I. Gray 
blocks for VQ compression and white for an adaptive selection mech-
anism for VQ and image inpainting

Evaluation of 
Inpainting Quality

Compress using 
inpainting

Distortion value
Ei, j T

Distortion value
Ei, j > T

Compress using 
VQ

Remaining 
block Bi,j

TV-inpainting 

Neighboring
blocks of Bi,j

Fig. 3   Flowchart of compression for remaining blocks in scheme I

κt κt+1

Fig. 4   Diagram of two adjacent overlapping blocks κt and κt+1
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say, the B × B-sized sub-blocks located at the boundary of 
block κt are exactly the overlapping areas. Figure 4 shows 
the diagram of a pair of overlapping blocks, i.e., κt and κt+1. 
It is easy to imagine that the greater the value of K/B, the 
more non-edge sub-blocks (white sub-blocks as shown in 
Fig. 4) may be compressed by other higher-efficiency com-
pression modes, such as SMVQ or TV inpainting; thus, the 
higher compression ratio will be obtained. However, a higher 
compression ratio may result in a worse recovery quality; in 
scheme II, we sought a balance between the compression 
ratio and the recovery quality and set K/B at 8. Take the 
compression process of κt as an example: to guarantee the 
compression quality, first, all boundary sub-blocks of κt are 
compressed by VQ, and flags are set as 02, which are marked 
with a gray color, as shown in Fig. 4. Next, the remaining 
36 nonboundary sub-blocks are denoted as { �t

h
 , h = 1, 2, 

…, 36}, where t and h are the indices of the K × K-sized 
block and B × B-sized sub-block, respectively. A flow chart 
of compression of block κt is shown in Fig. 5.

As Fig. 5 shows, for current processing block κt, the 
TV-inpainting technique is first conducted on all non-
boundary sub-blocks Bh

t (h = 1, 2, …, 36) with the assis-
tance of the decompressed boundary sub-blocks, and the 
total MSE Et between the predicted values of nonboundary 
sub-blocks, and its corresponding original pixel values is 
calculated according to Eq. (5) to judge whether the block 
is a smooth region. If Et ≤ T, it implies that block κt is a 

relatively smooth region and can be recovered with sat-
isfactory quality merely using its boundary sub-blocks; 
thus, all sub-blocks Bh

t (h = 1, 2, …, 36) can be com-
pressed using an inpainting technique and set flags of Bh

t 
(h = 1, 2, …, 36) as 112. Otherwise, if Et > T, it implies 
the block κt is a relatively complex region and cannot be 
well represented merely using the inpainting result; thus, 
all nonboundary sub-blocks are processed one by one in a 
raster-scanning order, and an optimal compression method 
is determined to compress Bh

t. Specifically, compress the 
first uncompressed sub-block Bh

t using SMVQ and calcu-
late its distortion Et

h according to Eq. (5); if Eh
t ≤ T, keep 

using SMVQ to compress current sub-block Bh
t and set the 

flag as 102; otherwise, use VQ to compress current sub-
block Bh

t and set the flag as 02. After Bh
t is compressed, 

perform the TV-inpainting operation circularly on the sub-
blocks not yet compressed in κt with the reference of all 
boundary sub-blocks and already processed nonboundary 
sub-blocks. Note that all reference sub-blocks for inpaint-
ing are their decompressed versions. If Et is still larger 
than T, compress the next unprocessed sub-block Bh+1

t 
and select an optimal compression method for it. Close 
the above loop until all nonboundary sub-blocks have been 
compressed or Et ≤ T; then, process the next block κt+1 in 
the same way.

It is worth noting that, with all K × K-sized overlap-
ping blocks processed, if there are remaining border areas 
smaller than K × K, so that they cannot be processed by the 
scheme shown in Fig. 5, we deal with these areas using a 
specific method. If the remaining areas can be divided into 
B × B sub-blocks, use SMVQ to encode the remaining sub-
blocks and calculate the MSE between the decoded version 
and its corresponding original version, if MSE is equal to 
or less than the predefined threshold T, keep using SMVQ 
to encode the sub-block and set the flag as 102; if MSE is 
greater than T, change to use VQ to encode the sub-block 
and set the flag as 02. If the remaining area cannot be 
further divided into B × B-sized sub-blocks, the original 
pixel values of the remaining area are kept unchanged and 
transmit the original pixel values. Finally, all compressed 
data of sub-blocks, pixel values of remaining area without 
compression, and the flag table are regarded as final com-
pressed data and transmitted to the receiver side.

At the receiver side, decompression is performed based 
on the flag table and remaining data to obtain recon-
structed image Ir. Also take the decompression of κt as an 
example: for each B × B sub-block, if its flag is 102 or 02, 
SMVQ or VQ decompression is applied for reconstruction, 
respectively, and the codewords obtained from decompres-
sion are put into corresponding vacant sub-blocks of Ir to 
obtain the reconstructed sub-blocks. Then, the TV-inpaint-
ing technique is used for sub-blocks with the flag of 112; 
for the residual area, which is smaller than B × B, it can be 

Evaluation of 
the current sub-block Bh

t

after SMVQ

Et > T

Compress Bh
t

using SMVQ

Eh
t T

Compress Bh
t

using VQ

Eh
t> T

TV-inpainting on 
all un-processed 

sub-blocks

If all 
sub-blocks are 

processed

no Process the 
next block κt+1

Et T

yes

Current 
block κt

Evaluation of 
Inpainting Quality

Fig. 5   Flowchart of compression of block κt using scheme II
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recovered by the transmitted uncompressed data with no 
error. After all sub-blocks and the residual area are recon-
structed, the final version Ir is reconstructed at this point.

4 � Experimental results and analysis

Experiments were conducted on six standard gray-scale 
images to verify the effectiveness and superiority of the two 
proposed schemes. All experiments were implemented on 
a personal computer with a 3.30 GHz Intel i3 processor, 
4.00 GB memory, and Windows 7 operating system, and the 
programming environment was Matlab 7. Figure 6 illustrates 
six standard test images sized 512 × 512, including Milk, 
Boat, Airplane, Peppers, Tiffany and Man.

4.1 � Results of image compression 
and reconstruction

The size of the divided nonoverlapping image blocks in 
scheme I are 4×4, i.e., B = 4. In the experiment of proposed 
scheme II, the size of the divided overlapping image blocks 
in scheme II were 32 × 32 and sub-blocks were 4 × 4, i.e., 

K = 32 and B = 4. Therefore, the length of each codeword 
Cw in the predefined VQ codebook Ψ was 16. Figures 7 and 
8 show the reconstructed images using the parameters of 
T = 52 and W = 512 by schemes I and II, respectively.

The compression ratio CR and the peak signal-to-noise 
ratio (PSNR) value PSNR are applied to evaluate the perfor-
mance of the proposed schemes. CR and PSNR can be cal-
culated as:

where Lc is the length of compressed codes, which includes 
bits of the flag table, and Io(m, n) and Ir(m, n) are pixel 
values at location (x, y) of the original image Io and the 
reconstructed image Ir, respectively.

The numerical values of the experimental results in 
Figs. 7 and 8 are listed merged together in Table 1. The per-
centages of B × B sized blocks compressed by VQ, SMVQ 
and image inpainting are represented by τ1, τ2 and τ3, respec-
tively, and are listed in the second to the fourth columns of 
Table 1. The fifth to the sixth columns show the compression 

(6)

⎧
⎪⎨⎪⎩

CR =
8×M×N

Lc

PSNR = 10 × log10
2552×M×N∑M

m=1

∑N

n=1
[�o(m,n)−�r(m,n)]

2
,

Fig. 6   Six standard test images. a Milk, b Boat, c Airplane, d Peppers, e Tiffany, f Man
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ratios CR and the PSNR values of reconstructed image Ir 
after TV-based image inpainting with respect to original 
plaintext images, which were calculated by Eq. (6). As can 
be seen from Table 1, the PSNR for one image of scheme 
I and scheme II are almost the same, but the compression 
ratio of scheme II is higher than that of scheme I. The reason 
for this improvement is probable due to that a part of blocks 
compressed by VQ in scheme I are compressed by SMVQ 
or inpainting in scheme II, which not only produces a good 
compression ratio, but also reduces the block effect caused 
by VQ.

4.2 � Influence of parameters of T and W

In order to analyze the influence of parameters on the com-
pression performance, we conducted experiments with the 
different setting of two main parameters of our schemes, 
i.e., T and W. Variation in the setting of T and W may lead 
to different performances of compression ratio and qualities 
of the reconstructed image. Specifically, a larger threshold 
T may lead to more blocks compressed by inpainting and 
owing to the fact that inpainting-based compression can save 

more space than VQ and SMVQ; thus, a larger compression 
ratio can be achieved. On the other hand, a larger value of W 
implies there are more codewords in the codebook, and we 
can choose a more precise one to replace the current block 
and obtain a higher reconstructed quality. Tables 2 and 3 
list the compression ratios CR and PSNR of reconstructed 
images with the different setting of T and W by using the 
proposed schemes, from which we can see that larger T 
results in a higher compression ratio and lower PSNR value, 
while larger W leads to lower compression ratio and higher 
PSNR value. However, when W is a constant, the compres-
sion ratio converges with the increase of T. For example, 
when W = 256 and T is big enough to make all white blocks 
in Fig. 2 compressed by inpainting, we can obtain the limit 
of CR = 24.98 of scheme I. Similarly, the limit of CR = 31.87 
of scheme II.

4.3 � Performance comparison

We compared our schemes with the standard VQ, SMVQ 
methods, and the search-order coding (SOC) method 
[23]. To make a fair comparison, when the qualities of the 

Fig. 7   Reconstructed images of proposed scheme I with codebook 
size W = 512 and threshold T = 52. a Milk with PSNR = 31.85  dB, b 
Boat with PSNR = 29.54 dB, c Airplane with PSNR = 30.62 dB, d Pep-

pers with PSNR = 31.74  dB, e Tiffany with PSNR = 31.50  dB, f Man 
with PSNR = 29.22 dB
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Fig. 8   Reconstructed images of proposed scheme II with codebook 
size W = 512 and threshold T = 52. a Milk with PSNR = 31.37  dB, b 
Boat with PSNR = 29.44 dB, c Airplane with PSNR = 30.38 dB, d Pep-

pers with PSNR = 31.17  dB, e Tiffany with PSNR = 31.40  dB, f Man 
with PSNR = 29.15 dB

Table 1   Performance of the 
proposed schemes with the 
parameters of T = 52 and 
W = 512

a The percentage of B × B sized blocks compressed by VQ
b The percentage of B × B sized blocks compressed by SMVQ
c The percentage of B × B sized blocks compressed by image inpainting

Images Proposed 
schemes

τ1
a (%) τ2

b (%) τ3
c (%) CR PSNR

Milk I 59.66 0.00 40.34 20.10 31.85
II 36.41 17.49 46.09 22.81 31.37

Boat I 70.19 0.00 29.81 17.49 29.54
II 52.01 19.07 28.92 18.49 29.44

Airplane I 65.09 0.00 34.91 18.66 30.62
II 44.97 17.27 37.76 20.35 30.38

Peppers I 62.78 0.00 37.22 19.25 31.74
II 42.58 22.37 35.05 20.31 31.17

Tiffany I 62.54 0.00 37.46 19.31 31.50
II 40.55 17.74 41.71 21.50 31.04

Man I 72.09 0.00 27.91 17.09 29.22
II 52.26 14.73 33.00 18.91 29.51



807Journal of Real-Time Image Processing (2019) 16:799–810	

1 3

Table 2   Compression ratio CR 
and PSNR (dB) of reconstructed 
image Ir in proposed scheme I

Images W T = 36 T = 44 T = 52 T = 60 T = 68

Milk 256 21.11, 31.52 21.58, 31.51 21.97, 31.51 22.27, 31.50 22.55, 31.48
512 19.25, 31.88 19.75, 31.86 20.10, 31.85 20.39, 31.83 20.64, 31.82

Boat 256 18.70, 28.90 19.00, 28.90 19.25, 28.90 19.44, 28.89 19.65, 28.89
512 17.06, 29.55 17.29, 29.55 17.49, 29.54 17.67, 29.54 17.87, 29.54

Airplane 256 19.97, 29.86 20.26, 29.86 20.50, 29.86 20.74, 29.85 20.91, 29.85
512 18.25, 30.64 18.47, 30.63 18.66, 30.62 18.84, 30.61 19.03, 30.61

Peppers 256 20.16, 31.06 20.63, 31.06 21.03, 31.06 21.29, 31.06 21.52, 31.06
512 18.48, 31.74 18.94, 31.74 19.25, 31.74 19.50, 31.74 19.71, 31.73

Tiffany 256 20.37, 31.00 20.81, 31.00 21.16, 31.00 21.47, 31.00 21.75, 30.99
512 18.59, 31.51 18.99, 31.50 19.31, 31.50 19.59, 31.49 19.82, 31.48

Man 256 18.10, 28.68 18.40, 28.68 18.69, 28.67 18.95, 28.66 19.21, 28.66
512 16.56, 29.24 16.86, 29.23 17.09, 29.22 17.36, 29.21 17.58, 29.20

Table 3   Compression ratio CR 
and PSNR (dB) of reconstructed 
image Ir in proposed scheme II

Images W T = 36 T = 44 T = 52 T = 60 T = 68

Milk 256 22.72, 31.27 23.42, 31.20 24.09, 31.11 24.63, 31.03 25.20, 30.91
512 21.43, 31.58 22.15, 31.46 22.81, 31.37 23.45, 31.26 23.92, 31.14

Boat 256 19.31, 28.84 19.59, 28.83 19.84, 28.81 20.05, 28.80 20.34, 28.78
512 17.97, 29.47 18.23, 29.46 18.49, 29.44 18.74, 29.41 18.98, 29.39

Airplane 256 21.18, 29.73 21.47, 29.70 21.76, 29.67 22.05, 29.63 22.22, 29.61
512 19.80, 30.46 20.14, 30.42 20.35, 30.38 20.59, 30.34 20.79, 30.30

Peppers 256 20.53, 30.78 21.20, 30.67 21.67, 30.58 22.02, 30.50 22.40, 30.39
512 19.39, 31.39 19.89, 31.29 20.31, 31.17 20.68, 31.06 21.02, 30.95

Tiffany 256 21.51, 30.76 22.26, 30.68 22.87, 30.62 23.52, 30.52 24.01, 30.44
512 20.21, 31.22 20.84, 31.14 21.50, 31.04 22.09, 30.93 22.50, 30.86

Man 256 19.16, 28.66 19.62, 28.65 20.02, 28.62 20.49, 28.60 20.91, 28.58
512 17.91, 29.21 18.43, 29.18 18.91, 29.15 19.30, 29.12 19.67, 29.09

Table 4   Compression ratio CR 
and PSNR (dB) of different 
methods

Schemes Milk Boat Airplane Peppers Tiffany Man

I
 CR 21.58 19.00 20.26 20.63 20.81 18.40
 PSNR 31.51 28.90 29.86 31.06 31.00 28.68

II
 CR 23.42 19.59 21.47 21.20 22.26 19.62
 PSNR 31.20 28.83 29.70 30.67 30.68 28.65

VQ
 CR 16.00 16.00 16.00 16.00 16.00 16.00
 PSNR 31.40 28.85 29.81 30.94 30.92 24.97

SMVQ
 CR 18.25 18.25 18.25 18.25 18.25 18.25
 PSNR 31.29 28.70 29.66 30.85 30.91 24.50

SOC
 CR 19.62 18.28 18.60 18.60 19.57 17.73
 PSNR 31.40 28.85 29.81 30.94 30.92 25.61
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reconstructed images are almost the same, Table 4 shows 
the compression ratios of different methods, where, in both 
of our proposed schemes, T and W were set at 44 and 256, 
respectively. In the other comparison methods, the codebook 
size was set at 256; for [23], the number of neighbor search-
ing indicates m = 17.

As observed in Table 4, under the same codebook size, 
and yet maintaining a nearly coherent decompression visual 
quality, the compression ratios of both proposed schemes 
outperform standard VQ, SMVQ, and SOC methods. Spe-
cifically, scheme II has the highest compression ratio, which 
results in a slightly lower PSNR for complex images. It is 
probably due to the fact that the TV-inpainting technique 
limits complex images with high compression ratios. How-
ever, both of the PSNR values and compression ratios of 
proposed scheme I are better than those of the standard 
methods. Therefore, we can conclude that, if we are pursuing 
high compression ratios and do not care about the slight dif-
ference in quality of reconstructed images, we could choose 
scheme II; if we want to take a trade-off between compres-
sion ratio and quality of reconstructed image, we can take a 
compromise to choose scheme I.

4.4 � Analysis of computation complexity

The complexity of our proposed scheme I mainly depends 
on partitioning, VQ coding, and inpainting. Concretely, a 
partition is addition and VQ coding in the table look-up 
operation, which are simple operations with low computa-
tion complexity. Encoding time of scheme I mainly resides 
on the complexity of inpainting, which relates to the number 
of iterations. The decoding time of scheme I not only relates 
to the number of iterations but also relates to the number of 
block B compressed by inpainting. In our simulation, when 
the number of iterations is set as 2000, and codebook size W 
is set as 256, the total time of encoding and decoding does 
not exceed 1 min, and the average total time of six stand-
ard test images, i.e., Milk, Boat, Airplane, Peppers, Tiffany, 
Man, with different parameters T are listed in Table 5.

Similarly, the main factors affecting the complexity of 
scheme II are partitioning, VQ and SMVQ coding, and 

inpainting. Different from scheme I, the encoding time of 
scheme II resides on not only the complexity of inpainting 
but also on the texture feature of each block κt. The encoding 
time for complex blocks is longer than that for smooth blocks 
because complex blocks have more loops than smooth blocks. 
Table 6 lists the total time of encoding and decoding for each 
standard test image with the setting of parameters T = 68 and 
W = 256, where the running time of complex images, e.g., Boat 
and Man, is longer than that of smooth images, e.g., Milk and 
Tiffany.

4.5 � Discussion on the performance of two schemes

For there is spatial correlation of digital images, the closer of 
the VQ decompressed blocks, the better inpainting quality is. 
In scheme I, the VQ decompressed blocks using for inpainting 
are at four neighboring directions. However, the VQ decom-
pressed blocks in scheme II are not neighboring blocks for 
current processing block, therefore, its inpainting quality are 
worse than that of scheme I. The time of scheme II is longer 
than that of scheme I just because the loop mechanism shown 
as Fig. 5, only when all sub-blocks are processed or the evalu-
ation is smaller than threshold T, the loop will come to the 
end, and then start to process the next block κt+1. There is no 
loop mechanism in scheme I, so its computation complexity 
is better than scheme II.

5 � Conclusions

In this paper, we propose two compression schemes for a digi-
tal gray-scale image using VQ, SMVQ, and image inpaint-
ing. For all blocks, except for those located in predesignated 
regions, an optimal compression mode (including VQ, SMVQ, 
or inpainting) is determined through an adaptive selection 
mechanism. The MSE between the original block and its 
inpainted result is measured and then compared with a pre-
determined threshold T. If MSE is smaller than T, the current 
block is compressed by inpainting technique. Otherwise, for 
scheme I, it is compressed by VQ directly, while for scheme 
II, the compression mode SMVQ or VQ is once again alterna-
tively selected by a comparison between MSE and threshold 
T. With the help of transmitted flags, the receiver side can 
decompress the image successfully.

Experimental results demonstrate the effectiveness and 
superiority of the two proposed schemes, and both schemes 
have their advantages. Scheme I has a lower computational 
complexity than scheme II, while the latter scheme provides 
a higher compression ratio than the former. For a relatively 

Table 5   Average total time of scheme I for six standard images with 
different parameters T 

Parameter T = 36 T = 44 T = 52 T = 60 T = 68

Average total time (s) 52.74 50.67 49.91 49.84 49.59

Table 6   Total time of scheme II 
for six standard images

Image Milk Boat Airplane Peppers Tiffany Man

Total time (s) 662.24 976.39 832.67 859.90 720.39 912.88
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complex image, with a comprehensive consideration of com-
pression ratio, quality of reconstructed image and computa-
tional time, scheme I is suggested to be applied to compress 
the image. For a smooth image, if we pursue a high compres-
sion ratio that exceeds the compression ratio limit of scheme I, 
we can choose scheme II, which can achieve a higher compres-
sion ratio and better reconstructed quality.
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