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Abstract
Image super-resolution (SR) plays an important role in many areas as it promises to generate high-resolution (HR) images

without upgrading image sensors. Many existing SR methods require a large external training set, which would consume a

lot of memory. In addition, these methods are usually time-consuming when training model. Moreover, these methods need

to retrain model once the magnification factor changes. To overcome these problems, we propose a method, which does not

need an external training set by using self-similarity. Firstly, we rotate original low-resolution (LR) image with different

angles to expand the training set. Second, multi-scale Difference of Gaussian filters are exploited to obtain multi-view

feature maps. Multi-view feature maps could provide an accurate representation of images. Then, feature maps are divided

into patches in parallel to build an internal training set. Finally, nonlocal means is applied to each LR patch from original

LR image to infer HR patches. In order to accelerate the proposed method by exploiting the computation power of GPU,

we implement the proposed method with compute unified device architecture (CUDA). Experimental results validate that

the proposed method performs best among the compared methods in both terms of visual perception and objective

quantitation. Moreover, the proposed method gets a remarkable speedup after implemented with CUDA.

Keywords Super-resolution � Self-similarity � GPU � CUDA

1 Introduction

High-resolution (HR) image plays an important role in

many fields such as medical diagnosis, high-resolution

displayer, security system, and so on. However, it is dif-

ficult to capture images with desired resolution because of

the limitation of hardware. It is expensive and even

impossible to upgrade the hardware in many conditions, for

example, image sensors on satellite. Enlarging image with

image processing methods has received extensive attention

in recent years. The simplest method to enlarge image is

interpolation operation. However, the interpolated HR

image, which lacks high-frequency (HF) details, has

obvious aliasing.

Super-resolution (SR) [1] is a promising modern image

processing method to enhance image resolution from low-

resolution (LR) image. Generally, SR methods can be

divided into two categories, i.e., multi-frame-based (also

known as reconstruction based) methods and single-frame-

based (also known as learning based) methods. Multi-

frame-based SR methods [2–5] reconstruct HR image using

a sequence of LR images from the same scene. Multi-

frame-based SR methods highly depend on the quality of

the registration of different input images. In practice, it is

hard to obtain images that satisfy the condition.

Single-frame-based image SR methods [6–12], which

employs training set containing LR and HR pairs as prior

information source, have become a top topic in recent

years. Depending on the source of training set, these

methods can be classified into two categories, i.e., external

training set-based methods and internal training set-based

methods. A large training set from other images is required

in external-based methods. Yang et al. [9] proposed a

method based on spare representation and dictionary

learning. They used external LR and HR pairs to train LR
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and HR dictionary, respectively. Yang et al. [10] proposed

a sparse coding-based SR method to enlarge infrared

image. They exploited fuzzy clustering to learn multiple

dictionaries. Wu et al. [11] proposed a multiple dictionar-

ies-based framework to upscale remote images. They

exploited multi-type features to present images. Dong et al.

[12] proposed a deep learning method for single-frame SR.

They used a deep convolutional neural network to learn the

mapping relationship between the low-/high-resolution

images. All the above-mentioned methods need a large-

scale external training set, which would consume a lot of

memory. A large-scale external training set can provide

plenty of prior information. However, the number and

types of training images required for satisfactory levels of

performance are not clear [13]. Moreover, these methods

need to retrain model once the magnification factor chan-

ges. In addition, training a model with satisfactory per-

formance is usually time-consuming.

To avoid using external training datasets and their

associated problems, image similarity and image self-

similarity are explored by researchers. In [14], image

similarity is used in the process of distinguishing similar

images from image copies to find out illegal image copies.

In [15], Li et al. proposed a novel method to detect copy-

move forgery by using image similarity within an image. In

[16], Pan et al. proposed a novel method for reducing the

computational complexity of multi-view video coding with

using image similarity. In [17], Rong et al. proposed a

method to protect privacy within images in detected

communities by exploiting image similarity. In [18], image

similarity is used in the process of clustering images to

eliminate near-duplicate images collected by visual sensor

nodes. In [19], Zhou et al. proposed an effective image

copying detection method which can detect arbitrary

rotation copies of original image by exploiting image

similarity.

Some SR methods [13, 20–22] exploit internal training

set by using self-similarity of images. These methods take

advantage of self-similarity of images, which means image

patches recur within and across scale of the same image

[13]. Zeyde et al. [8] proposed a sparse representation-

based method, which could operate without an external

training set by boot-strapping the scale-up task from the

given LR image. Huang et al. [13] proposed a self-simi-

larity-driven SR method. They built a compositional

transformation model to generate transformed self-exam-

ple, which expands the internal patch searching space. A

method in our previous research [22] applied generalized

nonlocal means to self-similarity-based SR method. Inter-

nal training set was built from down-sample version ima-

ges, and HR details were estimated by using a method

based on generalized nonlocal mean. All the previous

mentioned methods using internal training set suffer from

taking a long consuming time, which cannot meet the

requirement of real-time and/or near-real-time applications.

With the programmability on the GPU becoming easier,

the GPU has been exploited to accelerate SR methods

recently. Sun et al. [23] accelerated a multi-frame-based

SR method by using CUDA. The deep neural network-

based SR method proposed by Dong et al. [12] exploited

CUDA deep neural network (CUDNN) library to accelerate

their training process.

Most internal training set-based SR methods have a

good performance in both reconstruction quality and con-

suming time relatively. However, it suffered from the fol-

lowing limitations:

1. The internal training set, which was built from the

down-sample version of input LR image in original

direction, was not comprehensive enough [13, 20–22].

Some important HF details information could not be

integrated into resultant images.

2. Only single-scale filter was employed to extract feature

map from an image [13, 20–22]. Feature map extracted

by single-scale filter failed to represent an image

accurately, which further leads to artifacts in recon-

structed images.

3. The computation power of GPU was not exploited to

accelerate internal training set-based SR methods.

Inspired by the using of GPU in SR and based on our

previous work, we proposed a method in this paper with the

following three contributions:

1. In order to expand training set, we rotate the input LR

image with four different angles. The expanded

training set can provide plenty of prior information.

2. In order to represent an image more accurately, we

exploit multi-scale DoG filters to extract feature maps

from an image.

3. In order to meet the requirement of real-time and/or

near-real-time applications, we implement our method

with CUDA for high-performance computation.

The rest of this paper is organized as follows. Section 2

reviews the related work on self-similarity-based SR

method and CUDA programming model. Details of the

proposed method and the implementation details with

CUDA are described in Sect. 3. Experimental results on

four datasets are illustrated in Sect. 4. Section 5 summa-

rizes the conclusions of this paper.
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2 Related work

2.1 Self-similarity-based SR method

As we have mentioned in Sect. 1, images have the nature

called self-similarity. Patches of a nature image recur

within same and different scale of the same image. Fig-

ure 1 illustrates this phenomenon. As shown in Fig. 1, a

patch marked with red box and another marked with green

box are similar in each image. This phenomenon is self-

similarity in same scale. The patch marked with red box

can be matched with multiple similar patches in down-

sample version image. This is self-similarity in different

scale.

An internal training set containing LR and HR images

(or patches) can be built by taking advantage of this nature.

The input LR image can be regarded as an HR version

image in training set, while its corresponding down-sample

image can be regarded as an LR version image. Multiple

LR/HR pairs built through different down-sample factors

can be organized together as an integral training set. Fig-

ure 2 represents how to build internal training set.

The learning-based SR can be described as estimating

the best HR image when the LR image is known. This can

be expressed as:

IH ¼ argmax
IH

P IH jILð Þ ð1Þ

where IH and IL denote HR image and LR image, respec-

tively. Pð�j�Þ refers to conditional probability. An HR

image can be decomposed into an LR image and an HF

map, which can be expressed as:

IH ¼ H þ IL ð2Þ

where H denotes HF map. From Eq. (2), estimating IH
directly can be converted to estimate H indirectly. Suppose

that IL ¼ LþM, where L and M denote low-frequency

(LF) map and middle-frequency map (MF), respectively.

According to [22], Eq. (1) can be equivalently rewritten as:

H ¼ argmax
H

P M;Hð Þ ð3Þ

where P M;Hð Þ denote the joint probability of MF map and

HF map. Thus, the MF map of LR image rather than LR

image itself is used to estimate HF map indirectly.

According to the theory in [22], joint probability, P M;Hð Þ
can be equivalently written as:

P M;Hð Þ ¼ P M1M2; . . .;MN ;H1H2; . . .;HNð Þ

¼
YN

n¼1

PðMn;HnÞ ð4Þ

where Mn is a patch from MF map of input LR image. Hn,

which is unknown, is the patch we need to infer from HF

map in training set. According to Eq. (4), maximizing

P M;Hð Þ is equivalent to maximizing each

P Mn;Hnð Þ; n ¼ 1; 2; 3; . . .;N. P Mn;Hnð Þ can be expressed

as:

P Mn;Hnð Þ ¼ exp �
Mn �MH

n

�� ��2

2r2

 !
ð5Þ

where MH
n is the MF patch corresponding to Hn. r is a

parameter. According to Eq. (5), maximizing P Mn;Hnð Þ is
equivalent to minimizing Mn �MH

n

�� ��. Thus, Eq. (3) can be

equivalently written as:

Hn ¼ argmin Mn �MH
n

�� �� ð6Þ

According to Eq. (6), the HF patch Hn, whose corre-

sponding MF patch MH
n is the most similar patch to the

input MF patch Mn, is the best estimated HF patch.

According to [22], final estimated cHn can be formulated as:

cHn ¼
XK

k

xkH
T
k ð7Þ

where, cHn is the estimated HF patch. HT
k denotes the k-th

similar HF patch in training set. xk; k ¼ 1; 2; 3; . . .;K

refers to the weight coefficient of HT
k . One of the cores of

this method is to calculate xk. According to [22], xk can be

calculated by Eq. (8).

x i; jð Þ ¼ 1

Z ið Þ exp �
Mi �Mj

�� ��2

2r2

 !
ð8Þ

where Z ið Þ is a normalizing factor. It is calculated as:

Z ið Þ ¼
X

i

exp �
Mi �Mj

�� ��2

2r2

 !
ð9Þ

where r is a parameter.

Fig. 1 Examples of self-similarity
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2.2 CUDA programming model

Compute unified device architecture (CUDA), which is

proposed by NVIDIA Corporation, is a GPU-based parallel

computing architecture. It takes advantage of massive cores

integrated on GPU chip to help users to execute algorithms

in parallel. CUDA programming model contains hetero-

geneous programming, threads hierarchy and memory

hierarchy.

Heterogeneous programming In CUDA programming

model, GPU is defined as device, while CPU is defined as

host. CPU and GPU work corporately to complete all

operations including data I/O, data computation and

interaction operation. Usually, CPU is responsible for tasks

which contain complex logic controls and data operation

with disks (defined as serial codes). Intensive computation,

which can be divided into independent fine-grained tasks

(defined as parallel kernel function), is assigned to GPU for

parallel execution. Figure 3 presents the heterogeneous

execution model.

Threads hierarchy In terms of hardware, a CUDA

device is a general purpose GPU (GPGPU) consisting of a

set of multicore processors, defined as streaming multi-

processors (SMs). Streaming processors (SPs) within a SM

work in a single-instruction multiple-data (SIMD) fashion.

Hundreds or even thousands of cores are integrated on a

GPU chip in this way. In terms of software, these CUDA

threads (cores) are logically organized by a Grid-Block

model: multiple threads form a block and multiple blocks

form a grid. Thread, block and grid are assigned a unique

3-component vector comprised of one-, two- or three-di-

mensional index. Figure 4 illustrates this hierarchy. This

organization provides users a flexible way to divide their

algorithms into fine-grained tasks. For example, a voice

signal which is treated as a 1D data can be processed

conveniently with a 1D thread block, and it is a nature way

to exploit a 2D thread block to process an image signal.

The parallel design in CUDA is based on the SIMT.

There are three levels of parallel granularity in CUDA:

thread, wrap and thread block [24]. A thread processes a

single datum, such as an image pixel or an image patch,

whose memory address is located by the ID of corre-

sponding thread. A warp containing 32 threads is the fun-

damental unit of SIMD, that is to say instructions are

dispatched to 32 threads within a wrap simultaneously. A

set of wraps form a thread block. Each thread block exe-

cutes on a SM and manages a pool of wraps. A set of SMs

on GPU execute simultaneously.

Fig. 2 Building an internal

training set

Fig. 3 Heterogeneous programming in CUDA
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Memory hierarchy There are five memory spaces in

CUDA: global, texture, constant, shared, and register

memory. Figure 5 illustrates these memory spaces [25].

• Global memory, which is off-chip memory with a large

capacity, has a high latency. Usually, global memory

plays a role as a bridge between CPU memory space

and GPU memory space. Data are copied from CPU

memory space to GPU global memory space firstly and

copied back after procedure completed. In order to

reduce access latency, global memory should be

restricted to fully coalesced access.

• Texture and constant memory are read-only and they

have cache. The cache could lead to high-access

performance. Constant memory can only store a small

number of constants because of its limitation on

capacity. Texture memory has plenty of capacity

because it is bound to global memory.

• Shared memory and register memory are types of on-

chip memory. Accessing shared memory is as fast as

accessing registers, as long as no bank conflict exists

[24]. Shared memory plays an important role in

optimizing CUDA programs. Data with local property

are usually copied from global memory to shared

memory in a block firstly, and then all the threads

within this block can access the shared data with a low

latency. Each SM has a fixed number of registers.

These registers are assigned equally to active threads

within this SM. Excessive use of registers in a kernel

limits the number of threads that can run simultane-

ously [24].

3 The proposed method

3.1 The framework of the proposed method

There are two phases in the proposed method: the training

phase and the inferring phase. An internal training set was

built by taking advantage of self-similarity of input LR

image in the training phase. In the inferring phase, the HR

image was obtained by adding the interpolated image and

the estimated HF map, which was inferred from the

training set by exploiting nonlocal means. Figure 6 pre-

sents the framework of the proposed method.

In our method, an HF map is obtained by differential

operation between the LR image and its blurred image. The

blurred image is obtained with two steps: (1) Gaussian blur

and down-sample operation are exploited on input LR

image. (2) The blurred image is obtained by upscaling the

down-sample version image. The MF map is obtained by

DoG filter. According to Sect. 2.1, an LR image can be

decomposed into an LF map and a MF map; therefore, the

MF map can be obtained by filtering the LF map. DoG

filter is exploited in this paper to achieve that goal.

There are three innovative places in the proposed

method: (1) the input LR image is rotated with four dif-

ferent angles to obtain four rotated images. The four

rotated images are used to build the internal training set

because these rotated images could expand the training set.

(2) Multi-scale DoG filters are exploited to extract multi-

view MF maps in both training phase and inferring phase.

We organize these maps together to form concatenate

feature vectors, which are used to represent an image.

Fig. 4 Threads hierarchy in CUDA. a: A 1D block. b A 2D block. c A
3D block

Fig. 5 CUDA memory space [25]
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Figure 7 shows this process. Experimental results invali-

date that concatenate feature vectors could represent an

image more accurately. (3) We implement the proposed

method with CUDA for high-execution effectiveness.

3.1.1 The training phase

The training phase consists of seven steps (1)–(7), as

shown in Fig. 6. The details of the steps are as follows:

1. Firstly, the input LR image is rotated with 0
�
, 90

�
,

180
�
, and 270

�
. This operation can be formulated as

follows:

IrL ¼ Rot ILð Þ ð10Þ

Fig. 6 The framework of the proposed method

Fig. 7 The process of generating concatenate feature vectors
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where IL and IrL; r 2 0
�
; 90

�
; 180

�
; 270

�� �
denote the

input LR image and the corresponding rotated image,

respectively. Rot �ð Þ refers to rotation operation.

2. Second, Gaussian blur and down-sample operation are

applied to the rotated image IrL, which can be expressed

as follows:

IrLL ¼ G � IrL
� �

# ð11Þ

where G and * denote Gaussian blur kernel and con-

volution operation, respectively. # refers to down-

sample operation. IrLL is the down-sample version of IrL.

3. Then, the IrLL is enlarged to IrLH whose size is same as

IrL by using interpolation. Bicubic-linear interpolation

is used this paper. This process can be expressed as

follows:

IrLH ¼ Intp IrLL
� �

ð12Þ

where Intp �ð Þ refers to interpolation operation.

4. The HF map can be obtained by applying differential

operation on IrLH and IrL, which can be formulated as

follows:

Hr ¼ IrL � IrLH ð13Þ

5. Multi-scale DoG filters are applied to IrLH to extract MF

map defined as Mr
d; d 2 f1; 2; . . .;D}, which can be

calculated by the following equation:

Mr
d ¼ DoG IrLH

� �
ð14Þ

where DoG �ð Þ refers to extract image feature with DoG

filter. D denotes the number of DoG filters.

6. MF maps Mr
d; d 2 f1; 2; . . .;D} are divided into con-

catenate feature vectors Vi
MR; i ¼ 1; 2; 3; . . .;M to form

searching space, which is also called reference space.

M is the total numbers of reference feature vectors.

7. HF maps Hr; r 2 0
�
; 90

�
; 180

�
; 270

�� �
are divided

into HF patches Pi
HR; i ¼ 1; 2; 3; . . .;M. Pi

HR and Vi
MR

obtained at step (6) have a strict corresponding

relationship. These HF patches, which is defined as

reference HF patches, are corpus to estimate HF

patches of output HR image.

3.1.2 The inferring phase

The inferring phase consists of seven steps (8)–(14), as

shown in Fig. 6. The details of inferring phases are shown

as follows:

8. The input LR image is enlarged by using bicubic-linear

interpolation operation and the interpolated image is

defined as IIntp.

9. The same DoG filters mentioned in the training phase

are applied to the interpolated image IIntp to get MF

maps, which can be expressed as follows:

Md
Intp ¼ DoGðIIntpÞ ð15Þ

where Md
Intp, d 2 1; 2; . . .;Df g denotes the MF map of

interpolated image IIntp:

10. The MF map Md
Intp is divided into concatenate feature

vectors Vi
MQ; i ¼ 1; 2; 3; . . .;N as query objects. N is

the total number of query objects.

11. For a given query object Vi
MQ, we search for its K most

similar patches in the reference space. Distances

between the query object and its K most similar

results are defined as D; the indexes of the K most

similar results in reference space are defined as I.

Euclid distance is exploited in this paper.

12. The estimated HF patches can be calculated by the

following formulator:

Pi
HE ¼

XK

k¼1

xkP
I k;ið Þ
HR ð16Þ

where xk is the k-th coefficient which can be calcu-

lated by Eq. (8).

13. All the estimated HF patches are merged together to

form an estimated HF map.

14. The final output image is obtained by adding the

interpolated image and the estimated HF map, which

can be expressed as follows:

IH ¼ IIntp þ bH ð17Þ

where bH and IH denote estimated HF map and final

output HR image, respectively.

3.2 Implementation details with CUDA

3.2.1 Accelerating SR method with CUDA

With CUDA, GPU has been recently exploited to accel-

erate computationally intensive tasks, such as deep learn-

ing, virtual reality, autonomous vehicles and so on [26].

There are two key points in accelerating an algorithm with

CUDA: dividing original algorithm into fine-grained tasks

and enhancing memory access to reduce access latency.

The same as other computationally intensive applica-

tions, image super-resolution can also be accelerated with
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CUDA. There are two further principles why CUDA can be

exploited on SR: many SR algorithms work on patch-wise

which ensure fine-grained threads parallelism, and the

image data have local property which means data paral-

lelism can be achieved. Figure 8 presents how to achieve

fine-grained threads parallelism and data parallelism for

SR. In SR, an image is divided into patches and these

patches are organized into groups according to specified

group size. Each patch group is bound to a thread block in

CUDA. Each bound thread block executes on a SM. The

data within a patch group are copied to shared memory

space from global memory space firstly, and then each

thread within the bounded thread block processes its cor-

responding data in share memory space.

In most of learning-based SR algorithms, building

training sets and inferring HF patches can be accelerated by

using CUDA. However, some particular method cannot be

parallelized easily, for example, the KSVD algorithm used

in sparse representation-based methods, whose nested loop

is not independent with each other.

3.2.2 Implementation details with CUDA

3.2.2.1 Implementation of the training phase The MF

maps Mr
d; d 2 1; 2; . . .;Df g; r 2 0

�
; 90

�
; 180

�
; 270

�� �
and

HF maps Hr; r 2 0
�
; 90

�
; 180

�
; 270

�� �
are obtained on

CPU firstly, Then GPU is responsible for dividing MF

maps into concatenate feature vectors Vi
MR; i ¼

1; 2; 3; . . .;M and dividing HF maps into patches

Pi
HR; i ¼ 1; 2; 3; . . .;M.

In essence, the way to process MF maps and HF maps is

same. The only difference is the number of MF maps is D

times that of HF maps. We just illustrate the process of

dividing an HF map into patches here. This process is

parallelized, and it can be illustrated with Fig. 9. As shown

in Fig. 9, each point refers to a pixel in an image, while

each box refers to an image patch or a CUDA thread. Each

thread is responsible for processing a patch. The first step

in the kernel function is to copy data from global memory

space to shared memory space for low-latency access.

Since the threads with in a thread block may copy same

data, it is not necessary for all threads to participate in data

copying. We assign the data copying work to these special

threads whose ID ix; iyð Þ can be divided by patch size, for

example the red points shown in Fig. 9. The pseudo-code is

shown in Fig. 10.

3.2.2.2 Implementation of the inferring phase In infer-

ring phase, multi-view query MF maps are obtained on

CPU firstly; Then GPU is responsible for following tasks:

dividing query MF maps into concatenate feature vectors

Vi
MQ; i ¼ 1; 2; 3; . . .;N (step 10 in Fig. 6), searching for

K most similar results in reference space for all query

objects (step 11 in Fig. 6), estimating HF patches (step 12

in Fig. 6), and merging estimated HF patches into an HF

map (step 13 in Fig. 6).

Query objects Vi
MQ; i ¼ 1; 2; 3; . . .;N can be obtained by

launching the same kernel function defined in last part. In

this part, we focus on how to implement steps (11)–(13)

with CUDA. The details are as follows:

Implementation of step (11) For any two given query

objects Vi
MQ and V

j
MQ, searching for their K most similar

patches in reference space is independent to each other,

therefore this process can be fully parallelized. We exploit

a CUDA-version KNN program implemented by Carcia

Fig. 8 Fine-grained threads

parallelism and data parallelism

for SR
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et al. [27] to achieve our goal of this step. There are two

core steps in this process as follows:

1. Calculating the distance matrix D. Each element

D i; jð Þ, which is the distance between a given query

object P
j
MQ and a given reference object Pi

MR, is

calculated by a CUDA thread. This process can be

fully parallelized.

2. Sorting distance matrix D and index matrix I. Each

column of the initialized index matrix I is a vector

1; 2; 3; . . .;Mð ÞT , where �ð ÞT denotes the transpose

operation. Each column of distance matrix D is sorted

by a CUDA thread. The index updating of distance

matrix D is simultaneously applied to the index matrix

I during sorting.

Implementation of step (12) With the reference HF

patches Pi
HR; i ¼ 1; 2; 3; . . .;M, the index matrix I, and the

distance matrix D, an estimated HF patch can be calculated

by Eq. (16). Each CUDA thread within a 1D thread block

is responsible for calculating corresponding estimated HF

patch. Another task in this step is to record the overlapping

areas for next step. The implementation details of this step

can be illustrated in Figs. 11 and 12.

Implementation of step (13) The goal of this step is to

calculate the value of overlapping areas in estimated HF

map. Each thread within a 2D thread block is responsible

for dealing with its corresponding pixel in estimated HF

map. The pseudo-code of this step is shown in Fig. 13.

4 Experimental results

To validate the effectiveness of the proposed method, we

conduct two groups of experiments to make a contrast with

other methods in reconstruction quality and consuming

time. Another group of experiments are performed to

explore the effect of parameters on reconstruction results.

We exploit four datasets including Set5, Set14, Urban100,

and BSDS100 to perform our experiments. Some typical

images in these datasets are shown in Fig. 14. Our exper-

iments are executed on a machine with a GPU of NVIDIA

GeForce GTX 980, an Intel� CoreTM i7-3770 K CPU with

3.50 GHz, and 16 GB DRAM. Our program is developed

Fig. 9 The parallelism of dividing process

Fig. 10 Pseudo-code of

dividing process
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with CUDA toolkit 7.5, and it is compiled with x64 and

release options. Some key parameters in our experiments

are listed in Table 1.

4.1 Reconstruction quality comparison

We apply peak signal-to-noise ratio (PSNR) and structural

similarity (SSIM) as objective evaluation criteria of

reconstruction quality. Table 2 lists our experimental

results.

The average PSNR and SSIM of the resultant images for

each dataset are shown in Table 2. Numbers in red indicate

the best result, and those in blue indicate the second best

result. As shown in Table 1, our method performs best on

PSNR over all four datasets and performs best on SSIM

over three datasets. Compared with the Wu’s method, our

method is improved by about 0.5 db on PSNR.

In addition to the comparison of objective evaluation

criteria, we also evaluate the visual perception of recon-

structed images. Figures 15, 16, 17 and 18 show four

reconstructed images and their corresponding magnified

local regions in red boxes. As we can see from these

magnified images, images reconstructed based on bicubic

interpolation have blurred edges and lost some dedicated

details. Images obtained by Wu’s method improved visual

perception in edge areas. This would let edges of images

look sharper. However, some artifacts such as ringing were

introduced, especially in images with lots of tiny textures.

On the contrast, images reconstructed by our method were

visually closest to ground truth images.

All evaluations listed above demonstrate that our

method performs best among the compared methods in

both terms of visual perception and objective criteria.

4.2 Consuming time comparison

We select another three methods which use internal train-

ing set to conduct consuming time contrast experiments.

Table 3 lists the average consuming time of four datasets.

Numbers in red indicate the fastest result and numbers in

blue indicate the second fast result. As Table 3 shows, our

method performs best compared with other three methods

Fig. 11 Process of estimating

HF map
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over all four datasets. Speedup ratio compared with other

three methods is shown in Fig. 19. A 12x speedup can be

gained compared with second fastest method on Set5, and

the 2x speedup on Urban100 is the minimum speedup ratio.

Fig. 12 Pseudo-code of step (12)

Fig. 13 Pseudo-code of step (13)

Fig. 14 Typical images in datasets
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The reason why long consuming time on Urban100 is that

the average size of images in Urban100 is larger than that

of other datasets.

4.3 The effect of parameters

We select six images to conduct experiments in this part, as

shown in Fig. 20. In order to perform experiments

Fig. 15 Experimental results on Monarch in Set14

Fig. 16 Experimental results on Lenna in Set14

Table 1 Key parameters in our experiments

Upscale factor 2

Patch size 3 9 3

Overlap length among patches 2

The number of K most similar patches 10

The number of DoG filters 3

Table 2 Reconstruction quality

(PSNR, SSIM) comparison
Method\dataset Set5 Set14 Urban100 BSDS100

Bicubic 32.3423, 0.9219 28.7749, 0.8580 25.5425, 0.8306 28.2434, 0.8322

Wu’s [22] 33.1182, 0.9335 28.8086, 0.8691 25.8918, 0.8499 28.6039, 0.8513

Our method 33.6618, 0.9380 29.2129, 0.8688 26.7657, 0.8649 28.7887, 0.8556
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conveniently, we choose the program without acceleration

to conduct experiments in this part.

4.3.1 The effect of expanding training set

We conduct two experiments is this part. The one rotates

input LR image to build internal training set, while the

other one does not. Table 4 lists the experimental results on

the test images and the better results are marked with bold

numbers. Table 4 indicates that rotating input LR image

can improve reconstruction quality.

4.3.2 The effect of the number of DoG filter

We conduct six experiments and each experiment use DoG

filter with different numbers. Figure 21 shows the average

Fig. 17 Experimental results on 004 in Urban100

Fig. 18 Experimental results on 011 in Urban100

Table 3 Consuming time comparison (unit: s)

Method\dataset Set5 Set14 Urban100 BSDS100

Wu’s [22] 128.798 254.915 829.729 159.556

Huang’s [13] 26.836 62.198 245.836 37.577

Zeyde’s [8] 21.159 40.640 140.453 27.745

Ours 1.710 4.890 69.100 2.412
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PSNR and SSIM on test images of each experiment.

Experimental results demonstrate the proposed method

performs better as the number of DoG filter increases.

When the number is bigger than 4, there is no significant

improvement in reconstruction quality.

4.3.3 The effect of patch size

We conduct five experiments to explore the effect of patch

size. Figure 22 shows reconstruction quality as function of

patch size. As shown in Fig. 22, the reconstruction quality

curve first rises and then drops. The reason for these phe-

nomena is that the smaller the patch size is, the less

information each patch could contain. When the patch size

equals to 1 9 1, the proposed method is almost degraded to

an interpolation-based method. However, if the patch size

is too large, artifacts in reconstructed images would be

exacerbated.

0
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40
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60

70

80

Set5 Set14 Urban100 BSDS100

Wu's

Huang's

Zeyde's

Fig. 19 Speedup ratio

Fig. 20 Images used in exploring effect of parameters

Table 4 Reconstruction quality as function of whether expanding

training set

Image\method Without rotating LR image Rotating LR images

PSNR (dB), SSIM PSNR (dB), SSIM

Barbara 27.2513,0.8574 27.3141, 0.8587

Bird 37.3815,0.9784 38.2643, 0.9811

Foreman 32.8328,0.9584 33.0580, 0.9592

Lenna 34.5871,0.9081 34.8509, 0.9109

Pepper 32.6836,0.8995 33.7804, 0.9017

PPT 27.8005, 0.9679 27.7736, 0.9652

Average 32.08947,0.928283 32.50688, 0.929467
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4.3.4 The effect of the number of K most similar patches

We conduct a set of experiments to explore the effect of the

number of K most similar patches. The trend of PSNR and

SSIM is shown in Fig. 23. As shown in Fig. 23, the trend

curve first rises and then drops. The reason for these phe-

nomena is that the more numbers of similar patches par-

ticipating in estimating HF patches, the more useful prior

information would be integrated in. However, excessive

similar patches could not give useful prior information as

their correlation becoming weak.

5 Conclusion

In this paper, we proposed a learning-based SR method

which does not need external training set. The proposed

method has two phases: the training phase and the

inferring phase. In the training phase, the input LR image

is rotated with different angles to enhance the prior

information. Multi-scale DoG filters are exploited to

multi-view feature maps, which provide accurate repre-

sentation of images. An internal training set is built by

taking advantage of self-similarity of images. In the

inferring phase, NLM is exploited to calculate the esti-

mated HF details. Experimental results demonstrate that

the proposed method performs best in terms of recon-

struction quality among the compared methods. In order

to meet the requirement of real time and/or near real time,

we implemented the proposed method with CUDA for

high-execution effectiveness. Experimental results

demonstrate that the proposed method runs faster than

other internal training set-based methods. The proposed

method may be readily suitable for real-time and/or near-

real-time processing applications.

For our further work, advanced methods such as image

transform can be exploited to expand training set. More-

over, multi-type filters can be exploited to represent images

more accurately. In terms of execution effectiveness,

extracting feature map from image can be parallelized to

further improve running speed.

Fig. 21 Reconstruction quality as function of DoG filter numbers

Fig. 22 Reconstruction quality as function of patch size
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