
SPECIAL ISSUE PAPER

Robust feature matching via Gaussian field criterion for remote
sensing image registration

Qing Ma1 • Xu Du1 • Jiahao Wang2 • Yong Ma2 • Jiayi Ma2

Received: 10 December 2017 / Accepted: 21 February 2018 / Published online: 2 April 2018
� Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Feature matching, which refers to establishing reliable feature correspondences between two images of the same scene, is a

critical prerequisite in a wide range of remote sensing tasks including environment monitoring, multispectral image fusion,

image mosaic, change detection, map updating. In this paper, we propose a method for robust feature matching and apply it

to the problem of remote sensing image registration. We start by creating a set of putative feature matches which can

contain a number of unknown false matches, and then focus on mismatch removal. This is formulated as a robust

regression problem, and we customize a robust estimator, namely the Gaussian field criterion, to solve it. The robust

criterion can handle both linear and nonlinear image transformations. In the linear case, we use a general homography to

model the transformation, while in the nonlinear case, the non-rigid functions located in a reproducing kernel Hilbert space

are considered, and a regularization term is added to the objective function to ensure its well-posedness. Moreover, we

apply a sparse approximation to the non-rigid transformation and reduce the computational complexity from cubic to

linear. Extensive experiments on various natural and remote sensing images show the effectiveness of our approach, which

is able to yield superior results compared to other state-of-the-art methods.

Keywords Feature matching � Image registration � Remote sensing � Gaussian field � Robust estimation

1 Introduction

Image registration is a vital prerequisite in many applica-

tions for remote image analysis [1–9]. The primary goal of

image registration is to spatially align two or more different

images of the same scene (i.e., the reference and sensed

images) taken at different times, from different viewpoints,

or by different sensors [10].

Over the years, a number of methods have been pro-

posed to deal with the problem of automated remote image

registration [11, 12]. Generally, these methods can be

divided into two categories: methods based on pixel

intensities and methods based on image features [10, 12].

Methods based on pixel intensities use original pixel

intensities to find the matching information in the overlap

area of two images, while methods based on image features

seek the correspondence between two sets of features based

on descriptors and/or using certain spatial constraints.

Methods based on pixel intensities are suitable when the

transformations between images are not so complex. These

methods are sensitive to noise, illumination variance, and

difference of sensor types. Besides, they also suffer from

heavy computational complexities. On the contrary,

methods based on image features are relatively more

robust, as features are not so easy to be influenced by the

changes mentioned above, which allow them to handle

more complex image distortions. The features used for
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image registration are typical point features obtained by

feature detectors such as scale-invariant feature transform

(SIFT) [13], as they are more general and easier to be

extracted. In this paper, we focus on point-based feature

registration techniques.

The point-based matching problem is typically solved

by using a two-step strategy [14]. In the first stage, a set of

putative matches is constructed based on a similarity con-

straint requiring that two feature points can be matched if

they have similar descriptors. In this process, the scale of

possible matches is largely reduced; however, the putative

matches established by only local feature descriptors are

unreliable due to viewpoint changes, repeated patterns, as

well as occlusions. Therefore, in the second step, the

geometric constraint is further adopted to remove the false

matches and the matching task boils down to determining

the correctness of each putative match.

Although quite a lot of point-based registration methods

have been investigated in the past decades, it is still a

challenging task to design an efficient strategy when

dealing with real-world remote sensing image registration

problems. First, the image transformation model is often

unknown in advance and varies with respect to different

types of remote sensing scenes, making it difficult to design

a general algorithm. Second, a large number of false mat-

ches will exist due to low overlaps, repeated patterns, or

local distortions of remote sensing images, requiring high

robustness of the matching model. Third, high computa-

tional complexity is often incurred, especially in case of

non-rigid transformation, limiting its applicability in han-

dling real-time problems or matching high-resolution

remote sensing images.

In view of the above problems, we propose an efficient

method for robust feature matching of remote sensing

images based on Gaussian field criterion. The mismatch

removal is formulated as a robust regression problem, and

we customize the Gaussian field criterion to solve it to

achieve a robust estimation. We model the image trans-

formation with both linear and nonlinear functions to

handle various matching problems, and a regularization

term is imposed in the nonlinear case to ensure well-

posedness. In addition, we apply a sparse approximation to

the transformation to significantly reduce the computa-

tional complexity.

Our contribution in this paper includes three aspects.

Firstly, we introduce the Gaussian field criterion and ana-

lyze its robustness both in theory and in experiment, which

provides support for why it can resist outliers. Secondly,

we customize the Gaussian field criterion to address the

feature matching problem for remote sensing image reg-

istration, which can efficiently remove false matches from

a set of putative matches with even up to 80% outliers.

Thirdly, we adopt both linear and nonlinear transformation

model together with a sparse approximation, which can

deal with more general matching problem in low compu-

tational complexity, especially in the nonlinear situation.

The rest of the paper is organized as follows: Section 2

overviews the previous work related to image registration,

especially in the context of remote sensing image regis-

tration. In Sect. 3, we propose the Gaussian field criterion

and customize it to solving the linear and nonlinear feature

matching problem. Subsequently, we present the fast

implementation of the proposed method and discuss the

computational complexity. In Sect. 4, we evaluate the

performance of our method on various natural as well as

remote sensing image pairs with comparisons to several

state-of-the-art approaches, followed by some concluding

remarks in Sect. 5.

2 Related work

Image registration benefits many research fields, including

computer vision [15–17], pattern recognition [18–21],

medical imaging [22, 23], and remote sensing [24–28].

Here we briefly overview two major categories of regis-

tration methods (i.e., methods based on intensities and

methods based on features) that are most relevant to our

approach, particularly in the context of remote sensing

registration.

2.1 Methods based on pixel intensities

Methods based on pixel intensities typically use windows

of certain size for the correspondence estimation without

detecting salient objects in images, such as features. The

most representative methods that fall in this category are

correlation-based methods [29], Fourier methods [30], and

mutual information methods [31].

Classical correlation-based methods, such as cross-cor-

relation [29], compute the similarities of windows in two

images. They deal directly with pixel intensities, without

any structural analysis. There have been some of the cor-

relation-based methods using maxima of wavelet coeffi-

cients in remote sensing image registration as in [32].

Correlation-based methods are often used in real-time

applications because of their easy implementation in

hardware. However, these methods have some obvious

disadvantages when the images in windows suffer from

complex transformations or contain relatively smooth areas

without prominent details.

Fourier methods exploit the Fourier representation of

images in the frequency domain. One representative is the

phase correlation method based on the Fourier shift theo-

rem, which was originally proposed to deal with translated

images and later extended to account for rotation and
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scaling [30]. The applications to remote sensing are

described in [33], which has shown that the images can be

aligned using a Fourier–Mellin transform together with the

phase correlation. Compared to the correlation-based

methods, the Fourier methods have the advantages of

computational efficiency and have shown strong robustness

against varying imaging conditions and frequency-depen-

dent noise.

Mutual information, which measures the statistical

dependency between two sets of data, comes from the

information theory. Mutual information methods take such

information as the metric to maximize the dependency

between the given images. These methods are particularly

suitable for multimodal registration; for example, in remote

sensing applications the images are often captured by dif-

ferent modalities of sensors to exploit complementary

information [34]. Rather than operating directly on the

image intensities, a mutual information method that oper-

ates on the extracted features such as points of the area

borders has also been developed [31]. In addition, the

mutual information methods are also frequently adopted in

medical imaging to compare the anatomical and functional

images of the patient’s body, leading to a diagnosis

accordingly [31].

2.2 Methods based on image features

The second category of image registration methods relies

on features, namely visually salient structures in images. It

is usually assumed in these methods that the features

extracted can be represented as a set of spatial points,

called control points in the literature [12].

A popular strategy for solving the matching problem

involves two steps [14]: (i) computing a set of putative

correspondences and (ii) then removing the outliers via

geometrical constraints. Putative correspondence instances

are obtained in the first step by pruning the set of all

possible point correspondences. This scenario is achieved

by computing feature descriptors at the points and elim-

inating the matches between points whose descriptors are

excessively dissimilar. Lowe [13] proposed the SIFT

descriptor with a distance ratio method that compares the

ratio between the nearest and next-nearest neighbors

against a predefined threshold to filter out unsta-

ble matches. Guo and Cao [35] proposed a triangle con-

straint, which can produce better putative correspondences

in terms of quantity and accuracy compared with the

distance ratio in [13]. Pele and Michael [36] applied the

earth mover’s distance to replace the Euclidean distance

in [13] to measure the similarity between descriptors and

improve the matching accuracy. Li et al. [37] further

refined the descriptor of SIFT to overcome the difference

in the gradient intensity and orientation between remote

image pairs. In addition, Hu et al. [38] proposed the local

selection of a suitable descriptor for each feature point

instead of employing a global descriptor during putative

correspondence construction. A cascade scheme has been

suggested to prevent the loss of true matches, which can

significantly enhance the correspondence number [39, 40].

Although there have been various sophisticated approa-

ches for putative match construction, the use of only local

appearance features will inevitably result in a lot of false

matches. In the second step, robust estimators based on

geometrical constraints are used to detect and remove the

outliers.

To efficiently remove mismatches, the traditional

resampling methods such as random sample consensus

(RANSAC) [41] and its variants [42, 43] have achieved

great success in many situations. However, they rely on a

predefined parametric model, which become less efficient

when the underlying image transformation is non-rigid. In

addition, they also tend to severely degrade if the outlier

proportion becomes large. To address these issues, several

nonparametric interpolation methods have recently been

introduced, such as identifying correspondence function

(ICF) [44], graph shift (GS) [45], vector field consensus

(VFC) [14] and locally linear transforming (LLT) [10].

These methods usually interpolate the underlying image

transformation with kernel functions using unsupervised

learning and are able to handle complex non-rigid defor-

mation. Specifically, by using support vector regression,

the ICF method learns a correspondence function pair

mapping feature points across two images and then rejects

the outliers by checking whether they are consistent with

the estimated correspondence functions. The GS method

constructs an affinity graph for the correspondences based

on the spectral matching method, and the maximal clique

of the graph is viewed as spatially coherent correspon-

dences. The VFC method learns a smooth field to fit the

potential inliers, while the LLT method recovers a

smoothness transformation according to a local linear

constraint, and both can resist a great quantity of outliers.

Specifically, in the remote sensing community, Li et al.

[25] proposed a robust method based on support-line voting

and affine-invariant ratios, which has shown large

improvements compared with RANSAC. Yao et al. [46]

introduced a Harris corner matching method based on the

quasi-homography transform (QHT) and self-adaptive

window, where the QHT can reduce the search range

effectively for match candidates. In addition, Yu et al. [47]

presented a method based on LLT and a manifold regu-

larization (MR) [48] for feature matching of unmanned

aerial vehicle (UAV) images.

The feature matching can also formulated in terms of a

correspondence matrix between feature points together

with a parametric, or nonparametric, geometric constraint.
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Specifically, Boughorbel et al. [49] introduced the Gaus-

sian fields into 3D rigid shape registration, which was later

generalized to the non-rigid setting in [50]. Based on this

concept [51], further promoted the matching performance

by constructing a context-aware representation for assign-

ment initialization. During the manuscript preparing, the

authors in [51] introduced a mismatch removal method

named Gaussian field consensus [52] for nonparametric

feature matching based on a locally linear constraint sim-

ilar to LLT [10]. In this paper, we formulate the parametric

and nonparametric models in a general framework based

on the Gaussian field criterion for remote sensing image

matching. It is robust and general and is able to handle both

linear and nonlinear distortions in low computational

complexity.

3 Method

This section describes our method for robust feature

matching. To this end, we first create a set of putative

matches by considering all possible matches and pruning

matches whose feature descriptors are sufficiently differ-

ent. Fortunately, this can be achieved by using existing

well-designed local feature descriptors such as SIFT [13].

Next, we will introduce a robust estimator and customize it

to further remove false matches from the putative set based

on a global geometric constraint.

3.1 Gaussian field criterion

Many problems in applied mathematics, such as the heat

equation, vortex methods, tomography and nonparametric

statistics, involve the Gauss transform [53]

GrfðxÞ ¼
Z
H
e�

kx�yk2

r2 fðyÞdy; ðr[ 0Þ ð1Þ

of a function f defined on H � RD with r being a range

parameter. In practical problem, the Grf is usually dis-

cretized for numerical computation. Specifically, given the

values of f at a set of points fsjgNj¼1 � RD, the integral (1)

could be approximated by the following discrete Gauss

transform

GðxÞ ¼
XN
j¼1

qje
�kx�sjk2

r2 ; ð2Þ

where qj depending on fðsjÞ is a coefficient. Equation (2) is

also called Gaussian field due to sources of strengths

fqjgNj¼1 at the point set fsjg
N
j¼1, evaluated at the ‘‘target’’ x.

The Gaussian field is a sum of Gaussian distances which

is robust to noise and outliers. (We will discuss this

property later.) It has been applied to the shape registration

problem and demonstrated promising results [49, 50]. In

the following, we will customize it to solve the feature

matching problem and show its robustness both in theory

and in experiment.

3.2 Problem formulation

Suppose we have obtained a set of putative feature matches

S ¼ fðxi; yiÞgNi¼1 with xi and yi being spatial positions of

feature points extracted from two images. The putative set

may be contaminated by some unknown false matches, and

our goal is to distinguish those outliers to establish accurate

matches. Typically, the underlying inliers obey a global

geometric constraint; for example, there exists a spatial

transformation f satisfying that 8i 2 NN ; yi ¼ fðxiÞ if

ðxi; yiÞ is an inlier. Thus, the matching problem boils down

to seeking the solution of f and a robust estimation is

desirable due to the existence of outliers.

Intuitively, considering the noiseless case, the optimal

solution f is the one leading to the maximum point-to-point

overlap between ffðxiÞgNi¼1 and fyigNi¼1. This can be for-

mulated by using a Boolean operator that ‘‘counts’’ over-

lapping point number under the transformation f:

EðfÞ ¼
XN
i¼1

dðdðfðxiÞ; yiÞÞ; dðtÞ ¼
1; t ¼ 0

0; t 6¼ 0

�
; ð3Þ

where dðx; yÞ is a distance metric such as Euclidean dis-

tance. Equation (3) is a combinational optimization prob-

lem which is difficult to obtain the optimal solution. Rather

than using the discontinuous indicator function d, we

consider the Gaussian field in Eq. (2) and obtain the

Gaussian field criterion:

GðfÞ ¼ �
XN
i¼1

e
�d2ðfðxiÞ;yiÞ

r2 : ð4Þ

Now we consider the robustness of the Gaussian field cri-

terion (3). On the one hand, the point position noise can be

dealt with by tuning the range parameter r to the noise

variance. On the other hand, the Gaussian distance is

inherently robust to outliers, which can be seen from penalty

curves of L2 and Gaussian distance in Fig. 1. Specifically,

L2

d(x, y)

pe
na

lty

d=0

Gaussian

d=0

d(x, y)

pe
na

lty

Fig. 1 The penalty curves of L2 and Gaussian distances
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the L2 loss, i.e., L2ðfÞ ¼
PN

i¼1 d
2ðfðxiÞ; yiÞ, has quadratic

penalty curve and resists assigning large distance

d2ðfðxiÞ; yiÞ to any matches and hence tends to be biased by

outliers. In contrast, the Gaussian distance could be

approximately seen as a truncated L2 loss, which can bear

large distance without paying a too high penalty. In addition,

the Gaussian distance is computationally efficient, since it

can be simplified into its corresponding logarithmic form.

We further give some intuition on the robustness

through the experiment in Fig. 2. The two point sets are

related by a rotation transformation, and we are required to

seek the optimal rotation angle h. From the results, we see

that the L2 loss works well if the data samples do not

involve outliers; however, its global optimum becomes

steadily worse as the amount of outliers increases. In

contrast, the Gaussian field criterion can always produce a

global optimum near the ground truth h ¼ p=4 even half of

the data are outliers.1

To solve the Gaussian field criterion in Eq. (4), we need

to model the transformation f. As can be seen from Eq. (4),

the Gaussian field criterion is quite general, which does not

rely on any specific transformation model. Next, we model

the transformation with homography and non-rigid model

for linear and nonlinear matching, respectively.

3.3 Matching with linear transformation model

For image pairs related by a linear transformation model,

we consider the general projection transformation which is

characterized by a 3� 3 homography matrix H. Specifi-

cally, we use the homogeneous coordinate for each feature

point, e.g., xi ¼ ðxui ; xvi ; 1Þ
T
and yi ¼ ðyui ; yvi ; 1Þ

T
. Thus, the

transformation has the following form:

yi ¼ Hxi: ð5Þ

Due to the use of homogeneous coordinate, the 3D vectors

yi and Hxi are not equal, which have the same direction but

may differ in magnitude by a nonzero scale factor. Thus,

the equation can be expressed in terms of vector cross-

product, i.e., yi �Hxi ¼ 0. By denoting hj the jth row of

H, we obtain the following equation:

yi �Hxi ¼ yi �
h1

h2

h3

0
B@

1
CAxi ¼

yvi h
3xi � h2xi

h1xi � yui h
3xi

yui h
2xi � yvi h

1xi

0
B@

1
CA: ð6Þ

Therefore, the equation yi �Hxi ¼ 0 has the follow form:

yvi h
3xi � h2xi

h1xi � yui h
3xi

yui h
2xi � yvi h

1xi

0
B@

1
CA ¼

0T � xTi yvi x
T
i

xTi 0T � yui x
T
i

�yvi x
T
i yui x

T
i 0T

2
64

3
75h ¼ 0;

ð7Þ

where h ¼ ðh1; h2; h3ÞT is a nine-element vector made up

of the entries of H in row-major order.

Note that Eq. (7) contains three equations, only two of

which are linearly independent. Thus, a point correspon-

dence produces only two equations; here, we utilize the

former two and obtain the following equation:

Wih ¼ 0; ð8Þ

where the coefficient matrix Wi is defined as:

Fig. 2 Robustness comparison between the L2 and Gaussian

distances. Left: data samples containing 100 inliers (denoted in blue)

with Gaussian noise and 100 random outliers (denoted in red), where

the ‘‘�’’ and ‘‘þ’’, respectively, denote the point sets fxigNi¼1 and

fyigNi¼1, and the spatial transformation is a rotation (i.e., yi ¼ RðhÞxi)

with h ¼ p=4 as the ground truth. Middle and right: the curves of L2
and Gaussian distances with respect to the rotation angle h. Initially,
the test data contain only 100 inliers, and then we vary it by always

adding 20 new outliers until 100 outliers

1 Note that the Gaussian criteria are not fully robust to noise and

outliers. It is essentially a low-pass filter that filters out high-

frequency components (usually noise) based on the penalty factor.

But it is ineffective in cases of salt and pepper noise characterized

outliers.
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Wi ¼
xui xvi 1 0 0 0 � yui x

u
i � yui x

v
i � yui

0 0 0 xui xvi 1 � yvi x
u
i � yvi x

v
i � yvi

� �
:

ð9Þ

Therefore, the Gaussian field criterion in Eq. (4) for linear

matching becomes:

GðhÞ ¼ �
XN
i¼1

e
�kWihk2

r2 : ð10Þ

Clearly, the optimal solution of the above objective func-

tion is h ¼ 0, and it is of no interest to us. Actually, the

homography H is a homogeneous matrix, consisting of

nine elements, but it has only eight degrees of freedom.

Without loss of generality, we fix the last element of h to 1.

By defining eh as an eight-element vector (i.e., the first

eight elements of the original h) and fWi as follows:

fWi ¼
xui xvi 1 0 0 0 � yui x

u
i � yui x

v
i

0 0 0 xui xvi 1 � yvi x
u
i � yvi x

v
i

� �
;

ð11Þ

we have the following equation:

fWi
eh ¼ yi: ð12Þ

Thus, the Gaussian field criterion becomes:

GðehÞ ¼ �
XN
i¼1

e
�kyi�eW i

ehk2
r2 : ð13Þ

The above objective function is always continuously dif-

ferentiable with respect to the homography parameter eh,
and its derivative has the following form:

oGðehÞ
oeh ¼

XN
i¼1

2ðfWT

i
fWi

eh � fWT

i yiÞ
r2

e
�kyi�eW i

ehk2
r2 : ð14Þ

By using the derivative in Eq. (14), we adopt gradient-

based numerical optimization techniques such as the quasi-

Newton method to solve the homography parameter eh. In
addition, we apply the deterministic annealing technique

[54] on the range parameter r to improve the convergence,

where r is initialized with a large value and gradually

reduced by r ! cr with c being the annealing rate.

The correctness of a putative match could be determined

by checking whether it is consistent with H. We summarize

the proposed Gaussian field criterion (GFC) method for

linear matching in Algorithm 1.

3.4 Matching with nonlinear transformation
model

We next consider the matching problem undergoing non-

linear transformation. We utilize a general nonparametric

model to handle complex (e.g., non-rigid) transformations.

Specifically, the transformation f is modeled by requiring it

to lie within a functional space H, namely reproducing

kernel Hilbert space (RKHS) [55]. We define H by a

diagonal decomposable kernel C: Cðxi; xjÞ ¼ e�bkxi�xjk2 � I;
then, f has the following form:

fðxÞ ¼
XN
i¼1

Cðx; xiÞci ð15Þ

with fcigNi¼1 being the coefficients.

The non-rigid transformation will lead to ill-posedness

in Eq. (4), as the solution of f is not unique. To ensure

well-posedness, we introduce a regularization term to

control the complexity of f and the Gaussian field criterion

for nonlinear matching then becomes:

GðfÞ ¼ �
XN
i¼1

e
�d2ðfðxiÞ;yiÞ

r2 þ kkfk2H; ð16Þ

where k[ 0 controls the trade-off between the first data

fidelity term and the second regularization term and k � kH
is a functional norm which can be defined by an inner

product, e.g., kfk2H ¼ hf; fiH.
To optimize the objective function in Eq. (16), we

rewrite it in the matrix form:

GðCÞ ¼ �
PN

i¼1 e
�

kyT
i
�Ci;�Ck2

r2 þ k � trðCTCCÞ; ð17Þ

where C 2 RN�N with Cij ¼ e�bkxi�xjk2 is the so-called

Gram matrix, C ¼ ðc1; . . .; cNÞT, and trð�Þ is the trace.
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The objective function in Eq. (17) is always continu-

ously differentiable with respect to C, and its derivative has

the following form:

oGðCÞ
oC

¼�
XN
i¼1

2CT
i;�ðCi;�C� yTi Þ

r2
e
�

kyT
i
�Ci;�Ck2

r2

þ 2kCC:

ð18Þ

Similar to the linear matching algorithm, by using the

derivative in Eq. (18) and some numerical optimization

techniques together with the deterministic annealing tech-

nique, we can solve the transformation parameter C.

Fast Implementation. The Gram matrix C is of size

N � N, and hence, it will typically cost OðN3Þ to solve C.

This will pose significant computational burden when

dealing with real-time or large-scale problems. To address

this issue, we apply a sparse approximation to the trans-

formation f based on the subset of regressors method

[56, 57]. Specifically, we randomly pick a subset of

M points f~xigMi¼1 and only let them have nonzero coeffi-

cients in Eq. (15); thus, f becomes:

fsðxÞ ¼
XM
i¼1

Cðx; ~xiÞcsi : ð19Þ

It has been shown in [56] that selecting subset randomly

performs no worse than those more time-consuming and

sophisticated methods. Accordingly, the derivative

becomes:

oGðCsÞ
oCs ¼�

XN
i¼1

2UT
i;�ðUi;�C

s � yTi Þ
r2

e
�

kyT
i
�Ui;�Csk2

r2

þ 2kCsCs;

ð20Þ

where the definitions of Cs 2 RM�M and Cs 2 RM�2 are

similar to C and C, U 2 RN�M with Uij ¼ e�bkxi�~xjk2 .

The correctness of a putative match could be determined

by checking whether it is consistent with f. We summarize

the proposed Gaussian field criterion (GFC) method for

nonlinear matching in Algorithm 2.

3.5 Computational complexity

The major computational burden is to compute the

derivative in Eq. (14) or (18) and solve the transformation

parameter using a numerical technique such as the quasi-

Newton method. For linear matching, they cost both about

O(N) and hence, the total time complexity is about O(N).

The space complexity is about O(N) due to the requirement

of storing the N coefficient matrix Wi.

For the nonlinear matching in Algorithm 2, without

using the sparse approximation, the calculation of the Gram

matrix C in Line 1 costs OðN2Þ. The computation of

derivative in Eq. (18) and optimization of transformation

with quasi-Newton method cost, respectively, about OðN2Þ
and OðN3Þ, and hence, the total time complexity is about

OðN3Þ. The space complexity is about OðN2Þ due to the

requirement of storing the Gram matrix C. By using the

sparse approximation, the calculations of matrices Cs and

U in Line 1 cost, respectively, OðM2Þ and O(MN), while

the time complexities of computing the derivative and

solving C, respectively, reduce to about O(MN) and

OðM3Þ. Therefore, the total time complexity reduces to

about OðMN þM3Þ. As M is a constant and M � N, we

can simply write the time complexity as O(N). Clearly, the

space complexity is also reduced to O(N). In practice, the

sparse approximation is always encouraged to achieve fast

implementations, especially in real-time matching

problems.

In conclusion, our Gaussian field criterions for linear

and nonlinear matching both have linear time complexity

and linear space complexity, which is significant for han-

dling real-time problems or matching high-resolution

images with plenty of feature points.

3.6 Implementation details

The performance of feature matching typically depends on

the coordinate system which is used to express the feature

points; here, we use data normalization as that in [50] to

control this. More specifically, we apply a linear scaling to

each point set, so that it has zero mean and unit variance.

For the linear matching problem, there is only one

parameter in our GFC such as c, the deterministic

annealing rate used for improving the convergence of

transformation estimation. We fix it to 0.93 throughout the

experiments. For the nonlinear matching problem, three

additional parameters are involved such as b, k, and

M. Parameters b and k both control the smoothness of the

transformation f, where the former determines the width of

interaction range between feature points through the

transformation and the latter constrains the complexity of

the transformation. Parameter M determines the number of
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basis used for sparse approximation to construct the

transformation. We fix them throughout the experiments as

follows: b ¼ 0:01, k ¼ 0:1, and M ¼ 30.

4 Experimental results

In this section, we test our GFC for feature matching on

various real image data including both natural images and

remote sensing images and compare it with five other state-

of-the-art feature matching methods including RANSAC

[41], ICF [44], GS [45], VFC [14], LPM [58], and MR

[47]. All the experiments are conducted on a laptop with

2.4 GHz Intel Core CPU, 8 GB memory, and MATLAB

code.

4.1 Datasets and settings

To perform a comprehensive evaluation of our method, we

conduct experiments on both natural and remote sensing

image datasets. In the following, we first describe the test

data and then introduce the evaluation criteria.

– Natural image dataset The publicly available VGG

dataset [59] is adopted for linear matching. This dataset

contains eight groups of images, and each group

consists of five image pairs, leading to 40 image pairs

in total. The image pairs suffer from different geomet-

ric and photometric transformations including view-

point change, scale change, rotation, light change,

image blur, and JPEG compression. In addition, these

image pairs are related always by homography due to

that they are either of planar scenes or acquired in a

fixed camera position. The ground truth homographies

are provided in the dataset. Some example image pairs

are shown in Fig. 3. To make the dataset more

challenging, we construct two putative sets from each

image pair by setting different distance ratio thresholds

to measure the similarity between SIFT descriptors. For

nonlinear matching, we collect several typical image

pairs with relatively complex deformations, including

wide baseline pairs and image pairs involving non-rigid

deformations.

– Remote sensing image dataset For linear matching, we

collect several color–infrared aerial photograph image

pairs and SPOT image pairs, which involve translation,

rotation, scaling, and so on. For nonlinear matching, we

collect a set of 50 image pairs including SPOT images,

SAR images, panchromatic aerial photographs, as well

as UAV images. These image pairs usually involve

ground relief variations and imaging viewpoint

changes, where the image transformations do not

exactly satisfy a linear model such as homography.

Therefore, a more complex nonlinear model is neces-

sary to generate accurate matching results.

We use the open-source VLFeat toolbox [60] to deter-

mine the putative SIFT matches. The putative matches are

then established based on the similarity between SIFT

descriptors. The matching performance is characterized by

precision and recall, where the precision is defined as the

ratio between the identified correct match number and the

whole preserved match number, and the recall is defined as

the ratio between the identified correct match number and

the whole correct match number.

To establish the ground truth feature matches in each

image pair, for linear matching, we first acquire the ground

truth homography and then an overlap error is used to

determine the match correctness as that in [14]. The ground

truth homography in the remote sensing image dataset is

calculated from manually selected correspondences toge-

ther with least squares. For nonlinear matching, we man-

ually check the match correctness of each putative match

for all image pairs.

4.2 Results on natural image pairs

We first evaluate the matching performance of our GFC

with linear model on the VGG dataset [59]. The precision–

recall (p–r) statistics of different methods are reported in

the middle of Fig. 4. Each scatter point corresponds to a p–

r pair of a certain method on a certain image pair. The

average match number in the putative sets is about 773.9.

From the results, we see that all the six methods work quite

well on this dataset. In general, our GFC has a better trade-

off compared to the other methods and the p–r pairs of our

method almost concentrate on the top right corner. More

specifically, the average p–r pair achieves about

ð97:81; 97:57%Þ. We also report the run-time statistics of
Fig. 3 Example image pairs in the VGG dataset [59]
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different methods, as shown in the right figure of Fig. 4.

We see that LPM is the most efficient one and our GFC

ranks middle with an average run-time of about 84

milliseconds.

We next provide some intuitionistic matching results of

our GFC with nonlinear model on several typical image

pairs with relatively complex deformations, as shown in

Fig. 5. The first two pairs are wide baseline images, and the

rest three pairs involve non-rigid deformations. For each

group of results, the left image pair schematically shows

the matching result, while the right field presents the

matching correctness of each putative match. From the

results, we again see that our GFC is robust and accurate

and very few putative matches are misjudged.

In addition, we also provide quantitative comparison of

different methods on these image pairs, as shown in

Table 1. As RANSAC relies on a parametric model which

is not suitable for non-rigid matching, we do not report its

results in this table. From the results, we see that ICF and

GS usually cannot obtain good precision and recall simul-

taneously, while LPM cannot work well in case of low

initial inlier percentage. VFC and MR in general can pro-

duce satisfying results. However, our GFC clearly has the

best precision–recall trade-off on all the five image pairs.

Fig. 5 Qualitative matching results of our GFC with linear model on

NotreDame, Church, DogCat, Peacock, and T-shirt, respectively. The

inlier ratios of 5 image pairs are 75.27, 54.76, 81.74, 83.63, and

49:64%. The head and tail of each arrow in the motion field

correspond to the positions of feature points in two images (blue =

true positive, black = true negative, green = false negative, and red =

false positive). For visibility, in the image pairs, at most 50 randomly

selected matches are presented, and the true negatives are not shown.

Best viewed in color
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Fig. 4 Statistics of initial inlier ratio (left), precision–recall pair (middle), and run-time (right) of different methods on the VGG dataset [59]

Table 1 Quantitative

comparison of different

methods on the image pairs in

Fig. 5

NotreDame Church DogCat Peacock T-shirt

ICF [44] (100.0, 77.86) (85.71, 78.26) (82.30, 98.94) (99.18, 86.48) (94.90, 67.39)

GS [45] (100.0, 87.30) (92.86, 94.20) (97.89, 98.94) (100.0, 86.12) (97.46, 83.33)

VFC [14] (100.0, 93.83) (98.24, 81.16) (100.0, 98.94) (99.63, 96.44) (96.97, 92.75)

LPM [58] (75.40, 94.56) (54.46, 88.41) (82.00, 87.23) (82.87, 94.66) (52.07, 63.77)

MR [47] (99.60, 90.56) (95.00, 82.61) (100.0, 100.0) (99.64, 98.58) (97.71, 92.75)

GFC (99.45, 98.37) (96.77, 86.96) (100.0, 100.0) (99.63, 98.22) (95.68, 96.38)

The pairs in the table are precision–recall pairs (%)
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4.3 Results on remote sensing image pairs

Now we test our GFC on the remote sensing image data-

sets. First, we test the linear model on several typical image

pairs involving only linear transformation, as shown in

Fig. 6. From the results, we see that our GFC is able to

always produce satisfying matching performance and

almost all the inliers and outliers are accurately identified.

We also provide the results of the other six comparison

methods in Table 2. Again, all the seven methods’ results

are quite satisfying, which is mainly due to the simplicity

of linear matching and the large initial inlier ratios in the

image pairs.

We further report the matching performance of our GFC

with nonlinear model on a remote sensing image dataset

with 50 image pairs. The statistic results are shown in

Fig. 7. To make the dataset more challenging, we use the

nearest neighbor strategy to construct the putative set in

each image pair. For example, for each feature point in one

image, we search its nearest neighbor in the other image in

descriptor space under Euclidean distance, and then these

two points are considered as a putative match. This

Table 2 Quantitative comparison of different methods on the image pairs in Fig. 6

Image1 Image2 Image3 Image4 Image5 Image6

RANSAC [41] (100.0, 100.0) (100.0, 100.0) (100.0, 100.0) (100.0, 99.15) (100.0, 100.0) (100.0, 98.70)

ICF [44] (99.66, 99.32) (100.0, 82.12) (100.0, 100.0) (96.69, 100.0) (88.30, 100.0) (100.0, 99.74)

GS [45] (100.0, 100.0) (100.0, 100.0) (100.0, 100.0) (88.64, 100.0) (86.29, 100.0) (100.0, 99.74)

VFC [14] (100.0, 99.66) (100.0, 100.0) (100.0, 100.0) (100.0, 94.87) (100.0, 98.01) (89.98, 100.0)

LPM [58] (100.0, 100.0) (99.32, 100.0) (100.0, 100.0) (100.0, 99.15) (100.0, 98.01) (100.0, 99.74)

MR [47] (100.0, 99.66) (100.0, 100.0) (100.0, 100.0) (100.0, 94.87) (100.0, 98.01) (89.98, 100.0)

GFC (99.66, 100.0) (100.0, 100.0) (99.32, 100.0) (100.0, 100.0) (99.34, 99.34) (98.97, 100.0)

The pairs in the table are precision–recall pairs (%)
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Fig. 7 Statistics of initial inlier ratio (left), precision–recall pair (middle), and run-time (right) of different methods on the remote sensing dataset

Fig. 6 Qualitative matching results of our GFC with linear model on

six typical remote sensing image pairs involving linear transforma-

tion. The inlier ratios of 6 image pairs are 90.15, 84.14, 90.12, 87.97,

85.31, and 89:98%. The head and tail of each arrow in the motion

field correspond to the positions of feature points in two images (blue

= true positive, black = true negative, green = false negative and red =

false positive). For visibility, in the image pairs, at most 50 randomly

selected matches are presented and the true negatives are not shown.

Best viewed in color
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procedure results in very low initial inlier ratios in the

putative sets, as shown in the left figure of Fig. 7. The

average initial inlier ratio is merely 35:99%. Here we do

not provide the results of LPM either, as it cannot obtain

satisfying results in case of such low inlier ratio. The

performance comparison of the rest five methods is shown

in the middle figure of Fig. 7. Clearly, our GFC has the best

results, in terms of both precision and recall. That is to say,

our GFC is much more robust in case of large outliers. We

also report the run-time statistics of different methods in

the right figure of Fig. 7. Our GFC again ranks middle with

an average run-time of about 0.678 s. Moreover, we also

have tested the performance of our GFC without sparse

approximation on this dataset and obtained an average p–r

pair of about ð95:05; 96:82%Þ. However, the average run-

time exceeds 2000 s. This demonstrates that the sparse

approximation can significantly reduce the computational

complexity without sacrificing the matching accuracy.

Finally, we test the influence of parameter settings of

our GFC on the remote sensing image dataset. There are

mainly three parameters such as b, k, andM. We vary them

and compute the average p–r pairs on the whole dataset.

The statistic results are shown in Fig. 8. In each subfigure,

we vary one parameter and fix the other parameter to their

‘‘optimal values.’’2 From the results, we see that the

average precision and recall both achieve their largest

values at b ¼ 0:01 and k ¼ 0:1. For parameter M, the

average precision and recall do not change too much when

M� 15. Nevertheless, M ¼ 15 is more preferable for

computational efficiency.

5 Conclusion

Within this paper, we introduce a robust estimator named

Gaussian field criterion (GFC) for image feature matching.

A key characteristic of our GFC is that it inherently has

robustness to outliers and hence can efficiently remove

false matches from a set of putative matches. The image

transformation is modeled by both linear and nonlinear

functions, and a sparse approximation is applied to the

nonlinear case to significantly reduce the computational

complexity. The qualitative and quantitative experiments

on publicly available datasets, including both natural and

remote sensing image pairs, demonstrate that our GFC is

quite efficient for mismatch removal. More specifically, it

is able to produce superior matching performance over

several state-of-the-arts, especially when the image scenes

suffer from complex non-rigid deformations or lots of

outliers. This will be of great benefit to registering remote

sensing images with low overlaps, repeated patterns, local

distortions or low quality.
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