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Abstract Techniques of medical image processing and

analysis play a crucial role in many clinical scenarios,

including in diagnosis and treatment planning. However,

immense quantities of data and high complexity of the

algorithms often used are computationally demanding. As a

result, there now exists a wide range of techniques of

medical image processing and analysis that require the

application of high-performance computing solutions in

order to reduce the required runtime. The main purpose of

this review is to provide a comprehensive reference source

of techniques of medical image processing and analysis

that have been accelerated by high-performance computing

solutions. With this in mind, the articles available in the

Scopus and Web of Science electronic repositories were

searched. Subsequently, the most relevant articles found

were individually analyzed in order to identify: (a) the

metrics used to evaluate computing performance, (b) the

high-performance computing solution used, (c) the parallel

design adopted, and (d) the task of medical image pro-

cessing and analysis involved. Hence, the techniques of

medical image processing and analysis found were identi-

fied, reviewed, and discussed, particularly in terms of

computational performance. Consequently, the techniques

reviewed herein present the progress made so far in

reducing the computational runtime involved, and the dif-

ficulties and challenges that remain to be overcome.

Keywords Medical imaging � Image segmentation � Image

registration � Image reconstruction

1 Introduction

Throughout the history of computer systems, the evolution

of processors and increases in computing speed have been

closely related. Traditionally, the integrated circuit industry

has fitted ever more transistors into a single chip thereby

achieving high performance [45]. However, this approach

is limited by physical restrictions of silicon, mainly

excessive energy consumption and overheating of

processors [90].

In recent years, advances in this area have taken a dif-

ferent direction, leading to modern processor architecture

used for (a) multi-core CPUs (which contain two or more

processing cores) and (b) the general purpose computing on

graphics processing units (GPGPU), which is defined in

this review as ‘‘many-core architecture’’. Both many- and

multi-core architectures exploit parallelism features that

offer performance gains and faster computing [90].

& João Manuel R. S. Tavares

tavares@fe.up.pt

Carlos A. S. J. Gulo

sander@unemat.br

Antonio C. Sementille

sementille@fc.unesp.br

1 CNPq National Scientific and Technological Development

Council, Research Group PIXEL - UNEMAT,

Alto Araguaia-MT, Brazil

2 Programa Doutoral em Engenharia Informática, Instituto de
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The demand for high-performance computing has gen-

erally been addressed with costly computational systems.

However, in view of the popularity of graphics processing

units (GPUs) and the adoption of parallel programming

methods, a number of research areas can advance signifi-

cantly without the need for major investment in computa-

tional systems. Examples of these areas include: scientific

simulation [19], life sciences [91], statistical model-

ing [91], emerging data-intensive applications [91], elec-

tronic design automation [91], ray tracing and

rendering [96], computer vision [23], signal process-

ing [23, 91], and medical image processing and

analysis [15, 29, 88].

The area of medical image processing and analysis has

contributed to significant medical advan-

ces [7, 23, 50, 81, 83, 88, 101] by integrating systems and

techniques that support more efficient clinical diagnosis.

These systems and techniques are based on images

acquired by different imaging modalities such as, endo-

scopy [52], X-ray [88], microscopy [47, 68], computed

tomography (CT) [26, 57], optical coherence tomography

(OCT) [67], magnetic resonance (MR) [2, 15], functional

magnetic resonance (fMR) [3, 97], magnetic resonance

elastography (MRE) [20], positron emission tomography

(PET) [17, 42, 43], single photon emission computed

tomography (SPECT) [28], and 3D ultrasound computer

tomography (USCT) [7].

Medical imaging assists physicians in extracting infor-

mation for the purposes of diagnosing diseases, surgical

intervention, treatment and follow-up of diseases, as well

as in designing better rehabilitation plans [29, 37, 95, 97].

Such extraction of relevant clinical information is a com-

plex task requiring advanced computational systems able to

process and obtain image-based features accurately and

consistently within the shortest possible runtime. As a

result, a new research area has emerged that combines

computational techniques used for medical image pro-

cessing and analysis [23, 81, 88] and high-performance

computing solutions [7, 50, 83, 101]. These two compo-

nents can be briefly described as follows:

• Medical image processing and analysis—Typically, the

researchers of this area attempt to find solutions that

start by improving the quality of the input images, and

then apply operations on the enhanced images in order

to identify and extract meaningful clinical informa-

tion [23, 81, 88]. In this context, the term ‘‘medical

image processing and analysis’’ is used throughout the

present review.

• High-performance computing—The main goal of this

area is to optimize computational methods to achieve

greater robustness, effectiveness, efficiency, and faster

execution. To accomplish these objectives, parallel

computing techniques are usually exploited to use the

maximum available performance in the computational

architecture adopted [7, 50, 83, 101].

The number of researchers combining techniques of med-

ical image processing and analysis and of high-perfor-

mance computing has increased considerably in recent

years; consequently, this article aims to present an updated

systematic literature review of this area. The scientific

articles selected for this review provide valuable informa-

tion for researchers in the two fields identified; specifically,

the articles address methods, techniques, imaging modali-

ties, metrics of computational performance, and the most

frequently used computing architectures. The contributions

made by each selected article are therefore set out and the

remaining research gaps are identified; this will be of sig-

nificant value to those who intend to develop, evaluate, and

compare algorithms used in medical image processing and

analysis accelerated by high-performance computing

architectures.

The term ‘‘performance’’ is sometimes ambiguous;

hence, in this article, ‘‘performance’’ refers to the effi-

ciency of computing systems when executing algorithms,

including the factors of throughput, latency, and avail-

ability. The methodology employed to select, identify, and

validate the articles considered is presented in Sect. 2; the

main findings extracted from the articles analyzed are

summarized in Sect. 2.1; the contributions found in the

selected articles and the gaps identified are presented and

discussed in Sect. 3; finally, concluding remarks are pre-

sented in Sect. 4.

2 Systematic literature review

This section describes the protocol used to locate, gather,

and appraise the state of the art under study. The first issue

that was examined was the range of high-performance

computing platforms and methods that have been used to

speed up techniques of medical image processing and

analysis. In addition, the following complementary ques-

tions were considered:

1. Which imaging modality was involved?

2. Which task of medical image processing and analysis

was addressed?

3. Which human organ or tissue was analyzed?

4. What computational architecture was adopted and/or

developed?

5. Which high-performance computing technique was

adopted and/or developed?

6. Is the approach adopted and/or developed able to

achieve real time?

1892 J Real-Time Image Proc (2019) 16:1891–1908

123



The criteria defined for the selection of articles were as

follows:

1. Domain

(a) Medical image processing and analysis; and

(b) High-performance computing.

2. Methods

(a) Techniques of medical image processing and

analysis accelerated by high-performance com-

puting solutions.

3. Measures

(a) Techniques of medical image processing and

analysis; and

(b) Performance in runtime.

After defining the selection criteria, the next step involved

defining the exclusion criteria, which were as follows:

1. Duplicated references; for example, the same article

retrieved from the different electronic repositories

searched;

2. Less than four pages;

3. No description available on the technique of medical

image processing and analysis;

4. No information available on the metric used to assess

computing performance;

5. None of the research questions under consideration

(numbered 1–5) are addressed.

Before initiating the article-gathering process, the language

of the articles, the research domains, and the electronic

repositories to be considered were defined. We decided to

only review articles written in English, the dominant lan-

guage used in the scientific domains of computer science

and engineering. The repositories selected for searching

were: Scopus1 and Web of Science.2

The systematic review was carried out from March 2016

to August 2016 and updated in March 2017. Table 1 pre-

sents the search terms used when querying each repository

and the total number of articles retrieved.

The search of the Web of Science repository was defined

in order to locate the articles related to each of the fol-

lowing queries: (a) ‘‘medical image’’ OR ‘‘medical imag-

ing’’, (b) ‘‘high performance computing’’ OR ‘‘parallel

computing’’ OR ‘‘parallel programming’’ OR ‘‘real-time

processing’’. These queries were combined using the AND

logical operator in order to mimic the equivalent searches

in the other repository. ‘‘image processing’’ was not used in

the search because it could generalize the results too much;

instead, the purpose of using ‘‘medical image’’ and

‘‘medical imaging’’ was to gather all scientific articles

related to techniques of medical image processing and

analysis.

After removing the 467 duplicate references, each of the

remaining 2, 112 articles were then filtered according to the

selection criteria, as shown in Table 2. The selection cri-

teria were applied systematically to the title, keywords, and

abstract of the articles in the electronic repositories sear-

ched, and this resulted in 594 articles. The content of each

abstract was initially analyzed with the aim of identifying

evidence of the use of high-performance computing

architectures in order to support the acceleration of tech-

niques of medical image processing and analysis.

Additionally, each article was classified according to

three priority levels:

• Prio-1: Articles that are very relevant and suitable for

the review such that there was evidence of the

(previously defined) article-extraction criteria in the

title, abstract, and even keyword fields ;

• Prio-2: Articles that are less important but still suitable;

• Prio-3: Articles that may be relevant to other related

research, but are not main sources of knowledge for this

review.

The classification priorities of the articles selected from

each repository are indicated in Table 3. The values shown

in this table indicate the suitability of each repository rel-

ative to each classification priority previously enumerated.

2.1 Review of selected articles

In the evaluation stage, the sections of each article pre-

senting the applicable methodology, results, and conclu-

sions were analyzed, in order to identify important

information that answers the research questions (1–5)

defined in Sect. 2.

In this review, a total of 594 articles were initially

selected; however, 507 articles were then removed in

accordance with the exclusion criteria, and the 87

remaining articles were analyzed in depth. The exclusion

criteria were defined in such a way as to answer the

aforementioned, main research questions. Hence, it was

critical to identify in each article: the metric(s) used to

evaluate computational performance; the high-performance

computing architecture and parallel design involved; and

the object(s), i.e., tissue(s) or organ(s), addressed by the

technique(s) of medical image processing and analysis.

Therefore, during the in-depth analysis of each article,

critical information was collected to answer each specific

research question.

Table 4 presents in descending chronological order the

most relevant information extracted from the 87 articles

1 http://www.scopus.com—Science Direct.
2 http://apps.webofknowledge.com—Web of Science Core

Collection.
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analyzed, including the description of the main high-per-

formance computing methods applied to the acceleration of

the techniques of medical image processing and analysis.

The speedup column presents the computational perfor-

mance results achieved by the authors in respect of the

methods studied. Here, speedup is defined as the ratio of

the execution time of serial and parallel implementations

when both are applied on the same dataset and running on

the same computer.

One conclusion drawn from the articles found is that, in

recent years, and especially in the last decade, there has

been considerable research into the use of techniques of

image processing and analysis accelerated by high-perfor-

mance computing solutions.

The first step in medical imaging consists of acquiring

the data using a suitable imaging device and then recon-

structing the related images. After that, a number of tech-

niques of image processing and analysis can be applied,

such as image reconstruction, image filtering, image seg-

mentation, and image registration.

2.1.1 Image reconstruction

Image reconstruction is the process used to generate 2D/3D

images of an object from the data, i.e., signals, acquired by

an imaging device. In the data acquisition stage, the

imaging device is responsible for converting the

anatomical/physiological information into digital signals.

However, digital signals are easily corrupted by noise

introduced by the electronic/mechanical components of the

imaging device [87]. Dominant physical effects such as

resolution, attenuation, and scatter, are spatially variant,

and in the cases of attenuation and scatter, may also differ

according to the type of object, i.e., tissues, under study. In

addition, a number of noise source displacements occur

when acquiring MRE images. Lengthy extended move-

ments produce common ambiguity errors, which, for

example, result in weak estimates in regions with low

signal noise rate. Susceptible effects generate inconsisten-

cies during the estimation stage and result in erroneous

estimate displacements. In general, all the image recon-

struction approaches demand high computational costs and

require large memory capacity, for example, in MRI,

SPECT, and CT cases, where large datasets are used to

reconstruct complex 3D images.

The article of Miller and Butler [57] considers the

implementation of the maximum a posteriori (MAP) and

maximum likelihood (ML) methods in a system that cre-

ates a complete 3D reconstruction from CT images and is

accelerated by massively parallel processors. The iterative

expectation-maximization (EM) algorithm, which is

applied in order to generate ML and MAP estimates for

SPECT image acquisitions, is considered highly complex

in terms of computation [57]. Their parallel system was

implemented on a massively parallel computer (DECmpp-

SX 128 � 128 processor) and designed according to the

single instruction, multiple data stream (SIMD) parallel

programming model. Although the implementation did not

indicate a linear scalability, the speedup achieved was 64�,

relative to an optimal programmed implementation to be

executed in a reduced instruction set computing (RISC)

architecture (64 � 64 processor). Formiconi et al. [28] also

Table 1 Total number of articles retrieved from each electronic repository

Repositories Queries performed No. of articles

Scopus TITLE-ABS-KEY (( ‘‘medical image’’ OR ‘‘medical imaging’’) AND (‘‘high

performance computing’’ OR ‘‘parallel programming’’ OR ‘‘parallel

computing’’ OR ‘‘real-time processing’’)) AND (LIMIT-TO ( DOCTYPE ,

‘‘cp’’) OR LIMIT-TO (DOCTYPE , ‘‘ar’’))

421

Web of science Filtering using the same queries searched above 2158

Total 2579

Table 2 Total articles

retrieved, duplicated, and

remaining after applying each

criteria

Repositories Retrieved Duplicated Selection

criteria

Exclusion

criteria

Scopus 421 17 288 32

Web of science 2158 450 306 55

Total 2579 467 594 87

Table 3 Relevance of each repository used to retrieve articles related

to techniques of medical image processing and analysis combined

with high-performance computing solutions

Repository Prio-1 (%) Prio-2 (%) Prio-3 (%)

Scopus 71.64 17.41 10.95

Web of science 17.82 5.63 76.55
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presented a parallel implementation of the EM algorithm;

however, their approach was combined with ML estimates

and applied in order to reconstruct images from SPECT

data. The authors designed their implementation on the

basis of a multiple instruction, multiple data stream

(MIMD) parallel programming model and used a World

Wide Web (WWW) interface. A massively parallel com-

puter, Cray T3D, was used to calculate their computational

solution remotely.

Massively parallel computers were adopted by Kerr and

Bartlett [44] as described in another article. The authors

examined the simulation and rapid training of a very large

artificial neural network that reconstructs and compresses

SPECT images. In this study, when comparing the per-

formances obtained by CPU- and Parallel-based imple-

mentations, a speedup of 139� was achieved. The authors

designed the suggested algorithm on the basis of the SIMD

model.

Another research study that developed a parallel com-

puter architecture was presented in the Higgins and

Swift [37]’s article. These authors defined a ‘‘meta-com-

puter’’ as a combination of communication devices and a

heterogeneous processing architecture. Their goal was to

implement a new parallel architecture using the parallel

computer MasPar in order to manage multiple workstation

interactions and process 3D medical images as fast as

possible. The parallel architecture used in the experiments

included typical tasks of medical image processing and

analysis: image preprocessing, morphological and topo-

logical image operations, image segmentation, image

manipulation, image measurement and the input and output

of images. The approach of the authors resulted in a per-

formance 5� faster than the equivalent algorithm imple-

mented using a sequential fashion programming model.

Doyley et al. [20] proposed in their article a parallel

approach to obtain partial volume reconstructions from 3D

high-resolution data. The authors combined the finite ele-

ment method (FEM) and the Newton–Raphson iterative

scheme in this approach, which was implemented using

Message Passing Interface (MPI) and executed on a PC-

cluster. In the experiments, the authors adopted an opti-

mized sequential approach in contrast to a parallel-based

one. The parallel version improved the in/out storage disk

operations and achieved a linear speedup.

Kumar et al. [47] developed a middleware system based

on a PC-cluster architecture, the purpose of which was to

support the execution of a set of techniques of image

processing and analysis. These techniques were divided

into two main stages: preprocessing and analysis. These

tasks resulted in preprocessed data that could be queried

and analyzed using the techniques of image analysis. The

authors combined data and task parallelism models in order

to achieve better scalability; moreover, they implemented

the tasks of image processing and analysis by changing the

number of processors in the PC-cluster; in the experiments

performed, a 2� speedup was obtained with the best cluster

configuration found.

In the approach of Kegel et al. [42, 43], the Threading

Building Blocks (TBB) library and the OpenMP applica-

tion programming interface were adopted and compared in

order to evaluate programming effort, programming style

and abstraction, and runtime performance. The authors

presented several implementations for systems that support

shared- and distributed memory of the list mode ordered

subset expectation maximization (LM OSEM) algorithm,

resulting in reducing of the processing time spent on

reconstruction of PET images. LS OSEM is a computa-

tionally intensive block-iterative algorithm for 3D image

reconstruction. The authors concluded that the TBB library

is much easier to implement than OpenMP, especially

when starting a new implementation to exploit parallelism;

however, they did not analyze the exact influence of the

grain, the block size, or the scheduling strategy for dif-

ferent amounts of input data on the program performance.

The approach presented by Murphy et al. [59] consists

of an optimized iterative method, self-consistent parallel

imaging (SPIRiT), combined with compressed sensing for

image reconstruction. This approach allows auto-calibrat-

ing parallel imaging3 reconstructions with clinically feasi-

ble runtimes. The purpose was to achieve real-time

performance via a hybrid implementation using both multi-

GPU and multi-core CPUs as parallel execution platforms.

Two data parallelism models, SIMD and SIMT, were

exploited and optimized through Streaming SIMD Exten-

sions (SSE) and compute unified device architecture

(CUDA) instructions, respectively. Parallel GPU and CPU

implementation achieved the speedup of 40� when com-

paring with the runtime of a sequential C?? implemen-

tation using high-performance libraries and compiled with

full compiler optimization.

Domanski et al. [19] developed a cluster Web services

(CWS) framework capable of taking advantage of mas-

sively parallel technologies composed of a PC-cluster4 and

GPUs.5 This framework facilitated communication

between the client and server through the Internet in order

to balance and distribute the computational load. Although

the framework was able to solve a wide range of scientific

problems, its main application was the full reconstruction

of CT images. The parallel programming languages

adopted were Open Computing Language (OpenCL) and

3 Parallel imaging is a well-established acceleration technique based

on the spatial sensitivity of array receivers [59].
4 32 Intel Xeon CPU cores.
5 6 NVIDIA cards with Tesla GPU.
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MPI, for the GPU architecture and the PC-cluster,

respectively.

Treibig et al. [88] presented an approach to the

achievement of optimal performance according to the

processor specifications and different optimization levels.

The authors presented a number of low-level optimizations

and algorithms for a back-projection reconstruction strat-

egy from CT data, running on multi-core processors. The

implementation was based on SSE and Advanced Vector

Extensions (AVX) instructions. The result of this approach

was a speedup of up to 6�; however, the authors consid-

ered that further studied were needed (a) to improve the

implementation performance using distributed memory,

(b) to optimize and analyze the AVX kernel update, and

also (c) to include the new AVX2 operations collector.

Blas et al. [9] described the performance optimization

process of a modular application based on a GPU archi-

tecture using the Feldkamp, Davis, and Kress (FDK)

reconstruction algorithm. However, even though the

authors performed most parallelization procedures using

the SIMT model, the projection decomposition step was

performed using the SIMD model and the Open Multi-

Processing (OpenMP) language. The experiments were

conducted with different multi-GPU configurations and

code optimization levels, and a speedup of up to 2� was

achieved relative to the implementations discussed in their

own literature review. Meng et al. [54] accelerated the

FDK algorithm using MapReduce in a cloud computing

environment. Map functions were used to filter and back-

project subsets of projections, and Reduce function to

aggregate those partial back-projections into the whole

volume. The findings of this approach were the recon-

struction time achieved, whose correlation with the number

of nodes employed was roughly linear. Experiments

showed a speedup of 10� using 200 nodes for all cases,

when compared to the same code executed on a single

machine.

Birk et al. [7, 8] adopted multi-GPU and multi-core as a

parallel architecture in order to accelerate 3D reconstruc-

tions based on ray casting from ultrasound data. Their

approach was extended to identify the ideal number of

GPUs required to reconstruct high-resolution image vol-

umes, especially when the processing load had substan-

tially greater DRAM capacity than the CPU system.

However, the approach was not able to display in real time

the high-resolution images at the pre-visualization stage.

The experiments took into consideration the implementa-

tion of the optimized method for both architectures: multi-

core and multi-GPU. The authors emphasized that they

combined SIMT and SIMD parallel programming models.

Wei et al. [96] presented a research that used a ray

tracing technique to simulate retinal image formations.

This approach simulated realistic light refraction through

ocular structures in 3D using polygonal meshes and GPU

parallel computing.

Chen et al. [11] described a novel imaging system for

real clinical applications. The system could provide

incremental volume reconstructions and volume rendering;

it could also generate high-quality 3D ultrasound strain

images in near real-time due to a GPU-based implemen-

tation. The approach achieved a 60� speedup compared to

a CPU-based implementation. However, it could not pro-

vide real-time imaging because the time spent on complex

data processing and data transfer was excessive.

2.1.2 Image filtering

Rodrigues and Bernardes [67] improved the process of

speckle noise reduction for visual analysis of medical

images like optical coherence tomography. The authors

proposed preserving edges and other relevant features

through filter expansion from 3D OCT images of the

posterior segment of the human eye for the adaptive

complex-diffusion filter. Their implementation was divided

into an environment setup stage and four other stages that

were called iteratively. CUDA kernels were considered in

parallel convolutions, parallel reductions, and element-

wise arithmetic operations over the inputs.

Nguyena et al. [61] presented a hybrid parallelization

scheme with the aim of accelerating the NL-Means filter

algorithm. In their approach, the authors divided the input

3D MRI volume into sub-volumes in order to reduce the

search region at the boundary zone. Then the image was

divided into superimposed images and the superposition of

the search region radius. In the implementation stage, the

following parallel technologies were used: MPI, multi-

threading on multi-core machines and GPUs. Communi-

cation between each cluster node was enabled by using

MPI. The main contributions of the authors are an approach

that requires different modes of implementation and the

possibility of using the MPI technology alone or in con-

junction with POSIX Threads (Pthreads) and GPUs. This

latter approach reduced the computational time by a factor

of approximately 510 when applied to 3D medical data. On

the other hand, high memory usage emerged as a drawback

of this approach, with up to three times more memory

required than with the original method.

Gulo et al. [34] described in their study how to use the

high-performance computing CUDA-based architecture as

a computational infrastructure to accelerate an algorithm

for noise image removal. The parallel GPU-based imple-

mentation developed was compared against the corre-

sponding sequential CPU-based implementation in several

experiments. The parallelization of the image smoothing

method based on a variational model using CUDA
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architecture reduced the runtime by up to 10 times in

comparison with the CPU-based implementation.

2.1.3 Image segmentation

Image segmentation is one of the most important opera-

tions of the image processing and analysis area, being

responsible for identifying and delineating objects of

interest in input images. In general, tasks of 3D visual-

ization, interpolation, filtering, classification, and even

registration depend heavily on the image segmentation

results in order to achieve optimum perfor-

mances [82, 101, 102]. There are several approaches of

image segmentation based on, for example, threshold-

ing [5, 71], clustering [29], and deformable models [72].

Daggett and Greenshields [15] designed a parallel

algorithm using a PC-cluster to segment MRI images by

means of automatic image classification in order to reduce

the inter-process communication overhead. This parallel

algorithm was based on the virtual shared memory tech-

nique, which enables processes to communicate by directly

sharing data as though it existed in a global shared memory

space. The main idea was to segment anatomical images in

order to obtain quantitative anatomical features and geo-

metrically shaped models of the objects under study.

In the article of Yeh and Fu [97], an approach called

parallel adaptive simulated annealing was developed to

assist computer-aided measurements for identifying the

associated activation regions of the brain through response

waveform of functional MR images. This approach was

based on a coarse-grained model performed on a cluster of

four PCs; it was designed using the MPI parallel pro-

gramming language and the single program, multiple data

stream (SPMD) data decomposition model. The purpose of

this parallelism was to reduce the computational time

required by the minimization of the weighted sum of the

squared Euclidean distances between each input vector and

the prototypes. Additionally, it was able to automatically

make clinical diagnoses of schizophrenia and multiple

sclerosis.

Gabriel et al. [29] suggested Gabor filtering for texture-

based image segmentation of thyroid cells. This approach

was based on distributed memory and exploited a PC-

cluster and the current multi-core CPU architecture. The

authors combined several metrics to evaluate the perfor-

mance of their approach; they then used OpenMP and MPI

to compare the speedup, communication overhead, the

different memory systems, and the different number of

threads used. The multi-core architecture achieved the

highest speedups, which were up to 11� faster compared to

the PC-cluster. Although the authors presumed that their

computational system would be able to make medical

diagnoses, their implementation did not have a module for

image analysis, or even a tool for the addition of an image

set combined with the related diagnosis result.

Zhuge et al. [101, 102] developed a semi-automatic

segmentation method based on the fuzzy connected tech-

nique, which was implemented using a GPU architecture.

Moreover, they designed a robust and efficient parallel

version of Dijkstra’s algorithm in a SIMD model. This new

approach took advantage of the CUDA architecture,

especially by supporting atomic read/write operations in

the GPU global memory.

Shi et al. [83] proposed an automatic image segmenta-

tion method for medical images based on a pulse coupling

neural network combined with the 2D Tsallis entropy.

Stronger adaptability, high image segmentation precision,

and adequate image reconstruction from CT and MR data

were the main advantages of this approach. The achieve-

ment with this GPU-based approach was the rendering of

3D volume images in real time using ray tracing imple-

mented using a SIMT model.

In the approach by Saran et al. [74], the rigid registra-

tion of magnetic resonance venography (MRV) images and

magnetic resonance angiography (MRA) images based in

mutual information is performed to increase the accuracy

of vessels segmentation in MRI images. The unfavorable

effects of Rician noise and RF inhomogeneity in the MRI,

MRA, and MRV images during the vessels segmentation

are removed by applying a subtraction schema where the

cost function and the choice of the minimization method

are executed simultaneously using multi-core and GPU.

Balla-Arabé and Gao [5] presented a new level set

method (LSM) for image segmentation. The authors

designed a selective entropy-based energy functional

method, robust against noise, and new selective entropy

external forces for the Lattice Boltzmann method (LBM).

The LSM and LBM were combined and implemented on

GPUs. However, LBM requires significant memory and the

approach did not achieve volume image segmentation in

real time. Hence, the authors identified a need for future

studies to extend their approach to a GPU cluster

environment.

Aitali et al. [2] exploited the performance of GPU to

accelerate a Bias Field Correction Fuzzy C-Means algo-

rithm used for segmenting MR images. This approach was

applied to correct the inhomogeneity intensity and segment

the input images simultaneously. However, the expensive

computation required by the algorithm demanded opti-

mization strategies in order to reduce the runtime; hence,

the authors adopted the SIMD architecture to model their

approach. The GPU implementation achieved about 52�
speedup relative to the CPU implementation and consisted

of a novel SIMD architecture for bias field estimation and

image segmentation.

1900 J Real-Time Image Proc (2019) 16:1891–1908

123



Heras et al. [36] used GPU features to accelerate the

Fast Two-Cycle method, which is a level set-based seg-

mentation method. In their approach, they aimed to divide

the active domain into fixed-size tiles and therefore

intensively use shared memory space, resulting in a low

latency close to that of the register space. Although the

authors did not use real images, they measured the per-

formance of their approach using a set of realistic MRI data

volumes produced by an MRI simulator. The volumes

produced by this simulator are available to be downloaded

at the BrainWeb Simulated Brain Database6, and they have

been broadly used in other published articles. In the

experiments, the GPU approach achieved about 6�
speedup relative to the CPU implementation.

2.1.4 Image registration

Image registration is a computational task that establishes a

common geometric reference frame across two or more

image datasets; it is required, for example, in the com-

parison or fusion of image data obtained at different times

or using different imaging modalities or devices [65, 68].

Intensity-based registration techniques are accurate, effi-

cient, and robust; in addition, they depend on the interpo-

lation scheme, search space, a similarity metric, and an

optimization approach [92]. Consequently, these tech-

niques are based on geometric transformations [12], opti-

mization algorithms [92], and measures of similarity [17,

26].

The mutual information-based (MI-based) deformable

registration algorithm was considered promising by Dan-

dekar and Shekhar [17], mainly because it was able to

correct the misalignment of tissue in CT slice images. The

authors demonstrated a registration accuracy comparable to

one achieved by a group of clinical experts [17, 95].

Computationally, MI-based registration is extremely

intensive and so requires several thousand of iterations,

with the precise number depending on the degree of the

initial misalignment, the transformation complexity, the

image content, and the optimization algorithm used to

maximize the MI function. In order to reduce the runtime

on the order of minutes or seconds, and thereby become

suitable for clinical routine use, MI-based algorithms have

been accelerated in parallel architectures such as clus-

ters [12, 30], GPU [30, 55, 81], multi-core cell broadband

engine architecture (CBEA) [69], and field programmable

gate array (FPGA) [17].

Christensen [12] developed a 3D linear elastic trans-

formation model using an SGI Challenge parallel computer

in order to generate global non-rigid deformations of

template image volumes. This approach was optimized to

maximize the ratio of computation to the parallelization

overhead. In this research, parallel overhead consisted of

the runtimes for creating processes, starting and ending

parallel regions, and running extra code required for par-

allelization. The authors performed experiments using

implementations optimized for MasPar (SIMD) and Chal-

lenge (multiple instruction, multiple data (MIMD)) parallel

architectures. The MIMD parallel programming model

achieved speeds of up to 20� greater than the SIMD

model.

Warfield et al. [95] presented a new registration algo-

rithm that identifies features in image scans which need to

be aligned and find the transform that minimizes the mis-

match of corresponding tissue labels. This approach was

implemented on a parallel platform in order to conform to a

clinically acceptable timeframe. The authors adopted a

multi-core PC-cluster and the MPI language as the high-

performance computational infrastructure to perform the

experiments; their approach was designed based on the

MIMD-based parallel programming model.

Rohlfing and Maurer [68] solved problems related to the

high computational efforts that are commonly incurred

when non-rigid image registration techniques are used. The

authors took advantage of shared-memory multiprocessor

computer architectures as well as data and task partition

parallel programming models. Non-rigid image registration

techniques demand lengthy execution times because of the

input images are usually large and because the adopted

transformation model adopted requires substantially more

time to compute and evaluate the similarity measure used.

The experiments were performed on an SGI Origin 3800

massively parallel computer, and all the results were

compared using different degrees of parallelism (2, 16, 32,

and 48 threads); the performance achieved showed a

reduced linear execution time.

Salomon et al. [72] presented a parallel implementation

of a deformable image registration approach based on the

multi-resolution technique. In this study, the authors

designed their implementation by applying the MIMD

parallel programming model and the OpenMP parallel

programming language. However, the SIMD parallel pro-

gramming model can be considered most suitable when a

large number of processors are used. This parallel approach

achieved a speedup of up to 10� when applied to the

registration of 3D MR images.

Wachowiak and Peters [92] developed two methods—

DIviding RECTangles (DIRECT) and Multi-Directional

Search (MDS)—that were used to optimize a similarity

metric, which is an essential component of intensity-based

medical image registration algorithms. The DIRECT

method was employed as a global technique for linearly

bounded problems and was followed by local refinements

6 BrainWeb Simulated Brain Database—http://www.bic.mni.mcgill.

ca/brainweb.
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attained with the MDS method. This approach was

implemented and optimized for execution in shared

memory systems. With the use of 8 or 12 CPUs on a PC-

cluster, the results demonstrated efficiency gains, yielding

a speedup of up to 5�.

Rehman et al. [65] employed GPU architecture to

achieve high performance using the multi-resolution

approach that is typically applied in non-rigid 3D image

registration. In this article, the authors developed a parallel

approach of non-rigid registration by regarding it as an

optimal mass transport problem. The experiments showed a

speedup improvement in the parallel architecture of up to

965� relative to the CPU-based implementation.

Rohrer and Gong [69] and Shams et al. [81] enabled

different high-performance computing architectures to

achieve real-time image registration. Rohrer and Gong [69]

combined mutual information and multi-resolution tech-

niques, and implemented them on a heterogeneous multi-

core architecture called CBEA. The implementation of this

approach on a GPU architecture Shams et al. [80, 81] made

an innovative contribution to the computing of MI by

computing joint histograms. On the basis of this approach,

the registration of 3D CT, PET and MR images was

achieved in real time.

Assuming relatively small nonlinear displacements and

deformations in the registration of CT and MRI data related

to the head, Lapeer et al. [48] presented a point-based

registration method. This new method was developed in

order to speed up a nonlinear multimodal registration

algorithm on a GPU architecture. The approach integrated

the radial basis function (RBF) as a smooth function and

sought to mimic the interacting deformation of biological

tissues. The performance tests demonstrated that the GPU-

based implementation yielded a runtime 10� faster than

that of the CPU-based implementation.

Zhu and Cochoff [99] demonstrated how to use parallel

programming patterns aiming to obtain better performance

in applications relating to image visualization, registration,

and fusion. The parallel programming pattern used depends

on the architecture adopted. Thus, it can involve data

parallelism, task parallelism, coordination based on events,

data sharing, asynchronous calls, and fork/join. Using

multi-core and symmetric multiprocessor (SMP) architec-

tures, the speed was up to 10� faster relative to a CPU

architecture. In addition, the parallel implementation con-

firmed the presence of the important features of portability

and flexibility.

Mafi and Sirouspour [50] developed a GPU-based

computational platform for real-time analysis of soft object

deformation. This GPU-based computing scheme solved a

large system of linear equations and updates the nonlinear

FEM matrices in real time. However, this approach can be

extended to even further optimize all computations related

to single- and double-precision operations. In addition, it

can enable multiple GPU-based computing, deformation

analysis with multiple contact points, and auto-adaptive

mesh refinement in order to improve analysis accuracy.

Ellingwood et al. [26] presented a novel computation-

and memory-efficient Diffeomorphic Multi-Level B-Spline

Transform Composite method on GPU for the performance

of non-rigid mass-preserving registration of CT volumetric

images. The authors adopted the sum of squared tissue

volume difference (SSTVD) as the similarity criterion to

preserve the lung tissue mass; hence, SSTVD was used for

computing the tissue volume. A cubic B-Spline-based free-

form deformation (FFD) transformation model was

employed for capturing the non-rigid deformation of

objects such as human lungs. The experiments used lung

CT images, which indicated a speedup of 112 times rela-

tive to the single-threaded CPU version, and of 11 times

compared to the 12-threaded version when considering the

average time per iteration using the GPU implementation.

The authors compared the following types of algorithms:

single-threaded CPU-based, multi-threaded GPU-based,

and GPU-based.

3 Discussion

The deployment of high-performance computing tech-

niques has greatly contributed to reducing the processing

time of techniques used for medical image processing and

analysis, making them suitable for routine clinical use.

Briefly, these techniques were used in order to exploit all

the computational power commonly available in modern

high-computing architectures such as multi-core, GPU, and

PC-cluster.

Following the recent advances in GPU [48, 50, 55, 65,

67, 80, 81, 96, 101, 102], multi-core [3, 7–9, 19, 26, 29, 59,

83, 88, 99], and FPGA [17, 56, 62, 85, 89] architectures,

researchers have confirmed a trend toward lower compu-

tational costs without any consequential reduction in terms

of the accuracy of the techniques of image processing and

analysis. Hence, Murphy et al. [59], Shi et al. [83],

Domanski et al. [19], Saran et al. [74], Alvarado et al. [4],

Birk et al. [7, 8], Serrano et al. [78] designed their models

using parallel programming in GPU and multi-core; on the

other hand, Blas et al. [9], Tan et al. [85], Mahmoudi and

Manneback [51], Cai et al. [10], Nguyen et al. [60],

Riegler et al. [66] have demonstrated an approach which is

more focused on load balancing techniques, multi-GPU,

GPU, and multi-core architectures. Therefore, there is an

increasing number of methodologies that achieve high

performance levels and that combine parallel programming

methods and high-performance computing architectures;
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furthermore, the runtime and energy consumption required

by these methodologies are decreasing considerably.

The articles evaluated in this review provide an over-

view on techniques of medical image processing and

analysis accelerated by high-performance computing

solutions. Figure 1 shows that the majority of the selected

articles were published in the last decade and that the last

five years have seen remarkable progress thanks to multi-

core processors and GPU architecture [23]. It is important

to highlight that this review covers papers published up to

March 2017.

Although the articles listed in Table 4 report on highly

positive speedup findings, it is important to analyze these

results carefully. The majority of the selected articles

indicated speedup as the main metric used to evaluate the

performance gain. Almost half of the articles compared

sequential and parallel implementations, as can be seen in

Rohlfing and Maurer [68], Dandekar and Shekhar [17],

Yeh and Fu [97], Rehman et al. [65], Rohrer and

Gong [69], Zhuge et al. [100], Shams et al. [80, 81],

Gabriel et al. [29], Lapeer et al. [48], Zhu and Coch-

off [99], Murphy et al. [59], Shi et al. [83], Birk

et al. [7, 8], Blas et al. [9], Mafi and Sirouspour [50],

Meng [55]. One of the greatest challenges in this sort of

comparison is to describe how well sequential implemen-

tation was optimized, and more particularly: (1) whether

the SSE instruction set was used; (2) whether the code was

compiled in 32 or 64 bits; and (3) whether 32- or 64-bit

floating point operations were used. This sort of opti-

mization is critical when comparing implementations that

use multi-core, GPU, or cluster architectures. Usually, it is

necessary to rewrite code in order to improve application

performance and so exploit the benefit of parallelization.

As a result, it is good practice to divide an application into

smaller tasks that can be executed in parallel [33]. How-

ever, during task deconstruction, the communication pro-

cess and the general coordination of processing jobs among

the processors used need to be taken into account.

When adopting a parallel programming design, two

main features must be taken into account: (1) the parallel

architecture and (2) the type of processor communica-

tion [63]. The high computational costs of data access and

task performance are dependent on the computational

resources available to the computing system. Hence, par-

allel design should make use of data decomposition and

allocate available memory efficiently.

Most of the analyzed articles focused on the paralleliz-

ing of techniques of medical image reconstruction and

registration. PC-clusters are the parallel infrastructure most

often adopted by researchers [15, 20, 47, 71, 72, 95, 97],

FPGA [17, 56, 62, 85, 89], in addition to the most recent

GPU-based technologies [5, 48, 50, 55, 65, 80, 81, 96,

101, 102] and multi-core [3, 7–9, 19, 26, 29, 59, 83, 88, 99]

architectures. Moreover, it is clear that the research topic

discussed in this review is recent and promising, as con-

firmed by the remarkable increase in the number of related

scientific articles published in the last decade. In summary,

the reviewed articles demonstrated a reduction in the run-

time, including in real time, which is ideal for routine

medical applications. However, just a few of the selected

articles focused on speeding up techniques of medical

image segmentation, which suggests a potential topic for

further research.

This article presents a concise and up-to-date review of

techniques of medical image processing and analysis that

have been implemented based on high-performance com-

puting solutions. As a result, related researchers can iden-

tify: (a) the GPUs as computing systems, (b) the SIMD as

the main parallel programming model, that have been most

widely used to deal with the typical demands of techniques

of medical image processing and analysis. The most used

computing systems are presented in Fig. 2. In particular,

this review also reveals that data-parallel computations

with high arithmetic intensity are well suited to SIMD

parallelization; then, it is well suited for the computation

on GPUs. This is because the execution model of GPUs is

based on SIMD parallel programming model, which allows

Fig. 1 Distribution of selected

articles related to techniques of

medical image processing and

analysis accelerated by high-

performance computing

solutions published in recent

years
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multiple processing elements to perform the same opera-

tion on multiple data, concurrently.

The greatest programming efforts found in the selected

articles are: (a) the learning curve required for program-

ming parallel implementations, (b) obtaining a complete

understanding of the advanced concepts related to memory

hierarchy, (c) and the design of the shortest-possible,

optimal data paths.

Usually, modifying the design of a sequential algorithm

in order to make it parallel requires changing the pro-

gramming model, the programming language, and the

memory access strategy. Successful implementation of

these changes will also achieve maximum performance and

a higher optimization level due to lower throughput across

different memory types.

4 Conclusion

In this article, the main research articles relating to the

combination of techniques of medical image processing

and analysis with different high-performance computing

solutions have been reviewed. The selected articles

describe the use of high-performance computing systems,

including multi-core, GPU, FPGA, and PC-cluster, and

their capacity to support tasks of medical image processing

and analysis.

This article reviewed a set of articles related to complex

techniques of medical image processing and analysis, and

experiments performed using high-performance computing

systems. By combining parallel computer solutions with

algorithms of medical image processing and analysis, the

scientific community is able to make significant advances

in the field of medicine, especially by reducing the required

runtime; this in turn enables solutions to be implemented in

routine clinical scenarios. Moreover, this article will be

useful in developing new research that evaluates and

compares different algorithms of medical image processing

and analysis supported by high-performance computing

solutions.

GPUs are considered to be extremely fast processors,

especially when used in computational systems like multi-

GPU. On the other hand, the use of multiple GPUs has

presented additional challenges; for instance, regarding the

efficient management of reading and/or writing data on the

data store system, time-consuming data transfers between

the CPU and GPU, and load balancing. The main issue in

shared memory systems is that data must be protected

against simultaneous access so that errors and data incon-

sistency can be avoided; additionally, the number of par-

allel tasks must be at least the same number of processing

units (cores), and each task must have enough memory for

its computing requirements.
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