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Abstract The conventional method for image impulse

noise suppression is standard median filter utilization,

which is satisfying for low noise densities, but not for

medium to high noise densities. Adding a noise detection

step, as proposed in the literature, makes this algorithm

suitable for higher noises, but may degrade the perfor-

mance at low noise densities. An adaptive switching

median-based (ASM) algorithm has been used in this paper

for noise suppression. First, the algorithm is modified to

achieve a higher PSNR, especially for low noise densities.

Then, the structure of the modified algorithm is improved

to obtain higher operating speed in hardware implementa-

tion, for real-time applications. The implemented algorithm

works in two steps, detection and filtering. The noise

detection method is enhanced, by merging the amount of

memory used for the algorithm implementation. As a

result, less hardware resources are required, while the

chance of false noise detection is reduced, due to the

improvement made in the algorithm. In the filtering step, an

adaptive window size is used, based on the measured noise

density. This improved algorithm is adopted for more

efficient hardware implementation. In addition, high par-

allelism is utilized to boost the operating frequency, and

meanwhile, clock gating is used to lower power con-

sumption. This architecture, then, has been implemented

physically on an FPGA, and an operating frequency of

93 MHz is achieved. The hardware requirement is

approximately 10,000 4-input LUTs, and the processing

time for a 512 9 512 pixels image is measured at 12 ms.

Keywords Impulse noise � Noise suppression � Adaptive
switching median-based algorithm � ASM algorithm �
Adaptive window size � FPGA implementation � DE2-115
board

1 Introduction

Image restoration is one of the most important fields in

digital image processing, and its aim is to restore the cor-

rupted image from the degraded one [1–4]. Denoising is an

image restoration technique, and many researches and

studies have been done with the purpose of introducing

more efficient algorithms. An algorithm would be consid-

ered more efficient, which suppresses the noise as much as

possible, while resulting in a less blurred image. Noise

suppression as a low-level processing has a direct effect on

higher-level processes, such as image segmentation and

recognition [5–9]. In other words, less efficient algorithms

for noise suppression lead to more faults in higher-level

image processing. With developments in modern image

capturing devices technology, noise sensitivity rises that

leads to noisier images [10]. Hence, there is an ever

growing demand for more sophisticated and efficient

algorithms.

Noise suppression algorithms are divided into three

major groups: noise suppression without detection, noise

suppression with detection and combined method. The first
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group has low complexity, simple implementation and is

appropriate only for low noise densities, while the second

and third groups are more complex, more efficient and able

to suppress higher noise densities.

Among the first group, the center-weighted median

(CWM) filter [11] is outstanding. In this method, the center

pixel of the neighborhood is given a constant even number

weight, in order to increase the effect of the center pixel.

Output of the CWM with a L 9 L window equals the

output of a standard median filter, in which the center pixel

has weight of 2 N, but the neighborhood pixels have

weight of 1. In this way, the effective size of the filter

equals ‘‘2 N ? (L 9 L) - 1.’’ This method has excellent

performance in low noise densities, owing to more

emphasis on the center pixel. However, by increasing the

noise density, the performance decreases notably, because

it tends to substitute the corrupted value or near-corrupted

value for the center pixel. In fact, in higher noise densities,

standard median filter performs better than the CWM filter.

The CWM method also has a simple hardware

implementation.

Among the second group, progressive switching median

(PSM) filter [12] is worth mentioning here. In this method,

the filtering and detection are performed iteratively, in

order to boost the performance. This method has proper

performance for noise densities between 10 and 70%. The

problem with the hardware implementation of this method

is that it needs creation of some flag images and grayscale

images in either steps of detection and filtering. Thus, the

processing time and the memory usage are considerably

high, which suits this method only for PC simulations and

not for real-time systems.

Another outstanding work in the second group is the

peak-and-valley filter [13]. This filtering method is a

nonlinear recursive filter which is neither a statistical filter

nor a morphological filter. The 1D version of this method is

used for impulsive noise suppression. This method

removes all the peaks and valleys of the neighborhood. It is

based on two steps of cutting filling and filling cutting, and

this act is iterated recursively to the point that all peaks and

valleys of the image are removed. This algorithm suffers

from deficient noise detection, and also because of the

excessive smoothing of the image, it blurs the image

significantly.

There are some worthy detection algorithms in the lit-

erature, from which we can mention the Laplace-based

detection algorithm that exploits four 1D directional cores,

which are sensitive to edges in four directions. This method

also suffers from high computational complexity, which

results in high processing time and resource usage.

Finally, among the last group, tri-state median filter is

highlighted [14]. This method consists of three filters of

standard median, identity and center-weighted filters and

also a switching logic. The disadvantage of this method is

its tri-state switching logic that relies on a pre-defined

threshold. It is obvious that the threshold value varies from

one image to another, and using a pre-defined fixed

threshold offers improper choice between the filters, and

eventually lowers the performance for certain images.

Among the novel efficient algorithms, adaptive switch-

ing median-based (ASM) filter for impulse noise removal

seems to be an appropriate method for low-to-medium

noise densities suppression. This method has both high

efficiency and moderate complexity that makes it more

desirable for real-time hardware implementation [15–18].

In this paper, a novel system is introduced for low-to-

medium noise densities suppression, based on a modified

ASM algorithm. The system is made up of two sections:

noise detection and noise filtering. A 512 9 512 8-bit

resolution grayscale image has been chosen as a test image.

This impulsive noise suppression system has been imple-

mented physically on an FPGA of Altera Cyclone IV

family.

We claim novelty for the proposed improvement on the

ASM algorithm, which enhances the PSNR performance,

especially for low noise densities. Also, the structure is

adopted for high parallelism and speed improvement in the

hardware for real-time operation.

This paper focuses on three major subjects, including

the algorithm, the architecture and the physical imple-

mentation. In Sect. 2, the modified ASM algorithm is dis-

cussed. In Sect. 3, novel architectures are proposed for

noise detection and noise filtering systems. In Sect. 4,

physical implementation of the noise suppression system

on a DE2-115 evaluation board is illustrated. Sect. 5 pro-

vides a discussion on the system implementation, and

finally, in Sect. 6, the paper is concluded.

2 Algorithm

2.1 The primary ASM algorithm

An ASM filter is chosen, due to its high efficiency and

simplicity. This suppression method that belongs to the

second major group mentioned above has two steps. In the

first step, noise detection mechanism detects the corrupted

pixels, and in the second step, only the corrupted pixels are

filtered. Therefore, the method is considered as a two-pass

type filter. A 3 9 3 window sweeps the whole image from

top left to bottom right as shown in Fig. 1. In each window,

maximums and minimums are detected. If a pixel is

maximum in the window, the corresponding address in the

maximum map sheet is incremented, and if a pixel is

minimum, the corresponding address in the minimum map

sheet is incremented. Because it is a 3 9 3 size window,
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each pixel appears in nine different windows as the 3 9 3

window moves through the image. At the end of the pro-

cess, i.e., when the 3 9 3 sliding window reaches the end

of the image, the pixels that have value of ‘‘9’’ in each

sheet are known as corrupted pixels, because they have

been recognized maximum or minimum, nine times in nine

different 3 9 3 windows. At the end of the process, the

pixels that have value of ‘‘9’’ in each sheet are known as

corrupted pixels. At last, the maximum and minimum map

sheets are mapped to a binary decision map. In the binary

sheet, pixels with value of ‘‘9’’ are mapped to ‘‘1’’ and the

rest are mapped to ‘‘0’’ [15]. This procedure is shown for a

small part of a test image in Fig. 1.

This method is examined for three test images in Fig. 2

and is proven not to be efficient for low noise densities.

Figure 3 indicates the number of noisy-pixel over-estima-

tions versus the real noisy pixels in percentage, for the

three test images. As it is obvious from the diagram, in low

noise densities, number of healthy pixels that are detected

as corrupted pixels rises rapidly. The reason is that in low

noise densities, in some regions, there are no corrupted

pixels, while the smallest difference between a healthy

pixel and its neighborhood pixels is detected as noise. In

addition, background pixels that have the same intensity

are mapped to both minimum and maximum map sheets

and, therefore, are identified as noisy pixels. Hence, the

algorithm is required to be modified.

2.2 The proposed modified ASM algorithm

The problem of over-estimation originates from the fact

that the two minimum and maximum sheets are not related.

Therefore, the solution is to relate the two sheets to each

other. In addition, there is no need for three mapping

sheets; one sheet is sufficient for the mapping procedure.

Therefore, in the improved algorithm, only one sheet is

used for mapping. If a pixel is found to be minimum in a

window, the corresponding address in the mapping sheet is

decremented and if the pixel is found to be maximum, the

corresponding address in the mapping sheet is incremented.

110 114 108 128 137 141 145 76
125 115 122 121 120 123 137 157
175 123 128 130 130 69 77 122
131 125 119 220 42 121 134 133
126 132 108 127 62 130 96 137
92 133 120 124 126 125 136 85
85 135 136 131 136 137 100 119

129 169 175 155 174 113 154 150

Minimum Sheet

Part of Corrupted Image

Binary Sheet

3×3 Sliding Window

Maximum Sheet

0 0 0 0 1 1 1 0
0 0 0 0 0 0 1 2
7 0 0 1 0 0 0 0
0 0 0 9 0 0 1 0
0 0 0 0 0 0 0 8
0 1 0 0 0 0 1 0
0 0 3 0 1 3 0 0
0 1 3 0 2 0 1 0

0 0 3 0 0 0 0 2
0 2 0 0 0 0 0 0
0 0 0 0 0 5 2 1
0 0 0 0 9 0 0 0
0 0 4 0 3 0 0 0
2 0 2 0 0 0 0 7
6 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Fig. 1 Procedure of mapping

Fig. 2 Three standard test images, a Girl, b Boat, c Pepper
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Consequently, pixels that have value of ‘‘9’’ are detected as

salt noisy pixels, and the ones that have value of ‘‘-9’’ are

detected as pepper noisy pixels. Reducing three mapping

sheets to one sheet results in lower memory requirements.

Figure 4a, b shows the modified procedure of mapping for

a typical content part and background part of a test image,

respectively, which indicates the effectiveness of the

solution for low noise densities. As seen in this figure, no

noisy pixel is detected in the background. To investigate

the effect of this solution on real images, the test images of

Fig. 2 are used. The results shown in Fig. 5 indicate the

significant decline of noise over-estimation percentage for

the three test images. For example, for 10% noise density

in the Boat and Girl images, the number of noisy-pixel

over-estimations reduces from 1.98 and 4.57% for the

primary algorithm to 0.76 and 1.86% for the modified

algorithm, respectively.

3 Architecture

Noise Suppression System, itself, consists of Noise Detec-

tion System and Noise Filtering System. Noise Detection

System initially finds the corrupted pixels, and then, Noise

Filtering System modifies them. In order to achieve a more

precise value for median filtering, a 3 9 3 window is

selected for low noise densities, and a 5 9 5 one is used for

medium noise densities, in the filtering system. Choosing

between the above two choices is performed after the

detection step, based on the percentage of noisy pixels

detected, and a pre-defined threshold value. For example,

for the ranges of 0–30 and 30–60%, window sizes of 3 9 3

and 5 9 5 are selected, respectively.

This decision is made, because in medium noise densi-

ties, several pixels in the 3 9 3 window are corrupted;

hence, window size is required to be increased in order to

achieve larger statistical population.

An 8-bit 512 9 512 standard image of ‘‘Boat’’ has been

picked up for evaluating the algorithm. The original test

image has been depicted in Fig. 6. In order to show the

performance of the proposed method for filtering step, i.e.,

changing the size of sliding window, different percentages

of pixel corruption are applied to the original image, and

then, a 3 9 3 detection window is used for detecting noisy

pixels. After that, different sizes of filtering windows, i.e.,

3 9 3 and 5 9 5, are utilized, and PSNR of the restored

images is demonstrated in Fig. 7. As shown in this figure,

increasing the size of window, in higher densities of noise,

results in PSNR improvement.

For implementation, a RAM memory with 262,144

bytes is needed for storage of both corrupted and processed

image in the same place. This RAM is called RAM1.

Another RAM is required for storage of the noise mapping

sheet that is called RAM2.

Figure 8 shows the two main blocks of the system

implementation, which are Noise Detection System and

Fig. 3 Difference between real and estimated noise versus real noise

in percentage for three images of Fig. 2

Part of Corrupted Image 

Noise Map
(a)

Part of Background

Noise Map
(b)

135 135 135 135 135 135 135 135
135 135 135 135 135 135 135 135
135 135 135 135 135 135 135 135
135 135 135 135 135 135 135 135
135 135 135 135 135 135 135 135
135 135 135 135 135 135 135 135
135 135 135 135 135 135 135 135
135 135 135 135 135 135 135 135

110 114 108 128 137 141 145 76
125 115 122 121 120 123 137 157
175 123 128 130 130 69 77 122
131 125 119 220 42 121 134 133
126 132 108 127 62 130 96 137
92 133 120 124 126 125 136 85
85 135 136 131 136 137 100 119

129 169 175 155 174 113 154 150

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 -3 0 1 1 1 -2
0 -2 0 0 0 0 1 2
7 0 0 1 0 -5 -2 -1
0 0 0 9 -9 0 1 0
0 0 -4 0 -3 0 0 8
-2 1 -2 0 0 0 1 -7
-6 0 3 0 1 3 -1 0
0 1 3 0 2 -1 1 0

Fig. 4 Modified procedure of mapping for a a typical content part

and b a typical background part of a test image

Fig. 5 Difference between real and estimated noise versus real noise

in percentage, for three images of Fig. 2, in the proposed modified

procedure
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Noise Filtering System. The Noise Detection System reads

the noisy image from RAM1 and detects the noisy pixels

and stores a map of those noisy pixels in RAM2. Then, the

Noise Filtering System reads both the original image from

RAM1 and noisy pixels’ map from RAM2 and then modi-

fies the corrupted pixels based on the described algorithm

and then re-writes the modified pixels back to RAM1.

Therefore, the original image is replaced with the denoised

image, after the algorithm is applied. Since the two blocks

do not work simultaneously, there would be no conflict in

accessing the memory.

Details of the two main blocks of the system are

described in the following.

3.1 Noise Detection System

Noise Detection System consists of major components such

as Window System, Window Pixels Addressing, Noise

Address Detector, Controller and Parallel/Serial Blocks.

Noise detection uses a 3 9 3 window to sweep the image.

3.1.1 Window System

Window System consists of Sliding Window and Window

Controller, as shown in Fig. 9. The Sliding Window is one

of the most fundamental components for implementation of

space domain filters. It is also called serpentine memory,

because of its serpentine movement through the image, as

shown in Fig. 10.

The Sliding Window indeed converts the 2D signal to

1D, for the following processing. It consists of shift reg-

isters and FIFO buffers [19]. The buffer length is equal to

the image width minus 3. For implementation of a

(2 N ? 1)9(2 N ? 1) window, 2 N FIFO buffers and

2(2 N ? 1) ? 1 shift registers are required. Consequently,

a 3 9 3 window consists of 2 FIFO buffers and 7 shift

registers, as shown in Fig. 11. In this figure, W stands for

the image width. Sliding Window has a pipeline architec-

ture, so that after a definite delay, it outputs 9 pixels per

clock cycle.

For automation of the Sliding Window operation, a

controller called Window Controller that handshakes with

the Sliding Window block is needed. The Window Con-

troller reads image pixels located in image RAM, i.e.,

RAM1, from top-left to bottom-right corner of image that is

fed serially to the Sliding Window. The write and read

operations of the buffers are also controlled by this unit.

After the window is formed, it is necessary to map all

addresses of the pixels within the window on the basis of a

reference address. The reference address is defined as

address of a pixel that first window is formed, when it

reaches the sliding window. Thereafter, with each clock

cycle, the reference address is incremented by one. If the

Fig. 7 PSNR comparison for utilizing 3 9 3 and 5 9 5 filtering

windows

Noise 
Detection 
System

Noise
Filtering 
System

Noise RAM
(RAM2)

Image RAM
(RAM1)

Fig. 8 Main blocks of Noise Suppression System

RAM1
(Image RAM) Sliding 

Window
Window 

Controller

Window System

Fig. 9 Structure of the Window System

Fig. 6 The 8-bit 512 9 512 standard image of ‘‘Boat’’
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reference address is named X, addresses of the neighbor-

hood pixels are given according to Fig. 12, where N is the

image width. Figure 12a shows the procedure of window

formation, while Fig. 12b is its equivalent window located

on image.

3.1.2 Noise Address Detector

Noise Address Detector is a component of the Noise

Detection System. This unit is comprised of Max–Min

Filter and Max–Min Address Finder. The Max–Min Filter

finds the maximum and minimum values within the win-

dow. It consists of 3-input sorters rather than 2-input sor-

ters, in order to decrease the number of stages of the filter

[20]. The architecture of the Max–Min Filter is shown in

Fig. 13. The Max–Min Address Finder unit finds the

addresses of the maximum and minimum pixels in the

current window. The architecture of the Noise Address

Detector is shown in Fig. 14.

3.1.3 Parallel/Serial blocks and Controller

The Parallel/Serial blocks and the Controller are the other

building blocks of the Noise Detection System. Intercon-

nection between them is shown in Fig. 15. The Parallel/

Serial blocks receive the maximum and minimum pixels

addresses of the window from the Noise Address Detector

unit and serially feed them to the RAM2 address port. The

Controller block generates the required control signals for

the proper operation of the Parallel/Serial blocks. As the

detection process is finished, Controller triggers the Noise

Filtering System to start its operation. As mentioned ear-

lier, instead of using two memories, one for salt noise and

the other for pepper noise mapping, only one RAM

memory is used for mapping of both. The cells that are

addressed by maximum addresses (i.e., Parallel/Serial1

block) are incremented, and those addressed by minimum

addresses (i.e., Parallel/Serial2 block) are decremented.

The stored values are represented in 2’s complement. Thus,

those cells that hold ‘‘9’’ or ‘‘01001’’ are identified as salt

.

.

.

.

Fig. 10 Movement of window through the image

(W-3)× 8 Buffer

(W-3)× 8 Buffer

regInput from Image 
RAM1

reg

reg

reg

reg

reg reg

Fig. 11 Sliding Window components (W is the image width)

X-2X-1X

X-(2N)X-(2N)-1X-(2N)-2

X-NX-N-1X-N-2

X-2X-1X

X-N-2X-N-1X-N

X-2N X-2N-1 X-2N-2

(a)
(b)

Fig. 12 Window pixels addressing, a procedure of window forma-

tion, b equivalent window located on image

Max-Min

Max-Min

Max-Min

Max

Min

Fig. 13 Architecture of Max–Min Filter

max-min filter

Center Address Window Input

max-min address finder

Max Address Min Address

Fig. 14 Architecture of Noise Address Detector
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noise, and those hold ‘‘-9’’ or ‘‘10111’’ are detected as

pepper noise; the other values are considered to be healthy

pixels. Note that 5-bit words are required for the mapping

sheet, and therefore, RAM2 has 262144 9 5-bit capacity.

3.2 Noise Filtering System

Noise Filtering System, as also shown in Fig. 16, consists of

Controller, Window Size Selector, Noise Address Finder,

Median Filter and Neighborhood Address Generator units.

The system is recursive, meaning that if some noisy pixels

are located sequential, the next pixel utilizes the modified

previous pixels. To find out the effect of using the modified

previous pixels in comparison with using the corrupted

ones, a MATLAB simulation is performed. Results show

that for 20 and 50% noise densities, using modified pixels

instead of corrupted ones, PSNR improvements of 4.7 and

3 dB are achieved, respectively. The details for Noise Fil-

tering System sub-blocks are discussed below.

3.2.1 Window Size Selector

Window Size Selector block estimates the noise density

percentage through calculating the number of noisy pixels,

detected by Noise Detection System, divided by the num-

ber of image pixels. This unit, then, based on a pre-defined

threshold that mentioned earlier, generates a signal that

determines the size of window and configuration of the

other building blocks of the Noise Filtering System, such as

Parallel/Serial and Median Filter.

3.2.2 Controller

As shown in Fig. 16, Controller unit controls the sub-

blocks of the Noise Filtering System. This unit is triggered

at the end of detection phase and starts the filtering process.

The Controller block reads the complete noise mapping

memory (RAM2) cell by cell. If content of a cell equals

‘‘01001’’ or ‘‘10111,’’ which means the related pixel is

noisy, the Controller unit triggers its following module,

i.e., Neighborhood Address Generator.

3.2.3 Neighborhood Address Generator

This unit receives the center pixel addresses from the

Controller and generates the neighborhood addresses

considering the image width. These addresses are used for

setup the windows later.

Noise Detection System

Noise Address Detector

Window System

MAX-MIN
Filter

Max-Min Address 
Finder

Parallel/Serial

Parallel/Serial

M
ux

Controller
Noise RAM

(RAM2)
Image RAM

(RAM1)

Fig. 15 Architecture of Noise Detection System

Noise Filtering System

Noise RAM
(RAM2)

Controller
Neighborhood Address 

Generator (3×3/5×5) Parallel/Serial (3×3/5×5)

Serial/Paralle (3×3/5×5)
Median Filter

(8/24 Inputs)

Image RAM
(RAM1)

Window 
Size 

Selector

Address

Input 
Data

Output 
Data

Median

Fig. 16 Architecture of Noise Filtering System
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3.2.4 Parallel/Serial and Serial/Parallel

The Parallel/Serial accepts the neighborhood addresses

from the previous unit and feeds them into the RAM1

address port. Then, the neighborhood pixels’ values are

read from RAM1 and sent to the Serial/Parallel in order to

simultaneously enter the Median Filter block.

3.2.5 Median Filter

After the window pixel values are received, Median Filter

is only applied to the neighborhood pixels with exclusion

of the center pixel. This filtering scheme results in a more

precise value, since the corrupted center pixel is omitted

from the window statistical population.

The core of the Median Filter is a constant two-stage

sorting network, which means that the number of stages

does not vary with number of inputs. The filter output is the

median of the input sequence. For an even number of input

items, output of this filter equals to average of the two

median elements [21].

The Median Filter output is written back to RAM1 at the

center pixel address, where the noisy pixel is located. This

procedure will continue until the last pixel of the image.

4 Implementation on FPGA

In this section, implementation of the system on the target

FPGA is investigated. The implementation platform is

EP4CE115F29C7 FPGA, which is a member of Altera

Cyclone IV family.

In order to increase the operational frequency and

reduce the disturbing glitches, the entire blocks of the

systems became synchronized. This is performed by adding

delay modules, to equalize the delays in the parallel paths,

in all sub-blocks. In addition, high parallelism and inter-

connection are also exploited in the structure of the median

filter so that it acquires the median of any number of inputs

within fixed two clocks. This technique reduces the delay

and increases the speed of the entire system.

In the following subsections, resource usage, power con-

sumption and operational frequency of the implemented

system are presented and comparedwith some previous work.

Evidently, comparisons may not be very reasonable, because

most of the algorithms implementedonFPGAare intended for

low noise density suppression, and only few have claimed the

implementationofmediumorhighnoise suppression systems.

In addition, FPGAs have a vast range of performances, power

consumptions and costs, which cause the comparison to be

less appropriate. Therefore, FPGA devices used for imple-

mentation as well as the resulted PSNR value are mentioned,

wherever the information is available.

4.1 Resource usage

Resource usage of the proposed medium noise suppression

system is shownand comparedwith previouswork inTable 1.

A fair comparison is not straightforward, since the imple-

mentations are different in terms of noise removal technique,

image size, PSNRperformance, operating frequency andmost

importantly FPGA platform. Also, the methods of reporting

the hardware usage are not exactly the same.

The implementation of the proposed technique on the

target platform requires 9954 4-input LUTs. For compar-

ison, it is tried to find methods that can be applied to

medium noise densities. However, two samples of low

noise densities are added to the table, as well, which are

located at the last two rows of the table. Please note that

from the medium noise density techniques, Ref. [23] has

introduced a low complexity method, which is useful for

fast and low cost applications. It is implemented in 1397

logic cells only and has achieved a low PSNR of 26.86 dB.

Ref. [24] has similar PSNR performance to us, but the

hardware usage is not reported. Ref. [22], especially the

pipelined version, could be used for an almost fair com-

parison. We have used more resources that is mostly due to

the parallelizing techniques and as a result have achieved

higher speed. Also, the size of image in our implementation

is 512 9 512, which has resulted in larger buffer sizes and

therefore larger number of FFs.

In addition to the hardware usage reported in the table,

we have used 3,407,872 bits, from which

512 9 512 9 8 = 2,097,152 bits are used to store the

original and the denoised image (RAM1), and

512 9 512 9 5 = 1,310,720 bits are used for storing the

noisy pixels’ map (RAM2).

4.2 Operating frequency

Timing analysis is a process for delay evaluation in logic

circuits and digital systems, in order to find the conditions,

in which the system can operate correctly and reliably. One

of these conditions is maximum operating frequency. This

frequency is determined and restricted by the critical path.

Using TimeQuest slow 85 �C model, operating frequency

of the system implemented physically on the target plat-

form is measured, which is achieved at 93.27 MHz.

4.3 Power analysis

PowerPlay Power Analyzer of Altera is used for analysis of

power consumption. Clock gating technique is utilized in

order to reduce dynamic power of the system. This tech-

nique is used in all blocks except RAMs and the Controller

blocks. Using clock gating in RAMs is avoided, due to

some unsolvable timing issues. In each block, there is a
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combinational logic that declares the status of idleness.

This status is used for clock gating management. In this

way, modules, which are idle, become clock gated. The

Altera Standard Clock Gating Scheme is exploited to avoid

glitches. The power consumption distribution of the system

is shown in Table 2.

4.4 Physical implementation

The proposed system is physically implemented on

Altera’s DE2-115 board. Figure 17a, b depicts the input 20

and 60% density noisy images, and Fig. 17c, d shows their

respective output denoised images. Physical implementa-

tion with a VGA interface display is shown in Fig. 18. For

the Boat image with 512 9 512 pixels and 50% noise

density, after applying the algorithm, a PSNR of 35.15 dB

is achieved, and the process is finished in 12 ms.

A summary of the PSNR performance of the system is

reported in Table 3.

5 Discussion

As mentioned earlier, the denoising operation improves the

picture quality, and therefore, it is necessary before doing

other higher-level image processing. In order to illustrate

the effect of impulse noise on other processes, such as edge

detection, 20% impulse noise is added to the original image

as shown in Fig. 19. The Sobel filter is applied to both

corrupted image and the denoised one. As shown, even for

low-density additive impulse noise, denoising is vital,

before edge detection.

The system that is implemented on FPGA is assumed for

denoising a 512 9 512 pixel image. For larger size images,

larger amount of memory is required and also more time is

needed for denoising. It is expected that the memory size

and processing time increase linearly with size of the input

image. For example, for a 1024 9 768 pixel image, the

processing time is expected to be tripled or 36 ms.

An improvement, which can be applied to the FPGA

implementation, is that if low memory usage is a require-

ment, the size of noise RAM (RAM2) can be reduced, by

combining the two operating phases, detection and filter-

ing. When the Noise Detection System is working on the

3 9 3 window around pixel (x, y), all pixels of rows 1 to

x - 2 have undergone noise detection, and the noisy ones

Table 1 Implementation results of our system and comparison with previous work

Ref. # Method Device (device

family)

Hardware usage Image size PSNR (dB)

(image,

noise %)

Operating

frequency

(MHz)

Proposed system Adaptive switching
window

EP4CE115F29C7
(Altera Cyclone IV)

9954 4-inp. LUTs,
10293 Slice FFs, 5
IOs

512 9 512 33.14

(Lena, 50%)

35.15

(Boat, 50%)

93.27

[22] w/o pipeline Edge preserving XC3s500e-5-pq208
(Xilinx Spartan III-
E)

2762 Slices, 2274
Slice FFs, 3743
4-inp. LUTs, 18 IOs

128 9 128 34.41

(Lena, 50%)

34.55

(Boat, 40%)

21.66

[22] with pipeline 3705 Slices, 2551
Slice FFs, 7242
4-inp. LUTs, 18 IOs

40.97

[23] Low complexity
(5 9 5 window)

EP2C20F484C7 N
(Altera Cyclone II)

1397 Logic Cells,
8432 Slice FFs

512 9 512 26.86

(Lena, 50%)

93.76

[24] Decision-based
adaptive median
(DBAM) filter

XC5VLX50T-
2ff1136 (Xilinx
Virtex V)

– 512 9 512 34.94

(Lena, 50%)

–

[26] Median deviation
based

Xc3 s 500e-4ft256
(Xilinx Spartan III-
E)

2900 Slices, 849 Slice
FFs, 4435 4-inp.
LUTs

256 9 256 26.59

(Lena, 50%)

–

[15] Adaptive median filter
(AMF)

EPF10 K200SRC240-
1 (Altera APEX
20K PLD)

9972 LEs, 52 IOs 260 9 244 37.43

(Cafe, 5%)

65

[25] Adaptive median filter
(AMF) (5 9 5
window)

XC5VLX50T-
2ff1136 (Xilinx
Virtex V)

1352 Slices, 2504
6-inp. LUTs, 192
FFs, 16 IO Bocks

– 38.41

(Lena, 5%)

–

Table 2 Power analysis for a medium noise density system

Power (mW)

Core dynamic power 75.15

Core static power 103.12

I/O blocks power 31.46

Total power 209.73
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are flagged for filtering. Therefore, the Noise Filtering

System can operate on those pixels and suppress their

noises. It means that filtering can start after detection

reaches the third row of the image. With this technique,

also the propagation delay (the time for a pixel going

through the noise suppression system from input to the

output) is significantly reduced. However, those enhance-

ments are achieved at the cost of higher system complexity.

6 Conclusions

In this paper, first, a highly efficient algorithm called ASM,

which is used for image impulse noise suppression, was

reviewed and some modifications were proposed on it for

low noise densities. Then, an architecture was introduced

for the hardware implementation of the modified ASM

algorithm. The system consists of two major sections of

noise detection and noise filtering. The first section detects

the noisy pixels in image and the latter suppresses only the

corrupted ones. In this way, PSNR improved significantly

[27–29]. This architecture has exploited pipelining and

parallelism techniques in order to improve the performance

for real-time applications. In the implementation level,

memory resources have been significantly reduced, as well.

The system has been physically implemented on an FPGA

from Altera Cyclone IV family, using the DE2-115 eval-

uation board. The achieved operational frequency is

93.27 MHz. Experimental results confirm the functionality

Fig. 17 The results of applying the algorithm, implemented on an

FPGA, on noisy images. a, b The input noisy images with 20 and 60%

noise densities. c, d The related output denoised images

Fig. 18 Physical implementation of the system on FPGA

Fig. 19 Effect of noisy pixels on edge detection process, a image

with 20% noise density, b the denoised image, c, d effect of applying

edge detection on both images

Table 3 PSNR performance of the proposed system

IMAGE Noise density (%) PSNR (dB)

Boat 30 38.86

50 35.15

70 30.19

Lena 30 37.76

50 33.14

70 27.53

Pepper 30 36.58

50 32.15

70 28.74
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of the system. For visual verification, the processed image

has been displayed through a VGA interface.
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