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Abstract In this work, a novel lane detection method

using a single input image is presented. The proposed

method adopts a color and shadow invariant preprocessing

stage including a feature region detection method called as

maximally stable extremal regions. Next, candidate lane

regions are examined according to their structural proper-

ties such as width–height ratio and orientation. This stage

is followed by a template matching-based approach to

decide final candidates for lane markings. At the final stage

of the proposed method, outliers are eliminated using the

random sample consensus approach. The proposed method

is computationally lightweight, and thus, it is possible to

execute it in real-time on consumer-grade mobile devices.

Experimental results show that the proposed method is able

to provide shadow, illumination and road defects invariant

performance compared to the existing methods.

Keywords Advanced driver assistance systems � Lane

detection � MSER � Shadow invariant � Illumination

invariant

1 Introduction

Nowadays the increasing number of vehicles on roads

makes traffic safety more important. The need for driver

assistance systems that contain reliable methods to inform

drivers about their mistake for ensuring driver safety is

increasing day by day. These kind of systems are called as

Advanced Driver Assistance Systems (ADAS) in general,

and they attract the attention of consumer electronics and

automotive industry.

An important portion of the accidents originates from

the uncontrolled lane change of vehicles due to driver

fatigue. There are many ADAS to warn the driver and

avoid possible collisions. One of the most commonly used

ADAS for this purpose is called as lane departure warning

system (LDWS) which aims to warn driver when the

vehicle moves out of its lane.

A typical LDWS has lane detection and lane departures

decision stages. Primarily, it is required to detect lane

markings for deciding the lane departures. Lane detection

is a challenging problem because of the illumination and

road conditions. However, LDWS must reliable enough to

detect the lane markings even in the case of serious arti-

facts originating from lighting conditions, environment

effects and the road surface problems. There are many

methods in the literature to detect lane departures as will be

described in the following section. However, only a limited

number of work focus on the real-time implementation of

the LDWS. This paper directly aims efficient detection of

lanes for lane departure detection on a mobile platform.

This paper is organized as follows. In Sect. 2, a survey

of recent lane detection methods is presented. The pro-

posed lane detection method is explained in Sect. 3. The

experimental results and detailed performance evaluation

of the proposed method in this work are discussed in

& Oğuzhan Urhan

urhano@kocaeli.edu.tr
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Sect. 4. In this section, mobile platform implementation of

the proposed method is presented in Sect. 4 as well.

Finally, Sect. 5 provides the conclusion.

2 Related work

Recently, many vision-based methods have been proposed

in the literature for lane detection. Some of these methods

presented in [1–3] employ stereo imaging sensor, whereas

most of them as in [4–6] utilize only single imaging sensor.

In general, lane detection methods consist of three main

stages: preprocessing, feature extraction, and post-

processing.

Preprocessing aims to improve lane detection accuracy

in challenging scenarios like rainy and foggy weather

conditions, poor or over-illumination, and shadow cases. In

feature extraction stage, it is targeted to find lane marking

candidates. After obtaining lane marking candidates, out-

liers are eliminated to obtain final lane marking positions at

the post-processing stage.

Gaikwad et al. [4] proposed a PLSF (piecewise linear

stretching function)-based method for preprocessing stage

to enhance input image. Hough transform [5] is applied to

PLSF improved image, and finally Euclidean-based deci-

sion approach is employed to decide the position lanes. The

performance of this method directly depends on the PLSF

parameters where it may not be possible to find a reliable

set of parameters for different scenarios.

It is difficult to detect dashed lane markings compared to

continuous lanes. As a solution to this problem, a temporal

blurring approach is presented by Borkar et al. [6] where

successive images at specific intervals are used to construct

an average image with continuous lane markings from the

images that may contain dashed lane markings. Addition-

ally, this method employs IPM (inverse perspective map-

ping) as described by Bertozzi et al. [7] to take advantage

of parallelism of the lane markings. After these prepro-

cessing stages, Hough transform is applied to detect

straight lines. Finally, one-dimensional (1-D) correlation is

employed over the samples of region detected by Hough

transform to obtain lane marking features. RANSAC as

presented by Fischler et al. [8] is applied on the detected

lane marking features to decide lane markings. Kalman

filtering [9] is utilized to track detected lanes in this

method.

The proposed method by Espinoza et al. [10] initially

segments the area corresponding to the road employing

mean shift clustering and Gabor textural features. Lane

geometry and position relative to the vehicle in three-di-

mensional (3-D) coordinates is obtained using the seg-

mented road region, steerable filter response, IPM, Hough

transform, and MSAC (M-estimator Sample and

Consensus) as described by Torr et al. [11]. The estimation

of the lane geometry is improved by making use of

extended Kalman filter. In this method, lane detection

process is only applied to the road area obtained by road

segmentation stage. This approach simply improves the

lane detection accuracy and reduces computational load.

For illumination-robust lane detection, a linear dis-

criminant analysis (LDA)-based gradient-enhancing con-

version introduced by Yoo et al. [12]. This method aims to

generate optimal RGB color channel weights that maxi-

mize gradients at lane boundaries on the road to distinguish

lanes from roads. After the gradient-enhancing conversion,

adaptive Canny edge detection, Hough transform, and

curve model fitting are used one after another. This method

is robust to illumination changes thanks to the conversion

method presented.

In nighttime, it becomes challenging to detect lanes due

to the relatively low lighting. The average gray value in

images captured by camera in nighttime is quite lower

compared to that of daytime. A novel algorithm for

nighttime detection of the lane markings is introduced by

You et al. [13]. This method employs neighborhood aver-

age filtering, 8-directional Sobel operator, and thresholding

as proposed by Otsu [14] in the preprocessing stage. Next,

distribution of pixel intensity values on boundaries of lanes

candidates is analyzed. If the same behavior is observed for

different directions, this position is kept as lane candidates

while others are considered as noise. At the last step, the

lane markings are obtained using conventional Hough

transform.

Mammeri et al. [15] proposed MSER [16] and Hough

transform-based lane detection method. For the details of

MSER, the reader is referred to the [16]. In the method

presented by Mammeri et al. [15], possible lane areas are

detected by making use of MSER. Undesirable regions are

eliminated by applying a three-stage refinement algorithm.

Progressive Probabilistic Hough Transform (PPHT) as

proposed by Stephens [17] is used to detect lane markings.

Finally, the detected lane markings are tracked by making

use of Kalman filter. The main drawback of this method

originates from the scanning-based refinement algorithm.

Although this method is able to achieve real-time pro-

cessing performance, it results in many false lane

detections.

A lane detection method which works real time on a

DSP (digital signal processor) platform is presented by

Küçükyıldız et al. [18]. At the first step, this method uses

Sobel filter to detect vertical edges. Next, Hough transform

is applied to the filtered image for detecting lines. At this

stage, only the lines with a certain angle range are taken

into consideration. Next, detected lines are examined pair-

by-pair by taking all possible combination into account. A

line is eliminated if it is not parallel to other lines and its
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distance to other lines is outside of the predefined range.

After elimination, line pair with maximum Hough score is

decided as lane markings. Finally, detected lane markings

are tracked by Kalman filter.

Unlike image analysis-based methods, a convolutional

neural network-based method is proposed in [19]. In this

work, firstly input image is smoothed by making use of a

5 9 5 Gaussian kernel in order to minimize the effect of

noise. Then, it is aimed to enhance the lane markings by

taking the image convolution process with the kernel called

the hat-shape kernel similar to the structure of the lane

markings. A convolutional neural network model is created

in this work, and the lane markings are detected by the

RANSAC method over the feature map formed at the end

of this network. Although the processing speed and eval-

uation criteria are not given, it is stated that the average

lane detection performance is above 96%. A deep learning

framework for mobile devices is recently presented in

Tveit et al. [20]. Even though this framework provides 10

fps processing performance, this cannot be directly used for

lane detection purpose since there many additional steps

required to detect lanes. In general, deep learning-based

methods are not suitable for low-power mobile devices for

real-time processing.

A comparison of recent LDWS methods covered in this

section is given in Table 1. In this table, the methods used

in preprocessing, feature extraction, and post-processing

stages together with the tracking, evaluation metrics used

to determine performance of proposed methods with

employed databases and processing speed on targeted

platforms are given.

3 Proposed lane detection method

The block diagram of the proposed method is shown in Fig. 1.

The proposed single input image-based lane detection method

has three main stages. The first step is to obtain MSER from

the enhanced B color channel of the input image. At the sec-

ond step, some of the MSER are eliminated using a hybrid

method which includes structural analysis and Gauss-based

template matching. Finally, RANSAC approach is employed

on the correlation coefficients obtained at previous step to

detect lane markings by eliminating outliers.

3.1 Preprocessing

The preprocessing stage contains enhanced B channel image

construction and MSER detection steps. The proposed lane

detection method is performed on the selected ROI (region of

interest) to achieve real-time lane detection performance.

Illumination and shadow effects may cause severe prob-

lems for lane detection systems by producing inconsistent

results. MSER can be utilized to detect extremal regions such

as pavement, vehicles, and lanes in road images. However,

shadows and illumination changes might affect MSER

detection results. In these cases, the lanes may not be

detected or detected regions size can display significant

deviation from the real region size. This behavior of MSER

significantly reduces performance of the lane detection. In

order to obtain better lane detection performance at harsh

shadow and illumination variation situations, the proposed

method investigates performance of MSER on different

color space channels (e.g., RGB: red, blue, and green, HSV:

hue, saturation, and value) and grayscale image. Figure 2

shows detected MSERs on different color space channels. In

Fig. 2a, three lane regions are in the input image. These

regions are used to evaluate MSER detection performance on

different color channels. Note that different color codes

simply represent different regions detected by MSER

approach in this figure. As seen from Fig. 2f, nearly all three

regions are detected as MSER when B channel is employed

which makes this color channel suitable for lane marking

candidate detection. Other color channels are not capable of

providing reliable results by missing some lane markings.

The lane markings are generally painted using white or

yellow color on the road surface. White lane markings can

be easily detected by MSER-based approach using the B

color channel of RGB color space even in the case of

varying shadow and illumination. However, detection

performance in the case of yellow lane markings is lower

since the pure yellow color is generated by the maximum

contribution of red and green channels. Thus, it is proposed

to enhance B channel image to alleviate this drawback of

MSER on B channel for the detection of lane markings.

The enhanced B channel image is constructed as

B x; yð Þ ¼ B x; yð Þ þ R x; yð Þ � B x; yð Þj jð Þ � 1 � levelð Þð Þ
ð1Þ

level ¼ OTSU
R x; yð Þ � B x; yð Þj j

max R x; yð Þ � B x; yð Þj jð Þ

� �
ð2Þ

where Rðx; yÞ and Bðx; yÞ denote the red and blue channel of

input images, whereas level shows the threshold level

obtained by Otsu algorithm. The MSER detection results are

shown in Fig. 3. It is seen from these results that the proposed

enhanced B channel image approach improves the MSER

detection results in the case of yellow lanes markings.

3.2 Feature extraction

After the MSERs are obtained in the preprocessing stage,

feature extraction is carried out. The feature extraction

approach utilized in this work is based on structural anal-

ysis of candidate regions and 1-D Gauss template

matching.
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Table 1 Comparison of recent LDWS methods

Method Preprocessing Feature

extraction

Post-

processing

Tracking Performance evaluation

metric

Platform/

speed

(fps)

Database

Borkar et al.

[6]

Temporal blurring,

adaptive thresholding,

IPM

Hough

transform,

Gauss

template

matching

RANSAC Kalman

filter

Average distance

between the ground

truth and lane location

PC/1.25 Their own

dataset

Tapia-

Espinoza

et al. [10]

Mean shift clustering,

Gabor and GMRF

texture features

Steerable

filters, IPM,

Hough

transform

Clothoid

model

equations,

MSAC

Extended

Kalman

filter

RMSE, standard

deviation of the error

PC/5.6 Their own

dataset

(ground

truth

manually

generated)

Yoo et al.

[12]

LDA based gradient-

enhancing conversion,

adaptive Canny edge

detection

Hough

transform,

edge-linking

method

Clothoid

curve

model lane

fitting

– Visual evaluation

(detection of lanes on

real lane markings and

bending directions are

true)

PC/20 Their own

dataset

You et al.

[13]

Neighborhood average

filtering, 8-directional

Sobel operator, OTSU

thresholding, area of

interest

Distribution of

pixels

(gradient,

intensity),

Hough

transform

– – Not mentioned PC/17 Their own

dataset

Küçükyıldız
et al. [18]

Vertical 1-D Sobel filter,

thresholding

Hough
transform,

IPM

Metric

analysis

(lane

properties)

Kalman Not mentioned DSP/30 Carnegie

Mellon

University

dataset

Gaikwad

et al. [4]

ROI, PLSF Hough

transform

Euclidean

distance

– Not mentioned PC/28 Their own

dataset,

LabelMe

dataset

Mammeri

et al. [15]

MSER MSER

refinement,

scanning

algorithm,

PPHT

– Kalman

filter

Not mentioned PC/24 Their own

dataset

Fig. 1 Flowchart of proposed method

1784 J Real-Time Image Proc (2019) 16:1781–1794

123



3.2.1 Structural analysis

The MSERs have some particular characteristics such as

size and orientation. Using these discriminative features,

some of the regions that do not show lane properties can be

eliminated. The lane marking orientations in captured

image vary in a certain range depending on the position of

the image sensor and lens characteristics. The MSERs

which have an orientation at the outside of the specified

range are eliminated. Lane markings display slim shape

which means that their height/width ratio is higher than 2 in

general. In the proposed method, ellipses are fitted to

Fig. 2 MSER detection results in different color channels a original image, b MSER results on grayscale image, c MSER results on hue channel

image, d MSER results on red channel image, e MSER results on green channel image, f MSER results on blue channel image

Fig. 3 MSER detection results of enhanced B channel a original image, b blue channel of original input image, c red channel of original input

image, d proposed enhanced B image, e MSER results on blue channel image, f MSER results on the proposed enhanced image
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MSERs in order to obtain their size ratio. If the ratio of a

principal axis of the ellipse of a given MSER is lower than

a fixed threshold, this MSER is simply eliminated. Figure 4

shows examples of this orientation and size ratio-based

structural elimination of MSERs.

3.2.2 Gaussian-based template matching

The lane markings have to be noticeable to the drivers and

pedestrians. Thus, the lanes are painted with distinct colors

that the drivers can easily differentiate the lanes from typical

gray roads. It is obvious that there is dark-light–dark (DLD)

intensity transition along the lane markings. The DLD tran-

sitions along the lanes that acquired from sampled rows of an

example image are shown in Fig. 5 in the yellow squares.

Figure 6 shows the similarity between DLD intensity

transition at an example lane marking and a 1-D Gaussian

function. It is clear from this cropped figure portion that the

DLD intensity transitions in the yellow squares in Fig. 5 are

similar to the 1-D Gaussian function shown in Fig. 6. The

MSERs obtained in previous stages can be further examined

using this additional shape information. An MSER which is

detected on lanes should display this DLD transitions. The

normalized cross-correlation technique-based template

matching is performed using a predefined template over the

MSERs to eliminate non-lane regions similar to the method

presented by Borkar et al. [6]. The template for the correla-

tion computation is constructed by taking average of lane

marking widths from different databases.

The cross-correlation computation is performed for sampled

rows for a given MSER to reduce computational complexity.

The sampling interval has a minimum value. However, the

sampling interval can be increased proportional to height of the

region. If the majority of template matching results for a given

row in the MSER is greater than a fixed threshold, then this row

is kept for next step. Otherwise, this row is eliminated since it is

considered as a non-road region. The number of remaining rows

in MSER region at this point is computed in the second elim-

ination stage. If the majority of the rows for a given MSER is

signaled as non-road area, then this MSER is directly discarded.

This process is repeated for each detected MSER. Finally, the

position giving the maximum correlation coefficient of each

non-eliminated MSER is selected as lane feature points. Fig-

ure 7 shows feature points obtained using the above-mentioned

majority voting approach.

3.2.3 Post-processing

In the previous stage, candidate lane marking features are

obtained. In the proposed lane detection method, straight lines

are detected by RANSAC algorithm to eliminate outlier fea-

ture points. For this purpose, a line model is employed for

RANSAC. The feature points that are located within a certain

distance to the line are considered as inliers. The lane detec-

tion results after RANSAC stage is shown in Fig. 8.

4 Experimental results and mobile
implementation

There is not a widely adopted approach for the perfor-

mance comparison of lane detection methods. Some

methods do not mention their evaluation metrics they used,

Fig. 4 Structural elimination of MSERs a original image, b MSER detection result, c MSER detection results after orientation and size ratio elimination
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whereas some of them employ only visual evaluation. In

this work, an objective comparison approach is adopted by

computing MSE (mean square error) between the ground

truth and lane position estimation approach.

4.1 Ground truth generation

Ground truth of lane position is required to compute MSE

performance of lane detection methods. Borkar et al. [6]

Fig. 5 DLD transitions along

the lanes

Fig. 6 Similarity between the

DLD transition and 1-D

Gaussian shape a A lane

segment, b example 1-D

Gaussian function

Fig. 7 Proposed voting algorithm a original image, b the points showing lane features
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proposed a technique that uses time-sliced images and

cubic spline interpolation. This approach works well on

clearly marked roads and long-term sequences. But the

interpolation may lead errors on non-marked road frames.

In this work, ground truth data are manually generated

for each frame of used databases. The ground truth data

generation begins by marking points on lane markings in

predefined road area in the captured image. After manual

marking finished, linear interpolation is used to fill points

on lane marking locations between the rows in defined road

area in the image. This process is repeated for each frame.

Then obtained ground truth data are stored in a XML

(Extensible Markup Language) file. The ground truth data

of Caltech lane dataset [21] are generated using the pro-

posed method. Borkar et al. [6] provides ground truth data

of their datasets.

4.2 Lane detection results

Performance assessment of lane detection methods is per-

formed by comparison of lane detection result and ground

truth data. The most common performance evaluation

metrics are true-positive rate (TPR), false-positive rate

(FPR), and accuracy (ACC). These metrics calculated as

TPR ¼ TP

TP þ FNð Þ ð3Þ

FPR ¼ FP

FP þ TNð Þ ð4Þ

ACC ¼ TP þ TN

TP þ FN þ FP þ TNð Þ ð5Þ

In lane detection performance comparison, true-positive

(TP) means that the algorithm detects lane marking cor-

rectly when ground truth lane exists. It is considered as a

false-positive (FP) case when the algorithm detects lane

marking while no ground truth exists for this decision.

True-negative (TN) means that the algorithm does not

decide a lane mark while there is not a ground truth lane in

reality. False-negative (FN) is the case where the algorithm

does not detect any lane marking but ground truth data

exist for this decision [22].

Fig. 8 Lane detection result of proposed method a original image, b detected feature points, c detected results in ROI, d detection results shown

on the original image
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In this work, correct lane detection decision is given

when the distance between detected lane marking and

ground truth data points within a defined interval. This

interval is set to half of the average lane marking width.

Figure 9 shows visual comparative results of the method

presented by Borkar et al. [6], Espinoza et al. [10],

Küçükyıldız et al. [18], Gaikwad et al. [4], Mammeri et al.

[15] and proposed method for different input images from

the Caltech and Borkar dataset. As seen from this figure,

the proposed method is able to provide reliable lane

detection result for harsh road and illumination situations.

Tables 2 and 3 show objective evaluation in terms of

accuracy of these methods on Caltech and Borkar’s dataset

for left and right lane marking separately. Additionally,

average of left and right lane marking detection perfor-

mance is given in Tables 2 and 3 for a general comparison.

The Caltech lane dataset has 1225 frames, whereas Bor-

kar’s dataset includes 2800 frames. Thus, the methods are

compared on the 4025 images totally which includes

challenging input images. Cordova 1 is a sequence with the

least amount of adverse effects so that the lane markings

look obviously. Cordova 2 sequence has extremely bright

regions on the road area because of the illumination. Thus,

this affects DLD intensity transition which is the most

critical feature of lane markings. The shadows that are

heavily observed in the Washington 1 sequence cause the

lane markings to deform and decrease pixel values over the

lane markings. Washington 2 sequence has text-like road

surface signs. In general, the road surface signs have same

color with the lane markings. Some of road surface signs

like texts in the Washington 2 sequence could affect per-

formance of lane marking detection because characters of

text have slim shape with strong edges same as the lane

markings. S1C1 sequence has road corruptions resemble to

lane markings, and S2C1 sequence has shadows, vehicle

near the lane markings and road surface signs. These

adverse effects make it difficult to detect lane markings.

All the methods in Table 2 show good performance for

Cordova 1 test sequence. When the lane detection perfor-

mance of the methods in Table 2 for Cordova 2 sequence is

assessed, the method presented by Gaikwad et al. [4] is the

most affected method by illumination changes because of

the nonadaptive PLSF parameters. The proposed method in

this work is robust to the illumination changes thanks to

MSER method implemented on enhanced B color channel.

This improvement is achieved since MSER applies

thresholding to the intensity image by a set of certain

threshold levels in order to obtain a feature region. When

the Washington 1 and S2C1 sequences are examined, it is

seen that the proposed method in this study is the least

affected method by shadows. The method in proposed by

Mammeri et al. [15] is not affected so much as well.

However, other method significantly affected from the

shadow since they use a preprocessing filter to detect edges.

This filter produces false edges at the shadow regions.

The proposed method by Mammeri et al. [15] uses

MSER on gray scale images directly so that this method is

able to detect lanes on shadow regions. However, these

regions are smaller compared to the detected region by the

proposed method. Since the proposed method employs

enhanced B color channel, it is capable of detecting larger

regions on the lane markings even in the shadow situations.

Thus, it has better performance compared to the method

presented by Mammeri et al. [15].

As seen from Tables 2 and 3, the proposed method

provides best overall performance for these databases

achieving by up to 76% accuracy. It is important to note

that the method presented by Mammeri et al. [15] has

considerably lower performance compared to the proposed

method even though this method also employs MSER. This

comparison reveals the proposed method is able to signif-

icantly improve performance of existing MSER-based lane

detection method thanks to improvements introduced in

this paper.

All parameters used in the proposed method with their

fixed values are given in Table 4. Note that the perfor-

mance results given in Tables 2 and 3 are given according

to the parameter values given in Table 4. The performance

of the proposed lane marking detection method is analyzed

for different values (10 value) of all parameters used in the

method. Figure 10 shows overall accuracy of proposed

method for different values of the important parameters.

As seen from Fig. 10, the performance of the proposed

method is not directly depended on the specific values of

the parameters. The proposed method is able to provide

high accuracy for wide range of input parameters. The only

situation that the performance decreases is shown in

Fig. 10j–l where MSER minimum orientation parameter is

set to a value higher than 0.5 rad (i.e., 28.6�). This is an

expected situation since the higher values of this parameter

might eliminate real lane markings when it is increased.

Thus, it is clear that performance of the proposed method is

not depended on certain parameter values, fixed camera

setup or a particular database.

The proposed method is implemented in MATLAB on a

PC with 2.3 GHz Quad core CPU. Average total execution

times for an input frame of methods proposed by Borkar

et al. [6], Espinoza et al. [10], Küçükyıldız et al. [18],

Gaikwad et al. [4], Mammeri et al. [15] and proposed

method on this PC are given in Table 5. These methods are

implemented in MATLAB for the performance evaluation

of the proposed method. It is important to note that all the

implantations have similar code optimization level. As

seen from these results, the proposed method has reason-

able level of computational load compared to the other

methods in the literature. Even though the methods in [4]
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Fig. 9 Lane detection results a Borkar et al., b Espinoza et al., c Küçükyıldız et al., d Gaikwad et al., e Mammeri et al., f proposed method

Table 2 Evaluation results on Caltech lane dataset [21]

Scene Borkar et al. [6] Espinoza et al. [10] Küçükyıldız et al. [18] Gaikwad et al. [4] Mammeri et al. [15] Proposed

method

Left Right Left Right Left Right Left Right Left Right Left Right

Cordova 1 0.77 0.68 0.63 0.66 0.83 0.91 0.68 0.36 0.88 0.70 0.92 0.92

Cordova 2 0.62 0.51 0.58 0.42 0.53 0.25 0.06 0.14 0.78 0.33 0.87 0.33

Washington 1 0.49 0.67 0.62 0.36 0.76 0.79 0.67 0.11 0.27 0.26 0.81 0.73

Washington 2 0.79 0.79 0.47 0.59 0.85 0.88 0.83 0.27 0.77 0.59 0.87 0.80

Average 0.65 0.64 0.58 0.49 0.71 0.65 0.50 0.20 0.66 0.44 0.86 0.65

Overall average 0.64 0.53 0.68 0.35 0.55 0.76

The bold values show the best performace
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and [18] are faster than the proposed method, their lane

detection performance is significantly lower compared to

the proposed method as seen in Tables 2 and 3. Thus, it is

clear that the proposed method has a good performance/

speed trade-off.

4.3 Mobile platform implementation

of the proposed method

The proposed method is also implemented on smart phones

with Android OS and iOS using C?? language. For the

iOS platform, the application is developed using Swift. We

complied Open CV libraries to employ them in objective

C. Next, we employ these objective C functions in Swift to

process captured image frames. For the Android platform,

the application is developed by Java-DVM. However, the

image processing portion is written in C?? using Open

CV libraries and compiled by making use of NDK to use it

in Java-DVM.

Technical specifications of these devices are given in

Table 6. Additionally, single-instruction multiple data

(SIMD) structure provided by the mobile CPUs is

employed to enable real-time processing. Table 7 shows

average execution times of the proposed method in mil-

liseconds for VGA (640 9 480 pixel) input images. Note

that execution times are obtained using C?? systems

functions.

Usage of SIMD significantly improves computation per-

formance. As seen from this table, the total times required for

a single video frame are 30.94 ms for Android OS and

22.65 ms for iOS. These total times correspond 32.32 and

44.15 fps processing speed, respectively. In Fig. 11,

screenshots of mobile device screen are shown while the

proposed method is running on the mobile device.

Table 3 Evaluation results on Borkar lane dataset [6]

Scene Borkar et al. [6] Espinoza et al. [10] Küçükyıldız et al. [18] Gaikwad et al. [4] Mammeri et al. [15] Proposed

method

Left Right Left Right Left Right Left Right Left Right Left Right

S1C1 0.91 0.58 0.78 0.44 0.74 0.78 0.87 0.55 0.66 0.70 0.91 0.84

S2C1 0.62 0.51 0.25 0.16 0.40 0.51 0.29 0.29 0.30 0.29 0.59 0.64

Average 0.76 0.55 0.51 0.30 0.57 0.65 0.58 0.42 0.48 0.49 0.74 0.74

Overall average 0.65 0.41 0.61 0.50 0.49 0.74

The bold values show the best performace

Table 4 Parameters used in the proposed method

Parameter Value Description

Correlation coefficient threshold 0.8 Used in the correlation computation

Lane marking width 20 Pixel size of lane marking width

Sigma 2 Sigma value of Gauss function

MSER maximum area variation 0.1 Maximum area variation value between extremal

regions at varying intensity threshold levels

MSER minimum orientation 0.4 Minimum orientation of a MSER as a lane marking

MSER maximum orientation 1.2 Maximum orientation of a MSER as a lane marking

RANSAC distance 0.1 The distance between data point and the straight line

used to decide whether a point is an inlier or not

MSER region area range maximum 4080 Maximum size of the region in pixels

MSER region area range minimum 10 Minimum size of the region in pixels

MSER threshold delta 1.5 Step size between intensity threshold levels used as

a criterion in MSER detection

Size ratio 3 MSER height/width ratio

Voting threshold 0.2 Number of correlation result greater than correlation

coefficient threshold for a MSER proportionally

height of a MSER

Sampling interval 3 Minimum value of correlation computation interval

Sample ratio 0.01 Sample ratio determines sampling interval

proportionally height of a MSER
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Fig. 10 Evaluation results of proposed method with varying param-

eters a left, b right, c average detection results with correlation

coefficient threshold; d left, e right, f average detection results with

lane marking width; g left, h right, i average left lane marking

detection results with sigma; j left, k right, l average detection results

with MSER minimum orientation; m left, n right, o average detection

results with RANSAC distance
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5 Conclusions

In this paper, a novel lane detection method using a single

input image is presented. The main target of the proposed

method is providing robust lane detection results even in the

case of severe shadow and illumination effects. Enhanced B

color channel image is feed to MSER approach to detect

candidate regions. Next, characteristics of MSER are

evaluated together with a 1-D correlation-based approach to

decide final candidate lane points. At the last stage, outliers

are eliminated to decide lane positions. The experimental

results show that the proposed method is able to determine

lane markings in various conditions at significantly higher

accuracy compared to existing methods in faster manner.

Real-time mobile device implementations are also provided

to show consumer-grade device performance of the proposed

Table 5 Average execution times of different methods on a PC

Borkar et al. [6] Espinoza et al. [10] Küçükyıldız et al. [18] Gaikwad et al. [4] Mammeri et al. [15] Proposed Method

Time 8520 ms 2520 ms 169 ms 180 ms 50 ms 550 ms

Table 6 Technical

specifications of smart phones
Sony Xperia C4 iPhone 6S

CPU Octa-core 1.7 GHz Cortex-A53 Dual-core 1.84 GHz Twister

RAM 2 GB 2 GB

Screen resolution 1080 9 1920 pixels 750 9 1334 pixels

OS Android OS v5.0 (Lollipop) iOS 9

Table 7 Average execution

times on a smart phone
Stage Time consumed on Android OS (ms) Time consumed on iOS (ms)

Preprocessing 14.60 6.93

Feature extraction 16.10 15.16

Post-processing 0.24 0.56

Total 30.94 22.65

Fig. 11 Screenshots of mobile device implementation of proposed method
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method. We will investigate nighttime performance of the

proposed method as a future work.
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