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Abstract High-quality displays tend to consume signifi-

cant power in mobile devices. Currently, transmissive liq-

uid crystal displays are among the most common. They are

non-emissive and rely on a backlight behind the display

panel. Brightness compensation refers to the signal pro-

cessing technique to adaptively dim the backlight to reduce

the power consumption, while increasing the pixel values

to preserve the visual quality of the images or even enhance

their contrast. Fast computation of the brightness com-

pensation algorithm is essential for practical use. In this

paper, we show that a state-of-the-art brightness compen-

sation algorithm, which requires iterations and is compu-

tationally demanding, can in fact be solved with a closed-

form solution. We also demonstrate with experimental

results that we can achieve approximately an 800-fold

speedup, while providing effectively identical images to

those obtained by the original method.

Keywords Brightness compensation � Contrast
enhancement � Low-power image processing �
Transmissive liquid crystal display � Convex optimization

1 Introduction

Due to recent advancements in display technology, mobile

devices, including smartphones and tablet computers, can

display high-quality images. However, the high power

consumption of these devices, with the display consuming

most of the power [1, 2], means they have a short battery

lifespan, which is a major disadvantage. Furthermore, as a

bigger display consumes more power in general, reducing

the power consumption of devices with bigger displays is

also an important issue. Therefore, the development of

image processing algorithms that can reduce the power

consumption in display panels has been an important

research topic, with many recent researches carried out in

this area [2–12].

Image processing algorithms for power reduction have

to consider the different characteristics of display panels.

For example, recent flat panel displays can be categorized

into emissive displays and non-emissive displays,

depending on the light source [10]. Organic light-emitting

diodes (OLEDs) and liquid crystal displays (LCDs) are the

most representative examples of emissive and non-emis-

sive displays, respectively. As transmissive LCDs, which

use a backlight at the back of the panel, are the most widely

used in the commercial market, most image processing

techniques for power reduction have been developed for

transmissive LCDs [2–9].

The backlight in a transmissive LCD consumes a sig-

nificant amount of power, and the power consumption is

proportional to the intensity of the backlight. Thus, power

reduction algorithms dim the backlight while increasing

pixel values to preserve the same level of perceived qual-

ity. This technique is referred to as brightness compensa-

tion. Among a variety of brightness compensation

algorithms, one of the most effective methods is the
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optimized brightness-compensated contrast enhancement

(BCCE) algorithm [8]. Given a backlight dimming factor,

BCCE formulates the brightness compensation and the

contrast enhancement simultaneously as a constrained

optimization problem. Then, using convex optimization

techniques, the BCCE algorithm obtains the optimal solu-

tion that maximizes the brightness-compensated image

contrast subject to constraints on visual distortion.

1.1 Motivation and contributions

Although the BCCE algorithm provides high image qual-

ities, even when the backlight intensity is reduced to save

power, its real-world applications are limited. For example,

as it employs an iterative method to solve the optimization

problem, its computational complexity is too high for use

in real-time applications. In this work, to address the

aforementioned limitations of the BCCE algorithm, we

develop a computationally efficient brightness compensa-

tion algorithm for transmissive LCDs, making it applicable

to a wide range of practical applications, e.g., devices with

limited computational resources. Specifically, our main

contributions in this paper are as follows: First, we derive a

mathematically rigourous closed-form solution to the

BCCE formulation that enables both significant improve-

ment in speed and complexity analysis, which are infea-

sible for the iterative solution. Second, we experimentally

show that the proposed closed-form solution can drastically

reduce the computation time, while providing practically

identical results to those obtained with an iterative method.

The rest of this paper is organized as follows. Section 2

provides a succinct review of the BCCE algorithm. Sec-

tion 3 then presents the detailed derivation of the closed-

form solution, with the experimental results given in

Sect. 4. Concluding remarks are given in Sect. 5.

2 The brightness-compensated contrast
enhancement algorithm

We review the BCCE formulation in [8], which the pro-

posed algorithm is based on, in this section.

2.1 Problem

The luminance of a transmissive LCD device, perceived by

the human visual system, is determined by the backlight

intensity and the transmittance [2]. The transmittance t(k)

for pixel value k is modeled by

tðkÞ ¼ x1 þ x2 � ðk=255Þc; ð1Þ

where x1, x2, and c are device-dependent parameters [5].

Also, the perceived luminance L of a pixel with value k is

given by

L ¼ Bmax � tðkÞ; ð2Þ

where Bmax is the maximum backlight intensity.

During brightness compensation, when the backlight

intensity Bmax is reduced with the dimming factor b 2
½0; 1� for power reduction, the pixel value k is increased to

yk to maintain the perceived luminance. In [1], it was

experimentally shown with a specific device that the

power consumption is an approximately linear function of

the backlight intensity, which is controlled by parameter

b. From (2), the perceived luminance L0 after brightness

compensation is given by L0 ¼ b � Bmax � tðykÞ. The

brightness compensation maintains the perceived lumi-

nance, i.e., L ¼ L0, which yields the formula

yk ¼ 255 � x1ð1� bÞ þ x2ðk=255Þc

x2b

� �1=c

: ð3Þ

Then, the transformation function that maps input pixel

value k to output pixel value yk can be written as y ¼
½y0; y1; . . .; y255�T in a vector notation.

In addition to brightness compensation, a histogram

modification-based global contrast enhancement technique

can be used [8]. Specifically, let a column vector h repre-

sent the histogram, in which the kth element hk is the

number of pixels with the value k. Then, we convert the

input histogram h to m ¼ f ðhÞ, where m ¼
½m0;m1; . . .;m255�T denotes the modified histogram, and f :

R255 ! R255 is a vector-converting function. Finally, the

transformation function x ¼ ½x0; x1; . . .; x255�T is obtained

by solving

Rx ¼ �mb; ð4Þ

where R 2 R256�256 is the bidiagonal differential matrix

R ¼

1 0 0 � � � 0 0

�1 1 0 � � � 0 0

0 �1 1 � � � 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 � � � 1 0

0 0 0 � � � �1 1

2
6666666664

3
7777777775

ð5Þ

and the normalized column vector of m is given by

�mb ¼
y255

1Tm
m: ð6Þ

Here, the normalized vector �mb is scaled up to the range

½0; y255�, so that the transformation functions x and y in

(4) and (3), respectively, can exploit the same dynamic

range.

734 J Real-Time Image Proc (2018) 14:733–741

123



Note that, while we use the HM techniques to explain

the BCCE formulation for convenience [8], any global

contrast enhancement techniques, e.g., [10, 13–18], can be

used to obtain m in (6), depending on applications and/or

the characteristics of input images.

Then, two objectives, the brightness compensation and

the contrast enhancement, can be achieved simultaneously

by solving the optimization problem

minimize
x

akRx� �mbk2 þ ð1� aÞkRx� Ryk2; ð7Þ

where a controls the relative importance between two

objectives. Here, kRx� Ryk2 is used instead of kx� yk2,
so that it is in the same order of magnitude as kRx� �mbk2.

2.2 Formulation

The transformation function x, obtained by solving (7),

may produce pixel values greater than the maximum dis-

playable value, e.g., 255 for an 8-bit system. In such a case,

they should be restricted to the displayable range, leading

to visual information loss. The information loss xc;k for an

output value xk is quantified by the pixel value difference,

i.e., xc;k ¼ maxfxk � 255; 0g [8]. Then, the total informa-

tion loss DðxÞ when displaying an output image is defined

as

DðxÞ ¼
X255
k¼0

hkx
2
c;k ¼ xTcHxc; ð8Þ

where xc ¼ ½xc;0; xc;1; . . .; xc;255�T , and H ¼ diag ðhÞ.
Then, the goal is to solve the optimization in (7) subject

to the constraint on the information loss DðxÞ in (8). This

can be formulated as a constrained optimization problem,

given by

minimize
x

akRx� �mbk2 þ ð1� aÞkRx� Ryk2 þ kxTcHxc

subject to x0 ¼ y0;

x255 ¼ y255;

Rx � 0;

ð9Þ

where k controls the trade-off between the BCCE and the

information loss, and � denotes the element-wise

inequality between two vectors. In (9), the equality con-

straints x0 ¼ y0 and x255 ¼ y255 restrict the output range of

x to the full dynamic range of the brightness compensation

in (3), whereas the inequality constraint imposes the

monotonicity of x.

Previously, the optimization problem in (9) was solved

using the interior-point method [19]; however, as the pro-

cess is iterative, it requires significant computational

complexity and is unsuitable for real-time applications [8].

An approximation also exists in [20], but it may not satisfy

all the constraints in (9), potentially causing degradations

in image quality.

3 Closed-form solution

In this section, we derive a closed-form solution to the

constrained optimization problem in (9), which is compu-

tationally efficient while satisfying all three constraints.

3.1 Convexity

We first show that the optimization in (9) is a convex

optimization problem, which ensures that a closed-form

solution, if it can be found, is a global solution. Specifi-

cally, since the first and second terms of the cost function

in (9) are quadratic, we only show the convexity of the

third term xTcHxc.

Proof We decompose the function DðxÞ ¼ xTcHxc ¼
gðf ðxÞÞ ¼ gðf0ðxÞ; . . .; f255ðxÞÞ with gðxÞ ¼ kxk2 and

f ðxÞ ¼ H
1
2xc, where the kth diagonal element of H

1
2 is h

1
2

k.

The function g is convex and non-decreasing in each

argument. Also, the functions fkðxÞ’s are convex, since

each fkðxÞ satisfies, for 0� h� 1 and 0� k� 255,

fkðhxþ ð1� hÞyÞ

¼ h
1
2

k maxfhxk þ ð1� hÞyk � 255; 0g

¼ h
1
2

k maxfhðxk � 255Þ þ ð1� hÞðyk � 255Þ; 0g

� hh
1
2

k maxfxk � 255; 0g þ ð1� hÞh
1
2

k maxfyk � 255; 0g
¼ hfkðxÞ þ ð1� hÞfkðyÞ:

ð10Þ

Therefore, DðxÞ ¼ gðf ðxÞÞ is a convex function of x, since

the composition of a convex non-decreasing function and a

convex function is convex [21]. Then, as the cost function

is a convex function and the feasible constraint sets are

convex, the problem in (9) is a convex optimization

problem. h

3.2 Closed-form solution

To solve the optimization problem, we define the Lagran-

gian L : R256 � R256 � R256 ! R associated with the

problem in (9) as

Lðx; l; mÞ ¼ akRx� �mbk2 þ ð1� aÞkRx� Ryk2

þ kxTcHxc þ lTðI0x� I0yÞ � mTRx;
ð11Þ

where l ¼ ½l0; l1; . . .; l255�T 2 R256 and m ¼
½m0; m1; . . .; m255�T 2 R256 are Lagrange multiplier vectors
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for the constraints, and I0 2 R256�256 is a matrix in which

the first and last diagonal elements are one and the other

elements are zero. Then, we can write the Karush–Kuhn–

Tucker (KKT) conditions [21] for (11) as

I0x� I0y ¼ 0; ð12Þ

Rx � 0; ð13Þ

m � 0; ð14Þ

NRx ¼ 0; ð15Þ

2Rx� dþ 2kR�THxc þ R�TI0l� m ¼ 0; ð16Þ

where N = diag ðmÞ and d ¼ 2a �mb þ 2ð1� aÞRy,
respectively. The stationary condition in (16) is obtained by

multiplying both sides of
oLðx;l;mÞ

ox ¼ 0 by R�T , because the

matrix RT has full rank. Also, note that, in (16), since

xTcHxc is not differentiable with respect to x, we use its

subgradient 2Hxc instead of the gradient.

We first expand the vector notations in (16) to obtain a

system of equations and subtract the kth equation from the

ðk þ 1Þth one to eliminate l255. Then, we have a recursive

system, i.e.,

x1 � x0 ¼ x0 þ
d1 � d0

2
þ kh0xc;0 þ

l
2
þ m1 � m0

2
; if k ¼ 0;

xkþ1 � xk ¼ xk � xk�1 þ
dkþ1 � dk

2
þ khkxc;k

þ mkþ1 � mk
2

; if k[ 0:

8>>>>><
>>>>>:

ð17Þ

Here, we denote l ¼ l0 for notational simplicity. Note

that, since x0 is fixed to a known value y0 by the minimum-

value constraint in (9), we treat x0 as a constant instead of

the optimization variable. By substituting xk � xk�1 on the

right-hand side recursively with the previous equations, we

can rewrite (17) as

xkþ1 � xk ¼ x0 þ
dkþ1 � d0

2
þ k

Xk
i¼0

hixc;i þ
l
2
þ mkþ1 � m0

2
;

for k� 0:

ð18Þ

We can eliminate all mk values for k� 1 from (18) using

(13)–(15) and express xk values as a closed-form formula,

which is a function of a single variable l, provided

fx0; . . .; xk�1g are given, i.e.,

xk ¼ xk�1 þmax x0 þ
dk � d0

2
þ k

Xk�1

i¼0

hixc;i þ
l
2
; 0

 !
;

for k� 1:

ð19Þ

Proof We rewrite the KKT conditions in (13)–(15) as

xkþ1 � xk � 0; ð20Þ

mk � 0; ð21Þ

mkþ1ðxkþ1 � xkÞ ¼ 0; ð22Þ

for all k� 0, and x0 � 0 and m0x0 ¼ 0. We first assume that

x0 [ 0, thus m0 ¼ 0. However, even when x0 ¼ 0, we can

similarly derive the solution by denoting l ¼ l0 � m0 in

(17).

Let us assume that we have xk for k� 0. Then, from

(18), we have

xkþ1 � xk ¼ x0 þ
dkþ1 � d0

2
þ k

Xk
i¼0

hixc;i þ
l
2
þ mkþ1

2
:

ð23Þ

We consider two cases:

Case 1: x0 þ dkþ1�d0
2

þ k
Pk

i¼0 hixc;i þ
l
2
[ 0.

Case 2: x0 þ dkþ1�d0
2

þ k
Pk

i¼0 hixc;i þ
l
2
� 0.

In Case 1, xkþ1 � xk [ 0. Then, mkþ1 ¼ 0 from (22), and

xkþ1 ¼ xk þ x0 þ
dkþ1 � d0

2
þ k

Xk
i¼0

hixc;i þ
l
2
: ð24Þ

In Case 2, since xkþ1 � xk � mkþ1

2
,

ðxkþ1 � xkÞ2 � mkþ1

2
ðxkþ1 � xkÞ ¼ 0. Therefore,

xkþ1 ¼ xk: ð25Þ

Finally, combining (24) and (25) and changing indices as

xk ¼ xkþ1, we obtain the closed-form formula in (19). h

Notice that each xk in (19) is a monotonically increasing

function of a single variable l, which can be given by

xk ¼ gkðlÞ. Then, we can find l that satisfies the maximum-

value constraint in (9). Specifically, we define a function

f ðlÞ ¼ x255 � y255 ¼ g255ðlÞ � y255 ð26Þ

and find the solution to f ðlÞ ¼ 0. Since f ðlÞ is a mono-

tonically increasing function, there exists a unique solution

to f ðlÞ ¼ 0. In this work, we employ the secant method

[22] to find the unique solution iteratively as similarly done

in [10]. Let lðnÞ denote the value of l at the nth iteration.

Then, we obtain the solution l by applying the secant

formula

lðnÞ ¼ lðn�1Þ � lðn�1Þ � lðn�2Þ

f
�
lðn�1Þ

�
� f
�
lðn�2Þ

� f �lðn�1Þ�;
n ¼ 2; 3; . . .

ð27Þ

until convergence. More specifically, we define the con-

vergence rate as nðnÞ ¼
��lðnÞ � lðn�1Þ�� and run the iteration

until either nðnÞ\10�5 or f
�
lðnÞ
�
\10�10. Finally, from l,
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we compute all elements in the optimal transformation

function x via (19), which achieves the brightness-com-

pensated contrast enhancement and the minimization of the

information loss simultaneously subject to the minimum-

value, maximum-value, and monotonic constraints in (9).

4 Experimental results

We evaluate the performance of the proposed solution

on 24 images from the Kodak Lossless True Color Image

Suite [23], including the Building, Hats, Window, and

Stream images in Fig. 1. The test images have a resolution

of 768� 512. We simulate the case when the backlight

intensity is halved, i.e., b ¼ 0:5, and the histogram equal-

ization for global contrast enhancement is employed by

setting m ¼ h in (6). However, as mentioned in Sect. 2.1,

any global contrast enhancement techniques can be used to

obtain m. The parameters a and k in (9) are fixed to 0.5 and
1

1Th
, respectively, in all experiments as done in [8]. Also, the

device parameters x1, x2, and c in (1) are set to 0.057,

1.224, and 1.691, respectively, which were found experi-

mentally in [5]. For reproducibility, we provide MATLAB

code on our project website.1

Figure 1 compares the brightness-compensated images,

corresponding to perceived luminance levels, obtained by

the proposed closed-form solution with those by Tsai

et al.’s algorithm [2], the iterative solution [8], and the

approximate solution [20]. In Fig. 1b, Tsai et al.’s algo-

rithm improves local contrast, but darkens the images

compared with the original images in Fig. 1a. On the

contrary, the iterative solution [8], the approximate solu-

tion [20], and the closed-form solution in Figs. 1c–e,

respectively, yield output images with high qualities, better

preserving brightness and enhancing global image contrast.

Figure 2 compares the transformation functions that

yield the output images in Fig. 1. Tsai et al.’s algorithm

produces identical transformation functions for the images

with different characteristics, i.e., Building, Window, and

Stream, which indicates that their algorithm is less adap-

tive. The approximate solutions darken the output images

in lower intensity regions and violate the minimum-value

constraint x0 ¼ y0 in (9), because the constraint is omitted

in the approximation for simplicity. For example, for all

images, the approximate solutions map the input pixel

range [0, 50] to the output pixel values that are lower by

about 10 than those of the iterative solutions and the

closed-form solutions. These lowered transformation

functions may cause perceptual detail losses in dark

regions of the images, e.g., the doors in the Building image

and the shadows in the Hats image. In contrast, the trans-

formation functions obtained by the iterative solution and

the closed-form solution are almost identical, which con-

firms accuracy of the closed-form solution.

In addition to subjective assessment, we compare the

proposed closed-form solution with the conventional

algorithms using three objective quality metrics: absolute

mean brightness error (AMBE) [24], discrete entropy (DE)

[25], and measure of enhancement (EME) [26]. Table 1

lists the average performance over all test images [23]. A

low AMBE indicates that the algorithm well preserves the

brightness of an input image, while high DE and EME

imply that the image contains more details. The results

demonstrate that the closed-form solution provides better

performance than Tsai et al.’s algorithm and is comparable

to the iterative and approximate solutions.

Table 2 compares the computational complexities and

lists the average computation times to process all test

images in [23] on a PC with a 2.6 GHz CPU and 8 GB

RAM. The iterative solution requires the longest compu-

tation time, and the approximate solution shortens the time

significantly, yet sacrificing the resulting image quality.

The closed-form solution drastically reduces the time fur-

ther, while producing identical transformation functions to

those of the iterative solution. Specifically, the closed-form

solution runs about 796 and 8.9 times faster than the iter-

ative and approximate solutions, respectively. Note that,

since big O notation ignores coefficients, the closed-form

solution requires less time than Tsai et al.’s algorithm

despite the constant M. We iteratively apply the secant

formula in (27) to find a solution to f ðlÞ ¼ 0. The average

number of iterations for all test images is only 8.79.

Therefore, the proposed closed-form solution is efficient

enough to be employed in a wide range of applications,

even in devices with limited computational resources.

Moreover, if it is implemented in hardware, such as field-

programmable gate array (FPGA), its actual computational

time would be significantly further reduced.

We also show how image sizes affect the computation

times for each method. Table 3 compares the average

computation times over 10 trials of the proposed closed-

form solution with those of Tsai et al.’s algorithm, the

iterative, and approximate solutions. For this comparison,

we resize the input image with the resolution 3840� 2160,

which corresponds to 4K ultra-high-definition (UHD), with

scaling factors from 0.2 to 1, and then apply different

methods. We observe that the computation times of the

iterative solution are kept constant with small variations,

while those of Tsai et al.’s algorithm, the approximate

solution, and the closed-form solution increase as the

image resolution gets higher. This is because the opti-

mization procedure is dominant for the iterative solution,

whereas the complexities of the contrast enhancement and1 http://cilab.pknu.ac.kr/research/cbcce.html.
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optimization are comparable for the approximate and

closed-form solutions. Also, since the contrast enhance-

ment is dominant for Tsai et al.’s algorithm, its complexity

gets substantially higher as the image resolution increases.

However, the computation times of the closed-form solu-

tion are significantly lower than those of the competing

algorithms, even when the image sizes are large. For

example, for images with a 4 K resolution, which corre-

sponds to the relative resolution of 1.0, the closed-form

solution runs about 76.9, 162.9, and 3.34 times faster than

Tsai et al.’s algorithm, the iterative solution, and the

approximate solution, respectively. Thus, the closed-form

solution derived in this work can be applicable to a wide

range of devices, e.g., from mobile devices with small

displays to large televisions.

Finally, in addition to the image size, we also compare

how bit depth of an image affects the computation times for

the iterative, approximate, and closed-form solutions. In

this test, we take a test image of resolution 692� 462 with

12-bit depth as input, reduce the bit depth by one bit

recursively, and then apply the BCCE algorithm using each

method to obtain results. Table 4 shows the computation

times for each method. We see that, as the bit depth

increases, the computation times for the iterative and

approximate solutions get higher prohibitively to be

employed in practical applications. On the contrary, the

Fig. 1 Brightness-compensated contrast enhancement results on the

Building, Hats,Window, Stream, Bikes, and Chalet images at b ¼ 0:5.
The input images in (a) are compensated by Tsai et al.’s algorithm [2]

in (b), the iterative solution [8] in (c), the approximate solution [20] in

(d), and the closed-form solution in (e). For a better evaluation of the

qualities, we recommend viewing this figure on a display device

rather than examining the printed version
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computational times for the closed-form solution are sig-

nificantly lower than those of the iterative and approximate

solutions even when the bit depth is high. Furthermore, the

relative times of the iterative and approximate solutions to

the closed-form solution get higher as the bit depth

increases. For example, for the 8-bit depth, the ratio of the

computation times of the iterative, approximate, and

closed-form solutions is 617:8:1, but it increases to

10008:305:1 for the 12-bit depth. Therefore, from this test,

we can conclude that the proposed closed-form solution

can be applicable to devices with not only larger but also

higher bit depth displays compared with conventional

methods [8, 20].

5 Conclusions

We developed a computationally efficient brightness

compensation algorithm for transmissive LCDs in this

work. We first demonstrated that the approach given in [8]

leads to a convex optimization problem. Then, we derived

a closed-form solution for the optimization, as opposed to

the iterative solution given in that work. Experimental
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Fig. 2 Comparison of the

transformation funPctions

obtained by different methods on

a Building, b Hats, c Window,

d Stream, e Bikes, and e Chalet

Table 1 Objective assessment

of the image contrast using three

metrics: AMBE [24], DE [25],

and EME [26]

Input Tsai et al. [2] Iterative Approximate Closed-form

AMBE – 27.82 18.35 18.48 18.40

DE 7.09 6.77 7.31 7.21 7.31

EME 13.87 39.83 40.59 42.75 40.62

Table 2 Computational complexity

Tsai et al. [2] Iterative Approximate Closed-form

Complexity OðN þ KÞ - OðN þ K3Þ OðN þMKÞ
Times (s) 0.0181 1.039 0.0116 0.00131

N and K denote the number of pixels and intensity levels, respec-

tively, in an image. M is the number of secant iterations in the closed-

form solution

Table 3 Comparison of the

average computation times in

seconds to process the test

images with various image

resolutions

Relative resolution Tsai et al. [2] Iterative Approximate Closed-form

0.2 0.0178 0.806 0.0125 0.00133

0.4 0.0656 0.811 0.0132 0.00189

0.6 0.142 0.807 0.0158 0.00276

0.8 0.256 0.851 0.0155 0.00409

1.0 0.410 0.868 0.0178 0.00533
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results show that the closed-form solution runs about 800

and 9 times faster than the iterative and approximate

solutions in [8, 20], respectively, while providing identical

or better results. In addition, we showed that the closed-

form solution can also be applied to devices with high-

resolution and higher bit depth displays, e.g., 4K displays.

An important direction for future work is to incorporate

more effective local contrast enhancement techniques

[27, 28] into the formulation for brightness compensation.
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