
ORIGINAL RESEARCH PAPER

Real-time video denoising on multicores and GPUs with Kalman-
based and Bilateral filters fusion

Sergio G. Pfleger1 • Patricia D. M. Plentz1 • Rodrigo C. O. Rocha2 •

Alyson D. Pereira1 • Márcio Castro1

Received: 17 May 2016 / Accepted: 28 November 2016 / Published online: 8 February 2017

� Springer-Verlag Berlin Heidelberg 2017

Abstract In the context of video processing, image noise

caused by acquisition, transfer and image compression can

be attenuated by video denoising algorithms. However,

their computational cost must be as low as possible to

allow them to be applied to real-time applications. In this

paper, we propose STMKF, a real-time video denoising

algorithm based on Kalman and Bilateral filters. We

evaluate the effectiveness of STMKF using several common

videos used in the literature and we compare it to other

denoising algorithms using both the PSNR and SSIM

metrics. Our experimental results show that STMKF is

competitive with other filters, especially for videos that

feature stationary backgrounds such as in videoconferenc-

ing, video lectures and video surveillance. We also

evaluate the performance of our parallel implementations

of STMKF for CPUs and GPUs. STMKF achieved a perfor-

mance improvement of up to 2:9� on a Intel i7 multicore

processor with 4 cores compared to the sequential solution.

The results obtained with the GPU version of STMKF on a

NVIDIA Tesla K40 showed a performance improvement of

up to 7:6� compared to the Intel i7 multicore processor.

Keywords Spatiotemporal video denoising � Kalman

filter � Bilateral filter � Multicore � GPU

1 Introduction

In the context of video processing, image noise can hardly

be avoided. Because of that, several filters have been

developed to reduce the noise caused by acquisition,

transfer and image compression processes. They differ in

several aspects such as the image quality obtained when

applying the filter and their computational complexity.

Typically, best visual results are achieved at the cost of

heavy computational cost.

The computational cost of video denoising algorithms

must be as low as possible to be suitable for video capture

and transmission in real-time applications (e.g., videocon-

ferencing, video lectures and video surveillance of private

areas). In this paper, we present a video denoising algo-

rithm suitable for real-time applications called STMKF. Our

algorithm combines a time-domain filter (Kalman) with a

space-domain filter (Bilateral) to achieve decent visual

results with low computational costs. We discuss the main

ideas behind STMKF and show how it was parallelized to

exploit the parallelism available in modern processors such

as general purpose and embedded multicores as well as

graphics processing units (GPUs).

Electronic supplementary material The online version of this
article (doi:10.1007/s11554-016-0659-y) contains supplementary
material, which is available to authorized users.

& Patricia D. M. Plentz

patricia.plentz@ufsc.br

Sergio G. Pfleger

sergiogenilson@gmail.com

Rodrigo C. O. Rocha

rcor@pucminas.br

Alyson D. Pereira

alyson.pereira@posgrad.ufsc.br

Márcio Castro

marcio.castro@ufsc.br

1 Department of Informatics and Statistics (INE), Federal

University of Santa Catarina (UFSC), Campus Universitário

Reitor João David Ferreira Lima, Trindade, Cx.P. 476,

Florianópolis 88040-900, Brazil

2 Computer Science Department, Pontifical Catholic

University of Minas Gerais (PUC Minas), Avenida Dom José

Gaspar, 500, Belo Horizonte 30535-610, Brazil

123

J Real-Time Image Proc (2019) 16:1629–1642

DOI 10.1007/s11554-016-0659-y

http://dx.doi.org/10.1007/s11554-016-0659-y
http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-016-0659-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-016-0659-y&domain=pdf

Overall, this paper presents the following main

contributions:

• We propose a fast real-time video denoising algorithm

called STMKF, which combines Kalman and Bilateral

filters;

• We propose modifications to the original Kalman Filter

that allow it to converge faster on moving regions;

• We simplify the use of the Kalman Filter by autom-

atizing one of its main input parameters;

• We propose parallel solutions of STMKF for multicores

and GPUs. Our GPU implementation exploits asyn-

chronous data transfers to overlap communications

with computations.

The remainder of this work is organized as follows. Sec-

tion 2 presents an overview of the Kalman and Bilateral

filters used by our approach. Section 3 discusses related

works. The STMKF algorithm and its parallel versions are

presented in Sect. 4. The effectiveness and performance of

STMKF are discussed in Sects. 5 and 6, respectively. Finally,

Sect. 7 concludes this paper.

2 Background

2.1 Image noise and filters

Image noise is a variation (random or not) in brightness or

color of an image, which is not present in the imaged object

[11]. Errors in the image acquisition, compression and/or

transmission processes are usually the main sources of

noise. Although undesirable in computer vision processes,

image noise can hardly be avoided. One of the most

common types of noise in image capture is Gaussian noise

(GN) [1, 12]. GN is caused by random fluctuations in the

signal reading. The probability density is similar to a

normal distribution [1] and it is independent for each pixel

and from the signal intensity [11].

In the signal processing domain, filters are used to

remove unwanted components or signal characteristics. In

this paper, and however, a filter is considered as a process

where the image noise is removed, resulting in an image

with values near to the real ones of the imaged object.

Many denoising techniques have been developed in the

literature [5, 7, 8, 37]. Several of these techniques are based

on Bilateral and Kalman filters, which are well-known

denoising solutions. In the next section, we will further

describe them.

2.2 Bilateral filter

The Bilateral filter (BF) is a spatial nonlinear, edge- pre-

serving and noise-reducing smoothing filter for images

proposed in [37]. In BF, each pixel of the image is replaced

by a weighted average on their neighborhood pixels, con-

sidering the geometric closeness and their photometric

similarity. Chaudhury [5] proposes a O(n) implementation

of the BF, where n represents the number of pixels of the

input image.

BF has three main parameters that have a significant

impact on the final result: the diameter of each pixel

neighborhood (d), the photometric propagation factor (rc)
and the geometric propagation factor (rs). A larger value of

rc means that farther colors within the pixel neighborhood

will be mixed together, resulting in larger areas of semi-

equal color. A larger value of rc, on the other hand, means

that farther pixels will influence each other as long as their

colors are close enough. Figure 1 shows how these

parameters affect the final result.

Although BF is computationally efficient, it presents

unsatisfactory results when used for video denoising. Since

it is a spatial denoising method, the image noise reduction

is applied to each frame individually without taking into

account previous frames. This may result in local flickering

artifacts [10], which is a change of brightness on small

areas that may be unpleasant to the eyes.

2.3 Kalman filter

The Kalman filter (KF) was originally developed by Rudolf

Kalman in 1960 [17] and uses measurements contaminated

by uncertainties. It is a temporal filter that intends to

approximate the acquired data (probably containing noise)

to the real data (without noise). In this paper, we adopt a

simple case with a trivial prediction step of the most gen-

eral expression of KF.

Basically, the filter performs two main steps, prediction

and correction, for each new data acquisition. In the first

step, it estimates the next state x�k (1) and its covariance P�
k

(2) based on its previous state (xk�1) and previous covari-

ance (Pk�1), respectively. In the second step, it computes

the Kalman gain Kk (3). Then, it updates the estimated state

xk (4) using Kk, x
�
k and the acquired data zk. Finally, it

computes the estimated covariance Pk that will be used in

the next state (5).

Fig. 1 Example of the impacts of BF parameters. a Original image.

b d ¼ 6, rc ¼ 100 and rs ¼ 100. (c) d ¼ 50, rc ¼ 50 and rs ¼ 50

1630 J Real-Time Image Proc (2019) 16:1629–1642

123

x�k ¼ xk�1 ð1Þ

P�
k ¼Pk�1 þ Q ð2Þ

Kk ¼P�
k ðP�

k þ RÞ�1 ð3Þ

xk ¼ x�k þ Kkðzk � x�k Þ ð4Þ

Pk ¼ð1� KkÞP�
k ð5Þ

It is worth noting that both Q and R are constants and the

choice of their values modifies the filter strength. If Q is

fixed, fluctuations of zk will affect xk less intensively (when

R is increased) or more intensively (when R is decreased).

Likewise, if R is fixed, fluctuations of zk affect xk more

intensively (when Q is increased) or less intensively (when

Q is decreased).

The drawback of KF is to present resistance to abrupt

changes in data acquisition. Consider that a sensor is

reading a real data r1 until the instant t. After instant t, the

real data suddenly change to a new value r2. Because of

noises from the video capturing process, until the instant t,

the values being read by the sensor will oscillate around r1,

and after the instant t the values being read will oscillate

around r2. Until the instant t, the KF will approximate the

read values to the real value r1, but shortly afterward,

instead of approximating the read values to the new real

data r2, the KF will still approximate to the previous value

r1, taking a few cycles of video capturing until the pro-

cessed value converges to the new real value r2.

The problem described above occurs in videos when KF

is applied. Whenever an object moves in an image

sequence, a step occurs in the pixel values. As KF presents

resistance to converge to a new pixel value when steps

occur in the capture of the signal, some ghosts in the image

are formed, as shown in Fig. 2.

3 Related work

In a general way, video denoising methods can be divided

in three groups: methods based on a transform

[24, 30, 33, 36, 42], methods that use block matching and

motion detection jointly [7, 8, 22, 23] and methods that

combine spatial and temporal domains [4, 6, 14,

37, 41, 43]. Obviously, there are video denoising methods

that merge two or more techniques used in these three

different groups but most video denoising algorithms

belong to one of these three groups.

In the first group, Pizurica et al. [30] developed a

sequential wavelet domain and temporal filtering

scheme combined with optimized parameters (SEQWT).

In the sequential spatiotemporal denoising proposed filter,

motion detection and temporal filtering are performed

over spatially denoised frames. The realization of a

motion adaptive temporal filter benefits from the use of a

high-quality spatial denoising. Rahman et al. [33] pro-

posed a joint probability density function of the video

wavelet coefficients for any two neighboring frames by

using the bivariate Gaussian distribution. They show that

the correlation coefficient of the density function gives an

indirect measure of the motion that exists between any

two frames. The proposed density function is then

employed for spatial filtering of the noisy video wavelet

coefficients. The spatially filtered coefficients are then

passed through a recursive time averaging filter for

additional noise reduction (we refer to this approach as

IFSM). Selesnick and Li [36] presented the design and

application of the non-separable oriented 3D dual-tree

wavelet transform for video denoising (3DWTF). Motion-

based multiscale decomposition for video is reached with

this transform which isolates in its subbands motion along

different directions. In addition, it is investigated the

denoising of video using the 2D and 3D dual-tree oriented

wavelet transforms, where the 2D transform is applied to

each frame individually. Zlokolica et al. [42] proposed a

video denoising method based on non-decimated wavelet

band filtering (WRSTF). In the proposed method, motion

estimation and adaptive recursive temporal filtering are

performed in a closed loop, followed by an intra-frame

spatially adaptive filter. The algorithm is implemented in

three steps: motion estimation, motion compensation and

the adaptive spatial filtering scheme. All computations

occurs in the wavelet domain.

Considering the group of methods that use block

matching and motion detection jointly, the Block-matching

3D Denoising (BM3D), proposed in [7], reduces noise by

processing similar image blocks. Block-matching algo-

rithm is used to find similar blocks based on a reference

one. It stores the blocks in a 3D structure and constructs

blocks using a weighted average. VBM3D algorithm [8]

extends the ideas of BM3D for image sequences (video),

finding identical blocks not only in space, but also in time.

In [22, 23], the authors reduce noise in images sequences

similarly as BM3D. They work with 3D blocks (3D patch),

rather than BM3D 2D blocks, and put them in 4D struc-

tures. These filters, among others, are the state of the art of

image and video denoising. However, the high

Fig. 2 Original frame of the garden sequence (left) and the resultant

frame after applying KF (right)

J Real-Time Image Proc (2019) 16:1629–1642 1631

123

computational complexity of these algorithms becomes

prohibitive for real-time applications.

On the other hand, the group of methods that combine

spatial and temporal domains present algorithms with

lower computational complexity than other two groups.

This feature is fundamental for real-time applications, such

as videoconferencing systems, robotic navigation systems

and surveillance systems. Zlokolica et al. [41] proposed a

nonlinear filter which sorts pixels within a 3D window

considering their difference with the central pixels value

(3D KNN). The next step of this filter is to average the

pixels in the window and then weighting them according to

their sorting order. The proposed filter is an extension of

that proposed in [27], which was first described by Davis

and Rosenfeld [9]. The main advantage of the proposed

filter is that it works well on video independently of the

noise type (Gaussian and impulse, or a combination of

both). Spatiotemporal varying filter (STVF) is proposed in

[4] which could generate the best candidate value to

replace the noisy value of current pixel by exploiting the

corrections of its neighboring pixel values within a small

region and taking optimal weights of them. STVF is able to

produce optimal results in the sense that it minimizes the

weighted least squared error. At the same time, STVF

retains the sharpness of edges in object boundaries and it

combines the advantages of conventional denoising filters

that enable it to decrease the noise variance in smooth

areas. Zuo et al. [43] performed an appropriate average

filtering on current noisy frame to reduce the influence of

noise. This step is useless to the final denoising result, but

preparative to the motion estimation. Block-matching-

based motion estimation is performed by comparing cur-

rent pre-filtered frame with previously denoised frames.

Then, the Kalman filter is applied on the current noisy

frame, based on previous steps motion estimation results.

On the other hand, the current noisy frame is also processed

in the spatial domain by using the Bilateral filter, which

aims at reducing the noise globally. Weighting of the two

denoised frames showed a satisfactory result.

The Non-Local Means (NLM) algorithm [2, 3] exploits

the fact that similar neighborhoods can occur several times

anywhere in the image and can contribute for denoising.

For a given target pixel, NLM computes the mean of all

pixels in the image, weighted by how similar these pixels

are to the target pixel. Han and Chen [13] combine NLM

with the Kalman filter framework for video denoising.

Although standard NLM algorithms are known to be

computationally expensive [38], some variations reduce the

computational complexity by reducing weights and

neighborhood computations [18, 25]. Similarly, Jojy et al.

[15] combine a variation of NLM called Discontinuity

Adaptive Non-Local Means (DA-NLMF) with a variation

of the Kalman filter (Importance Sampling Unscented

Kalman filter).

Our filter (STMKF) fuses Blur, Bilateral and Kalman fil-

ters to generate the output denoised frame which is stored

as the estimated value for the next frame. It combines

spatial and temporal domains with lower computational

complexity than other two groups. STMKF does not use

motion estimation techniques (as it is proposed in the

algorithms of the first group) because of the high compu-

tational complexity of these kind of techniques. The

computational complexity of each algorithm step is O(n),

where n is the number of pixels, making it suitable for real-

time applications.

4 Spatiotemporal fusion of Kalman-based
and Bilateral filters (STMKF)

In Sect. 2.3, we presented an overview of the Kalman filter.

In its original form, P, Q and R are covariance matrices,

where the diagonal contains variances. In this paper,

however, covariance matrices are simply variances, since

we deal with scalar states. Because of that, we consider that

all variables in STMKF represent 2D arrays containing

frameHeight � frameWidth pixels and all numeric computa-

tions between them are performed by array operations that

execute element by element operations (i.e., pixel-by-pixel

operations).

As we mentioned in Sect. 2.3, KF relies on Pk to obtain

Kk and to estimate the next state. However, when the

scenario changes considerably, which is also when the

ghost effect occurs, P�
k must change accordingly to achieve

better results. In (2), P�
k consists of two components: Pk�1

and Q. Considering a projection, it is necessary to maintain

the component from the previous instant Pk�1. To allow KF

to converge faster, we propose a modification to (2) as

follows

P�
k ¼ Pk�1 þ D2Q ð6Þ

where D is the difference between the average of a pixel’s

neighborhood at instants k and k � 1. The average of a

pixel’s neighborhood is known as the blur filter. In this

modified equation, when the scenario does not change

significantly, D will be small. When motion occurs, on the

other hand, the average of the neighborhood also changes

and D will assume a higher value. Based on this observa-

tion, our STMKF algorithm will try to keep KF properties in

motionless regions, whereas it will assume values closer to

zk for pixels with motion.

Indeed, (6) allows KF to converge faster. However, KF

still relies on Q and R parameters. After performing several

experiments varying R and Q parameters we observed the

1632 J Real-Time Image Proc (2019) 16:1629–1642

123

following: (1) when the video features low values of K, the

best results are achieved when the value of R is high; and

(2) analogously, when the video features higher values of

K, the best results are achieved when the value of R is low.

Based on that observation, we propose to automatize the

choice of R as follows

Rk ¼ 1þ Rk�1ð1þ Kk�1Þ�1 ð7Þ

In other words, Rk can be adjusted to regions with and

without motion based on Kk�1 and Rk�1. In (7), high values

of Kk�1 (i.e., values closer to 1) make the series converge

for a value near 2. When Kk�1 approaches 0, on the other

hand, the series diverges, tending to þ1. However, due to

inherent characteristics of noise, D will not be equal to 0,

which in turn implies that P� will not be equal to 0, by

equation (6). Thus, by (3) we have that K never equals 0.

This way, R tends to stabilize at a value which usually

allows for decent results.

Finally, spatial (BF) and temporal (KF) techniques are

fused to achieve better results. Our solution for that relies

on applying a weighted combination of xk and the result of

BF (xbilateral) in the resultant frame x̂k, as expressed by

x̂k ¼ ð1� KkÞxk þ Kkxbilateral ð8Þ

The main idea behind this equation relies on the use of Kk

to detect regions with motion (the values of Kk will be high

in regions with motion), giving more weight to the Bilat-

eral filter on these regions. This reduces the error intro-

duced by the noise, so the affected pixels will have values

closer to the real ones. Moreover, this second modification

allows the Kalman filter to converge faster on moving

regions, since x̂k will also be used in the next frame as the

estimation of the next state (x�k). Thus, (1) must be

rewritten as x�k ¼ x̂k�1 in order to take it into account.

Figure 3 shows one frame of the Salesman video

sequence in different situations. We added to the original

frame (Fig. 3a), a white additive Gaussian noise (Fig. 3b)

and then applied the Bilateral (Fig. 3c) and Kalman

(Fig. 3d) filters individually. As it can be observed, the

Kalman filter presents good results on motionless regions,

whereas it presents some ghosts where motion occurs.

STMKF overcomes this issue (Fig. 3e), since it gives more

weight to the Bilateral filter where motion occurs. Finally,

Fig. 3f shows the values of Kk for this frame (the higher the

value of Kk the brighter the color). As it can be observed,

moving regions are much brighter than stationary ones.

In the next sections, we discuss the overview of STMKF as

well as its parallel implementations for multicores and

GPUs. We made our implementations publicly available1

under the GPL 3 License, thus enabling other researchers to

further enhance it.

4.1 Sequential algorithm

Figure 4 shows a graphical overview of the main opera-

tions performed by STMKF on each frame. It performs two

operations taking the noised frame as input: (1) It computes

the neighborhood average using the Blur filter; and (2) it

computes BF. Next, D is obtained from the difference

between the current blurred frame and the previous blurred

frame. Then, it uses D and the noisy frame to calculate the

denoised frame and Kk. After that, it computes the output

denoised frame taking as input xk, Kk and xbilateral. Finally,

the output denoised frame is stored as the estimated x̂k for

the next frame.

Algorithm 1 presents the pseudocode of the STMKF. We

consider that the variable video stores all frames of a video

sequence that shall be denoised. The main procedure

(STMKF-MAIN) initializes some variables used by STMKF (re-

call that all variables are 2D arrays and all numeric oper-

ations on them are element by element operations). Then, it

calls the core algorithm (STMKF-CORE) for each frame. Q is

initialized with the values provided by the user (line 2),

whereas the other 2D arrays are initialized with 0 (x̂ and

pBlurred), 0.5 (K) or 1 (P and R).

Algorithm 1 Sequential Algorithm
Global: P, Q, R, K, x̂, pBlurred
1: procedure STMKF-MAIN(video, q)
2: Q ← q
3: x̂, pBlurred ← 0
4: K ← 0.5
5: P, R ← 1
6: for each f rame of video do
7: blurred ← BLUR-FILTER(f rame)
8: b f ← BILATERAL-FILTER(f rame)
9: f rameOUT ← STMKF-CORE(f rame,blurred,b f)
10: end for
11: end procedure
12: function STMKF-CORE(f rame, blurred, b f)
13: Δ ← pBlurred−blurred
14: pBlurred ← blurred
15: R ← 1+R · (1+K)−1

16: x− ← x̂
17: P− ← P+Δ 2 ·Q
18: K ← P− · (P− +R)−1

19: x ← x− +K · (f rame− x−)
20: x̂ ← (1−K) · x+K ·b f
21: P ← (1−K) ·P−
22: return x̂
23: end function

After the initialization, STMKF-MAIN gets the next frame

(frame) from the input video sequence to be denoised (line

6). The frame is then used as input to the Blur and Bilateral

filters (lines 7 and 8). The results of the Blur and Bilateral

filters are stored in 2D arrays called blurred and bf,

respectively. Finally, the original frame (frame) as well as
1 Source codes available at: http://github.com/sergiogenilson/

STMKF.

J Real-Time Image Proc (2019) 16:1629–1642 1633

123

http://github.com/sergiogenilson/STMKF
http://github.com/sergiogenilson/STMKF

pBlurred, blurred and bf is used as inputs to the main STMKF

algorithm (STMKF-CORE), which will denoise the frame. The

denoised frame is stored on frameOUT, which can be either

stored on a file or shown on the screen. This process is

repeated for each frame of the input video.

The STMKF fuses Blur, Bilateral and Kalman filters.

There are efficient blurring algorithms suitable for real-

time applications [34], for example, in our experiments we

use the Box Blur filter which can be implemented with

computational cost that is independent of kernel size,

meaning that it is linear in the size of the image, no matter

how much blurring is required [34]. Therefore, we can use

a blurring algorithm of order O(n), where n is the size of

the image in pixels. There are also linear implementations,

O(n), for the BF algorithm [5]. As described in this section,

the STMKF-CORE method applies only pixel-wise operations

over 2D arrays. Therefore, the STMKF algorithm can be

implemented with linear computational complexity, where

n is the size of the image in pixels, for each frame of the

input video.

We implemented the STMKF algorithm in C??. We rely

on the Open Source Computer Vision Library (OpenCV)

[32] to perform all array operations described in Algo-

rithm 1. OpenCV is a library that features highly optimized

abstractions and functions that ease the development of

real-time computer vision applications. In addition to the

array operations, OpenCV also includes efficient imple-

mentations of Blur and Bilateral filters. We used them to

compute blurred and bf in our STMKF implementation.

4.2 Multicore implementation (MT-STMKF)

We implemented a parallel version of the STMKF algorithm

(MT-STMKF) to make full use of current multicore proces-

sors. We adopted a simple yet efficient strategy to paral-

lelize STMKF. Figure 5 shows an example of the proposed

parallelization strategy with 4 threads. Each frame is vir-

tually divided into t blocks, where t represents the number

of threads to be used (4 blocks/threads in this example).

Fig. 3 Example of the Salesman video sequence: a original frame; b noised frame (r ¼ 10); c bilateral filter; d Kalman filter; e STMKF; and

f values of Kk (the higher the value of Kk the brighter the color)

Noised
Frame

Blur
Filter

Delta

Past Blurred
Frame

Kalman
Filter

Bilateral
Filter

Weighting

Denoised
Frame

xk

Input

Output

Filtering

Kk
xbilateral

Fig. 4 STMKF diagram

1634 J Real-Time Image Proc (2019) 16:1629–1642

123

Then, all threads execute the STMKF-CORE function on their

own frame block in parallel.

We used a specific Application Programming Interface

(API) called Open Multi-Processing (OpenMP) [28] to

parallelize STMKF. OpenMP allows developers to add

specific compiler directives to the original source code to

determine portions of code that must be executed in par-

allel (parallel regions). Overall, the OpenMP API follows a

fork-join model. The execution starts with a main thread

(sequential execution). At runtime, whenever the main

thread reaches a parallel region, the OpenMP runtime

creates a set of worker threads to execute the code inside it

in parallel. Then, all worker threads synchronize at end of a

parallel region and the runtime resumes the sequential

execution again.

OpenMP allowed us to easily implement the parallel

strategy described above. Basically, we added a compiler

directive to determine STMKF-CORE to be called inside a

parallel region. Then, we assign a different frame block to

each worker thread, which in turn calls STMKF-CORE using

its own frame block as input. We could adopt the same

parallelization strategy for the Blur and Bilateral filters.

However, this was not necessary because OpenCV already

includes parallel versions of them.

4.3 GPU implementation (GPU-STMKF)

GPUs are manycore processors optimized for highly par-

allel computation. Their design focuses to maximize the

chip area and power budget dedicated to data processing

rather than data caching and flow control, optimizing for

the execution throughput of massive numbers of threads.

The throughput-oriented design strives to maximize the

total execution throughput of a large number of threads

while allowing individual threads to take a potentially

much longer time to execute [19].

GPUs require a particular parallel computing language

such as Compute Unified Device Architecture (CUDA),

which is specific for NVIDIA GPUs, and Open Computing

Language (OpenCL), which works on a wide range of

processors and GPUs. However, writing efficient code with

CUDA or OpenCL is not trivial, since developers must pay

special attention to a number of points, such as synchro-

nization, data transfers and global / shared memory

accesses. Fortunately, OpenCV features a GPU module to

take advantage of such processors. The GPU module pro-

vides the user an explicit control on how data are moved

between CPU and GPU memory. Although the user has to

write some additional code to start using the GPU, this

approach is both flexible and allows more efficient

computations.

We used the features available in OpenCV to implement

a GPU version of STMKF (GPU-STMKF). Basically, we had

developed a GPU version of the STMKF-CORE function, so

each frame could be denoised in the GPU in parallel.

Again, we did not have to implement GPU versions of Blur

and Bilateral filters, since the OpenCV framework already

included them. Overall, there are three main steps to

denoise each frame in GPU-STMKF: 1) upload the frame data

from host memory to the GPU memory; 2) perform the

blur, bilateral and STMKF-CORE computations in the GPU;

and 3) download the processed frame back to the host

memory.

In our first version of GPU-STMKF, data transfers between

host/GPU and computations performed in the GPU were

completely synchronous. This means that the frame f þ 1

is only uploaded to the GPU after downloading back the

frame f from the GPU. To hide the time spent with data

transfers, we implemented a second version of GPU-STMKF

that performs asynchronous data transfers between the host

and the GPU with CUDA streams. In this new version, we

upload the frame f þ 1 to the GPU while the GPU is

computing the frame f. Analogously, we download the

frame f � 1 processed by the GPU to the host while the

GPU is computing the frame f.

4.4 Discussion

As described before, our approach combines BF with a

modified version of KF. However, filters other than BF

could also be combined with KF. As shown in Sect. 3,

combinations of Non-Local Means (NLM) and KF have

already been proposed [13, 15].

We also performed an experimental analysis using NLM

instead of BF in STMKF to assess whether it would achieve

better results. We evaluated the use of the OpenCV

implementation of NLM with different values for the

templateWindowSize and searchWindowSize parameters:

(1) the default values suggested by OpenCV; (2) the best

possible values for each parameter and video sequence to

improve the quality of the results; and (3) the minimum

possible values for each parameter to reduce its computa-

tional cost. This approach showed similar results in terms

of quality and a considerable performance degradation in

Fig. 5 Illustration of the parallel approach adopted in MT-STMKF. This

example considers 4 threads, each one responsible for denoising 1 / 4

of each frame

J Real-Time Image Proc (2019) 16:1629–1642 1635

123

terms of FPS from 3� (with the minimum possible values

for the NLM parameters) up to 8:5� (with the best possible

values for the NLM parameters) when compared to our

original version of STMKF. We believe that such perfor-

mance degradation can be prohibitive for some real-time

applications.

Finally, we also replaced BF in STMKF by other less

complex filters such as the Blur [34], Gaussian Blur [34]

and Median filters. However, those combinations showed

worse results than the original version of STMKF.

5 Effectiveness of STMKF

The effectiveness of an image noise filter is usually eval-

uated using the peak signal-to-noise ratio (PSNR). The

PSNR is calculated by

PSNR ¼ 10� log
m2

MSE
ð9Þ

where m is the maximum value of a pixel and MSE is the

mean squared error [24]. The PSNR of a video sequence is

the average of the PSNRs of each frame. A high PSNR

indicates that the original video sequence (without noise) is

very similar to the denoised one.

Another common result evaluation method is through

structural similarity (SSIM) [39]. SSIM is obtained by

SSIMðx; yÞ ¼
ð2lxly þ c1Þð2rxy þ c2Þ

ðl2x þ l2y þ c1Þðr2x þ r2y þ c2Þ
ð10Þ

where x and y are image patches extracted from the local

window of the original image and the denoised image and

l, r and rxy represent the mean, variance and cross-cor-

relation computed for the local window, respectively. The

variables c1 ¼ ðk1GÞ2 and c2 ¼ ðk2GÞ2 are applied to sta-

bilize the division by a weak denominator, so that

k1 ¼ 0:01, k2 ¼ 0:03 and G is the dynamic range of the

pixel values (i.e., the maximum value that can be repre-

sented with a given number of pixels). In this case,

G ¼ 2bits per pixel � 1 ¼ 28 � 1 ¼ 255.

We do the following to compute the SSIM of a video

sequence. We first compute the SSIM of each frame by

calculating the average of its local SSIMs. Then, the SSIM

of a video sequence is the average of the SSIMs of each

frame. A high SSIM (i.e., near 1) indicates that the original

video is very similar to the denoised one.

We evaluate the effectiveness of STMKF using several

common videos used in the literature. For each video, we

added a white additive Gaussian noise and then applied

STMKF. The Gaussian noise is the most common type of

noise considered by the authors of related works

[30, 33, 36, 41, 42]. However, STMKF is also capable of

achieving good results on videos that present any kind of

noise that satisfies the assumptions needed to compute D
(i.e., the noise distribution should be similar to the normal

distribution and the noise should be independent for each

pixel) such as the shot noise. Moreover, we fixed the

parameters for the Blur and Bilateral filters in all experi-

ments as follows: we set the kernel size in the Blur filter to

5 and used d ¼ 3, rc ¼ 50 and rs ¼ 50 for the Bilateral

filter.

It is worth noting that the quality of the results obtained

with STMKF rely on the right choice for the Q parameter.

Overall, we obtained decent visual results on all videos

considered in this paper with values of Q close to 0.02. For

the PSNR and SSIM metrics, however, the best value for

Q varied from 0.01 to 0.1 and it was mostly affected by the

amount of movement in the videos. After a careful analysis

we concluded that Q values close to 0.01 improve PSNR

and SSIM metrics on videos that feature stationary back-

grounds or smooth background movements (e.g., Salesman

and MissA). On the other hand, Q values close to 0.1

improve both PSNR and SSIM metrics on videos that

feature several moving regions (e.g., tennis, football and

foreman).

Tables 1 and 2 compare the effectiveness of STMKF

against other approaches that can be applied on real-time

applications using the PSNR and SSIM metrics. Overall,

STMKF is competitive with several filters found in the lit-

erature for both metrics, especially for videos that feature

stationary backgrounds. The Salesman sequence is an

example of such case, in which STMKF has SSIM equal to

0.955 with a standard deviation (noise) of 10, outper-

forming WRSTF [42], 3DWTF [37] and IFSM [34]

algorithms.

For sequences with several moving areas, such as the

garden sequence, STMKF was outperformed by the other

algorithms. The main reason comes from the fact that they

use motion estimation and/or compensation techniques. As

we mentioned before, although these techniques increase

the complexity of these algorithms they may improve the

quality of video denoising filters. However, the overall

quality relies on how good these techniques can estimate

motion. The football sequence, for instance, also has sev-

eral moving areas but STMKF achieved better results than 3D

KNN [41], SEQWT [30] and IFSM [33] algorithms. In this

specific case, the motion cannot be easily predicted, mak-

ing it difficult to be estimated and/or compensated by these

techniques.

We would like to emphasize that STMKF is able to pre-

serve the edges of the original videos. After applying an

edge detection algorithm (Canny) on all videos considered

in this paper, we observed that the edges found by Canny in

both original and denoised frames (STMKF) were very sim-

ilar. Finally, it is important to mention that STMKF achieves

1636 J Real-Time Image Proc (2019) 16:1629–1642

123

decent results on videos that feature rapidly moving

objects. In some cases, however, depending on the value of

Q and the characteristics of the video, ghosts may be

formed in some frames.

6 Performance evaluation

In this section, we evaluate the performance of the parallel

implementations of the STMKF algorithm on multicores and

GPUs. First, we describe the platforms used in the exper-

iments. Then, we discuss the results obtained with MT-

STMKF (multicores) and GPU-STMKF (GPUs).

6.1 Parallel platforms

We evaluate the performance of the parallel implementa-

tions of STMKF on four processors. These processors rep-

resent three different classes: general purpose (Intel i7),

embedded (ARM Cortex-A7) and manycores (GPUs).

ARM processors are usually found in embedded systems.

In the context of real-time image processing, embedded

systems have become highly relevant, with several appli-

cations including portable devices, smart cameras and

robotics [16, 40]. Table 3 presents the main specifications

of each one of the processors considered in this paper.

Since the Intel i7 processor features Hyper-Threading

Technology (HT), we performed experiments with up to 8

threads (one for each virtual core). For the ARM Cortex-

A7 processors, however, we limited our experiments to the

number of physical cores (4 cores). For the GPUs, we

always use all cores available. All results presented in the

next sections are computed based on the average times

measured in 30 runs and present statistical confidence of

95% by Student’s t distribution and a maximum of 0:7%

of relative error.

6.2 Multicore results

We analyze the performance of MT-STMKF on the two

multicore processors presented in Sect. 6.1 (Intel i7 and

ARM Cortex-A7). We use two metrics to evaluate its

performance: frame rate and speedup.

The frame rate metric is the frequency at which our

algorithm computes consecutive frames. It is expressed in

frames per second (FPS). The speedup metric, on the other

hand, represents the ratio between the execution times of

the sequencial solution and the multithreaded solution with

a specific number of threads. It is important to notice that

the potential speedup gained by a parallel solution is lim-

ited by the portion of the sequencial solution that can be

effectively parallelized. In the best case, i.e., when 100%

of the sequential solution is parallelized, the speedup

Table 1 PSNR results

compared to other algorithms
Test sequence Noise 3D KNN [41] SEQWT [30] IFSM [33] STMKF

Tennis 10 29.14 30.76 32.05 31.15

Salesman 10 32.13 34.11 34.41 35.27

Coastguard 20 26.62 27.42 28.40 27.82

Football 20 24.95 26.62 27.06 27.78

Data for 3D KNN, SEQWT and IFSM were extracted from [33]

Table 2 SSIM results

compared to other algorithms
Test sequence Noise WRSTF [42] 3DWTF [36] IFSM [33] STMKF

Foreman 10 0.914 NA 0.886 0.885

15 0.877 NA 0.836 0.829

20 0.841 NA 0.793 0.794

Salesman 10 0.932 0.923 0.904 0.955

15 0.901 0.903 0.851 0.935

20 0.868 0.882 0.801 0.916

MissA 10 0.905 NA 0.904 0.937

15 0.877 NA 0.857 0.896

20 0.846 NA 0.812 0.854

Garden 10 0.953 0.909 0.927 0.901

15 0.922 0.872 0.882 0.857

20 0.889 0.840 0.837 0.804

Data for WRSTF, 3DWTF and IFSM were extracted from [13]

J Real-Time Image Proc (2019) 16:1629–1642 1637

123

increases linearly with the number of physical cores.

However, linear scalability is very difficult to achieve since

most of the parallel solutions include serial (sequential)

portions of code.

Figure 6 presents the speedup of the parallel versions of

the Bilateral filter and STMKF-CORE when denoising a 4 K

video on the Intel i7 processor. In addition, it presents the

overall speedup of MT-STMKF. As it can be observed, the

Bilateral filter, which was parallelized by OpenCV, pre-

sented worse scalability than our parallel implementation

of STMKF-CORE. The MT-STMKF, which includes the parallel

versions of Bilateral and STMKF-CORE, presented a slightly

worse scalability than parallel Bilateral and STMKF-CORE

individually. This behavior is expected and the main rea-

sons are threefold: (1) MT-STMKF has some data dependen-

cies (e.g., Bilateral and Blur filters must be computed

before STMKF-CORE); (2) there are portions of the MT-STMKF

algorithm that could not be parallelized; and (3) the parallel

implementation of the Blur filter implemented by OpenCV

did not bring any performance gains.

Figure 7 presents the speedup and FPS obtained with

MT-STMKF when varying the number of threads and video

resolutions on both Intel i7 and ARM Cortex-A7 proces-

sors. We did not include the 240p resolution results for

Intel i7 due to the low amount of computation required for

this processor. Analogously, we did not include the 4 K

resolution results for ARM Cortex-A7 due to the high

amount of computation required for this processor.

Overall, MT-STMKF presented a significant speedup when

increasing the number of threads. MT-STMKF achieved a

speedup of up to 2:9� with eight threads on the Intel i7

processor. Similarly, MT-STMKF achieved a speedup of up to

2:3� with four threads on the ARM Cortex-A7 processor.

Although both processors had a similarly good speedup,

there is a considerable difference regarding their FPS due

to the different purpose of each processor. With Intel i7,

MT-STMKF achieved a maximum of 138 FPS for 480p videos

and a maximum of 7.8 FPS for 4 K videos. In contrast,

ARM Cortex-A7 is more focused on energy-consumption

than performance. For this reason, MT-STMKF achieved a

maximum of 18 FPS for 240p videos and a maximum of

1.3 FPS for 1080p videos.

6.3 GPU results

We evaluate the performance of the GPU implementation

of the STMKF algorithm (GPU-STMKF) on the two NVIDIA

GPUs presented in Sect. 6.1 (GeForce GTX and Tesla

K40). In general, GPUs are already known to convey high-

performance real-time image processing [29, 35]. Thus, we

expect significant performance improvements compared to

multicores.

Figure 8 presents the results obtained on both GPUs for

various video resolutions. As explained in Sect. 4.3, our

first version of GPU-STMKF (called No-S in Fig. 8) performs

synchronous data transfers between the host and GPU. The

drawback of this approach is that the host can only copy the

next frame to be computed on the GPU after receiving the

previous one from the GPU. Our second version of GPU-

STMKF (called S in Fig. 8) improves the first one by over-

lapping data transfers between the host and GPU with

computations on the GPU. To do so, we perform asyn-

chronous data transfers using CUDA streams.

Overall, the GPU-STMKF version with CUDA streams

(S) achieves much better performance than the syn-

chronous version (No-S) on both GPUs. Taking the 480p

resolution video as an example, the FPS was improved

from 279 to 1, 044 on Tesla K40, whereas it was improved

from 229 to 398 on GeForce GTX. This means a perfor-

mance improvement of 3:7� and 1:7� on Tesla K40 and

GeForce GTX, respectively. As we increase the video

resolution, however, we observed that the performance

improvement of GPU-STMKF with CUDA streams decreases.

Table 3 Parallel platforms

specifications
Type Model Cores Clock Memory OS

CPU Intel Core i7-4710MQ 4 ? HT 2.5 GHz 16 GB Ubuntu 15.04

ARM Cortex-A7 4 900 MHz 1 GB Raspbian 7

GPU NVIDIA Tesla K40 2, 880 745 MHz 12 GB Ubuntu 14.04.3

NVIDIA GeForce GTX 850M 640 876 MHz 2 GB Ubuntu 15.04

Fig. 6 Scalability of MT-STMKF versus the parallel versions of the

Bilateral filter and STMKF-CORE with the 4 K resolution on the Intel i7

processor

1638 J Real-Time Image Proc (2019) 16:1629–1642

123

With the maximum video resolution (4K), we observed a

performance improvement of 1:8� and 1:2� on Tesla K40

and GeForce GTX, respectively.

It is worth noting that the performance improvement of

GPU-STMKF with CUDA streams is significantly higher on

Tesla K40 for all video resolutions tested. The main reason

is that Tesla K40 has about 4� more processing power2

than GeForce GTX. In other words, each frame takes about

4� less time to be computed by GPU-STMKF on Tesla K40

than on GeForce GTX. Because of that, for the syn-

chronous version of GPU-STMKF (No-S), the ratio between

the time spent on data transfers between the host/GPU and

the time spent on GPU computation is much higher on

Tesla K40 than on GeForce GTX. Thus, the benefits of

asynchronous data transfers with CUDA streams are more

significant on Tesla K40.

6.4 STMKF versus other methods

In this section, we compare the performance of STMKF

against the other approaches. We evaluated the perfor-

mance of IFSM on the same CPUs presented in Table 3,

since its source code was available on the Internet.3

Unfortunately, we were unable to perform the same

experiments with the other approaches because their source

codes were not available. For the SEQWT and WRSTF, we

present the results as reported in [42]. Results for the 3D

KNN and 3DWTF approaches were omitted due to the lack

of such information.

Table 4 presents the execution time (in seconds) to

denoise a frame. As it can be observed, STMKF presents

substantial faster computation times than the other

approaches. This can be highlighted when comparing the

results obtained with the sequential version of STMKF on the

low-power ARM processor against SEQWT and WRSTF.

7 Conclusion

In the context of video processing, image noise can hardly

be avoided. The computational cost of video denoising

algorithms must be as low as possible to be suitable for

video capture and transmission in real-time applications. In

this paper we proposed STMKF, a real-time video denoising

algorithm that fuses Kalman-based and Bilateral filters to

achieve decent visual results with low computational costs.

We presented parallel implementations of STMKF to exploit

the parallelism available in modern processors such as

general purpose and embedded multicores as well as GPUs.

We evaluate the effectiveness of STMKF using several

videos commonly used in the literature, comparing to other

real-time denoising algorithms using both the PSNR and

SSIM metrics. STMKF achieved the best score for 50 % of

the input videos and a good score for the remaining inputs.

Overall, STMKF is competitive with several filters found in

the literature for both metrics, especially for videos that

feature stationary backgrounds, such as in videoconfer-

encing, video surveillance of private areas and video

lectures.

We also evaluated the performance of STMKF on different

multicore and GPU architectures. The parallel implemen-

tations of STMKF could achieve a significant speedup of

up to 2:9� with eight threads on the multicore Intel i7

processor and a speedup of up to 2:3� with four threads on

Video resolution Video resolution

S
pe

ed
up

F
P

S

Intel i7 ARM Cortex-A7 Intel i7 ARM Cortex-A7

Number of threads

Fig. 7 Speedup and FPS of MT-STMKF on multicore processors when varying the number of threads and frame resolutions

F
P

S

P
er

f.
im

pr
ov

em
en

t o
ve

r
N

o-
S

Tesla K40 GeForce GTX Tesla K40

Video resolution

GeForce GTX

Fig. 8 Performance of GPU-STMKF with (S) and without (No-S) CUDA

streams

2 The GPU processing power is usually measured by the number of

floating-point operations it can issue per second (FLOPS).
3 Source code available at http://teacher.buet.ac.bd/mahbubur/

resources/TCSVT_prog.rar.

J Real-Time Image Proc (2019) 16:1629–1642 1639

123

http://teacher.buet.ac.bd/mahbubur/resources/TCSVT%5fprog.rar
http://teacher.buet.ac.bd/mahbubur/resources/TCSVT%5fprog.rar

the ARM Cortex-A7 processor. For GPUs, we compared

two implementations of STMKF, the first with a simple

synchronous data transfers between the host and GPU and

the second with asynchronous CUDA streams, overlapping

data transfers with computations. The second version with

asynchronous communications achieved an improvement

of up to 3.79 over the simple GPU implementation, pro-

cessing up to 1,000 FPS for 480p videos and about 50 FPS

for 4 K videos.

As future work, we intend to automatize the choice of

the Q parameter of the STMKF algorithm. Moreover, we

intend to evaluate the performance of STMKF on low-power

manycore processors such the Mellanox TILE-Gx72 and

the Kalray MPPA-256. We also plan to evaluate the use of

variations of KF such as the Extended Kalman Filter (EKF)

and the Unscent Kalman Filter (UKF). Finally, new effi-

cient algorithms for transferring real-time media streams

through the Internet have been researched due to the ever-

increasing number of complex real-time media applications

[20]. One of such algorithms that has gained attention

recently is the High-Efficiency Video Coding (HEVC).

Thus, we intend to study how STMKF could be used along

with HEVC to improve the quality of real-time media

streams. In this context, highly relevant issues that affect

real-time video transmission could also be considered such

as security [26] and wireless video delivery issues [21, 31].

References

1. Bardu, T.: Variational image denoising approach with diffusion

porous media flow. Abstr. Appl. Anal. 2013, 8 (2013)

2. Buades, A., Coll, B., Morel, J.-M.: Nonlocal image and movie

denoising. Int. J. Comput. Vision 76(2), 123–139 (2008)

3. Buades, A., Coll, B., Morel, J.-M.: A non-local algorithm for

image denoising. In: Conference on Computer Vision and Pattern

Recognition, CVPR ’05, pp. 60–65. Washington, DC, USA, IEEE

Computer Society (2005)

4. Chan, T.-W., Au, O.C., Chong, T.-S., Chau, W.-S.: A novel

content-adaptive video denoising filter. In: IEEE International

Conference on Acoustics, Speech, and Signal Processing

(ICASSP), pp. 649–652, Philadelphia, USA (2005)

5. Chaudhury, K.N.: Acceleration of the shiftable algorithm for

bilateral filtering and nonlocal means. IEEE Trans. Image Pro-

cess. 22(4), 1291–1300 (2013)

6. Chen, T.-Y., Chen, T.-H., Su, C.-P., Chen, Y.-J.: The study on

video enhancement in the low-light environment by spatio-

temporal filtering. In: International Conference on Intelligent

Systems Design and Applications (ISDA), vol. 3, pp. 561–564,

Kaohsiung, Taiwan (2008)

7. Chenglin Z., Yu, L., Xin, T., Wei, W., Maojun, Z. (2013) Video

denoising based on a spatiotemporal Kalman-bilateral mixture

model. Sci. World J. 2013 (2013)

8. Dabov, K., Foi, A., Egiazarian, K.: Video denoising by sparse 3D

transform-domain collaborative filtering. In: European Signal

Processing Conference, pp. 145–149, Poznan, Poland. IEEE

(2007)

9. Davis, L., Rosenfeld, A.: Noise cleaning by iterated cleaning.

IEEE Trans. Syst. Man Cybern. SMC 8(9), 705–710 (1978)

10. Dufaux, F., Callet, P.L., Mantiuk, R., Mrak, M.: High Dynamic

Range Video: From Acquisition, to Display and Applications.

Elsevier (2016). ISBN 9780128030394

11. Farooque, M.A., Sohankar, J.S.: Survey on various noises and

techniques for denoising the color image. Int. J. Appl. Innov. Eng.

Manage. (IJAIEM) 2, 217 (2013)

12. Garg, R., Kumar, A.: Comparision of various noise removals

using bayesian framework. Int. J. Mod. Eng. Res. (IJMER) 2, 265
(2012)

13. Han, Y., Chen, R.: Efficient video denoising based on dynamic

nonlocal means. Image Vision Comput. 30, 78–85 (2012)

14. Hong-Zhi, W., Ling, C., Shu-Liang, X.: Improved video

denoising algorithm based on spatial-temporal combination. In:

International Conference on Image and Graphics (ICIG),

pp. 64–67, Qingdao, China. IEEE (2013)

15. Jojy, C., Nair, M.S., Subrahmanyam, G.R.K.S., Raji, R.: Discon-

tinuity adaptive non-local means with importance sampling

unscented Kalman filter for de-speckling SAR images. IEEE J. Sel.

Top. Appl. Earth Obser. Remote Sens. 6(4), 1964–1970 (2013)

16. Jung, B., Sukhatme, G.S.: Detecting moving objects using a

single camera on a mobile robot in an outdoor environment. In:

International Conference on Intelligent Autonomous Systems,

pp. 980–987 (2004)

17. Kalman, R.E.: A new approach to linear filtering and prediction

problems. Trans. ASME J. Basic Eng. 82(D), 35–45 (1960)

18. Karnati, V., Uliyar, M., Dey, S.: Fast non-local algorithm for

image denoising. In: International Conference on Image Pro-

cessing (ICIP), pp. 3873–3876. IEEE (Nov 2009)

19. Kirk, D.B., Wen-mei W.H.: Programming Massively Parallel

Processors: A Hands-on Approach. Morgan Kaufmann Publishers

Inc., San Francisco, 1st edn. (2010). ISBN 0123814723

20. Kokkonis, G., Psannis, K.E., Roumeliotis, M., Ishibashi, Y.:

Efficient Algorithm for transferring a real-time HEVC stream

with haptic data through the internet. J. Real-Time Image Pro-

cess. pp. 1–13, (2015). ISSN 1861-8219. doi:10.1007/s11554-

015-0505-7

21. Kokkonis, G., Psannis, K.E., Roumeliotis, M., Schonfeld, D.: Real-

time wireless multisensory smart surveillance with 3D-HEVC

streams for internet-of-things (iot). J. Supercomput. pp 1–19,

(2016). ISSN 1573-0484. doi:10.1007/s11227-016-1769-9

22. Kostadin D., Alessandro F., Vladimir K., Karen E.: Image

denoising with block-matching and 3D filtering. In: SPIE-IS&T

Electronic Imaging, p. 6064 (2006)

Table 4 Performance of the

sequential version of STMKF

compared to other approaches

Method Time Frame size Language and platform GFLOPS per Core

SEQWT [42] 0.814 352 9 288 C??, Athlon64, 2.4GHz 1.15

IFSM 0.061 352 9 240 MATLAB, Intel Core i7-4710MQ, 2.5GHz 3.67

WRSTF [42] 0.866 352 9 288 C??, Athlon64, 2.4GHz 1.15

STMKF 0.1 352 9 288 C??, ARM Cortex-A7, 900MHz 0.093

STMKF 0.004 352 9 288 C??, Intel Core i7-4710MQ, 2.5GHz 3.67

1640 J Real-Time Image Proc (2019) 16:1629–1642

123

http://dx.doi.org/10.1007/s11554-015-0505-7
http://dx.doi.org/10.1007/s11554-015-0505-7
http://dx.doi.org/10.1007/s11227-016-1769-9

23. Li, W., Zhang, J., Dai, Q.: Video denoising using shape-adaptive

sparse representation over similar spatio-temporal patches. Signal

Proc.: Image. Communication 26(4–5), 250–265 (2011)

24. Li, X., Zheng, Y.: Patch-based video proc.: a variational bayesian

approach. IEEE Trans. Circuits Syst Video Technol 19(1), 27–40
(2009)

25. Mahmoud, R.O., Faheem, M.T., Sarhan, A.: Intelligent denoising

technique for spatial video denoising for real-time applications.

In: International Conference on Computer Engineering Systems

(ICCES), pp. 407–412, Cairo, Egypt. IEEE (2008)

26. Mahmoudi, M., Sapiro, G.: Fast image and video denoising via

nonlocal means of similar neighborhoods. IEEE Signal Process.

Lett. 12(12), 839–842 (2005)

27. Memos, V.A., Psannis, K.E.: Encryption algorithm for efficient

transmission of hevc media. J. Real-Time Image Process.

pp. 1–10, (2015). ISSN 1861-8219. doi:10.1007/s11554-015-

0509-3

28. Mitchell, H.B., Mashkit, N.: Noise smoothing by a fast k-nearest

neighbour algorithm. Signal Process. Image Commun. 4(3),
227–232 (1992)

29. OpenMP Architecture Review Board. OpenMP application pro-

gram interface version 4.0, July 2013. URL http://www.openmp.

org/mp-documents/OpenMP4.0.0.pdf

30. Pauwels, K., Tomasi, M., Alonso, J. Diaz., Ros, E., Van Hulle,

M. M.: A comparison of fpga and GPU for real-time phase-based

optical flow, stereo, and local image features. IEEE Trans.

Comput. 61(7): 999–1012, (2012). ISSN 0018-9340

31. Pizurica, A., Zlokolica, V., Philips, W.: Noise reduction in video

sequences using wavelet-domain and temporal filtering. In:

Photonics Technologies for Robotics, Automation, and Manu-

facturing, Int. Soc. for Optics and Photonics, pp. 48–59 (2004)

32. Psannis, K.E.: Hevc in wireless environments. J. Real-Time

Image Process. pp. 1–8, (2015). ISSN 1861-8219. doi:10.1007/

s11554-015-0514-6

33. Pulli, K., Baksheev, A., Kornyakov, K., Eruhimov, V.: Real-time

computer vision with OpenCV. Commun. ACM 55(6): 61–69,
(2012). ISSN 0001-0782

34. Rahman, S.M.M., Ahmad, M.O., Swamy, M.N.S.: Video

denoising based on inter-frame statistical modeling of wavelet

coefficients. IEEE Trans. Circuits Syst. Video Technol. 17(2),
187–198 (2007)

35. Ryu, J., Nishimura, T. H.: Fast image blurring using lookup

table for real time feature extraction. In: 2009 IEEE International

Symposium on Industrial Electronics, pp. 1864–1869 (2009)

36. Seiller, N., Singhal, N., Park, I.K.: Object oriented framework for

real-time image processing on GPU. In: International Conference

on Image Processing (ICIP), pp. 4477–4480, Hong Kong, China.

IEEE (2010)

37. Selesnick, I.W, Li, K.Y.: Video denoising using 2D and 3D dual-

tree complex wavelet transforms. In: Annual Meeting on Optical

Science and Technology (SPIE), Int. Soc. for Optics and Pho-

tonics, pp. 607–618. (2003)

38. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color

images. In: International Conference on Computer Vision,

Bombay, India, pp. 839–846, IEEE (1998)

39. Van De Ville, D., Kocher, M.: SURE-based non-local means.

IEEE Signal Process. Lett. 16(11), 973–976 (2009)

40. Wang, Z., Bovik, A.C., Simoncelli, E.P.: Image quality assess-

ment: from error visibility to structural similarity. IEEE Trans.

Image Proc. 13(4), 600 (2004)

41. Wolf, W., Ozer, B., Lv, T.: Smart cameras as embedded systems.

Computer 35(9), 48–53 (2002)

42. Zlokolica, V., Pizurica, A., Philips, W.: Wavelet-domain video

denoising based on reliability measures. IEEE Trans. Circuits

Syst. Video Technol. 16(8), 993–1007 (2006)

43. Zlokolica, V., Philips, W., Van De Ville, D.: A new non-linear

filter for video processing. In: IEEE Benelux Signal Processing

Symposium, pp. 221–224 (2002)

Sergio G. Pfleger is a M.Sc.

student in Computer Science at

the Federal University of Santa

Catarina (UFSC), Brazil. He

received his B.Sc. degree in

Computer Science from the

same university in 2013. Cur-

rently he is a member and

researcher of the Distributed

Systems Research Laboratory

(LAPESD) at UFSC and CEO

of Loeffa Technological Solu-

tions. His research interests

include real-time video pro-

cessing, video denoising,

motion estimation, face detection, face recognition and gesture

recognition.

Patricia D. M. Plentz is cur-

rently an Associate Professor of

Computer Science at the Federal

University of Santa Catarina

(UFSC), Brazil. She received

her Ph.D. and M.Sc. from UFSC

in 2008 and 2002, respectively,

and her B.Sc. degrees in Com-

puter Science from University

of Cruz Alta (UNICRUZ) in

2000. Her research interests

include real-time systems, fore-

cast of deadline missing and

temporal constraints of mobile

robots.

Rodrigo C. O. Rocha received

the MSc. in Computer Science

from the Federal University of

Minas Gerais (UFMG), Brazil,

in 2015, and the B.Sc. degree in

Computer Science from the

Pontifical Catholic University of

Minas Gerais (PUC Minas),

Brazil, in 2012. He is currently

an Assistant Professor at PUC

Minas for the undergraduate

courses of Computer Science

and Information Systems. His

research interests include opti-

mizing compilers, parallel pro-

gramming, high-performance computing and machine learning.

J Real-Time Image Proc (2019) 16:1629–1642 1641

123

http://dx.doi.org/10.1007/s11554-015-0509-3
http://dx.doi.org/10.1007/s11554-015-0509-3
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://dx.doi.org/10.1007/s11554-015-0514-6
http://dx.doi.org/10.1007/s11554-015-0514-6

Alyson D. Pereira is a MSc.

student in Computer Science at

the Federal University of Santa

Catarina (UFSC), Brazil. He

received his B.Sc. degree in

Computer Science from the

Pontifical Catholic University of

Minas Gerais (PUC Minas) in

2015. Currently he is a member

and researcher of the Dis-

tributed Systems Research Lab-

oratory (LAPESD) at UFSC and

the Creative and Parallel Com-

puting Group (Creapar) at PUC

Minas. His research interests

include parallel programming models, heterogeneous and parallel

architectures and machine learning.

Márcio Castro is currently an

Associate Professor of Com-

puter Science at the Federal

University of Santa Catarina

(UFSC), Brazil. He received his

Ph.D. from the University of

Grenoble Alpes in 2012, his

M.Sc. and B.Sc. degrees in

Computer Science from PUCRS

in 2009 and 2006, respectively.

In 2006, he earned an honor

distinction (summa cum laude)

from PUCRS and the Best Stu-

dent Award from the Brazilian

Computer Society (SBC). His

research interests include parallel programming models, thread and

data affinity, high-performance parallel applications and parallel

architectures (multicores, manycores and accelerators). More infor-

mation about his current research activities can be found at: www.

marciocastro.com.

1642 J Real-Time Image Proc (2019) 16:1629–1642

123

http://www.marciocastro.com
http://www.marciocastro.com

	Real-time video denoising on multicores and GPUs with Kalman-based and Bilateral filters fusion
	Abstract
	Introduction
	Background
	Image noise and filters
	Bilateral filter
	Kalman filter

	Related work
	Spatiotemporal fusion of Kalman-based and Bilateral filters (STMKF)
	Sequential algorithm
	Multicore implementation (MT-STMKF)
	GPU implementation (GPU-STMKF)
	Discussion

	Effectiveness of stmkf
	Performance evaluation
	Parallel platforms
	Multicore results
	GPU results
	STMKF versus other methods

	Conclusion
	References

