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Abstract Recent advancement in the field of wireless

sensor networks (WSNs) has enabled its use in a variety of

multimedia applications where the data to be handled are

large that require more memory for storage and high

bandwidth for transmission. As WSNs have limited capa-

bilities in terms of computation, memory, energy and

bandwidth, compression becomes necessary. The tradi-

tional compression methods consume more energy as well

as memory which can be overcome by compressive sensing

(CS) technique. CS is an emerging technique for efficiently

acquiring and reconstructing the signal by processing the

reduced number of samples specified by the Nyquist cri-

terion. The objective of this paper is to implement CS for

images using the proposed sensing matrix derived from the

Toeplitz matrix and its variants. For reconstruction pur-

pose, an existing greedy orthogonal matching pursuit

algorithm is used. The measurements obtained from the

framework are transmitted in real time using TelosB nodes

under Contiki OS platform. The simulation results are

compared with the experimental results, and the perfor-

mance of the CS framework is evaluated in terms of peak

signal-to-noise ratio, storage overhead, energy computa-

tion, computational time, transmission energy and end-to-

end transmission latency. The results show that the per-

formance of the proposed sensing matrix is better in terms

of memory requirement, energy computation and compu-

tational complexity when compared with an existing

Gaussian matrix.

Keywords CS � Measurement matrix � Proposed sensing

matrix � Orthogonal matching pursuit � WSN � TelosB
nodes � Contiki OS

1 Introduction

A WSN consists of several sensor nodes deployed in

inaccessible areas to monitor the physical or environmental

conditions such as temperature, vibration, sound and

pressure. WSNs are used for a variety of applications such

as military, civil, health monitoring, fleet monitoring,

habitat monitoring, preventing theft, home and industrial

automation. A sensor node consists of five basic units such

as sensing unit, a central processing unit, a storage unit, a

transceiver unit and a power unit [1].

In the case of multimedia applications, the data to be

handled by the network are too large that make compres-

sion a necessary process [2]. Compression takes into

account all the samples in the image which requires more

memory for storage and more energy for computation. In

traditional image compression, the image is transformed

into an appropriate basis and only the significant coeffi-

cients are encoded. Instead, the process, in which the data

compression can be performed simultaneously along with

acquisition, is termed as compressed sensing.

CS is applied to the sparse signal, i.e. the measurement

matrix is multiplied with the sparse vector to obtain the

measurements which are transmitted for reconstruction [3].
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There are many recovery algorithms proposed for CS

which reconstructs the original signal from the measure-

ments. In this paper, TelosB nodes [4] are configured as a

network using Contiki OS [5] and the measurements

acquired are transmitted in real time using TelosB nodes.

An existing greedy orthogonal matching pursuit (OMP)

algorithm is used for reconstruction, and the research

findings are discussed.

The rest of the paper is organized as follows. Section 2

provides a brief description of the CS technique. Section 3

explains the proposed CS framework, and Sect. 4 discusses

the research findings. Section 5 provides a brief survey of

related works; finally, Sect. 6 gives the conclusions and

proposed future work.

2 Compressed sensing

Compressed sensing also called as sub-Nyquist sampling

acquires measurements directly without considering all the

samples by using ameasurement process [6]. This process can

be applied to sparse or compressible signals. CS theory asserts

that original signal can be reconstructed from very few mea-

surements. Table 1 shows the notations and their meaning as

used in this paper. The notations are explained in subsequent

sections when they are used. Consider a signal x ¼ ðxiÞNi¼1 2
RN which by itself is sparse (i.e. having few nonzero coeffi-

cients) or it is made sparse by using an orthonormal basis of

N � 1 vectors fWigNi¼1. Using a basis matrix of dimension

N � N with fWig as columns, the signal can be expressed as

x ¼ Wr ð1Þ

where r is a N � 1 sparse vector with K nonzero coeffi-

cients. The signal x is said to be highly sparse if the rep-

resentation described in (1) has very few nonzero

coefficients.

Measurement matrix also called as sensing matrix is

used to obtain the measurements M � N by computing the

inner product between the signal x and the vectors repre-

sented as fUjgMj¼1. The measurement vector (y) of dimen-

sion M � 1 is represented as

y ¼ Ux ð2Þ

Using (1), the measurement vector can be represented as

y ¼ UWr

y ¼ Ar ð3Þ

where A ¼ UW represents an M � N matrix. The minimum

number of measurements (M) required to reconstruct the

signal is obtained from (4)

M�K logðN=KÞ ð4Þ

where K represents the sparsity level and N is the total

number of samples [3, 7]. There are various types of

measurement matrices such as Gaussian matrix, Bernoulli

matrix, Fourier matrix, Toeplitz matrix and circulant

matrix. The measurement matrix of dimension M � N is

generated by calculating the minimum number of mea-

surementsM required for reconstructing the original signal.

The measurement process for M is non-adaptive, and

hence, U is independent of the signal x. In order to

reconstruct the original signal, an efficient recovery algo-

rithm and M measurements are needed. For good

Table 1 Notations used in this paper

x Signal

W Basis matrix

r Sparse vector

K Sparsity level

N Total number of samples

M Number of measurements

U Measurement matrix

y Measurement vector

n Block size

BN Total number of blocks

K1 Sparsity level of block

M1 Number of measurements in a block

y1 Measurement vector of block

TP Toeplitz matrix of order P, P ¼ n2

HP Hankel matrix of order P

CP Circulant matrix of order P

SP Proposed sensing matrix of order P

d Distance between nodes

EG Energy for Gaussian sensing matrix

ET Energy for Toeplitz matrix

EH Energy for Hankel matrix

EC Energy for circulant matrix

ES Energy for proposed sensing matrix

Edct Energy for DCT computation

Ecsm Energy for CS measurements

Etot Energy for CS framework

Eenc Energy for encoding process

Etx Theoretical transmission energy

t Time to transmit a 128-byte packet

I Current consumption

V Voltage

Emtx Practical transmission energy

GT Computational time for Gaussian sensing matrix

ST Computational time for proposed sensing matrix

dend–end End-to-end transmission delay

dtrans Transmission delay

dprop Propagation delay

h Number of hops
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reconstruction, the measurement matrix must satisfy two

important properties such as restricted isometry property

(RIP) and incoherence property. The concept of CS is

explained in Fig. 1.

The input signal is made sparse using a transform

domain, such as discrete cosine transform (DCT) and dis-

crete wavelet transform (DWT). The resulting vector is

called as the sparse vector to which the measurement

matrix is applied to obtain the measurements. These mea-

surements are transmitted to the receiver side for recon-

struction. There are a number of CS recovery algorithms

such as basis pursuit, greedy algorithms and iterative

algorithms that are used for reconstructing the original

signal from the measurements.

3 Related works

Talari and Rahnavard [8] proposed a fully distributed and

efficient data storage scheme for WSN. It compresses the

natural signals and broadcasts through wireless channels.

According to the authors, after dissemination phase each

node will have a compressed sample and with the help of

data collector all the readings can be recovered. They

found the optimal parameters for compressive storage

(CStorage) method to achieve the minimum number of

required transmissions that is considerably lower than the

required transmissions in the existing protocols. The limi-

tation is that the authors have not considered the temporal

correlation of the data.

Liu et al. [9] proposed a multiple event detection

scheme using CS. The authors focused on the sensed data

to estimate the region or boundary of an event. Here, CS

can be used to reconstruct the source signal that contains

multiple simultaneous events. Moreover, the events may

not change often so that the source signals at two adjacent

time instants have high redundancy. The temporal corre-

lation is utilized to improve the detection accuracy and the

advantage of this method is that it detects not only the

positions but also the values of the events. The drawback of

the method is that it requires more number of sensors.

Gan [10] has proposed block-based CS for natural

images, in which image acquisition is conducted in a

block-by-block manner. The image reconstruction algo-

rithm includes both linear and nonlinear operations such as

Wiener filtering, projection onto the convex set and hard

thresholding in the transform domain. The results show

comparable performances between block-based CS sys-

tems and current CS schemes, but the former have much

lower implementation costs.

Kim et al. [11] described a specialized interior point

method for solving CS problems that uses a preconditioned

conjugate gradient method to compute the search step. This

method can efficiently solve large CS problems, by making

use of fast algorithms for the signal transform. The method

is demonstrated with a medical resonance imaging (MRI)

example. The drawback of the proposed method is that the

object of interest must be known in order to collect the

samples in spatial domain.

Sermwuthisarn et al. [12] proposed the block-based

OMP technique. In this method, fast image recovery is

achieved by dividing the image information into blocks of

n 9 n pixels and then applying block-based OMP to each

n 9 n block. The limitation is that the technique has to

search an extremely large dictionary to find the best

matching blocks.

Shahidan et al. [13] proposed an image transferring

mechanism for realizing JPEG motion data transfer in

wireless sensor networks where the data are basically

generated from the sequence of compressed images. They

implemented the image sequence transfer with data

buffering mechanism that overcomes the drawback of

serious restriction in transferring multimedia data as it

requires huge bandwidth and processing capabilities.

Zhou et al. [14] proposed a non-uniform sampling-based

CS for image processing. In this technique, the DCT

coefficient of an image block is scanned in zigzag order to

form a single column vector. This column vector is divided

into important and unimportant components. CS is applied

only to the unimportant components, and the important

components are transmitted directly without any modifi-

cation that reduces the CS measurement cost. The draw-

back of this method is that even though it reduces the

measurement cost the compression complexity remains

high in real-time process.

Li et al. [15] introduced partial orthogonal symmetric

Toeplitz matrices as a sensing matrix and proved that this

class of matrices satisfies statistical RIP with high proba-

bility. Because of the Toeplitz structure, these new sensing

matrices can be applied in channel estimation and signal

compression with lower computational and storage

complexity.

Yin et al. [16] introduced fast algorithms for recon-

structing signals from incomplete Toeplitz and circulant

measurements. The computational results show that the

Toeplitz and circulant matrices are not only as effective as

M 

M 
Input signal Sparsify Measurement matrix 

Recovery algorithm Reconstructed 
signal 

Transmitter Section 

Receiver Section 

Fig. 1 Block diagram of compressed sending
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random matrices for signal encoding, but also permit much

faster decoding.

Yu et al. [17] proposed a method to construct a Toeplitz-

structured matrix with chaotic sequences for CS and

proved that the Toeplitz-structured chaotic sensing matrix

retains the restricted isometry property (RIP), which

guarantees exact recovery. The results show similar or

better performance compared with the chaotic sensing

matrix and the Gaussian sensing matrix.

Bajwa et al. [18] numerically compared the performance

of Toeplitz and circulant matrices with the Gaussian

matrix. The Toeplitz and circulant matrix entries are drawn

from the Bernoulli distribution and reconstructed using

gradient projection algorithm where matrix multiplications

are carried out using FFT. The authors compared the results

with IID matrices and proved that the Toeplitz and circu-

lant matrices yield better performance in terms of storage

complexity for a large-dimensional signal.

In [19], a non-uniform compressive sensing (NCS)

method was proposed to improve the performance of

WSNs by exploiting both compressibility and heterogene-

ity. This method provides a more accurate temporal–spatial

profile for a given energy budget compared with other

sampling methods. The results show that the implementa-

tion of NCS framework introduced very little communi-

cation overheads, compared to other approaches based on

traditional CS, and also achieved similar signal approxi-

mation accuracy with significantly less samples.

In [20], energy dissipation models for CS and conven-

tional approaches are built to construct a mixed integer

programming framework that jointly captures the energy

costs for computation and communication. A model to

quantify the energy dissipation in sensor nodes due to data

acquisition, computation and communication is developed

using the characteristics of the Mica sensor network plat-

form. The results show that CS prolongs network lifetime

for sparse signals and is more advantageous for WSNs with

a smaller coverage area.

Han et al. [21] have proposed an image representation

scheme using CS because it reduces the computational

complexity of the image/video encoder used in the com-

pression process. The encoder first divides the image into

two parts, dense and sparse components, where the sparse

component alone is encoded using CS. The number of

random measurements needed and the decoding complex-

ity are reduced considerably.

In [22], the authors have proposed an energy-efficient

image transmission scheme for WSN using compressed

sensing. A unique encoding method was developed for the

compressed measurements to reduce the number of bits to

be transmitted compared with Huffman and LEC mea-

surements. The proposed image transmission scheme was

experimentally validated in Mica2 platform, and the results

show acceptable PSNR with reduced energy. The encoding

technique achieves 66% reduction in bits. However, the

proposed work was not implemented for real-time images.

Eleyan et al. [23] have proposed a novel measurement

matrix for face recognition problem. The measurement

matrix is generated using both zero mean and nonzero

mean rows. The authors have also proposed a random

measurement matrix generated from the binary entries. The

authors have validated the proposed matrix on two data-

bases, namely ORL and FERET databases. The results

show promising performance compared to the conventional

method.

In [24], the authors have proposed a simple and efficient

incoherence rotated chaotic (IRC) matrix which makes use

of pseudorandom chaotic sequence for its generation. The

matrix was generated using the concept of incoherence and

rotation. The proposed matrix was compared with Gaussian

measurement matrix and other state-of-the-art methods.

The results show that the matrix performs well for both

natural images and remote sensing images. However, the

computational complexity and storage space required for

generating the matrix were not discussed.

4 Proposed CS framework

In this paper, the proposed sensing matrix is a combination

of the Toeplitz, Hankel and circulant matrices. This sensing

matrix is used in the measurement process to obtain the

measurements that are further transmitted for reconstruc-

tion using the OMP algorithm.

Consider an input image which is divided into blocks of

size n� n to reduce the complexity of the framework [25].

When the entire image of size N � N is considered, the CS

process requires a large measurement matrix of size M �
N2 for computing the measurements that will consume

more memory and energy. In block-based CS framework,

the block size is so small that it requires only a small

measurement matrix of size M1 � n2 for computation. In

this framework, each block is converted into a single col-

umn vector that is sparsified by using DCT to obtain the

sparse vector. The number of nonzero elements (K1) in the

vector represents the sparsity level of the block. The

minimum number of measurements (M1) required to

reconstruct the original image is calculated using Eq. (4).

A measurement matrix with dimension M1 � n2 is gener-

ated and multiplied with the sparse vector to obtain the

measurement vector (y1).

The blocks of the original image are reconstructed from

the measurements using the OMP algorithm [26–28]. OMP

is a greedy algorithm which constructs an approximation

by going through an iteration process. During different

iterations, the column vector of A that resembles the
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residual vector corresponds to a nonzero entry of the sparse

vector. For the first iteration, the residual vector will be the

measurement vector. Thus, one nonzero entry of the signal

(x) is estimated which is then subtracted from the obser-

vation vector (y1) and repeating the same yields all the

nonzero entries of the sparse signal. After reconstruction,

an inverse discrete cosine transform (IDCT) is applied and

the blocks are merged to obtain the entire image. Figure 2

shows the block diagram of the CS framework that uses the

proposed sensing matrix to obtain the measurements.

The proposed matrix was designed using the Toeplitz

matrix with Gaussian entries as the basis. The Toeplitz

matrix was used to reduce the number of entries to generate

the matrix. The Toeplitz matrix was generated using the

Gaussian entries to achieve higher PSNR. When the sens-

ing matrix is applied to the sparse vector, the compressive

measurements are obtained which is a linear combination

of all the pixels in the image. From these measurements, it

is possible to reconstruct the image using appropriate

compressed sensing-based recovery algorithm [3].

To design the proposed sensing matrix, first a P 9 P

Toeplitz matrix (T) is generated using Gaussian distribu-

tion represented as

TP ¼ Ti;j ¼ Tiþ1;jþ1 ¼ ti�j ð5Þ

where TP denotes the Toeplitz matrix of order P, Ti;j
denotes the ði; jÞth position of the entries and t denotes the

entries of the matrix. The size of P should be equal to n2.

The Toeplitz matrix is a constant diagonal matrix and

satisfies the RIP and incoherence property as it uses the

Gaussian entries.

A Hankel matrix (H) of size P 9 P is derived from the

generated Toeplitz matrix which is expressed as

HP ¼ Hi;j ¼ Hi�1;jþ1 ð6Þ

where HP denotes the Hankel matrix of order P.

The circulant matrix (C) of dimension P 9 P is derived

from the Toeplitz matrix by taking the first row of the

Toeplitz matrix and rotating it one element to the right

relative to the preceding row vector. After generating the

Toeplitz matrix and its variants, the basic arithmetic

operation such as matrix addition and subtraction is applied

on it. First, the matrix addition operation is done on the

Hankel and the circulant matrices, and then, the resulting

matrix is subtracted from the Toeplitz matrix which gives a

matrix (S) of size P 9 P that is expressed as

SP ¼ TP � ðHP þ CPÞ ð7Þ

where SP denotes the proposed sensing matrix of order P.

For different measurements (M1), the measurement matrix

is designed by taking the first M1 rows of the new matrix.

The entries of the resulting matrix also follow Gaussian

distribution and hence satisfy the RIP and incoherence

property. This matrix requires only ð2P� 1Þ elements to

generate the matrix when compared with the Gaussian

matrix that requires M1 � P elements and also storage,

energy and time for generating the matrix are also less

when compared with the Gaussian matrix.

An example of a generated Toeplitz matrix of order 8 is

given as

T8 ¼

t0 t�1 t�2 t�3 t�4 t�5 t�6 t�7

t1 t0 t�1 t�2 t�3 t�4 t�5 t�6

t2 t1 t0 t�1 t�2 t�3 t�4 t�5

t3 t2 t1 t0 t�1 t�2 t�3 t�4

t4 t3 t2 t1 t0 t�1 t�2 t�3

t5 t4 t3 t2 t1 t0 t�1 t�2

t6 t5 t4 t3 t2 t1 t0 t�1

t7 t6 t5 t4 t3 t2 t1 t0

2
66666666664

3
77777777775

The Hankel matrix of order 8 which is derived from the

generated Toeplitz matrix is given as

H8 ¼

t7 t6 t5 t4 t3 t2 t1 t0
t6 t5 t4 t3 t2 t1 t0 t�1

t5 t4 t3 t2 t1 t0 t�1 t�2

t4 t3 t2 t1 t0 t�1 t�2 t�3

t3 t2 t1 t0 t�1 t�2 t�3 t�4

t2 t1 t0 t�1 t�2 t�3 t�4 t�5

t1 t0 t�1 t�2 t�3 t�4 t�5 t�6

t0 t�1 t�2 t�3 t�4 t�5 t�6 t�7

2
66666666664

3
77777777775

A circulant matrix of order 8 which is derived from the

Toeplitz matrix is given as

Image DCT 

Convert 
each block 
into single 

vector

Convert single 
vector into matrix 

OMP 
algorithm 

Block 
Division 

Proposed               
Sensing matrix 

IDCT Measurements 
Reconstructed 

image 

Measurements 

Merge 
blocks 

Fig. 2 Block diagram of

proposed CS framework
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C8 ¼

t0 t�1 t�2 t�3 t�4 t�5 t�6 t�7

t�7 t0 t�1 t�2 t�3 t�4 t�5 t�6

t�6 t�7 t0 t�1 t�2 t�3 t�4 t�5

t�5 t�6 t�7 t0 t�1 t�2 t�3 t�4

t�4 t�5 t�6 t�7 t0 t�1 t�2 t�3

t�3 t�4 t�5 t�6 t�7 t0 t�1 t�2

t�2 t�3 t�4 t�5 t�6 t�7 t0 t�1

t�1 t�2 t�3 t�4 t�5 t�6 t�7 t0

2
66666666664

3
77777777775

The proposed sensing matrix of order 8 is generated by

adding the Hankel and circulant matrices and then sub-

tracting the resulting matrix from the Toeplitz matrix

which is given as

Ameasurementmatrix of size 2 9 8 is generated by taking

the first two rows of the S8 matrix. In that case, it is observed

that only ðð2� 8Þ � 1Þ elements are required for generating

the measurement matrix. The proposed sensing matrix

requires only 15 elements to generate themeasurementmatrix

of sizeM1 � 8 for any number of measurements, whereas the

Gaussian measurement matrix requires M1 � 8 elements

leading to storage overhead. The use of this proposed sensing

matrix is a desirable alternative for WSN applications as it

reduces the computational and storage complexity.

5 Performance evaluation

The CS framework with the proposed measurement matrix is

simulated in MATLAB, and the measurements obtained from

the framework are transmitted in real time using TelosB nodes.

The performance of the proposed sensing matrix is compared

with the Gaussian sensing matrix in terms of peak signal-to-

noise ratio (PSNR), storage complexity, energy complexity,

time complexity and end-to-end transmission latency.

Consider an image of size 128 9 128 for simulation and

experimental evaluation. The image is divided into 256

blocks of size 8 9 8. Each block is converted into a single

vector that is sparsified using DCT resulting in sparse

vector. The sparsity level (i.e. number of nonzero elements

in the sparse vector) is fixed at K1 ¼ 10 per block. From

the sparsity level, the minimum number of measurements

required to reconstruct the image is calculated using (4). As

the number of measurements increases, the quality of the

reconstructed image also increases. The proposed sensing

matrix that is derived from the Toeplitz matrix and its

variants is generated as follows:

1. Toeplitz matrix of size 64 9 64 is generated with

Gaussian entries using (5).

2. Hankel matrix and circulant matrix of size 64 9 64 are

derived from Toeplitz matrix.

3. Hankel matrix is added with the circulant matrix.

4. Subtract the resulting matrix from the Toeplitz matrix

which results in a matrix of size 64 9 64.

5. Select M1 rows from the final matrix which is used as

the sensing matrix of size M1 � 64.

After designing the sensing matrix, multiply each sparse

vector with the sensing matrix to obtain the measurement

vector y1 of size M1 � 1. Finally, OMP recovery algorithm

is employed to estimate the sparse vector from the mea-

surements. The original image is reconstructed by applying

IDCT to the estimated sparse vector. The simulation

parameters used in this section are provided in Table 2

5.1 Simulation analysis

The simulation is carried out with four standard images at

30, 40 and 50% sampling rates. The simulation is done

Table 2 Simulation and exper-

imental parameters used in this

paper

n 8

M1 (%) [20, 30, 40]

P 64

K1 [3, 6, 10]

d [1, 5, 10]

t 1/250 s

I 19.5 mA

V 3 V

S8 ¼

t0 � ðt7 þ t0Þ t�1 � ðt6 þ t�1Þ t�2 � ðt5 þ t�2Þ t�3 � ðt4 þ t�3Þ t�4 � ðt3 þ t�4Þ t�5 � ðt2 þ t�5Þ t�6 � ðt1 þ t�6Þ t�7 � ðt0 þ t�7Þ
t1 � ðt6 þ t�7Þ t0 � ðt5 þ t0Þ t�1 � ðt4 þ t�1Þ t�2 � ðt3 þ t�2Þ t�3 � ðt2 þ t�3Þ t�4 � ðt1 þ t�4Þ t�5 � ðt0 þ t�5Þ t�6 � ðt�1 þ t�6Þ
t2 � ðt5 þ t�6Þ t1 � ðt4 þ t�7Þ t0 � ðt3 þ t0Þ t�1 � ðt2 þ t�1Þ t�2 � ðt1 þ t�2Þ t�3 � ðt0 þ t�3Þ t�4 � ðt�1 þ t�4Þ t�5 � ðt�2 þ t�5Þ
t3 � ðt4 þ t�5Þ t2 � ðt3 þ t�6Þ t1 � ðt2 þ t�7Þ t0 � ðt1 þ t0Þ t�1 � ðt0 þ t�1Þ t�2 � ðt�1 þ t�2Þ t�3 � ðt�2 þ t�3Þ t�4 � ðt�3 þ t�4Þ
t4 � ðt3 þ t�4Þ t3 � ðt2 þ t�5Þ t2 � ðt1 þ t�6Þ t1 � ðt0 þ t�7Þ t0 � ðt�1 þ t0Þ t�1 � ðt�2 þ t�1Þ t�2 � ðt�3 þ t�2Þ t�3 � ðt�4 þ t�3Þ
t5 � ðt2 þ t�3Þ t4 � ðt1 þ t�4Þ t3 � ðt0 þ t�5Þ t2 � ðt�1 þ t�6Þ t1 � ðt�2 þ t�7Þ t0 � ðt�3 þ t0Þ t�1 � ðt�4 þ t�1Þ t�2 � ðt�5 þ t�2Þ
t6 � ðt1 þ t�2Þ t5 � ðt0 þ t�3Þ t4 � ðt�1 þ t�4Þ t3 � ðt�2 þ t�5Þ t2 � ðt�3 þ t�6Þ t1 � ðt�4 þ t�7Þ t0 � ðt�5 þ t0Þ t�1 � ðt�6 þ t�1Þ
t7 � ðt0 þ t�1Þ t6 � ðt�1 þ t�2Þ t5 � ðt�2 þ t�3Þ t4 � ðt�3 þ t�3Þ t3 � ðt�4 þ t�5Þ t2 � ðt�5 þ t�6Þ t1 � ðt�6 þ t�7Þ t0 � ðt�7 þ t0Þ

2
66666666666664

3
77777777777775
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using both the Gaussian sensing matrix and proposed

sensing matrix. Figures 3, 4, 5 and 6 show the original and

reconstructed image using the proposed sensing matrix at

different sampling rates for Lena, Cameraman, Mandrill

and Peppers images, respectively. It is observed that as the

sampling rate increases the quality of the reconstructed

image approaches the quality of the original image.

Table 3 shows the comparison between the Gaussian

matrix and the proposed sensing matrix in terms of PSNR

for different sampling rates. It is observed that as the

sampling rate increases the PSNR also increases. The

results also show that the proposed matrix yields better

PSNR compared with the Gaussian matrix.

Table 4 depicts the comparative analysis of Gaussian

sensingmatrix and proposed sensingmatrix in terms of PSNR

by varying the sparsity level per block at K1 = 3, 6, 10.

It is observed that the PSNR increases with increase in the

sparsity level and the proposed matrix yields better PSNR

compared with the Gaussian matrix. It is also observed that

for a small number of measurements the proposed matrix

Fig. 3 a Original image,

b reconstructed with sampling

rate = 30%, c reconstructed

with sampling rate = 40%,

d reconstructed with sampling

rate = 50%

Fig. 4 a Original image,

b reconstructed with sampling

rate = 30%, c reconstructed

with sampling rate = 40%,

d reconstructed with sampling

rate = 50%

Fig. 5 a Original image, b reconstructed with sampling rate = 30%, c reconstructed with sampling rate = 40%, d reconstructed with sampling

rate = 50%

Fig. 6 a Original image,

b reconstructed with sampling

rate = 30%, c reconstructed

with sampling rate = 40%,

d reconstructed with sampling

rate = 50%
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shows better PSNR than the Gaussian matrix. The proposed

matrix shows better performance comparedwith the state-of-

the-art methods such as IRC matrix, Toeplitz matrix, Ber-

noulli matrix and Kronecker matrix for M/N = 0.4 [28].

When the number of measurements approaches the total

number of samples, the PSNRof the proposed sensingmatrix

becomes similar to the PSNR of theGaussianmatrix because

the measurement matrix will have no effect on the quality of

reconstruction. Since the proposed matrix yields better

PSNR even for small measurements, the energy for trans-

mitting the measurements gets reduced, increasing the life-

time of the network.

5.2 Experimental analysis

For experimental evaluation, the measurements obtained

from the CS framework are transmitted from the source

node to the sink node. These measurements are transmitted

using TelosB nodes under Contiki OS platform. The

measurements of each block are transmitted in a packet

which consists of the sequence number of the block fol-

lowed by the measurements.

5.2.1 Network model

The network is modelled using TelosB nodes and is

operated under Contiki OS platform. For experimental

evaluation, two types of deployment scenarios (i.e. line

deployment and random deployment) are considered.

(a) Line deployment

In line deployment, the transmission is carried out in

multihop manner. Figure 7 shows the network with line

deployment in which the source and the sink nodes are

Table 3 Comparison between

Gaussian sensing matrix and

proposed sensing matrix for

different sampling rates

Image (128 9 128) Sample rate per block (%) PSNR (dB)

Gaussian matrix Proposed matrix

Lena 30 23.6 25.3

40 24.6 26.2

50 25.5 26.5

Cameraman 30 20.4 23.6

40 22.2 24.8

50 23.5 26

Mandrill 30 22.5 24.1

40 24.1 26

50 25.7 26.8

Peppers 30 21.5 24.2

40 23.6 25.7

50 25.9 26

Table 4 Comparison between

Gaussian sensing matrix and

proposed sensing matrix for

different sparsity levels

Image

(128 9 128)

Sparsity level per

block (K1)

Measurements

(M)

PSNR (dB)

Gaussian matrix Proposed matrix

Lena 3 3072 20.18 22.2

6 6400 23.6 24.6

10 10,752 25.8 26.5

Cameraman 3 3072 18.5 20.9

6 6400 21.8 23.1

10 10,752 24.3 24.8

Mandrill 3 3072 22 23.5

6 6400 23.9 24.7

10 10,752 25.5 25.9

Peppers 3 3072 19.5 21.9

6 6400 22 23.9

10 10,752 25.3 26
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connected to the PC. The node 1 acts as the source node, node

5 acts as the sink node, and nodes 2, 3 and 4 act as the relay

nodes. The distance between the nodes is fixed at d = 1, 5 and

10 m. The indoor transmission range is 20–30 m, and outdoor

transmission range is 75–100 m [4]. TheCS process is carried

out in the PC which will be replaced with the customized

hardware in the near future. The packets of measurement

obtained from the CS framework are transmitted from the

source node to the sink node through the relay nodes. The

measurements received by the sink node are viewed in the PC

from which the original image can be reconstructed.

(b) Random deployment

In random deployment scenario, the source node (node

1) and the sink node (node 5) are connected to the PC, and

the relay nodes 2, 3 and 4 are deployed randomly as shown

in Fig. 8. In this network model, the relay nodes will for-

ward the data to a random neighbour node using multihop

transmission until it reaches the sink node. The measure-

ments are transmitted from the source node to the sink node

and are displayed in the PC.

5.2.2 Experimental results

The measurements obtained for the sampling rate of 30, 40

and 50% are transmitted from the source node to the sink

node using TelosB nodes. The experiments are carried out

for both the line deployment and random deployment

scenarios. The measurements are transmitted in a packet of

size 1þM1 bytes. The structure of the packet that is

transmitted is shown in Fig. 9, where the first byte repre-

sents the sequence number of the packet and M1 bytes of

data represent the measurements y1 ¼ fy11; y12; y13; . . .;
y1M1

g of the block.

These measurements are transmitted from the source

node to the sink node for all 256 blocks, and the image is

Fig. 7 Line deployment

Fig. 8 Random deployment

Sequence 
Number 

11y 12y
11My

byte1 bytesM1

Fig. 9 Structure of the packet
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reconstructed using MATLAB. Table 5 shows the com-

parison of experimental results and simulation results for

Lena, Cameraman, Mandrill and Peppers images, respec-

tively, at different sampling rates.

Table 6 shows the comparison between experimental

and simulation results in terms of PSNR for different

sampling rates.

From the table, it is inferred that the PSNR is better for

line deployment when compared with random deployment

due to packet loss. Table 7 shows the comparison between

line deployment and random deployment in terms of packet

loss at different distances. It is inferred that as the distance

increases the percentage of recovery decreases due to the

increase in the packet loss. The percentage of packet loss is

calculated using formula

Packet loss ð%Þ ¼
X

lostpackets
.X

packets
� �

� 100

In line deployment, the nodes have a predefined path to

reach the destination, whereas in the random deployment,

the nodes select a random neighbour to reach the destina-

tion. Hence comparing both the deployment scenarios, it is

observed that the packet loss for line deployment is less.

5.3 Complexity analysis

The complexity is analysed in terms of storage, energy and

time for generating the measurement matrix. The energy

computation for the overall CS framework, for Huffman

encoding and for transmitting the measurements is also

analysed.

5.3.1 Storage complexity

For generating a proposed sensing matrix of size M1 � 64,

it requires only ((2 9 64) - 1) elements, whereas for

generating a Gaussian matrix of size M1 � 64 totally M1 �
64 elements are required to be stored. This shows that the

proposed matrix requires less storage capacity and is irre-

spective of the size of the measurement matrix when

compared with the Gaussian matrix. Table 8 shows the

elements to be stored for the Gaussian matrix and the

proposed matrix for different measurements. It is observed

that in the case of the Gaussian sensing matrix, as the

measurement increases the elements required in generating

the matrix also increase whereas the proposed matrix

requires only 127 elements which shows a reduction of

more than 90% of the elements. Even though the proposed

sensing matrix is a combination of Toeplitz matrix and its

variants, it is sufficient to generate the Toeplitz matrix

alone as the other two variants, i.e. Hankel and circulant

matrices are derived from the Toeplitz matrix, thereby

reducing the overall computational overhead.

Table 5 Comparison of experimental results with the simulation

results for Lena, Cameraman and Mandrill

Sampling 
Rate (%) 

Simulation results Experimental results 

Line Deployment Random Deployment 

30 

40 

50 
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5.3.2 Energy complexity

In this paper, energy complexity is analysed for computing

the measurement matrix, CS framework, Huffman encod-

ing and transmission of measurements.

(a) Energy computation for generating the measurement

matrix

The energy consumed for generating the measurement

matrix is computed using (8) and (12)

(i) Gaussian sensing matrix

To generate a Gaussian matrix of sizeM1 � 64,M1 � 64

read and write operations are required.

EG ¼ ðM1 � 64Þ � eread þ ðM1 � 64Þ � ewrite ð8Þ

(ii) Proposed sensing matrix

To generate the Toeplitz matrix of size 64 9 64, 127

read and write operations are required. Energy consumed

for generating the Toeplitz matrix is given in (9).

ET ¼ 127� eread þ 127� ewrite ð9Þ

To derive the circulant matrix from the Toeplitz matrix,

4032 shift operations are required. Energy consumed for

deriving the circulant matrix is given in (10).

EC ¼ 4032� eshift ð10Þ

To derive the Hankel matrix from the Toeplitz matrix,

4096 shift operations are required. Energy consumed for

deriving the Hankel matrix is given in (11).

Table 6 Comparison of

experimental results with the

simulation results for different

sampling rates

Image (128 9 128) Sampling rate (%) PSNR (dB)

Simulation results Experimental results

Line deployment Random deployment

Lena 30 25.3 24.5 24.1

40 26.2 25.1 24.8

50 26.5 25.6 25.3

Cameraman 30 23.6 23.1 22.3

40 24.8 24.2 23.6

50 26 25.9 25.8

Mandrill 30 24.1 23.7 23.3

40 26 25.4 24.8

50 26.8 26.7 26

Peppers 30 24.2 23.4 23.1

40 25.7 25.2 24.9

50 25.9 25.7 25.3

Table 7 Comparison between line deployment and random deployment at different distances

Image (128 9 128) Distance (m) Line deployment Random deployment

Packet loss (%) Percentage of recovery (%) Packet loss (%) Percentage of recovery (%)

Lena 1 0 100 0 100

5 1.2 98.8 2.3 97.7

10 2.7 97.3 3.5 96.5

Cameraman 1 0 100 0 100

5 0.4 99.6 1.2 98.8

10 2 98 3 97

Mandrill 1 0 100 0 100

5 0.4 99.6 1.6 98.4

10 1.6 98.4 0.8 99.2

Peppers 1 0 100 0 100

5 0.6 99.4 1.8 98.2

10 1.9 98.1 2.6 97.4
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EH ¼ 4096� eshift ð11Þ

The energy consumed for generating the proposed

matrix is given in (12)

ES ¼ ðET þ EC þ EHÞ þ ð4096� eadd þ 4096� esubÞ
ð12Þ

The energy consumption analysis is performed by

using the characteristics of TelosB nodes. The energy

consumed for one processing cycle in TelosB is 0.73 nJ.

The addition, subtraction and shift operations can be

performed in one cycle, and multiplication operation can

be performed in four cycles. The energy consumed for

reading one byte from flash is 8.2 lJ and writing one byte

to flash is 34.9 lJ [29]. The energy consumption for the

basic operations involved in the computation is provided

in Table 9.

The energy consumed for generating the measurement

matrix is computed by substituting the values given in

Table 9 in (8) and (12). Energy consumption of the

Gaussian matrix and the proposed sensing matrix for M1 ¼
20; 30; 40 is given in Table 10.

Table 10 clearly shows that the energy consumed for

generating the proposed matrix is 90% less when compared

with the existing Gaussian measurement matrix and does

not depend on the size of the measurement matrix.

(b) Energy computation for the overall CS framework

and Huffman encoding

Energy computation for the overall CS framework is the

sum of the energy consumed for all the processes involved

in CS.

1. DCT energy computation

Two-dimensional DCT of k 9 k matrix needs two k 9 k

matrix multiplications. Each matrix product k 9 k needs k2

coefficients to be computed, each coefficient necessitating k

multiplications and (k - 1) additions. Therefore, the energy

dissipated for the two matrix products is 2k2(k emult ?

(k - 1) eadd), where emult and eadd represent the energy

consumption for multiplication and addition instructions,

respectively. The energy consumption for DCT computation

is given in (13) where k ¼ 8, N1 ¼ n2 ¼ 64 and eread and

ewrite represent the energy consumption for reading and

writing a byte in the flash memory, respectively.

Edct ¼ N1 � eread þ 2N1 k � 1ð Þ � eadd þ k � emultð Þ
þ N1 � ewrite ð13Þ

2. Energy computation for CS measurements

The sparse vector is multiplied by the measurement

matrix to get the measurement vector. The size of the

measurement matrix is decided based on the minimum

number of measurements required for reconstruction. The

measurement matrix of size M1 � 64 is used for obtaining

M1 measurements. The energy related to the measurement

process is given in (14).

Ecsm ¼ ððN1 � 1Þ � eadd þ N1 � emultÞ �M1 ð14Þ

3. Overall energy consumption

The overall energy consumption of the CS framework is

given as

Etot ¼ Edct þ Ecsmð Þ � BNð Þ ð15Þ

where BN represents the number of blocks in the image.

The energy consumed for the overall CS framework with

measurement matrix of size 20 9 64 is computed by sub-

stituting the values from Table 9 in (15) as 0.71 J.

4. Encoding energy

The encoding scheme used is Huffman coding. The

energy is given by the number of bytes of information

multiplied by the eent energy for entropy encoding per byte.

Table 8 Comparison of Gaussian sensing matrix and proposed matrix in terms of elements to be stored

Size of measurement matrix No. of elements to be stored (bytes) Percentage of reduction of elements (%)

Gaussian sensing matrix Proposed sensing matrix

20 9 64 1280 127 90

30 9 64 1920 127 93.4

40 9 64 2560 127 95

Table 9 Energy consumed by the MSP430 microcontroller

Variable Operation performed Energy consumed

eadd Addition over 1 byte 0.73 nJ

esub Subtraction over 1 byte 0.73 nJ

emul Multiplication over 1 byte 2.92 nJ

eshift Shift over 1 byte 0.73 nJ

eread Reads 1 byte from the flash memory 8.2 lJ

ewrite Writes 1 byte to the flash memory 34.9 lJ

eent Encodes 1 byte 160 nJ
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Eenc ¼ no: of bytes� eent ð16Þ

The energy consumed for the encoding process is

computed by substituting the values from Table 9 in (16)

as 0.8 mJ.

(c) Transmission energy

In the case of multimedia applications, the data to be

transmitted in the network are large which can be reduced

significantly by employing CS in the network that requires

only the measurements to be transmitted in the network,

thereby reducing the transmission energy. The transmission

energy per bit is analysed theoretically by considering the

current, voltage specifications of the TelosB mote and the

time to transmit a 128-byte packet in a 250-kbit/s IEEE

802.15.4 link using Eq. (17)

Etx ¼ ðt � I � VÞ=1024 J ð17Þ

where t represents the time to transmit a 128-byte packet

which is approximately 1/250 s, I represents the current

consumption which is 19.5 mA taken from the TelosB

datasheet and V represents the voltage which is 3 V [30].

The time taken to transmit a 128-byte packet in real time is

computed using the Energest component given in power-

trace tool in Contiki OS [31]. The current consumed for

transmitting a packet is measured using an oscilloscope by

setting the voltage at 3 V. The transmission energy per bit

is computed practically as

Emtx ¼ ðtm � Im � VÞ=1024 J ð18Þ

where tm represents time that is measured to be 4.6 ms, Im
represents the current that is measured to be 20 mA and

V represents the voltage which is 3 V. The theoretical and

practical value of the energy for one-bit transmission is

given in Table 11, and the energy comparison for different

measurements is given in Table 12.

The transmission energy with and without encoding for

different measurements is computed using Table 11, and

Table 12 shows that as the number of measurements

increases the transmission energy also increases. The

transmission energy can be reduced further by encoding the

measurements.

The encoding technique employed is Huffman encoding

which is a lossless coding technique, and hence, it does not

affect the quality of the reconstructed image. The bits used

to represent the measurements are reduced after encoding

which in turn reduces the transmission energy. The number

of bits to represent the measurement after encoding and its

corresponding transmission energy is also given in

Table 12. It is inferred that the energy consumed for

transmission of measurements after encoding is reduced to

40% of the energy consumed for transmission before

encoding.

5.3.3 Time complexity

The computational time for generating the measurement

matrix is calculated using (19) and (20). The time con-

sumed for computing the Gaussian matrix of size M1 � 64

is given as

GT ¼ ðM1 � 64Þ � tread þ ðM1 � 64Þ � twrite ð19Þ

The time consumed for computing the proposed matrix

of size M1 � 64 is given as

ST ¼ ðð127� tread þ 127� twriteÞ þ ð4032� tshift þ 4096

� tshiftÞÞ þ ð4096� tadd þ 4096� tsubÞ
ð20Þ

The time consumed for one processing cycle in TelosB

node is 1 ls. The time consumed for reading one byte from

flash is 2.69 ms and for writing one byte to flash is 4.49 ms

[29]. The computational time for generating the matrix is

calculated by using the values given in Table 13. Table 14

shows the computational time for both the Gaussian mea-

surement matrix and the proposed sensing matrix.

Table 14 shows that the computational time for the

proposed matrix is very less when compared with the

Table 10 Energy consumed for generating the measurement matrix

Size of measurement matrix Energy consumed (mJ) Percentage of reduction in energy (%)

Gaussian matrix Proposed matrix

20 9 64 55 5.5 90

30 9 64 83 5.5 93.4

40 9 64 110 5.5 95

Table 11 Energy per bit transmit in TelosB mote

S. No. Mote Theoretical value of energy for 1-bit transmit (lJ) Practical value of energy for 1-bit transmit (lJ)

1. TelosB 0.23 0.27

J Real-Time Image Proc (2019) 16:1525–1540 1537

123



Gaussian matrix. These observations clearly show that the

quality of the image can be further enhanced by increasing

the measurements without increasing the storage, energy

and time complexity.

5.4 End-to-end transmission latency

The end-to-end transmission latency in the network is

calculated by computing the time taken to transmit the

measurements and propagation delay of the link. The

transmission delay is obtained from the powertrace tool

in Contiki OS platform [31]. In WSN, the sensor nodes

are only short distance apart and hence the propagation

delay is negligible. The end-to-end transmission latency

ðdend�endÞ for a single hop is calculated using (21)

dend�end ¼ dtrans þ dprop ð21Þ

where dtrans represents the transmission delay and dprop
represents the propagation delay. In the case of multihop

network, the end-to-end delay in the network is the sum of

the delay of each link

End-to-end transmission latency in multihop network

¼ h� dend�end

where h represents the number of hops between source

node and destination node. Table 15 shows the end-to-end

transmission latency for different measurements with dis-

tance between nodes = 5 m.

The end-to-end transmission latency increases with the

increase in the number of measurements transmitted in

the network. From the above results, it is observed that

the proposed sensing matrix is efficient compared with

the Gaussian matrix as the storage requirement, energy

consumption and computational time for the proposed

matrix are independent of the size of the matrix and it is

also clear that the transmission energy is reduced sig-

nificantly while maintaining the acceptable range of

PSNR.

6 Conclusions and future work

A memory and energy-efficient sensing matrix is proposed

for the CS technique to overcome the storage, energy and

time complexity of the existing Gaussian sensing matrix.

The simulation results of the proposed framework show

that it yields better PSNR even for fewer measurements

when compared with the Gaussian measurement matrix. In

this work, an experimental evaluation is done by trans-

mitting the measurements from the source node to the sink

node using TelosB nodes under Contiki OS platform. The

network is formed by using the TelosB nodes for the line

deployment scenario and random deployment scenario.

Table 12 Transmission energy with and without encoding

Number of

measurements

Transmission energy (mJ)

Without encoding With encoding

Bits per

measurement

Theoretical

values

Practical

values

Bits per

measurement

Theoretical

values

Practical

values

5120 8 9.4 11 4.4 5.2 6

6400 8 11.8 13.8 4.72 6.95 8.2

7680 8 14.1 16.6 4.93 8.71 10.22

8960 8 16.5 19.4 4.97 10.2 12

Table 13 Time consumed by the MSP430 microcontroller for dif-

ferent operations

Variable Operation performed Time consumed

tadd Addition over 1 byte 1 ls

tsub Subtraction over 1 byte 1 ls

tshift Shift over 1 byte 1 ls

tread Reads 1 byte from the flash memory 2.69 ms

twrite Writes 1 byte to the flash memory 4.49 ms

Table 14 Time consumed for generating the measurement matrix

Size of the measurement matrix Computational time (seconds)

Gaussian matrix Proposed matrix

20 9 64 9 0.93

30 9 64 14 0.93

40 9 64 18 0.93

Table 15 End-to-end transmission latency for different

measurements

Measurements End-to-end transmission latency (seconds)

5120 0.8

7680 1.2

10,240 1.6
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The results show that in line deployment, less number of

packets is lost yielding better PSNR when compared with

the random deployment. This proposed matrix is best

suitable for WSN, as it yields better PSNR for a small

number of measurements and the memory, energy and time

for generating the matrix are also less that prolong the

lifetime of the network. The results also show that the

storage, energy computation and computational time for

the proposed matrix are irrespective of the size of the

measurement matrix when compared with the Gaussian

matrix. The results also show that the proposed sensing

matrix reduces the transmission energy significantly for

image transmission while maintaining the acceptable range

of PSNR. It is seen that the transmission energy can be

reduced further by encoding the measurements with the

help of a lossless encoding technique.

In the near future, the PC used at the transmitting end

will be replaced with the customized hardware in which the

CS technique can be incorporated and the measurements

alone can be transmitted using TelosB nodes. The cus-

tomized hardware will have a camera module to capture

the scene, high processor and large memory to implement

the CS technique. In order to capture and process only the

scene of interest or to detect anomalies, the camera module

must be associated with a PIR sensor which triggers the

camera. The future work aims in designing the customized

hardware setup that incorporates the CS technique, which

can be used for surveillance applications. An efficient

encoding technique can also be used to further reduce the

bandwidth and transmission energy by reducing the bit rate

of the measurements for multimedia applications.
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