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Abstract In this paper, we introduce several new schemes

for calculation of discrete wavelet transforms of images.

These schemes reduce the number of steps and, as a con-

sequence, allow to reduce the number of synchronizations

on parallel architectures. As an additional useful property,

the proposed schemes can reduce also the number of

arithmetic operations. The schemes are primarily demon-

strated on CDF 5/3 and CDF 9/7 wavelets employed in

JPEG 2000 image compression standard. However, the

presented method is general, and it can be applied on any

wavelet transform. As a result, our scheme requires only

two memory barriers for 2-D CDF 5/3 transform compared

to four barriers in the original separable form or three

barriers in the non-separable scheme recently published.

Our reasoning is supported by exhaustive experiments on

high-end graphics cards.

Keywords Discrete wavelet transforms � Image

processing � Parallel architectures

1 Introduction

The two-dimensional discrete wavelet transform (DWT) is

a signal-processing transform suitable as a basis for

sophisticated compression algorithms. For example, JPEG

2000, an image coding system, is based on such com-

pression technique. This paper focuses on the Cohen–

Daubechies–Feauveau (CDF) 5/3 and 9/7 wavelets [1],

which are often used for image compression. However, the

methods are general, and they are not limited to any

specific type of transform. Of course, plenty of other

applications are built over the discrete wavelet transform.

The one-dimensional discrete wavelet transform has

undergone a gradual development in the last few decades.

Probably, the most important advance is the discovery of a

factoring algorithm [2] referred to as the lifting scheme. In this

context, the discrete wavelet transform or two-band subband

filtering can be represented by a polyphase matrix. The lifting

scheme algorithm decomposes any wavelet transform with

finite filters into a finite sequence of lifting steps, while

reducing the number of arithmetic operations. The decom-

position corresponds to a factorization of the polyphase matrix

filters into elementary matrices. The resulting coefficients of

1-D transform are formed in two subbands. The subbands

correspond to low-pass (L)- and high-pass (H)-filtered sub-

sampled variants of the original signal.

In case of two-dimensional transform [3], one level of

the transform can be realized using a separable decompo-

sition scheme. In this scheme, the coefficients are evaluated

by successive horizontal and vertical 1-D filtering, result-

ing in four disjoint groups (LL, HL, LH, and HH sub-

bands). A naive algorithm of 2-D transform computation

directly follows the horizontal and vertical filtering loops.

As a consequence, the number of elementary polyphase

matrices is doubled.
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Unfortunately, this separable computation does not

reflect the requirements of the parallel architectures where

the scheme will need twice as many synchronizations. Such

synchronizations often form a bottleneck of the overall

calculation. State-of-the-art algorithms fuse the horizontal

and vertical loops into a single one, which results in the

single-loop approach. However, the number of the ele-

mentary polyphase matrices, and thus, the number of

memory barriers remain unaffected.

To solve the outlined issue, we propose several novel

spatial lifting structures computing the 2-D discrete

wavelet transform with reduced number of memory barri-

ers. These lifting structures are presented in the order in

which they were gradually derived. The presented work is

accompanied by exhaustive performance experiments.

A typical representative of parallel architectures is the

graphics processing unit (GPU) capable of executing a

general-purpose program. Actually, this is the architecture

used to evaluate the performance of algorithms presented

in this paper. We have employed OpenCL language for

writing underlying implementations. These implementa-

tions were then subject of performance measurements on

significant graphics cards of two biggest vendors.

In order to avoid misunderstandings, it should be noted

that the schemes presented in this paper do not affect an

image compression ratio or quality. The schemes only affect

the speed in which the compression is completed. Since

practical applications require a multi-level discrete wavelet

decomposition, the question of how to compute this multi-

scale pyramid may arise. In this case, the schemes discussed

in this paper can simply be applied in a sequence exchanging

intermediate results through a off-chip memory (a global

memory in the case of GPU). Another possibility is to apply

this sequence on blocks exchanging the results using a fast

on-chip memory (a local memory on GPU). The latter pos-

sibility was used, e.g., in [4, 5] employing the naive algo-

rithm of 2-D transform computation.

The rest of the paper is organized as follows. Section 2

presents the theory in the necessary level of detail. This

theory includes the lifting scheme basics and the spatial

lifting structures recently proposed. Subsequent Sect. 3

derives the new spatial lifting structures. Additionally,

Sect. 4 presents a simple trick proposed in order to reduce

the number of arithmetic operations. Sections 5 and 6 offer

a thorough performance evaluation. Finally, Sect. 7 sum-

marizes the paper.

2 Related work

In this paper, the well-known z-transform notation is

employed for the description of FIR filters. The transfer

function of the FIR filter hk is a Laurent polynomial defined as

HðzÞ ¼
Xk1�1

k¼k0

hk z
�k; ð1Þ

where k0 denotes the smallest and k1 � 1 denotes the lar-

gest integer number k for which hk is nonzero. The degree

of a Laurent polynomial H(z) is defined as

jHðzÞj ¼ k1 � k0 � 1. Similarly, the transfer function of the

two-dimensional FIR filter hkm;kn is a bivariate Laurent

polynomial defined as

Hðzm; znÞ ¼
Xk1;m�1

km¼k0;m

Xk1;n�1

kn¼k0;n

hkm;kn z
�km
m z�kn

n ; ð2Þ

where m refers to the horizontal axis and n to the vertical one.

Moreover, to keep consistency with other papers, the

H�ðzm; znÞ ¼ Hðzn; zmÞ denotes a filter transposed to the

Hðzm; znÞ. For simplicity, we have made a small abuse of

notation. Instead of the full notation Hðzm; znÞ, we only use a

shortened labeling, such asH. Finally, we work with 2 � 2 and

4 � 4 matrices of Laurent polynomials. These are usually

referred to as the polyphase matrices. The 2 � 2 matrices refers

to the 1-D systems, whereas the 4 � 4 to the 2-D ones. For

simplicity, a shortened labeling is used for matrices as well.

The superscript T denotes the vector or matrix transposition.

2.1 Discrete wavelet transform

The discrete wavelet transform has undergone a gradual

development [6] in the last few decades. First, S. Mallat [3]

demonstrated the multi-scale wavelet decomposition com-

puted with a pyramidal algorithm based on convolutions

with quadrature mirror filters. In detail, the discrete wavelet

transform splits the input signal xk into two components L

and H, each subsampled by a factor of 2. Both of these

components can be computed by the discrete convolution

with two FIR filters G0ðzÞ and G1ðzÞ followed by the sub-

sampling. However, such computation is usually not the

fastest one. The transform can also be represented by the

polyphase matrix [7]. Using this representation, the input

signal is initially split into the L, H components. No calcu-

lation is performed so far. After such splitting, the DWT

y ¼ M x: ð3Þ

is described by the 2 � 2 matrix M mapping the initial

components

x ¼ L H½ �T ð4Þ

onto the resulting ones

y ¼ L H½ �T: ð5Þ

The polyphase matrix is initially assembled as a polyno-

mial matrix
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M ¼ G1;o G1;e

G0;o G0;e

� �
; ð6Þ

where subscript e refers to the even coefficients, whereas

o refers to the odd coefficients.

2.2 Lifting scheme

As a next step, W. Sweldens [2, 8] showed how any discrete

wavelet transform can be decomposed into a sequence of

simple filtering steps. These steps are referred to as the lifting

steps, and the scheme is known as the lifting scheme. The

lifting scheme reduces the number of arithmetic operations by

up to 50 %. The lifting steps occur in K pairs. The first step is

referred to as the predict and the second one to as the update. It

may happen that the very first step of the lifting scheme is

missing and the sequence of steps starts with the update step.

Usually, the very last step has a different form compared to all

the others. This one is then called the scaling step.

M ¼ f 0

0 1=f

� � Y0

k¼K�1

1 UðkÞ

0 1

� �
1 0

PðkÞ 1

� �
; ð7Þ

where f is a nonzero scaling factor, PðkÞ is the kth predict

convolution operator, and UðkÞ is the kth update convolu-

tion operator. In this paper, we focus on a single pair of

lifting steps. We thus omit the (k) superscript. We also omit

the scaling step, as the application of this step is trivial.

In parallel environments [9], the processing of a single or

several adjacent signal samples is mapped to independent

processing units, commonly referred to as the threads. To avoid

race conditions (the behavior where the output is dependent on

the sequence or timing of other threads), the threads must use

some type of synchronization method. In this paper, we will

consider the use of memory barriers. When we return to the

lifting scheme, these barriers are usually required before each of

the individual lifting steps. However, certain form of the steps

guarantees correctness of the calculation even without using the

memory barrier between them. In this paper, the barriers are

indicated by the | symbol placed in between the steps. For

example, M2jM1 denotes a sequence of two steps—the initial

M1 and the subsequent M2—separated by the barrier.

The schemes presented above can be extended into two

dimensions. The most widely used 2-D extension is Mal-

lat’s [3] 2-D decomposition. The transform is defined as the

tensor product of 1-D transforms. At each scale of such

decomposition, we obtain a quadruple of wavelet coeffi-

cients (LL, HL, LH, HH).

2.3 Convolution and Polyphase schemes

Similarly to the 1-D case, the transform can be computed

using the Convolution scheme. Considering this case, one

needs to convolve the input signal with four 2-D FIR filters.

This operation is followed by the subsampling in both

dimensions. However, in practical implementations, the

subsamplings are built into the convolutions in order to

save arithmetic operations. This scheme will further be

labeled as convolution. In this scheme, no barrier is

required at all.

Moreover, the 2-D transform can be described by the

polyphase matrix as well. Using the polyphase represen-

tation, the input signal is initially split into the four poly-

phase components. No calculation is performed so far.

Further, the 2-D DWT is described by the 4 � 4 matrix M

mapping the input components

x ¼ LL HL LH HH½ �T ð8Þ

onto the final ones

y ¼ LL HL LH HH½ �T: ð9Þ

Similarly to the 1-D case, this can be written as

y ¼ NP;U j x; ð10Þ

where P;U are 1-D predict and update convolution oper-

ators. Please notice the included initial barrier. This

scheme will further be called as Polyphase.

To define the 2-D polyphase matrices, the predict and

update operators must first be migrated into two dimen-

sions. Coupled together with filter transposition defined

above, the two-dimensional counterparts of the operators

are defined like follows.

P

U

P�

U�

2

664

3

775 ¼

Pðzm; znÞ
Uðzm; znÞ
P�ðzm; znÞ
U�ðzm; znÞ

2

664

3

775 ¼

PðzmÞ
UðzmÞ
PðznÞ
UðznÞ

2

664

3

775 ð11Þ

Roughly speaking, the P and U denote the filters oriented

along the horizontal axes, whereas the P� and U� denote the

filters oriented along the vertical one.

2.4 Notation

For readers not familiar with signal-processing notations, a

relationship of the block and dataflow diagrams is

explained in this section. In this paper, we work with 4 � 4

matrices of Laurent polynomials, usually referred to as the

polyphase matrices, for example, this one

TH
P ¼

1 0 0 0

P 1 0 0

0 0 1 0

0 0 P 1

2
664

3
775: ð12Þ

Since these matrices define a linear mapping from vectors

of form ½LL HL LH HH�T to vectors of the same form,
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we can simply illustrate this mapping by the block diagram

in Fig. 1a.

Moreover, the matrices are composed of elementary

lifting operators like

PðzÞ ¼ �1=2ð1 þ z�1Þ: ð13Þ

If we substitute such particular polynomials into the matrix,

the mapping gets a specific shape, as illustrated by the

dataflow diagram in Fig. 1b. The solid arrows correspond

to multiplication by �1=2 along with subsequent summa-

tion. The dotted arrows similarly correspond to multipli-

cation by factor of 1, since the matrix TH
P contains ones on

the main diagonal.

For reader’s convenience, we use two-dimensional dia-

grams to illustrate the schemes with CDF 5/3 wavelets. For

the example above, such a diagram is shown in Fig. 1c,

whereas the elementary quadruples of coefficients are

highlighted by solid and dotted boxes.

2.5 Sweldens scheme

Following the Mallat’s scheme, the predict and update

lifting steps are applied in both directions sequentially.

This can be classified as a separable scheme. As the con-

volution is the linear operator, horizontal and vertical steps

can be arbitrary interleaved. The baseline formulation of

this scheme will be considered as follows. The predict steps

are always preceding the update ones. Such separable

scheme can be formally described by

y ¼ SV
U j SH

U jTV
P jTH

P j x; ð14Þ

where the individual matrices are defined as follows. Let us

mention a short comment on the matrix notation used. For

example, the matrix TH
P is parameterized by the P poly-

nomial. Further in the text, the same matrix appears

parameterized by different polynomials, which is com-

pletely valid. As it can be expected, the matrix TH defini-

tion is not repeated for such case. For better understanding,

the corresponding signal-processing block diagram is

shown in Fig. 2. For the CDF 5/3 wavelet, these steps are

also graphically illustrated in Fig. 3.

TH
P ¼

1 0 0 0

P 1 0 0

0 0 1 0

0 0 P 1

2
664

3
775 ð15Þ

TV
P ¼

1 0 0 0

0 1 0 0

P� 0 1 0

0 P� 0 1

2

664

3

775 ð16Þ

SH
U ¼

1 U 0 0

0 1 0 0

0 0 1 U

0 0 0 1

2

664

3

775 ð17Þ

SV
U ¼

1 0 U� 0

0 1 0 U�

0 0 1 0

0 0 0 1

2

664

3

775 ð18Þ

Please note the barriers in between each of the lifting steps.

In total, four barriers are required for each pair of the

original 1-D lifting steps. This scheme will further be

labeled as Sweldens.

Contemporary approaches on parallel architectures most

commonly reflect this separable Sweldens scheme. Excep-

tionally, the Convolution scheme is employed. Considering

the independent horizontal and vertical filtering steps, sev-

eral different strategies of 2-D DWT implementation can be

used. These strategies can be divided into three groups—

row–column, block-based, and pipelined methods. The row–

column methods process all of the horizontal filtering steps

prior to the vertical ones. The row–column method applied

on the entire 2-D image was used for instance in [10–16]. In

some papers, the transition between the horizontal and

vertical stage is accompanied with data transposition. The

pipelined methods was used, e.g., in [17, 18]. These methods

uses moving window for the vertical part of the transform.

LL

HL

LH

HH

LL

HL

LH

HH

P

+

P

+

(a)

m

n

(b) (c)

LL HL LH HH

Fig. 1 Different visual representations of the same polyphase matrix

LL

HL

LH

HH

LL

HL

LH

HH

P∗

+

P∗

+

P

+

P

+

U

U

+

+

U∗

+

U∗

+

Fig. 2 Block diagram of the Sweldens scheme. The dashed vertical

lines indicate barriers. The left half corresponds to the spatial predict

operator, whereas the right half to the update one
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However, the horizontal and vertical parts remain separated.

The block-based methods were used, e.g., in [4, 5, 14, 19].

The transform is tiled into blocks, in which the horizontal

and vertical processing still remain separated. However,

between these parts, the data remain loaded in the local

memory (making them faster accessible). For the sake of

completeness, some of the works compute an entire [4] or

partial [5] multi-scale transform inside the blocks.

Going back to the Polyphase scheme, the polyphase

matrix

NP;U ¼

V�V V�U U�V U�U

V�P V� U�P U�

P�V P�U V U

P�P P� P 1

2
664

3
775 ð19Þ

can be expressed using the auxiliary polynomial

V ¼ PU þ 1. The matrix can be obtained as the product of

individual matrices of the Sweldens scheme. In this

scheme, it is no longer possible to distinguish the vertical

and horizontal filtering. Only an initial barrier is required

for this scheme. Unfortunately, the number of arithmetic

operations has grown in proportion to the square of filter

sizes. The corresponding generic signal-processing dia-

gram is shown in Fig. 4. For the CDF 5/3 wavelet, these

operations are illustrated in Fig. 5.

2.6 Iwahashi scheme

Recently, Iwahashi et al. [20–22] presented the non-sepa-

rable lifting scheme, consisting of three spatial lifting steps.

As in the previous case, it is not possible to distinguish the

vertical and horizontal filtering. The three steps can be

described as follows. Initially, a 2-D lifting step leading to

the computation of the HH coefficient is performed. This

step corresponds to a spatial predict convolution operator.

This is followed by parallel computation of the HL and LH

coefficients, using the original 1-D predict and update fil-

ters. In the third step, the LL coefficient is computed using

another 2-D filter. The last step can be understood as a

spatial update operator. In the matrix notation, the

scheme can be defined as

y ¼ SI
U jRI

P;U jTI
P j x; ð20Þ

where the individual matrices are defined as follows. The

signal-processing diagram is shown in Fig. 6. For the CDF

5/3 wavelet, the individual steps are illustrated in Fig. 7.

TI
P ¼

1 0 0 0

0 1 0 0

0 0 1 0

PP� P� P 1

2

664

3

775 ð21Þ

RI
P;U ¼

1 0 0 0

P 1 0 U�

P� 0 1 U

0 0 0 1

2

664

3

775 ð22Þ

TH
P TV

P SH
U SV

U

LL HL LH HH

(b) (c) (d)(a)

Fig. 3 2-D dataflow diagram, CDF 5/3 wavelet, Sweldens lifting

scheme. The displayed part of the calculation results in the

coefficients inside of the solid box. The dotted boxes refer to the

surrounding threads

LL

HL

LH

HH

LL

HL

LH

HH

P∗P

P∗

P

P∗V

P∗U

V

U

V∗V

V∗U

U∗V

U∗U

V∗P

V∗

U∗P

U∗

+ + +

+ + +

+++

+++

Fig. 4 Block diagram of the Polyphase scheme. The dashed vertical

lines indicate implicit barrier

Fig. 5 2-D dataflow diagram, CDF 5/3 wavelet, Polyphase scheme.

The solid box in the middle corresponds to the output coefficients
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SI
U ¼

1 U U� � UU�

0 1 0 0

0 0 1 0

0 0 0 1

2
664

3
775 ð23Þ

Three barriers are required in between these steps. As

for the Polyphase scheme, the number of arithmetic oper-

ations increased proportionally to the square of filter sizes.

However, the total number of operations is significantly

lower. This scheme will further be labeled as Iwahashi.

When we compare the separable Sweldens and non-

separable Iwahashi schemes, some findings becomes

obvious at first glance. The number of operations tends to

be considerably smaller for the separable case. On the other

hand, the number of memory barriers in the non-separable

scheme was reduced to 75 % (from four to three barriers).

The Polyphase scheme stands apart from these two

schemes. It needs only an initial memory barrier. Unfor-

tunately, the number of arithmetic operations is unreason-

ably large. This is caused by the number of non-zero

elements in the corresponding polyphase matrix as well as

by the degree of the longest filter V. For clarification, the

product of a Laurent polynomial of degree |P(z)| and a

Laurent polynomial of degree |U(z)| is a Laurent polyno-

mial of degree jPðzÞj þ jUðzÞj. Finally, the Convolution

scheme employing four 2-D filters is even worse in terms

of the operations. Anyway, only an initial memory is

required here as well. Detailed quantitative comparison is

provided in Sect. 5.

When we consider the linearity of the convolution and

the dependencies between the individual lifting steps,

several gaps can be inferred in the schemes described

above. Recombining the operations into a new form could

lead to the removal of unnecessary barriers. Actually,

exactly this idea is investigated in the following section, in

which several novel 2-D schemes are proposed.

Since this work is based on our previous work in [23], it

should be explained what the difference between this work

and [23] is. In [23], we presented a block-based method

employing a scheme foregoing the schemes proposed in

this paper. Unlike [23], the schemes presented in this paper

are defined by general predict and update operators.

3 Proposed schemes

In this section, the polyphase matrices, known so far, are

reassembled in order to obtain the schemes suitable for

parallel architectures. All of the schemes discussed here are

general, and they can be used for any discrete wavelet

transform. Please note that the contribution of this paper is

presented in this section and the following one.

3.1 Explosive scheme

When we take a detailed look at the original 1-D lifting

scheme, a certain pattern can be identified in the predict

and update steps. Particularly, the predicts transmit data

from L into H samples, whereas the updates transmit data

from H into L. The transmission can be viewed from two

perspectives—the data flow out from a source component

(similarly to an explosion); or the data flow in into a des-

tination component (an implosion). As it can be expected,

the Sweldens scheme exactly follows this pattern, since this

scheme is a mere extension of 1-D lifting into two

dimensions. Roles of source and destination samples

properly turn during four lifting steps (horizontal and

vertical, predict and update). This procedure can be also

seen as a data transmission in direction from LL into HH

component (using 1-D predicts), and a transmission from

HH into LL one (using updates). The HL and LH com-

ponents are not relevant in this view. The situation is

clearly visible in Fig. 2. In contrast to this scheme, the

Iwahashi scheme has a different structure. The leading step

transmits data into HH component (using predicts), while

the trailing one transmits them into LL one (updates).

However, no exclusive source components can be identi-

fied in this case. The remaining step in the middle is not

relevant. See the block diagram in Fig. 6. Regarding to the

perspectives outlined above, the Iwahashi scheme can be

LL

HL

LH

HH

PP∗

+

−UU∗

+

U∗

+

U

+

P∗

+

P

+

LL

HL

LH

HH

P∗P

UU∗

+

+

Fig. 6 Block diagram of the Iwahashi scheme. The dashed vertical

lines indicate barriers

TI
P RI

P,U SI
U(b)(a) (c)

Fig. 7 2-D dataflow diagram, CDF 5/3 wavelet, Iwahashi lifting

scheme. The solid box corresponds to the output coefficients
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classified as an implosive one. However, this is not the only

three-step version (two-step scheme is discussed below in

the text). Similar scheme can be formulated using data

explosions instead of the implosions. Particularly, the LL

component spreads the data into its neighborhood during

the predict step, whereas the data flow out from the HH

component in the update step. No exclusive destination

components can be identified here as well. Again, the step

in the middle is not relevant. For further purposes, this

newly proposed scheme will be labeled as Explosive. The

block diagram is shown in Fig. 8. The steps for the CDF 5/

3 wavelet are also illustrated in Fig. 9. Formally, the

scheme can be defined as

y ¼ SE
U jRE

P;U jTE
P j x; ð24Þ

where the individual matrices follows. Three barriers are

required, as in the case of the Iwahashi scheme.

TE
P ¼

1 0 0 0

P 1 0 0

P� 0 1 0

�PP� 0 0 1

2

664

3

775 ð25Þ

RE
P;U ¼

1 U U� 0

0 1 0 0

0 0 1 0

0 P� P 1

2

664

3

775 ð26Þ

SE
U ¼

1 0 0 UU�

0 1 0 U�

0 0 1 U

0 0 0 1

2
664

3
775 ð27Þ

3.2 Monolithic scheme

Motivated by the work of Iwahashi et al. [22], we have

reorganized the elementary lifting filters in order to remove

the middle lifting step. This action consequently reduces

the number of memory barriers. As a result, we receive a

new two-step non-separable scheme. The first step corre-

sponds to a spatial predict operator. This one is completely

responsible for the HH coefficient. In addition, the HL and

LH coefficients are partially computed here as well. The

second step corresponds to a spatial update. It is respon-

sible for the LL coefficient and completion of the HL and

LH ones. Formally, the scheme is defined as

y ¼ SU jTP j x; ð28Þ

where the SU and TP are defined as follows. Moreover, the

hypothetical signal-processing diagram is shown in

Fig. 10. For the CDF 5/3 wavelet, the scheme is graphi-

cally illustrated in Fig. 11.

TP ¼

1 0 0 0

P 1 0 0

P� 0 1 0

PP� P� P 1

2

664

3

775 ð29Þ

SU ¼

1 U U� UU�

0 1 0 U�

0 0 1 U

0 0 0 1

2

664

3

775 ð30Þ

The total number of operations remained the same as for

the Iwahashi scheme. However, the number of the explicit

barriers has been reduced to only two. This is a crucial

contribution of our work. Further in the paper, this

scheme will be labeled as Monolithic. One can easily

verify the correctness of the proposed scheme by

LL

HL

LH

HH

−PP∗

+

UU∗

+

U∗

+

U

+

P∗ P

+ +

LL

HL

LH

HH

U

+

U∗

+

P

+

P∗

+

Fig. 8 Block diagram of the Explosive scheme. The dashed vertical

lines indicate barriers

(a) TE
P RE

P,U SE
U(c)(b)

Fig. 9 2-D dataflow diagram, CDF 5/3 wavelet, Explosive lifting

scheme. The solid box corresponds to the output coefficients
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Fig. 10 Block diagram of the Monolithic scheme. The dashed

vertical lines indicate barriers. The left half corresponds to the predict

operator, whereas the right half to the update

J Real-Time Image Proc (2019) 16:1365–1381 1371

123



comparing the product SUTP to the matrix NP;U of the

Polyphase scheme.

A comparison of the shapes for selected schemes can be

found in Table 1. Regarding the Polyphase scheme, no

spatial predict nor update step can be identified in its

calculation.

In practical implementations, the formed intermediate

coefficients cannot take the same place as the input ones.

Otherwise, the race condition occurs. This implies a higher

memory consumption compared to the previous schemes.

A particular numbers are listed in Table 3.

Two simple observations can be made from the

scheme presented so far. The Sweldens scheme requires the

lowest number of operations. In contrast to this approach,

the non-separable scheme proposed above requires the

lowest number of memory barriers. Combining these two

observations together, new schemes can be formed. This

possibility is investigated below.

4 Improvements

Additionally, we have made another observation. The

operation composed as a product of monomials with the

exponent of zn and zn being equal to zero (i.e., scalars)

never touch the coefficients belonging to the surrounding

threads. As the convolution is the linear operation, this

monomial can be detached from the original operator and

subsequently calculated using the Sweldens scheme. This

scheme has a minimal number of arithmetic operations.

The rest of the original polynomial shall be computed using

different scheme, according to suitability for a particular

platform.

In more detail, the original filters were split into two

halves as P ¼ P0 þ P1, and U ¼ U0 þ U1, where P0 and U0

are scalars. This is a fundamental step for the following

constructions. Now, the scalars P0;U0 can be utilized in the

separable Sweldens scheme. This part will never touch the

extraneous threads. For a better understanding, see the

dataflow diagram in Fig. . Conversely, the P1;U1 shall be

employed in the Explosive, Iwahashi, Monolithic, or

Polyphase scheme in order to minimize the number of

required memory barriers. Note that these two schemes can

be combined into joint lifting steps. However, such opti-

mization is a simple matter of a specific implementation.

Initially, we have employed the idea described in pre-

vious paragraphs in conjunction with the Iwahashi scheme.

The resulting scheme is defined as

y ¼ SV
U0

SH
U0

SI
U1

jRI
P1;U1

jTI
P1
jTV

P0
TH

P0
x; ð31Þ

TP SU(a) (b)

Fig. 11 2-D dataflow diagram, CDF 5/3 wavelet, Monolithic scheme.

The solid box corresponds to the output coefficients

Table 1 CDF 5/3 wavelet

step Sweldens Monolithic Iwahashi Explosive

predict

middle

update

Shapes of spatial lifting steps for selected schemes. The step in the middle raised from the combination of the original predict and update steps.

Illustrative purpose only
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where the individual matrices are defined above in the

paper. The number of barriers remains the same as for the

original Iwahashi scheme. The operations represented by

the matrices defined for the Sweldens scheme do not need

to be preceded by a barrier. The scheme will be further

referred to as Iwahashi�. For the CDF 5/3 wavelet, this

scheme is graphically illustrated in Fig. 13.

Similarly, we have employed the same trick in con-

junction with the Explosive scheme. This time, the

scheme is defined as

y ¼ SV
U0

SH
U0

SE
U1

jRE
P1;U1

jTE
P1
jTV

P0
TH

P0
x: ð32Þ

Also in this case, the number of barriers remains the same

as for the original scheme. Analogously to the previous case,

this scheme will be referred to as Explosive�. The dataflow

diagram for the CDF 5/3 wavelet is shown in Fig. 14.

As a next step, consider a new construction based on the

Monolithic scheme. The same trick can be utilized here as

well. In the matrix notation, the newly composed scheme is

defined as

y ¼ SV
U0

SH
U0

SU1
jTV

P0
TH

P0
TP1

x; ð33Þ

where the individual matrices are defined above in the text.

For the CDF 5/3 wavelet, this scheme is graphically

illustrated in Fig. 15. We will label this scheme as

Monolithic�.
The schemes described above are formed such a way

that the first lifting step (comprising P1;U1) after the bar-

rier access coefficients of the surrounding threads. The

subsequent or preceding steps (comprising P0;U0) read

only the local coefficients, which are not accessed by the

other threads. Then, the whole sequence can be repeated.

Of course, the calculation of transforms consisting of

several pairs of lifting steps comprises several such con-

nected schemes.

Finally, we have decided to remove the last explicit

barrier, leaving only the initial one in place. The trick lies

in the appropriate combination of the Sweldens and Poly-

phase schemes. This time, the non-separable parts are

merged into a joint step NP1;U1
. This step is inherently

preceded by a barrier. In case of an initial pair of lifting

steps, the barrier at the beginning of the computation is

used for this purpose. In more detail, after the input data

have been read by each computation unit, the calculations

TI
P1

RI
P1,U1

SI
U1

(a) (b) (c)

Fig. 13 2-D dataflow diagram, CDF 5/3 wavelet, Iwahashi� scheme.

The solid box corresponds to the output coefficients

E
P1

E
P1,U1

T R SE
U1

(a) (b) (c)

Fig. 14 2-D dataflow diagram, CDF 5/3 wavelet, Explosive� scheme.

The solid box corresponds to the output coefficients

TP1
SU1

(a) (b)

Fig. 15 2-D dataflow diagram, CDF 5/3 wavelet, Monolithic�

scheme. The solid box corresponds to the output coefficients

Fig. 16 2-D dataflow diagram, CDF 5/3 wavelet, Polyphase� scheme.

The solid box corresponds to the output

TH
P0

TV
P0

SH
U0

SV
U0

(a) (b) (c) (d)

Fig. 12 2-D dataflow diagram, CDF 5/3 wavelet, common steps for

all improved schemes
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TV
P0

TH
P0

are immediately performed. At this point, the

intermediate results can be appropriately shared. This is

followed by the initial barrier. Regarding the transforms

consisting of several such schemes, the barrier between the

connecting schemes is gratefully exploited. In any case, the

scheme is thus composed as

y ¼ SV
U0

SH
U0

NP1;U1
jTV

P0
TH

P0
x ð34Þ

including the discussed barrier. For the CDF 5/3 wavelet,

the steps are illustrated in Fig. 16. We will label this

scheme as Polyphase�.

For the sake of clarity, the proposed schemes will now be

summarized. By reversing the direction of filtering steps in

the Iwahashi scheme, the new Explosive scheme was

formed. As a next step, the polynomials of the original

polyphase matrix were reassembled into a new two-step

form. In between the steps, a memory barrier has to be

placed. This scheme is denoted as Monolithic. Moreover, the

number of arithmetic operations was reduced by splitting the

polynomial into two parts. These newly formed polynomials

are then employed in appropriate schemes. In this manner,

the number of barriers remains unaffected, while the number

of operations has been reduced. This simple trick has resulted

in the Iwahashi�, Explosive�, Monolithic�, and Polyphase�

schemes. Once again, we would like to emphasize that the

schemes presented in this paper are general and they are not

limited to any specific type of transform.

5 Evaluation

This section analyzes in detail various attributes of the

schemes described in the previous sections. Namely, syn-

chronization and memory demands for different wavelets are

examined. We realize that such properties do not provide

sufficient information on a performance in real environ-

ments. For this reason, we are interested in comparing the

performance of the discussed schemes on real graphics cards

in terms of memory bandwidth in the next section.

The evaluation is presented using the following three

wavelets. The first wavelet we have employed is the CDF

[1] 5/3 wavelet. This one is used for a lossless compression

in the JPEG 2000 compression standard. The lifting

scheme is defined by

PðzÞ
UðzÞ

� �
¼ �1=2ð1 þ z�1Þ

1=4ð1 þ z Þ

� �
; ð35Þ

and the scaling factor f ¼
ffiffiffi
2

p
:

As the second wavelet, we have chosen the CDF 9/7

wavelet. In the JPEG 2000 standard, this wavelet is used as

a basis for a lossy compression. The underlying scheme is

given by

Pð0ÞðzÞ
Uð0ÞðzÞ
Pð1ÞðzÞ
Uð1ÞðzÞ

2

664

3

775 ¼
að1 þ z�1Þ
bð1 þ z Þ
cð1 þ z�1Þ
dð1 þ z Þ

2

664

3

775; ð36Þ

where the a; b; c; d; and the f are defined in [2]. Both the

CDF wavelets have predict and update convolution oper-

ators of degree 1 (two-tap symmetric filters).

The last wavelet included in the comparison is (4, 4)

interpolating transform built from the interpolating Des-

lauriers–Dubuc [8], defined by

PðzÞ
UðzÞ

� �
¼ 1=16ðzþ z�2Þ � 9=16ð1 þ z�1Þ

9=32ð1 þ zÞ � 1=32ðz�1 þ z2Þ

� �
: ð37Þ

This wavelet is used in Dirac video compression standard.

For simplicity, we refer this one to as DD 13/7. The

underlying lifting scheme differs from the two previous in

employed predict and update convolution operators. These

operators now have a degree of 3 instead of 1. Conse-

quently, this difference has resulted in a significantly

higher number of arithmetic operations in the case of non-

separable filtering steps.

The first examined parameters include the number of

arithmetic operations (the scaling steps were omitted) and

the number of memory barriers. The schemes presented in

this paper can be directly applied on the CDF 5/3 and DD

13/7 transforms, as these comprises only a single pair of

lifting steps. The CDF 9/7 transform is computed by two

such connected schemes. The comparison is shown in

Table 2. Several expectations can be made from the table.

On architectures based on serial computation, the schemes

should perform accordingly to the number of arithmetic

operations. However, on the parallel architectures, the

number of employed memory barriers is expected to play

an important role. Some of the schemes could benefit from

this property.

As can be seen from the referenced table, the Sweldens

scheme always leads to the smallest number of operations

coupled with the highest number of barriers. The recently

proposed Iwahashi scheme reduces the number of barriers

by one per one pair of original 1-D lifting steps. Unfor-

tunately, the number of operations is increased at the

same time. This increase is particularly noticeable on

longer lifting filters, as in the case of DD 13/7 wavelet.

The Monolithic scheme further reduces the number of

barriers by one per one pair of original steps while

keeping the number of operations untouched. In addition

to this, the Monolithic� scheme reduces the number of

operations. This reduction is most evident on short lifting

filters. For instance, in the case of CDF wavelets, the

number of operations is reduced to 75 %, whereas in the

case of DD 13/7 wavelet, the number of operations is only

reduced to 78 %. The number of barriers per one pair of
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original lifting steps can be even further reduced to a

single one by combining all operations into a single step.

Such case corresponds to the Polyphase scheme. Unfor-

tunately, the number of operations was increased enor-

mously. For shorter lifting filters, this number can be

noticeably reduced using the Polyphase� scheme, in

which the number of barriers remains the same. Finally,

for lifting factorizations consisting of several pairs of

steps, it makes sense to reduce the number of barriers to a

single one by using the Convolution scheme. In such case,

the number of operations is sadly the highest of all of the

schemes.

Other examined parameters included the memory

footprint, and number of memory loads/stores. These

parameters can be determined from Tables 3 and 4. All of

the numbers are given with respect to the quadruple of

coefficients, which usually correspond to a single thread.

The number of load (read) operations depends on the

length of the lifting operators. For example, the CDF 5/3

and CDF 9/7 factorizations consist of degree-1 convolu-

tional filters. On the contrary, the DD 13/7 consists of

degree-3 filters. The number of store (write) operations is

independent of the underlying scheme. It may happen that

the local memory footprint for the connecting schemes

(K[ 1) differs from the footprint for a single predict/

update pair (K ¼ 1). These numbers are indicated in the

parentheses in Table 3. For clarity, the number of mem-

ory barriers is not affected by the improvement proposed

in Sect. 4.

Table 2 Number of operations and memory barriers examined for

various wavelets

Wavelet Scheme Barriers Operations

CDF 5/3 Sweldens 4 16

Iwahashi 3 24

Iwahashi� 3 18

Explosive 3 24

Explosive� 3 18

Monolithic 2 24

Monolithic� 2 18

Polyphase 1 63

Polyphase� 1 23

Convolution 1 64

CDF 9/7 Sweldens 8 32

Iwahashi 6 48

Iwahashi� 6 36

Explosive 6 48

Explosive� 6 36

Monolithic 4 48

Monolithic� 4 36

Polyphase 2 126

Polyphase� 2 46

Convolution 1 256

DD 13/7 Sweldens 4 32

Iwahashi 3 64

Iwahashi� 3 50

Explosive 3 64

Explosive� 3 50

Monolithic 2 64

Monolithic� 2 50

Polyphase 1 255

Polyphase� 1 203

Convolution 1 256

* denotes the improved schemes (schemes with reduced number of

arithmetic operations)

Table 3 Number of memory barriers and local memory cells per

quadruple required by the schemes discussed in this paper

Scheme Barriers Single Double

Sweldens 4 2 3

Iwahashi 3 3 4

Iwahashi� 3 3 (6) 4

Explosive 3 2 3

Explosive� 3 2 3

Monolithic 2 3 6

Monolithic� 2 3 6

Polyphase 1 4 (8) 4

Polyphase� 1 4 (8) 4

* denotes the improved schemes (schemes with reduced number of

arithmetic operations)

Memory cells are given for a single buffering (two barriers) as well as

a double buffering (only a single barrier). The numbers in parentheses

are valid in the case of connecting schemes. Best features in bold

Table 4 Number of local memory reads and writes for all schemes

and wavelets under examination

Scheme Write Read degree-1 Read degree-3

Sweldens 1 þ 4K 8K 24K

Iwahashi 2 þ 4K 10K 42K

Iwahashi� 6K 10K 42K

Explosive 4K 10K 42K

Explosive� 4K 10K 42K

Monolithic 6K 10K 42K

Monolithic� 6K 10K 42K

Polyphase 4K 21K 117K

Polyphase� 4K 12K 117K

* denotes the improved schemes (schemes with reduced number of

arithmetic operations)

The K denotes the number of predict/update pairs. The degree-1

polynomials correspond to factorizations of CDF wavelets, whereas

degree-3 to DD 13/7
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6 Performance

To evaluate the considered schemes, we have decided to

use high-performance GPUs programmed using the

OpenCL framework. In terms of the OpenCL, the

schemes are computed using parallel tasks referred to as

the kernels. One item from a collection of parallel exe-

cutions of a kernel is referred to as the work-item or

thread. The threads that execute on a single compute unit

are grouped into so-called work groups. The threads in

the group execute the same kernel and share local

memory. Each work group can synchronize the threads

via memory barriers. Work groups cannot synchronize

with each other. Considering the processing of images, we

map overlapping (in order to properly compute the

coefficients near tile boundaries) image tiles onto the

work groups. Moreover, each thread is responsible for a

single quadruple of transform coefficients (LL, HL, LH,

and HH). At the beginning of the computation, the input

image is placed in the global memory. The tiles are then

transferred into the local memory. After the

scheme computation, the resulting coefficients are copied

back into the global memory. Such strategy fulfills the

definition of a single-loop data processing (therefore,

without unnecessary data transfers).

One needs to recall that the row–column, block-based, and

pipelined methods denote an order in which an entire input

image is processed. The row–column approach indicates that

all image rows are transformed prior to a transformation of all

image columns (or vice versa). Between these two parts,

intermediate results are stored in the global memory. How-

ever, all of the schemes presented in our paper are imple-

mented as the block-based approaches. This means that the

entire input image is split into blocks (the tiles), which are then

transformed at once using the local memory for storing the

intermediate results. Inside the blocks, some sort of separable

scheme can be employed, which essentially corresponds to the

row–column approach on a different scale. The block-based

approaches in various forms were also used in, e.g.,

[5, 14, 19, 23]. Since the block-based approaches overcome

the row–column ones (as shown in [23], or analyzed in [19]),

we do not include the classical row–column methods in our

performance comparison. Instead, we only compared differ-

ent schemes employed under the block-based approach. In this

context, we would like to make a comment on data transfers

between a device and host. Due to the fact that the data are

transferred in the same way for all schemes, we measured only

a throughput based on a timing of a OpenCL kernels which

calculate transforms. Therefore, the transfer times between

device and host are not our concern.

The evaluation was performed primarily on two high-end

GPUs—AMD Radeon HD 6970 and AMD Radeon HD

5870. Their technical parameters are summarized in

Table 5. On both of the cards, variable length VLIW

instructions are executed using blocks of 64 threads. In more

detail, VLIW instructions can be categorized into several

groups (load/store instructions, barrier instructions, control

flow instructions and ALU instructions). To utilize whole

processing capability, the VLIW instructions should be of

maximal length. In other words, as much as possible blocks

of independent instructions should be presented in a kernel.

Several possibilities raised during the implementations of

the presented schemes. All of the schemes require several

memory cells to interchange the intermediate coefficients.

Considering the GPUs, these coefficients can be efficiently

stored in the local memory. Unfortunately, it is not possible

to rewrite these coefficients using a single memory barrier.

As a consequence, two possibilities occur—double buffering

using a single memory barrier, and single buffering using

two of them. The double buffering increases the memory

requirements while maintaining the number of synchro-

nizations. Conversely, the single buffering introduces an

addition barrier—separating reading and rewriting of the

coefficients. For details, see Table 3. In other words, one can

choose whether intermediate results are overwritten in their

place using two memory barriers or whether these are

written to another location by making use of a single barrier.

Moreover, another possibility lies in the method of input and

output data delivery. For evaluation purposes, it is possible

to completely omit the input and output of data. The trans-

form is not limited by memory bandwidth in this case. For

real scenarios, the data can be delivered using the global or

texture memory. In our experiments, we chose the latter

option.

In the following paragraphs, three fundamental experi-

ments on the described GPUs are presented. The first

experiment studies the performance of the baseline

Table 5 Description of the GPUs used for the evaluation

Vendor AMD 6970 AMD 5870

AMD AMD

Model Radeon HD 6970 Radeon HD 5870

VLIW length 4 5

Multiprocessors 24 20

VLIW processors 384 320

Total processors 1 536 1 600

Processor clock 880 MHz 850 MHz

Performance 2 703 GFLOPS 2 720 GFLOPS

Memory 1 GiB GDDR5 1 GiB GDDR5

Memory clock 1 375 MHz 1 200 MHz

Bandwidth 176 GB/s 154 GB/s

Bus width 256-bit 256-bit

Local memory 32 KiB 32 KiB

1376 J Real-Time Image Proc (2019) 16:1365–1381

123



schemes mentioned in this paper. The second experiment

examines the influence of the improvement proposed in

Sect. 4. Finally, the third experiment measures the real

performance with CDF 9/7 wavelet and texture memory.

In the first experiment, the performance of the base-

line schemes (without improvements proposed in

Sect. 4) was examined. The measurements were con-

ducted on the AMD 6970 card with two different lifting

scheme shapes (degree-1 and degree-3 operators). Only

the transform performance was measured, without the

influence of memory throughput. The presented results

are the average of ten measurements. The results are

shown in Fig. 17. One can easily observe a different

behavior for short and long lifting operators. For the

short operators, the reduction in the number of lifting

steps clearly improves the performance. The situation

actually corresponds directly to the number of memory

barriers. Conversely, in the case of the long operators,

the situation is tilted in favor of the number of arithmetic

operations. Note that the horizontal axes are in a loga-

rithmic scale. The vertical axes express the transform

throughput in GB/s (gigabytes per second).

In the second experiment, the contribution of the

improvements proposed in Sect. 4 was examined. The

measurements were performed on both of the cards under

the evaluation. This time we have focused on the degree-1

schemes only. As in the previous case, only the transform

performance was measured using the average of ten mea-

surements. The results are shown in Fig. 18. As expected,

the improvements slightly increase the transform perfor-

mance. However, the order of the schemes still corresponds

to the number of memory barriers. Several schemes perform

even worse than the original separable Sweldens scheme—

namely, the original Iwahashi and both Polyphase schemes.

It is not surprising for the original Polyphase scheme, as this

one exhibits quite a high number of operations and load

instructions (see Tables 2, 4). In case of Polyphase� scheme,

the decisive factor was the number of load instructions

coupled with a high local memory footprint (see Table 3). A

little surprising is the situation regarding the original Iwa-

hashi scheme. In this case, the scheme contains a relatively

high number of operations, wherein there is no additional

advantage. For convenience, the values at the end of plots in

Fig. 18 are listed in Table 6.

In the last experiment, we were interested in a real

performance. This experiment was performed on both of

the cards with CDF 9/7 wavelet. The input as well as

output raster were supplied by the texture memory. This

time, we show only the improved schemes as these always

outperform the original ones. The results are shown in

Fig. 19. The horizontal axes are in a logarithmic scale, and

the vertical ones express the total throughput (limited by

the memory). The Convolution and Polyphase schemes

exhibit a significantly worse performance, according to the

number of operations. In contrast to this, the other schemes

perform better as compared to the original separable

implementation. More specifically, the Monolithic and

Explosive schemes have the very best performance. This

fact corresponds to the reduction in the number of steps

(and thus the memory barriers).

The schemes presented in this paper were also subject of

examination at other graphics cards under various scenarios.

Note that a link to the results is below. Specifically, we

tackled these additional cards—NVIDIA Titan X, AMD

Fury X, NVIDIA 580, and AMD 290X. Obviously, the

proposed non-separable schemes presented in this paper do

not exhibit the best performance in all cases. This is espe-

cially true for a lifting factorizations employing a longer

convolution operators, as is the case of the DD 13/7 wavelet.

On the other hand, the proposed schemes seems to be the

(a) (b)

Fig. 17 The baseline schemes on AMD 6970. Evaluation with the degree-1 and degree-3 lifting schemes. Only the performance of a transform

code without the memory throughput was measured
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proven choice for VLIW architectures combined with a short

lifting operators, e.g., the CDF 5/3 and CDF 9/7 wavelets.

This point needs to be explained in detail. In general, the

number of memory accesses, instruction dependencies, as

well as barriers, decreases the ALU utilization, which then

degrades the performance. Unlike other architectures,

AMD VLIW architectures pack multiple independent

instructions into VLIW bundles. Thus, amount and

dependencies of instructions between each two neighboring

barriers play a significant role in terms of performance. In

other words, the number of barriers in VLIW architectures

plays a stronger role than in other architectures. Indeed, on

the AMD VLIW architectures, code profiling showed that

memory barriers limit an average length of VLIW

instructions (ALU packing percentage in Table 7), which

degrades the performance. The ALU packing percentage

refers to the percent of cores in the VLIW processor that

(a) (b)

Fig. 18 The schemes on AMD 6970 and AMD 5870. Evaluation with the degree-1 schemes. Only the performance of a transform code without

the memory throughput was measured

Table 6 The degree-1 schemes on AMD 6970 and AMD 5870

Scheme Throughput AMD 6970 Throughput AMD 5870

Monolithic� 117.426 121.579

Monolithic 109.865 105.407

Explosive� 97.214 105.344

Explosive 95.263 97.877

Iwahashi� 89.748 92.288

Sweldens 82.336 88.924

Iwahashi 80.284 80.283

Polyphase� 51.776 43.619

Polyphase 32.593 27.462

* denotes the improved schemes (schemes with reduced number of

arithmetic operations)

The performance of a transform code without the memory throughput

is listed. Values given in GB/s at the end of plots in Fig. 18

(a) (b)

Fig. 19 The improved schemes on AMD 6970 and AMD 5870. Evaluation with the CDF 9/7 wavelet and texture memory was performed
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are being utilized. On the other (non-VLIW) architectures,

the number of local memory accesses (see Table 4) and the

number of arithmetic instructions (see Table 2) play a

major role. On such architectures, the ALU packing is not

measurable due to an absence of the VLIW bundles. For

comparative purposes, the ALU packing percentage can be

understood as 100 % for all schemes on these architectures.

It should also be interesting to show another measure

provided by an OpenCL profiler. In the first instance,

consider AMD 5870 card. Such implementations, in which

threads need to store less than 5 coefficients (20 bytes) into

a local memory, exhibit an occupancy 100 %, as can be

seen in Table 8. In detail, 256 threads in work group � 6

work groups result in occupancy 1536 of 1536 threads.

This is valid for all these implementations with the

exception of Polyphase scheme, in which the occupancy is

limited by the number of vector registers, due to an opti-

mizing compiler. For AMD 6970, due to the use of 256

threads in work groups and due to maximal number 1344

of threads in multiprocesors, implementations exhibit only

an occupancy 95.24 % (256 threads in work group � 5

work groups = 1280 of 1344). On the other hand, consid-

ering implementations in which threads need to store less

than 7 coefficients (28 bytes) into a local memory, the

occupancy is not limited by a size of a local memory.

In summary, we can conclude that the reduction in

lifting steps can improve performance, at least on some

platforms. This is documented by measurements in

Figs. 17, 18 and 19. It turned out, however, that such

optimization makes sense only for a short lifting operators

(exemplary, degree-1 lifting filters).

For the sake of completeness, it should be noted that the

improvement proposed in Sect. 4 can be also applied on the

Convolution. Doing so, the scheme achieves a slightly better

performance. However, we understand the Convolution

scheme as the reference method. For this reason, we leave it

unimproved. Eventually, the proposed improvement makes

no sense in conjunction with the Sweldens scheme.

Table 7 ALU packing

percentage for AMD 6970 and

AMD 5870

Scheme AMD 5870 AMD 6970

CDF 5/3 CDF 9/7 DD 13/7 CDF 5/3 CDF 9/7 DD 13/7

Sweldens 32.59 32.69 40.00 40.53 40.25 48.50

Iwahashi 34.88 35.90 50.12 41.33 42.33 61.80

Iwahashi� 32.00 34.29 45.83 42.11 40.75 57.00

Explosive 36.88 39.32 49.57 45.14 46.64 60.47

Explosive� 33.79 33.33 55.56 42.42 42.21 65.42

Monolithic 38.18 39.67 51.59 48.57 47.76 64.44

Monolithic� 38.62 37.36 55.79 48.39 44.58 69.49

Polyphase 43.44 43.49 37.76 52.57 54.30 47.21

Polyphase� 31.50 32.43 33.38 41.88 40.58 41.91

Convolution – 73.79 – – 83.95 –

* denotes the improved schemes (schemes with reduced number of arithmetic operations)

Table 8 GPU occupancy

measurement for AMD 6970

and AMD 5870

Scheme AMD 5870 AMD 6970

CDF 5/3 CDF 9/7 DD 13/7 CDF 5/3 CDF 9/7 DD 13/7

Sweldens 100.00 100.00 100.00 95.24 95.24 95.24

Iwahashi 100.00 100.00 100.00 95.24 95.24 95.24

Iwahashi* 100.00 83.33* 100.00 95.24 95.24 95.24

Explosive 100.00 100.00 100.00 95.24 95.24 95.24

Explosive* 100.00 100.00 100.00 95.24 95.24 95.24

Monolithic 83.33* 83.33* 83.33* 95.24 95.24 95.24

Monolithic* 83.33* 83.33* 83.33* 95.24 95.24 95.24

Polyphase 83.33** 50.00* 100.00 95.24 57.14* 95.24

Polyphase* 100.00 50.00* 100.00 95.24 57.14* 95.24

Convolution – 100.00 – – 95.24 –

The numbers indicate a percentage

Explanation: * is limited by a local memory (LDS), ** by registers (VGPR)
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All the source codes used in this article together with all

the results are available in a repository on the website of

the authors’ affiliation.1

7 Conclusions

In this paper, we have proposed several non-separable

lifting schemes for the calculation of the discrete wavelet

transform. The proposed schemes produce exactly the same

results as the commonly used separable lifting scheme.

Using our schemes, the transform can be computed in a

smaller number of steps. On parallel architectures, this

property has resulted in a smaller number of

synchronizations.

Namely, we have proposed two-step 2-D lifting

scheme compatible to the commonly used four-step sepa-

rable one. Unlike the separable scheme, the proposed

scheme consists of spatial predict and update operators.

Since the number of the lifting steps was halved, our

scheme reduces also the number of memory barriers, which

form a major bottleneck on parallel architectures. In addi-

tion, we have proposed the three-step scheme reducing the

memory access overhead. For a moment, let K denote the

number of predict-update pairs. In absolute numbers, the

original separable scheme requires to write 1 þ 4K coeffi-

cients per predict/update pair, whereas our three-step

scheme requires 4K coefficients only. Additionally, the

proposed two-step scheme requires three memory cells per

thread, whereas the proposed three-step scheme requires two

cells only (same as the separable scheme). Finally, we have

proposed an improvement usable for all non-separable

scheme, including the already known ones. This improve-

ment significantly reduces the number of arithmetic opera-

tions. More specifically, the original non-separable schemes

require 24 arithmetic operations for CDF 5/3 wavelet,

whereas the improved variants require 18 operations only for

the same case. Even greater savings are achieved in the case

of a non-factorized polyphase matrix (same as the convolu-

tion for the CDF 5/3 wavelet). In this case, the proposed

improvement reduces the number of operations from 63 to

23. All of the proposed schemes are general and can be used

in conjunction with any discrete wavelet transform.

The proposed schemes were subject to performance

measurements. In experiments on the two selected high-

end GPUs (AMD Radeon HD 6970 and 5870), the pro-

posed schemes outperform all the others for short lifting

filters. This includes the well-known CDF 5/3 and CDF 9/7

wavelets, employed, e.g., in JPEG 2000 compression

standard.

Future work, we would like to do, consists of extensions

to multi-dimensional systems, and extensions to another

subband transforms.
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