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Abstract The motion estimation block of the high-effi-

ciency video coding (HEVC) standard is highly complex.

This paper proposes two algorithms, namely external

search range reduction (ESR) and internal search range

reduction (ISR) to reduce the motion estimation complex-

ity of HEVC in uni-prediction and bi-prediction both in the

fast search mode. The proposed ESR algorithm for uni-

prediction motion estimation reduces the search range

adaptively for Test Zonal Search (TZS) motion estimation

with negligible loss in coding efficiency. The proposed ISR

algorithm for uni-prediction, namely ISR-R, limits the

search range further in the raster search stage of the TZS

algorithm. Moreover, a fast bi-prediction motion estima-

tion algorithm is proposed which includes both ESR and

ISR to reduce the motion estimation complexity in bi-

prediction. Our algorithms are implemented in the HM-

16.6 encoder in the fast search mode. The performance of

the proposed algorithms are tested individually and then by

combining all the algorithms. When the algorithms are

combined, the number of search points and motion esti-

mation time are reduced by 60.58 and 59.58 %, respec-

tively in the fast search mode with a BD-Rate of 0.193 %

and BD-PSNR of -0.005 % in the LD-B main profile. The

number of search points and motion estimation time are

reduced by 59.55 and 57.71 %, respectively in the fast

search mode with a BD-Rate of 0.265 % and BD-PSNR of

-0.008 % in the RA main profile.

Keywords High-efficiency video coding (HEVC) � Search
range reduction algorithm � Uni-prediction � Bi-prediction

1 Introduction

The high-efficiency video coding (HEVC) standard is

developed by the Joint Collaborative Team onVideo Coding

(JCT-VC) to increase the coding efficiency [1]. HEVC

reduces the bit rate by nearly 50 % compared to its previous

standard, H.264/AVC [2]. On the other hand, the complexity

of the encoder is greatly increased. InHEVC, the use of high-

performance coding tools has increased the complexity

while improving the video quality and obtaining a higher

compression ratio. HEVC uses larger block sizes which

enables higher compression especially for high-resolution

sequences. A Coding tree unit (CTU) is the basic block of

size L� L, where L is 64, 32 or 16. Large sized CTUs yield

higher compression. A CTU is divided into Coding Units

(CUs) in a quad tree structure. These CUs are further divided

into Prediction Units (PUs) and Transform Units (TUs) in a

tree structure. Each of the CTUs, CUs, PUs and TUs has one

luma component and two chroma components and they are

called as Coding Tree Blocks (CTBs), Coding Block (CBs),

Prediction Block (PB) and Transform Block (TB), respec-

tively. For deciding the block size, rate-distortion (R-D)

optimization is done for all the possible combinations of

CUs, PUs and TUs. Due to the recursive tree-structured

partitioning of CTUs to CUs and then CUs to PUs and TUs,

the complexity of motion estimation in HEVC is increased

tremendously.

& K. C. Ravi Chandra Varma

kcravi912@gmail.com

M. Venkata Phani Kumar

venkataphanikumarm@gmail.com

Sudipta Mahapatra

sudipta.mahapatra@gmail.com

1 Department of Electronics and Electrical Communication

Engineering, IIT Kharagpur, Kharagpur,

West Bengal 721302, India

123

J Real-Time Image Proc (2019) 16:1351–1364

DOI 10.1007/s11554-016-0636-5

http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-016-0636-5&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-016-0636-5&amp;domain=pdf


As it is well known, intra coding reduces spatial

redundancy and inter coding reduces temporal redundancy

in consecutive frames through motion estimation and

motion compensation. The motion estimation complexity is

increased by many folds in HEVC compared to H.264/

AVC. Due to the huge increase in computational com-

plexity of the codec, it cannot be used for low-end devices

having hardware and power constraints and real-time

applications. Therefore, the complexity has to be reduced

to a great extent without significant degradation of video

quality and increase in bit rate.

In HEVC, the complexity of intra coding can be reduced

by fast intra mode decision algorithms proposed in [3–5].

In inter coding, the complexity can be reduced by fast CU

mode decision algorithms and by reducing the complexity

in the block-matching process of motion estimation. There

are many fast inter mode decision algorithms to reduce the

motion estimation complexity [6–11]. In the block-

matching phase, the reduction in motion estimation com-

plexity can be achieved by reducing the number of search

points, using the low complexity distortion measure, by

using partial sum of absolute difference [12] and early

termination of motion estimation process.

To reduce the motion estimation complexity in the

searching process of the best matching reference block,

the number of search points can be reduced either by

using fast search patterns or by using an adaptive search

range algorithm. Fast search patterns like three-step

search [13], diamond search [14], Hexagonal search [15]

and gradient descent search [16] algorithms reduce the

number of search points to a great extent. But, there is a

severe quality degradation and increase in bit rate,

especially for high-motion activity sequences. Moreover,

these fast search pattern algorithms are difficult to

implement in hardware. Adaptive search range algo-

rithms, on the other hand, vary the search range

depending upon the predicted motion activity of the

current block using neighboring information and they are

hardware friendly.

Full search provides an optimum video quality, but it

incurs a heavy computational burden. In order to reduce

the complexity of motion estimation, the Test zonal

search (TZS) motion estimation algorithm [17] is

employed in the fast search mode of the motion estima-

tion module in the HM encoder. TZS motion estimation

reduces the complexity to a great extent with a negligible

loss in coding efficiency. In uni-prediction, the motion

compensation is carried out using one reference frame

list, whereas in bi-prediction, it uses two reference frame

lists [18, 19]. The use of two reference frame lists pro-

vides better coding efficiency. In this paper, complexity

reduction algorithms are proposed for fast motion esti-

mation of HEVC in uni-prediction, bi-prediction and

while using both. These models are applied in the fast

search mode of the HEVC encoder. An overview of the

TZS algorithm and related work on fast motion estimation

are presented in Sect. 2. In Sect. 3, the proposed fast

motion estimation technique is detailed. Experimental

results and related discussion are described in Sect. 4.

Finally, Sect. 5 concludes the paper.

2 Related work

2.1 Overview of TZS motion estimation

The TZS motion estimation (TZSME) algorithm consists

of four different stages: motion vector prediction, initial

grid search, raster search and refinement search.

2.1.1 Motion vector prediction

Initially, the best motion vector predictor is obtained out of

median predictor, left predictor, up predictor and upper

right predictor. The predictor having the minimum cost is

chosen as the best motion vector predictor and used as the

initial search point. The maximum number of search points

in this stage is the number of motion vector predictors

used.

2.1.2 Initial grid search

In this stage, the diamond search or square search pattern is

used with the stride length varying from 1 to the maximum

search range (SRmax) in powers of 2. Among all the search

points, the one with the minimum cost is taken as the best

search point. The maximum number of search points in this

stage is

Ngrid ¼ 1þ 8� bðlog2ðSRmaxÞ þ 1Þc ð1Þ

2.1.3 Raster search

Raster search is a simple full search on a down-sampled

version of the search window. Raster search is done with a

distance of ’’Rasterdistance’’. Raster search is performed if

the ’’Bestdistance’’ obtained from the previous stage is

greater than ’’Rasterdistance’’. Otherwise, this stage is

skipped. For a PB, if the raster search stage is not skipped,

then the complexity of this stage is very high compared to

the other stages. The maximum number of search points in

this stage is

Nraster ¼
ð2� SRmax þ 1Þ
Rasterdistance

� �2

ð2Þ

1352 J Real-Time Image Proc (2019) 16:1351–1364

123



2.1.4 Refinement search

In the refinement search stage, either raster refinement or

star refinement is used. The search pattern used in the

initial grid search is used for refinement of the motion

vector in star refinement. The maximum number of search

points in this stage is not fixed. It varies differently for

raster and star refinements.

For SRmax of 64, the maximum number of search points

in the grid search stage and raster search stage are 53 and

625, respectively. Therefore, the raster search stage has

huge complexity compared to the other stages, especially if

SRmax is high.

The HM encoder uses an optimized version of the TZS

algorithm. The motion estimation complexity of the opti-

mized version of TZS algorithm is much lower than the

TZS algorithm. It uses an advanced motion vector predictor

(AMVP) and the zero predictor in the motion vector pre-

diction stage. In the latest version of the HM encoder, the

upper mode motion vector is also used. In grid search and

star refinement stage, it has 16 search points for the dia-

mond and square patterns of distance[8. The grid search

stage is optimized with early grid search termination. From

here onward, TZS refers to the optimized version of the

TZS algorithm and TZSu refers to the optimized TZS using

the upper mode motion vector in the motion vector pre-

diction stage.

Table 1 shows that the use of the upper mode motion

vector as one of its predicted motion vectors in TZS

(TZSu) reduces the complexity by 48.7 % on an average in

terms of the reduction in number of search points (DN) and
44.52 % on an average in terms of motion estimation time

saving (DMETS) for class B sequences. Here, both TZS

and TZSu are optimized. Reduction in encoding time

(DET) is 10.06 %. The BD-Rate and BD-PSNR are 0.167

and -0.0021, respectively. This implies that there is a

significant reduction in complexity without much impact

on the video quality and compression. This is due to the

fact that the upper mode motion vector is highly correlated

to its lower mode motion vector. In the recent literature on

HEVC [20–22] full search algorithm is used for testing the

performance of the adaptive search range algorithm. In [23]

and [24], TZS is used for testing the performance of the

adaptive search range algorithms. The full search algorithm

has a huge complexity. TZS has much less complexity

compared to full search and the performance is almost the

same as that of full search in terms of the visual quality as

well as compression. But, still the complexity of TZS is too

high to make it feasible for real-time applications, espe-

cially for high-motion activity and high definition

sequences. Hence, we targeted the TZS module for com-

plexity reduction in uni-prediction.

2.2 Adaptive search range algorithm

Adaptive search range algorithms reduce the motion esti-

mation complexity by reducing the search range based on

statistics of the neighboring blocks or the previous frame.

Distortion and motion information are used as the statisti-

cal parameters to estimate the search range. The dynamic

padding window size (DPWS) motion estimation proposed

in [25] is based on the sum of absolute difference (SAD)

between the current block and the reference block at the

predicted motion vector position. This algorithm reduces

the search range, thereby reducing the complexity with a

little loss of video quality. In [23], a linear adaptive search

range model is proposed. The search range is varied as a

function of the predicted motion vector and motion con-

sistency. The coefficients for finding the search range vary

for different prediction unit modes and coding unit modes.

In [20], the motion vector difference (MVD) of each of the

blocks in the previous frame is modeled using a Laplacian

distribution. In [22], a Cauchy distribution-based adaptive

search range (CASR) algorithm is proposed where the

author has claimed that the Cauchy distribution is better

than the Laplacian distribution to model the probability

distribution of the MVDs. In this algorithm, the distribution

of the motion vector differences in the previous frame is

used to estimate the parameters in the Cauchy distribution.

Based on this model, the search range is fixed for the

current frame. Also, the search range is increased to some

extent if the predicted motion activity is high for the cur-

rent frame. In [24], the maximum of all the MVDs in the

spatial, temporal and upper mode neighbors are used to

predict the search range in the dynamic search range (DSR)

algorithm. The predicted search range is clipped in

Table 1 Comparison of TZSu

with TZS for first 100 frames of

Class B sequences in LD-P

Main profile

Sequence BD-RateY (%) BD-PSNR Y (%) DN ð%Þ DMET ð%Þ DET ð%Þ

Kimono 0.027 -0.000 56.47 51.53 16.16

ParkScene 0.161 -0.001 44.89 41.82 6.75

Cactus 0.005 0.001 46.10 40.60 7.66

BQTerrace 0.401 -0.009 43.16 41.97 5.71

BasketballDrive 0.242 -0.002 52.89 46.69 14.02

Average 0.167 -0.002 48.70 44.52 10.06
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between 16 and 64. This method reduces the complexity

with very little effect on the bit rate and PSNR.

2.3 External stop search algorithm

The external stop search algorithms terminate the searching

process of motion estimation when the minimum cost of the

current search point is less than a threshold. The threshold is

derived from the cost of the neighboring blocks. In [25, 26],

the external stop search algorithm and the dynamic external

stop search algorithm reduce the complexity of motion

estimation by terminating the search process when the

threshold condition is satisfied. This algorithm is applicable

for full search motion estimation and moreover, the cost of

the neighboring blocks for all the block sizes needs to be

stored in order to calculate the threshold.

2.4 Fast bi-prediction motion estimation algorithm

The HM encoder has a search range of 64 for uni-predic-

tion motion estimation. It has a search range of 4 for bi-

prediction motion estimation. Though the search range is

small for bi-prediction, with the use of the fast search

algorithm in HEVC, the motion estimation complexity in

bi-prediction is comparable to that of uni-prediction.

Table 2 shows the comparison of motion estimation time in

uni-prediction and bi-prediction. For class B sequences, the

percentage of the number of search points in uni-predic-

tion, (%Nuni) and bi-prediction, (%Nbi) compared to the

total number of search points are 77.07 and 22.93 %,

respectively. The percentage of the uni-prediction motion

estimation time (%METuni) and bi-prediction motion

estimation time (%METbi) compared to the total motion

estimation time are 75.37 and 24.63 %, respectively.

Therefore, it is also necessary to reduce the bi-prediction

motion estimation (BME) complexity in the HM encoder.

In [23], a motion analysis-based adaptive search range

algorithm (MAASR) is proposed to reduce the bi-predic-

tion motion estimation complexity. This algorithm is sim-

ple and reduces the complexity of bi-prediction motion

estimation with a minor loss in coding efficiency. In [27],

an SAD-based bi-prediction selection method is proposed

to reduce the bi-prediction motion estimation complexity.

In this paper, our goal is to reduce the complexity of TZS

algorithm in uni-prediction and BME algorithm in bi-pre-

diction by limiting the search range externally and internally.

3 Proposed algorithm

3.1 External search range reduction for TZS

Our proposed external search range reduction (ESR) algo-

rithm is intended to reduce themotion estimation complexity

while maintaining the coding efficiency. In motion estima-

tion, most of the PBs find their best matching reference PBs

nearer to the center of the search window. Using the entire

search range for all the PBs involves unnecessary compu-

tation of SADs. In the proposed approach, the search range is

adaptively varied based on the MVDs of the spatial neigh-

boring blocks and the SADat the search center. TheMVDs in

x and y directions are computed as follows:

MVDx ¼ MVx � PMVx

MVDy ¼ MVy � PMVy

ð3Þ

where MVDx and MVDy are MVDs in x and y direction.

MVx and MVy are motion vectors in x and y direction.

PMVx and PMVy are predicted motion vectors in x and

y directions.

3.1.1 Search range using spatial neighbors

The spatial neighboring blocks and the current block may

belong to the same object. So, themotion of the current block

and the spatial neighboring blocks are highly correlated,

especially if the neighboring blocks and the current blocks

share the same object. The upper block and the left block are

more correlated to the current block. In order to predict the

search range using spatial neighbors, the distance of MV

from PMV of these two blocks are used. Additionally, the

distance of MV from PMV of the upper right block is also

used to predict the search range. Here, the block left to the

bottom left pixel of the current block is used as the left block

instead of block left to the top left pixel of the current block.

This is because the block left to the bottom left pixel of the

current PB is less correlated to the other neighbors used.

Now, the spatial neighbors are less correlated to each other

but are correlated to the current block.

dðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MVD2

X þMVD2
Y

q
ð4Þ

SR1 ¼ k1 �max dL; dU; dUR
� �

ð5Þ

Table 2 Comparison of number of search points and motion esti-

mation time in uni-prediction and bi-prediction for Class B sequences

in LD-B Main profile at QP = 32

Sequence %Nuni %Nbi %METuni %METbi

Kimono 86.28 13.72 84.86 15.14

ParkScene 70.78 29.22 69.06 30.94

Cactus 75.57 24.43 73.08 26.92

BQTerrace 68.02 31.98 66.16 33.84

BasketballDrive 84.69 15.31 83.69 16.31

Average 77.07 22.93 75.37 24.63

1354 J Real-Time Image Proc (2019) 16:1351–1364

123



where dL, dU and dUR are the distance of MV from PMV

of left, upper and upper right blocks. k1 is a constant.

3.1.2 Search range using motion vector difference

distribution of previous frame

It is claimed that the motion vector differences follow the

Cauchy distribution [22]. Moreover, the motion of the cur-

rent frame is highly correlated to the motion of the previous

frame. The distribution of MVDs in the previous frame is

used to predict the search range of the current frame. Let the

predicted search range for the current frame in x and y di-

rections be Cx and Cy. Cx and Cy are obtained from the

Cauchy distribution of the MVDs of the previous frame with

the Cauchy parameter chosen as 2 [28] and the predefined

probability constant given in [22] chosen as 99.2 %. In a

frame, the motion is not same for all the blocks. So, the

predicted search range has to be updated based on the

neighboring motion information. Maximum of the neigh-

boring blocks MVD, maxMVD is used to update the search

range for the current block. For deriving the maxMVD, left

(the block at the left of the bottom left pixel of the current

block), upper and upper right neighbors are used. The search

range is found as a function of the maximum of the updated

search range in x and y directions as given in (6).

SR2 ¼ maxðCx þ k2 �maxMVDx;

Cy þ k2 �maxMVDyÞ
ð6Þ

where k2 is a constant. In RA mode, upto two neighboring

frames are available for each frame, and one is in the

forward direction and the other in the backward direc-

tion. Each of Cx and Cy is obtained as the maximum of

these two search ranges, respectively, found from the two

nearest available neighboring frames.

3.1.3 Search range using SAD at search center

The motion vector of the current block is proportional to

the SAD at the PMV ðSADPMVÞ. This implies that for the

PB having a large motion vector, SADPMV is higher and

for the PB having a small motion vector, SADPMV is

lower. In TZS of the HM-16.6 encoder, the grid search is

done from the best search center. The best search center is

the the one which has the minimum cost among the AMVP,

zero and depth predictors. SR3, which is the search range,

uses the SAD of the best search center. The search range is

fixed based on the normalized SADPMV with respect to

the size of the block and is given in (7).

SR3 ¼ k3 �
SADPMV

n1 � n2
ð7Þ

where n1 � n2 is the block size. k3 is a constant set to 1.

The value of k3 should be small for low resolution

sequences and large for high-resolution sequences. How-

ever, in this work it is fixed for all the sequences.

Finally, the maximum of all the three predicted search

ranges is chosen as the search range as given in (8).

SR ¼ maxðSR1; SR2; SR3Þ ð8Þ

In order to avoid the degradation in video quality, the

search range (SR) is further modified as given in (9).

SR ¼ max SR; 8þmax Cx;Cy

� �� �
ð9Þ

The above equation implies that the minimum value of SR

is 8. The term max Cx;Cy

� �
specifies the motion informa-

tion of the previous frame. If the previous frame has high

motion, then the current frame is also expected to have

high motion and the minimum value of SR is

8þmax Cx;Cy

� �
. But, this can increase the complexity if

the previous frame has high-motion activity and the current

PB is of low motion. So, the minimum value of SR is

limited to 8þmin a;max Cx;Cy

� �� �
with the value of a set

to 8. So, the search range is computed as specified in (10).

SR ¼ max SR; 8þmin a;max Cx;Cy

� �� �� �
ð10Þ

Here, the values of k1, k2, k3, and a affect the motion

estimation complexity and video quality. In order to vary

the motion estimation complexity, the value of these con-

stants should be varied accordingly to achieve a better trade

off between the complexity and quality.

3.2 Internal search range reduction for raster

search of TZS

In the HM encoder, the raster search stage is carried out

only if in the grid search stage of TZS the motion vector is

greater than raster distance. The raster search stage of TZS

is more complex compared to the grid search and refine-

ment search stages. The default value of raster distance in

the raster search stage is 5. This implies that the search

points in raster search are apart from its neighboring search

points by a distance of 5 pixels horizontally, vertically and

diagonally. As the raster search stage involves a huge

complexity, we have proposed an internal search range

reduction approach, namely, ISR-R to reduce the com-

plexity of raster search in TZS.

The ISR-R algorithm is similar to the external stop search

algorithm proposed in [25]. The external stop search algo-

rithm is suitable for full searchmotion estimation and it needs

to store the cost for all the block sizes as it is dependent on the

cost of its neighboring blocks of the same size. ISR-R does not

needneighboring cost information and is suitable for the raster

search stage of TZS.
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In ISR-R raster search is done in a spiral scan order. In

Fig. 1, there are 4 rounds for a search range of 16. The

search center of raster search is numbered as 0. The search

point numbered 0 corresponds to round 0. The search

points numbered as 1 corresponds to round 1 and so on. For

a search range of 64, there are 13 rounds.

The ISR-R algorithm starts calculating the cost from

round 1. Let, Jmin 0ð Þ correspond to the minimum cost in

round 0. Round 0 is the predicted motion vector position

and its cost is calculated earlier. The minimum cost in the

grid search stage of TZS is less than or equal to the min-

imum cost at round 0. The cost of all the search points in

round 1 (numbered as 1 in Fig. 1) are calculated and the

minimum cost among all the search points in this round is

stored as Jmin 1ð Þ. If r � 1 is the round having the minimum

cost, and Jmin r � 1ð Þ is greater than the minimum cost

obtained in the grid search stage, then the search process

continues in the next round. If Jmin r � 1ð Þ is less than or

equal to the minimum cost obtained in the grid search

stage, then the search process is terminated for the raster

search stage if the minimum cost of the current round is

greater than the minimum cost of the previous round as

given in (11). Otherwise, the search process continues in

the next round.

Jminðr � 1Þ\JminðrÞ ð11Þ

There can be a case where the minimum cost of the pre-

vious round is less than the minimum cost of the current

round, but is greater than the minimum cost in the next

round. If the threshold given in (11) is used, then the raster

search process terminates quickly without detecting the

actual minimum cost search point. This causes false skip-

ping of the raster search.

Figure 2 shows the error surface for a 32� 16 PB in the

third frame of the Class D sequence, RaceHorses in the

raster search stage. The error surface over the raster search

stage has costs only at the numbered search points in a

search range. This PB belongs to the eleventh CTU at a

pixel position of (192, 64) in the frame. As raster search is

done in a spiral scan manner, the minimum cost in each

round, JminðrÞ and its corresponding best MV of round r are

shown in Table 3. Table 3 shows that the minimum cost,

JminðrÞ decreases with an increase in r till r = 5 and then it

increases for r = 6. With the condition given in (11), the

raster search is terminated resulting in the minimum cost at

r = 5 with Jminð5Þ ¼ 6165 at (-15, -9). But, the actual

minimum cost is at r = 10 with Jminð10Þ ¼ 5493 at (60,
Fig. 1 Raster search pattern in spiral scan order with raster distance

of 5 for a search range of 16

Fig. 2 Error surface for 32 9 16 prediction block in the third frame

of Class D RaceHorses sequence in raster search stage. a Error

surface plot over a search range. b Error surface from top view with

white dots showing that the actual best raster MV (60, -24) and the

raster MV due to false termination of raster search (-15, -9) are far

apart
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-24). Due to this, the best raster MV is (-15, -9) instead

of (60, -24). This is termed as false termination of raster

search. From Fig. 2b, the actual best raster MV and the

raster MV due to false termination of raster search are far

apart. Therefore, the minimum cost of the current round

should not be compared with a threshold equal to that of

the minimum cost of the previous round. The current

threshold has to be reduced in order to minimize the chance

of false termination of raster search. For this (11) is mod-

ified by introducing a scaling factor of 7
8
as shown in (12).

This scaling factor is used in order to avoid the false ter-

mination of raster search so that the reduction in quality is

negligible. Also, 7
8
� JminðrÞ is nearly equal to

ðJminðrÞ � ðJminðrÞ[ [ 3ÞÞ.

Jminðr � 1Þ\ 7

8
� JminðrÞ ð12Þ

From round 2, if Jmin r � 1ð Þ is less than or equal to the

minimum cost obtained in the grid search stage, then the

minimum cost of the current round is compared with the

cost of rounds r � 1 and r � 2 as shown in (13) and (14). If

both the conditions are satisfied, then raster search is ter-

minated. Otherwise, the condition given in (12) is checked

to terminate raster search. This process is repeated till all

the rounds in the search range are completed or till the

raster search stage is terminated.

Jminðr � 2Þ\Jminðr � 1Þ ð13Þ
Jminðr � 2Þ\JminðrÞ ð14Þ

The steps followed in the ISR-R algorithm are as follows:

1. Store the cost at the search center of raster search as

Jmin 0ð Þ and set r = 1.

2. Calculate the cost of all the search points for the

current round and obtain the minimum cost Jmin rð Þ.
3. If Jmin r � 1ð Þ is less than or equal to the minimum cost

obtained in the grid search stage, then if r = 1 go to

step 4; else, go to step 6. Otherwise, r = r ? 1 and go

to step 2.

4. If the condition given in (12) is satisfied, then go to

step 9. Otherwise, go to step 5.

5. r = r ? 1. Calculate the cost of all the search points in

the current round and obtain the minimum cost Jmin rð Þ.
6. If the conditions given in (13) and (14) are satisfied,

then go to step 8. Otherwise, go to step 7.

7. If the condition given in (12) is satisfied, go to step 9.

Otherwise, go to step 8.

8. If the current round is the last round, then go to step 9.

Otherwise, go to step 5.

9. Terminate raster search and perform refinement search.

3.3 Fast bi-prediction motion estimation algorithm

In the HM encoder, the motion estimation process for bi-

prediction is performed over the search range of 4 around

the uniprediction motion vector. The complexity of motion

estimation in bi-prediction can be reduced at the following

two stages:

1. External search range reduction for bi-prediction

2. Internal search range reduction for bi-prediction

3.3.1 External search range reduction for bi-prediction

Figure 3a shows the proposed external search range reduc-

tion approach based on the uni-prediction motion vector. If

the maximum of the MVDs of the x and y components is\2,

then the search range is fixed as shown in (15)

SR ¼ maxðjMVDxj; jMVDyjÞ þ 1

if maxðjMVDxj; jMVDyjÞ\3

¼ 4 otherwise

ð15Þ

3.3.2 Internal search range reduction for bi-prediction

The internal search range reduction for bi-prediction is shown

in Fig. 3b. After fixing the search range, motion estimation is

done in a spiral scanmanner instead of raster scan. FromFig. 4,

it is observed that there are a total of 5 rounds in the search range

with the rounds numbered from0 to 4. In themotion estimation

process, theminimumcost among all the previous search points

is taken as the best cost. But, here the best cost is calculated for

each round at the end of the motion estimation process of that

round. After calculating the best cost for the first two rounds, if

Table 3 Minimum cost of all rounds in the error surface of a

32 9 16 prediction block in the third frame of the Class D Race-

Horses sequence in raster search

r JminðrÞ Best MV of round r

0 10124 (10, 1)

1 9834 (10, -4)

2 9526 (20, -9)

3 8700 (25, -14)

4 8205 (25, -19)

5 6165 (-15, -9)

6 7034 (40, -29)

7 7153 (40, -34)

8 6553 (50, -29)

9 6915 (55, -24)

10 5493 (60, -24)

11 8336 (65, -9)

12 9698 (70, -9)
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the best cost at round 0 is less than the best cost at round 1, then

themotion estimationprocess is terminated.Otherwise, the best

cost of the next round is calculated and compared with the best

cost of the current round. This process is continued till the

internal search range reduction condition, given in (16) is sat-

isfied or till the search points corresponding to all the rounds are

used for calculating the cost.

Jminðr � 1Þ\JminðrÞ: ð16Þ

4 Experimental results

The proposed algorithm is implemented in the HM-16.6

encoder [29]. All the experiments are conducted on an

Intel(R) Xeon CPU having a 2.5 GHz clock and 32 GB

RAM. Standard test video sequences [30] of Class B, C, D

and E given in [31] are used. These sequences, respec-

tively, have resolutions of 1920� 1080; 832� 480; 416�
240 and 1280� 720. All the test sequences have 8 bits per

sample bit depth with 4:2:0 chroma subsampling. First 100

frames of each test sequence are used for encoding. The

proposed algorithm is implemented in the fast search mode

of the HM-16.6 encoder. LD-P main configuration is used

for testing the performance of ESR and ISR-R algorithms.

The LD-B main configuration is used for testing the per-

formance of the FBME algorithm. The combined algo-

rithms ESR ? ISR-R is implemented in the LD-P main

profile. The combined and ESR ? ISR-R ? FBME is

implemented in LD-B main and RA main profiles. The

number of reference frames used is 4 and the maximum

search range is set to 64. Fast encoder decision is enabled.

All the simulations are carried out using Microsoft Visual

Studio 2013 in the release mode. Based on the common test

condition defined in the HEVC standard document, all the

sequences are encoded at quantization parameter values of

22, 27, 32 and 37.

Bjontegaard Delta Rate (BD-Rate) and Bjontegaard

Delta PSNR (BD-PSNR) are the metrics used for cal-

culating the coding efficiency [32]. In order to obtain the

BD-Rate and BD-PSNR values of the test sequence, the

PSNR values and the bit rates obtained by encoding at

the above mentioned quantization parameter values are

used [32].

The percentage reduction in motion estimation time,

denoted by DMET and the percentage reduction in number

of search points (DN) of the proposed algorithm over TZS

in the HM-16.6 encoder are given in (17) and (18),

respectively.

Fig. 3 Fast bi-prediction motion estimation algorithm. a External search range reduction for bi-prediction. b Internal search range reduction for

bi-prediction

Fig. 4 Spiral search in bi-prediction search range
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DMET ¼
METHM �METProposed

METHM
� 100% ð17Þ

DN ¼
NHM � NProposed

NHM
� 100% ð18Þ

where METHM and METProposed are, respectively, the

motion estimation times of the TZS algorithm in HM-16.6

and the proposed algorithm. Here, METProposed includes

the overhead time taken by the proposed algorithm and the

motion estimation process. NHM and NProposed are,

respectively, the number of search points used for motion

estimation in the TZS algorithm of HM-16.6 and the pro-

posed algorithm. DMETuni, DMETbi and DMETtotal
denote the percentage reductions in motion estimation time

for uni-prediction, bi-prediction and both: DNuni, DNbi
and DNtotal denote the corresponding percentage reduction
in the number of search search points.

In this work, the constants k1 and k2 are set to 2 and 1,

respectively. We have compared the performance of our

proposed ESR algorithm with the DSR algorithm proposed

by Nalluri et al. [24] in the fast search mode of the HM

encoder. Table 4 shows the performance of the proposed

ESR algorithm and the DSR algorithm compared to that of

Table 4 Performance of the

DSR algorithm and the

proposed ESR algorithm

compared to TZS in the HM

16.6 encoder in the LD-P main

profile

Class Sequence BD-Rate Y (%) BD-PSNR Y (%) DNuni (%) DMETuni (%)

DSR ESR DSR ESR DSR ESR DSR ESR

Class B Kimono -0.0107 0.1435 0.0061 -0.0036 34.91 68.52 32.29 68.44

ParkScene -0.1285 0.2311 0.0002 -0.0082 30.17 48.12 27.65 49.29

Cactus -0.0430 0.2357 0.0017 -0.0051 27.24 54.24 23.62 53.39

BQTerrace -0.0768 0.1157 0.0024 -0.0037 32.71 48.94 29.51 49.90

BasketballDrive 0.3884 0.2179 -0.0098 -0.0064 23.23 56.95 20.55 57.23

Class C PartyScene -0.2178 0.0497 0.0035 -0.0006 30.07 47.97 26.37 45.22

BQMall 0.1696 0.0838 -0.0058 -0.0068 32.06 48.40 29.67 47.82

BasketballDrill -0.3090 -0.3086 0.0147 0.0140 24.76 49.25 20.61 48.74

Class D RaceHorses 0.4886 0.7383 -0.0202 -0.0309 36.23 55.86 32.05 54.46

BlowingBubbles 0.2855 -0.7093 -0.0094 0.0260 36.97 49.92 33.25 47.87

BQSquare -0.3379 -0.3931 0.0315 0.0085 12.59 13.19 6.77 8.81

Class E FourPeople -0.0734 -0.2191 0.0017 -0.0104 18.92 27.33 14.70 26.75

Johnny 0.2548 0.4885 -0.0022 -0.0206 20.95 28.96 20.74 30.78

KristnAndSara 0.0608 0.1487 -0.0082 -0.0180 25.52 37.00 24.33 40.04

Average 0.0322 0.0588 0.0004 -0.0047 27.59 45.33 24.44 44.91

Table 5 Performance of ISR-R algorithm compared to TZS in the HM 16.6 encoder in the LD-P main profile

Class Sequence BD-Rate Y BD-Rate YUV BD-PSNR Y BD-PSNR YUV DNuni DMETuni
(%) (%) (%) (%) (%) (%)

Class B Kimono -0.0520 -0.1017 0.0079 0.0068 34.33 29.51

ParkScene 0.1309 0.1341 -0.0035 -0.0033 19.72 16.16

Cactus -0.3114 -0.1954 0.0091 0.0070 28.52 21.56

BQTerrace -0.0234 -0.0254 -0.0013 -0.0011 18.83 14.99

BasketballDrive -0.1033 0.0191 -0.0055 -0.0023 30.95 24.37

Class C PartyScene -0.2425 -0.2246 0.0072 0.0068 28.05 22.11

BQMall 0.1003 -0.0109 -0.0072 -0.0046 29.50 24.17

BasketballDrill -0.1982 -0.0396 0.0090 0.0076 31.87 25.84

Class D RaceHorses 0.0266 -0.1567 0.0021 0.0050 34.32 28.50

BlowingBubbles -0.3479 -0.5601 -0.0084 -0.0061 24.93 19.37

BQSquare -0.3452 -0.3423 0.0164 0.0155 3.86 1.83

Class E FourPeople -0.2371 -0.2546 0.0027 0.0033 13.51 10.67

Johnny 0.2640 0.2954 -0.0042 -0.0044 8.97 7.74

KristnAndSara 0.0519 -0.2640 0.0024 0.0053 13.88 12.79

Average -0.0920 -0.1233 0.0019 0.0025 22.95 18.54
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original TZS algorithm of HM-16.6 in the LD-P main

profile. Our proposed algorithm has a motion estimation

time of 44.91 % compared to TZS. The reduction in

number of search points is 45.33 % for ESR whereas the

reduction achieved in DSR is 27.59 % only. Though the

reduction of motion estimation time is more, there is

negligible loss in coding efficiency.

Table 5 shows the performance of the proposed ISR-R

algorithm implemented in the LD-P main profile of HM-

16.6. Compared to TZS, the ISR-R algorithm has reduced

the number of search points and motion estimation time

significantly without effecting the coding efficiency. The

number of search points and motion estimation time are

reduced by 22.95 and 18.54 %, respectively.

Table 6 shows the performance of the proposed FBME

algorithm implemented in the LD-B main profile in the fast

search mode. The efficiency of FBME is compared with the

efficiency of MAASR, proposed by Du et al. [23]. The

MAASR algorithm is able to reduce the number of search

points and motion estimation time in bi-prediction by 68.41

Table 6 Performance of the MAASR algorithm and the proposed FBME algorithm compared to BME in the HM 16.6 encoder in the LD-B main

profile

Class Sequence BD-RateY (%) BD-PSNRY (%) DNbi(%) DMETbi(%)

MAASR FBME MAASR FBME MAASR FBME MAASR FBME

Class B Kimono 0.1216 -0.1758 -0.0013 -0.0001 41.06 69.73 34.10 64.72

ParkScene 0.1050 -0.0018 -0.0054 -0.0032 66.12 80.73 59.50 76.72

Cactus 0.2309 0.2074 -0.0040 -0.0045 71.41 79.89 66.91 76.26

BQTerrace 0.6531 0.5144 -0.0133 -0.0135 74.18 82.45 69.81 78.86

BasketballDrive 0.1228 0.0798 -0.0047 -0.0030 49.49 71.75 41.44 65.70

Class C PartyScene 0.3315 0.2772 -0.0143 -0.0117 72.64 80.47 70.68 77.46

BQMall 0.3869 0.3722 -0.0175 -0.0155 64.70 79.36 60.12 75.67

BasketballDrill 0.3705 0.1460 -0.0136 -0.0130 67.46 78.61 63.31 74.88

Class D RaceHorses 0.0404 -0.1871 -0.0145 0.0071 38.94 72.24 33.29 68.03

BlowingBubbles 0.2101 -0.1503 -0.0135 0.0058 61.60 78.68 57.51 75.15

BQSquare 0.2652 -0.3085 -0.0224 0.0009 90.43 86.09 88.70 83.38

Class E FourPeople 0.5397 0.0536 -0.0200 0.0017 89.85 86.26 86.52 83.62

Johnny 0.1126 0.7782 -0.0181 -0.0117 86.13 85.97 80.94 83.03

KristnAndSara 0.0504 0.0579 -0.0004 -0.0010 83.73 85.03 76.00 81.41

Average 0.2529 0.1188 -0.0116 -0.0044 68.41 79.80 63.56 76.06

Table 7 Performance of the TZSu and the proposed ESR ? ISR-R algorithm compared to TZS in the HM 16.6 encoder in the LD-P main profile

Class Sequence BD-RateY (%) BD-PSNRY (%) DNuni (%) DMETuni (%)

TZSu ESR ? ISR-R TZSu ESR ? ISR-R TZSu ESR ? ISR-R TZSu ESR ? ISR-R

Class B Kimono 0.0270 0.1251 -0.0003 -0.0030 56.47 70.84 51.53 69.98

ParkScene 0.1605 -0.0261 -0.0011 0.0007 44.89 50.53 41.82 51.29

Cactus 0.0045 0.1739 0.0009 -0.0058 46.10 58.06 40.60 57.08

BQTerrace 0.4011 0.3341 -0.0085 -0.0078 43.16 49.51 41.97 50.31

BasketballDrive 0.2420 0.3466 -0.0015 -0.0077 52.89 61.64 46.69 60.27

Class C PartyScene 0.0735 -0.0219 -0.0026 0.0023 45.59 53.69 41.28 49.89

BQMall 0.3626 0.2041 -0.0089 -0.0074 48.42 55.62 43.37 54.12

BasketballDrill -0.3122 0.4458 0.0013 0.0036 49.45 56.50 43.90 53.87

Class D RaceHorses 0.2410 0.2012 -0.0091 -0.0077 56.16 62.51 51.21 59.24

BlowingBubbles 0.2733 -0.0204 -0.0111 0.0108 48.76 54.14 44.97 50.71

BQSquare -0.3428 -0.4090 0.0243 0.0113 20.24 14.68 20.38 8.72

Class E FourPeople -0.1283 -0.2271 -0.0190 0.0004 22.09 29.37 22.09 28.45

Johnny 0.2578 0.1353 -0.0228 -0.0029 23.76 29.57 25.32 32.06

KristnAndSara 0.4056 0.4237 -0.0207 -0.0191 28.23 37.72 29.15 40.71

Average 0.1190 0.1204 -0.0057 -0.0023 41.87 48.88 38.88 47.62
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and 63.56 %, respectively. Our FBME algorithm has

reduced the number of search points and motion estimation

time by 79.80 and 76.06 %, respectively. Further, FBME

has a smaller impact on the coding efficiency compared to

that of the MAASR algorithm.

In Table 7 the performance of the combined ESR and

ISR-R algorithms is compared with TZSu implemented in

the HM-16.6 encoder. Both the algorithms when combined

are able to reduce the number of search points and motion

estimation time by 48.88 and 47.62 %, respectively. In

comparison TZSu is able to reduce the number of search

points and motion estimation time by 41.87 and 38.88 %.

Also, from Table 8 we see that the combination of ESR,

ISR-R and TZSu is able to reduce the number of search

points and motion estimation time by 60.23 and 58.46 %,

respectively, with negligible loss of coding efficiency.

Finally, the combination ESR, ISR-R and FBME algo-

rithms is implemented in the LD-B main profile and RA

main profile in the fast search mode. To evaluate the per-

formance in uni-prediction and bi-prediction, the number

of search points and motion estimation time are shown

separately for uni-prediction, bi-prediction and both in

Table 8 Performance of ESR ? ISR-R ? TZSu algorithm compared to TZS in the HM 16.6 encoder in the LD-P main profile

Class Sequence BD-Rate Y BD-Rate YUV BD-PSNR Y BD-PSNR YUV DNuni DMETuni
(%) (%) (%) (%) (%) (%)

Class B Kimono 0.2155 0.2088 -0.0092 -0.0080 80.20 78.55

ParkScene 0.1080 0.1118 0.0002 0.0000 63.42 62.75

Cactus 0.0858 0.1511 -0.0016 -0.0018 69.56 67.59

BQTerrace 0.2116 0.2100 -0.0069 -0.0066 59.79 59.61

BasketballDrive 0.3272 0.2106 -0.0011 -0.0015 75.19 72.23

Class C PartyScene -0.1210 -0.1299 -0.0013 -0.0012 68.70 64.75

BQMall 0.1256 0.1315 -0.0073 -0.0075 71.24 68.64

BasketballDrill -0.1918 -0.1006 -0.0012 -0.0018 71.44 68.65

Class D RaceHorses -0.0252 -0.0984 0.0019 0.0041 78.39 75.41

BlowingBubbles 0.2083 0.0653 -0.0083 -0.0057 68.46 64.81

BQSquare -0.2677 -0.2767 0.0230 0.0214 26.73 21.96

Class E FourPeople -0.2112 -0.2073 0.0053 0.0047 34.00 32.05

Johnny 0.7294 0.7688 -0.0159 -0.0162 33.78 36.28

KristnAndSara 0.1355 -0.0067 0.0009 0.0024 42.36 45.19

Average 0.0950 0.0742 -0.0015 -0.0013 60.23 58.46

Table 9 Performance of ESR ? ISR-R ? FBME algorithms compared to TZS?BME in the HM 16.6 encoder in the LD-B main profile

Class Sequence BD-Rate Y BD-PSNR Y DNuni DMETuni DNbi DMETbi DNtotal DMETtotal
(%) (%) (%) (%) (%) (%) (%) (%)

Class B Kimono -0.0721 -0.0027 68.94 68.85 70.11 63.77 69.10 68.08

ParkScene 0.1302 -0.0041 52.00 52.99 80.87 76.28 60.44 60.20

Cactus 0.2942 -0.0094 58.98 58.35 80.25 76.03 64.17 63.11

BQTerrace 0.3621 -0.0092 51.86 53.47 82.52 78.35 61.67 61.89

BasketballDrive 0.1757 -0.0048 61.89 60.96 72.91 65.41 63.57 61.68

Class C PartyScene 0.2792 -0.0113 53.54 50.17 80.79 77.39 60.52 58.08

BQMall 0.5692 -0.0201 55.83 54.42 79.80 75.74 61.08 59.55

BasketballDrill 0.5526 -0.0098 55.56 53.45 79.29 74.56 60.76 58.60

Class D RaceHorses -0.1353 -0.0085 61.83 59.21 72.57 67.56 63.39 60.56

BlowingBubbles 0.0481 0.0150 54.35 50.61 78.89 74.89 60.69 57.68

BQSquare -0.3287 0.0136 14.75 9.13 86.09 82.99 51.05 49.38

Class E FourPeople -0.0300 0.0001 30.52 30.30 86.29 83.42 56.25 56.93

Johnny 0.4258 -0.0097 31.71 35.05 86.04 82.90 56.59 58.17

KristnAndSara 0.4241 -0.0087 40.46 44.27 85.01 81.15 58.89 60.18

Average 0.1925 -0.0050 49.44 48.66 80.10 75.75 60.58 59.58
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Tables 9 and 10. In LD-B main profile, the combined

algorithm has reduced the number of search points by

49.44, 80.10 and 60.58 % in uni-prediction, bi-prediction

and both. Corresponding motion estimation times are

reduced by 48.66, 75.75 and 59.58 %. BD-Rate and BD-

PSNR are 0.1925 and -0.005 %. In [23], the total motion

estimation time saving is less with a small loss of coding

efficiency. In comparison, our proposed algorithms have

more saving in the total motion estimation time with

negligible loss in coding efficiency. In the RA main profile,

the number of search points is reduced by 48.41, 82.08 and

59.55 % in uni-prediction, bi-prediction and both. Corre-

sponding motion estimation times are reduced by 45.54,

78.35 and 57.71 %. BD-Rate and BD-PSNR are 0.2648

and -0.0083 %. From Tables 9 and 10, it is clear that the

motion estimation complexity reduction is more for bi-

prediction.

The proposed algorithms are implemented in the opti-

mized version of the TZS algorithm. The ESR and ISR-R

algorithms provide even higher saving in motion estima-

tion complexity when implemented within the unoptimized

version of the algorithm.

5 Conclusion

Complexity reduction tools for fast motion estimation

in both uni-prediction and bi-prediction is proposed in

this work. The proposed adaptive search range algo-

rithm reduces the motion estimation time with negli-

gible loss in video quality. ESR has reduced the

motion estimation complexity with negligible loss of

coding efficiency. ISR-R has reduced the complexity

of motion estimation by reducing the raster search

complexity of TZS. Bi-prediction fast motion estima-

tion scheme has reduced the motion estimation com-

plexity in bi-prediction without affecting the video

quality and bit rate. The results obtained by the pro-

posed algorithms are significant in terms of percentage

reduction in number of search points and percentage

reduction in motion estimation time. Experimental

results illustrate that the total motion estimation time

is reduced to a great extent while maintaining the

coding efficiency as that of the HM-16.6 reference

software in the fast search mode.

In the future, our goal is to develop an adaptive search

range algorithm for uni-prediction that can provide a better

trade-off between the motion estimation complexity and

the compression efficiency.
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