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Abstract High Efficiency Video Coding (HEVC) encoders

impose several challenges in computing constrained

embedded applications, especially under real-time

throughput constraints. This paper proposes an adaptive

complexity control scheme (CCS) that dynamically adjusts

the encoder to the varying computing capabilities of the

hardware platform. To design an efficient scheme, an

extensive complexity analysis of key HEVC encoding

parameters is herein presented. For this analysis, we

developed a parameterized complexity model called

‘‘arithmetic complexity,’’ which can be widely applied to

any computing platform. Our results demonstrate that the

proposed scheme provides time savings ranging from 10 up

to 90 % with an average error (between target and effective

complexity) of 1.2 %. Our adaptability and control per-

formance analysis show that the scheme rapidly adapts to

dynamic set-point adjustments. Compared to state of the

art, our complexity control achieves more accurate results

and extra features (such as dynamic set-point adjustment)

at the cost of minor losses in coding efficiency.

Keywords Complexity control � Complexity analysis �
Embedded systems � HEVC � Video coding

1 Introduction

The demand for cheaper and more powerful mobile devices

with better quality media services is ever increasing, espe-

cially for digital video applications. Streaming services like

YouTube and video conferencing have grown so rapidly that

according to [1] the Internet video share of bandwidth will

grow from 57 in 2012 to 69 % in 2017. To maintain efficient

compression with high quality demands, the Joint Collabo-

rative Team onVideo Coding (JCT-VC) developed the High

Efficiency Video Coding (HEVC, official draft released in

2013) [2]. HEVC outperforms H.264/AVC in terms of cod-

ing efficiency by 39.3 % on average for the same image

quality (using the Bjøntegaard Difference metric BD-Bitrate

or simply BD-BR as the efficiency metric) [3, 4].

The reference software for HEVC contains every tool

defined in the JCT-VC work, and it is referred as HEVC

model (HM) [5]. The HM code is not a suitable option for

practical encoder implementations, mainly because its goal is

to support and to document every tool defined in the stan-

dard. In other words, the HEVC model disregards compu-

tational costs or energy constraints typical of real-world

hardware platforms. Adaptability to real-time encoding and

variable computing constraints are not implemented in the

HM software. Real-time HEVC encoding involves a scenario

in which computing tasks share a limited platform. In addi-

tion, a variable amount of energy (in battery-powered
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platforms), computation, and memory resources are available

at each time interval for video encoding.

All these scenarios demand algorithmic solutions that

somehow reduce encoding complexity. One possible way to

solve this is to design a low-complexity encoder that limits

itself to a smaller amount of computations compared to the

traditional approach. However, this implies that an encoded

output of lesser quality will be produced even when there are

resources available to achieve a better quality compression.

Alternatively, an encoding system that is capable of dynami-

cally scaling its computation up and down according to the

underlying hardware characteristics (complexity control) rep-

resents a more promising solution, in particular for embedded

systems running video processing. Therefore, complexity

control techniques will be applied in the encoder envisioned

herein. The scenario depicted in Fig. 1 clarifies one of the

challenges regarding complexity control: The amount of

computation spent to encode a video sequence is not evenly

distributed throughout the encoding process. Figure 1a reveals

that some frames require more computation to be encoded,

whereas Fig. 1b shows the same occurs among regions inside

frames. These results demonstrate that it is important to care-

fully distribute the available computation during encoding in

order to keep coding efficiency (for instance, using framewise

and/or CTU-wise budgeting techniques).

The goal of this paper is to introduce an advanced

complexity control scheme (CCS) for HEVC encoders

targeting real-time constrained applications. The following

features were envisioned for this scheme:

• Frame-level control the encoding time of subsequent

frames is highly variable, so a frame-level control must

be employed to tackle these disparities as soon as they

occur.

• CTU-level budgeting distributing the same computation

to every CTU would disregard the fact that some

regions of the frame require more optimization than

others, compromising the coding efficiency.

• Controller precision it is important to accurately adjust

the complexity in order to avoid the following situations:

(1) achieving less savings than required, compromising

throughput or battery life, or (2) providing more than the

required savings, reducing the encoding efficiency.

• Range of complexity targets designing a control

scheme that achieves several complexity targets is

convenient to extend its application. While some

systems may require a reduced set of targets, others

could want to finely adjust this parameter in order to

always provide the best rate–distortion values.

Three major contributions are set forth in the paper:

• A model named arithmetic complexity (AC) that is able

to estimate coding complexity based on the number of

calls of basic coding operations;

• A complexity analysis of key HEVC parameters

measured in CPU time and in cycles (estimated with

the AC model) that evaluates the coding efficiency of

each case using a metric that we defined herein as rate–

distortion–complexity efficiency (RDCE), also

designed in this work;

• A novel CCS for HEVC encoders that dynamically

adapts itself to computationally constrained situations

and that relies on a PID (proportional–integral–differ-

ential) feedback control loop.

2 State of the art

2.1 Complexity analysis

The work of Vanne et al. [6] presents a comparative rate–

distortion–complexity analysis of HEVC and AVC codecs

and an analysis showing the computational effort distri-

bution of the HEVC components. Their results show that

the most complex ones are the Fractional ME, the Integer
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Fig. 1 Encoding time distribution among a frames and b among the 64 9 64 regions inside frames (sequence: BasketballDrill, 832 3 480

pixels)
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ME and the T/Q/IQ/IT loop, consuming 54, 17 and 14 % of

the encoding time, respectively. Hence, the tools and

techniques related to the inter-prediction are responsible

for most of the video encoding computations. A more fine-

grained analysis of several HEVC coding parameters is

presented in [7]. This analysis consisted in evaluating the

PSNR, bitrate and complexity variations after varying a

single encoding parameter in each test. The most relevant

parameters were elected according to their impact on each

of those three characteristics.

2.2 Complexity reduction

For HEVC, the most common approach toward complexity

reduction consists in a strategy named Early CU Quadtree

Termination, which saves computation by limiting the

flexibility of the coding data structure. Works proposed in

[8–14] belong to this category of complexity reduction.

The key difference among them is how and when they

decide to terminate the CU computation. None of these

proposals are capable of dynamically adapting to the

hardware properties and capabilities, which typically

change in portable systems with varying power supplies.

Another drawback found in these works is that they also

lead to quality degradation in their schemes, even when

there are resources available to reduce distortion. In the

opposite situation, if computations must be reduced by

more than what these solutions can achieve, none of them

will make it possible. The latter scenario is even more

troubling in real-time applications, as it causes a frame-rate

drop. As pointed in [15], frame-rate drops reduce the

subjective video quality, and it should be avoided as a

strategy to adapt the encoder to dynamically variable

computational load or capabilities.

2.3 Complexity control

The work presented in [16] proposes a dynamic control

solution for a H.264/AVC encoder, which reduces the

number of modes evaluated in the mode decision phase to

reduce computations and to reach target savings. In [17], a

complexity-scalable Motion Estimation (ME) algorithm for

H.264/AVC is proposed, which consists in reducing the

complexity of this process depending upon the budget

associated with each region inside the frame. The work of

[18] implements a frame-level complexity control for HEVC

that applies an Early CU Quadtree Termination algorithm

until it reaches target percentage, e.g., 60 % of the regular

encoding time (with no termination involved). The same

authors proposed an improved scheme in [19], achieving

different target complexity factors ranging from 20 to 90 %

of the original encoding time. This scheme achieves good

results in compression efficiency, but it does not support

variable target complexity during runtime. The authors in

[20] present a complexity control algorithm that decreases

the number of evaluated modes based on temporal and spa-

tial correlation, achieving a maximum reduction of 48 %.

Finally, Kannangara et al. [21] present a detailed discussion

on complexity control and reduction. The final work of the

first author [22] was a hybrid complexity control system

coupled to an H.264/AVC encoder, considering real-time

and constant frame-rate constraints. Their control mecha-

nism is very simple, since it consists in turning on and off its

complexity reduction algorithm (namely SKIP prediction)

based on the complexity budget.

None of the previous works cited present a detailed dis-

cussion about the characteristics of the controller. In addition,

only [19] presented an algorithm capable of achieving target

complexities as low as 20 %, and the presented solution does

not support scenarios in which the target complexity varies

dynamically. This is a common situation in practical appli-

cations: For instance, the battery level decreases constantly as

a video is being encoded, so the encoder should be able to react

to this and to reduce its complexity in order to record the scene

as long as possible with a continuous and controlled drop in

video quality or coded video bit rate.

3 Complexity assessment of HEVC parameters

This section presents an analysis of how each coding

parameter affects the overall complexity of HEVC enco-

ders. Two metrics were used: (1) processing time and (2)

arithmetic complexity (later explained in this section). The

results of this analysis helped identifying the parameters

that were relevant to design the schemes detailed in Sect. 4.

HighEfficiencyVideoCoding divides the frame into blocks

named CTU. Each CTU can be encoded in a variety of distinct

ways with the possibility to iteratively subdivide themselves

into four smaller coding units (CUs), forming a quadtree

structure. Each CU can be further subdivided into prediction

units (PUs) during prediction and into transform units (TUs) at

the transforms stage. Figure 2 shows an example of a quadtree

partitioning (Fig. 2a), aswell as the symmetric andasymmetric

PUs evaluated in each CU node (Fig. 2b). The relationship

between coding efficiency and quality of each possible

encoding mode is measured by a metric called rate–distortion

(RD)cost, so this process is named rate–distortionoptimization

(RDO)mode decision. Determining the RD cost of each mode

requires a significant amount of computations.

3.1 HEVC encoding parameters

In this work, we decided the set of parameters relevant to

complexity control based on results published in [6], which

show that more than 85 % of the encoding time is spent in
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the inter-prediction and transform/quantization modules.

Therefore, the parameters related to these steps are more

likely to have a higher impact in the overall encoding

computation effort. The following paragraphs describe

each of them.

• Asymmetric Motion Partition (AMP) this parameter

switches on and off the evaluation of asymmetric

partitions during inter-prediction.

• Hadamard ME (HadME) it enables the Sum of Absolute

Transformed Differences (SATD) as similarity criterion

during fractional ME. When HadME is enabled, SATD

is used in substitution to the sum of absolute differences

(SAD).

• Max CU partition depth (CUD) it controls the maxi-

mum CTU quadtree depth allowed during mode

decision. This parameter ranges between 1 and 4

levels. Both the inter-prediction and the transforms are

affected by this parameter.

• Search Range (SR) it defines the range in which the

integer ME is applied. The SR directly affects ME

complexity, as the fast algorithm implemented in

HEVC uses its search range as one of its termination

conditions [5].

• Fractional Motion Estimation (FME) this parameter

was introduced as a fractional ME enabler. Three

modes were defined: no FME (FME = 0), half-pel only

(FME = 1) and quarter-pel FME (FME = 2). FME is

very time-consuming due to its half-/quarter-pixel

interpolations.

• Number of Reference Frames (REF) by default, the HM

software runs ME on four reference frames. This

parameter was introduced to dynamically reduce this

number.

• Max TU depth (TUD) similar to CUD, controls the

maximum depth in the TU quadtrees processed after the

inter-prediction. The amount of operations done in the

transforms module is directly affected by this

parameter.

3.2 The AC metric

The HM software takes a considerable amount of time to

encode, taking approximately 1 hour to encode a single

second of 2560 9 1600 videos in an Intel i7 CPU at

3.4 GHz. When exploring different execution platforms,

this process can become even more time-consuming. In the

Gem5 architecture simulator, for instance, each simulated

second takes about 104 host seconds [23]. Although pro-

cessing time is the default measurement for many com-

plexity-driven studies, following this methodology can be

quite discouraging for computation-intensive applications

such as the HM reference, especially if simulators like

Gem5 are intended.

The lack of a general complexity model for video

encoding applications forces researchers to spend a lot of

time encoding sequences under different configurations. In

addition, the HM software also limits the scope of archi-

tectural analysis, as it does not support parallelism opti-

mizations in its current version.

To solve part of this problem, a parameterized model is

introduced and defined in this work, which is able to esti-

mate encoding complexity based on two measurements: (1)

the number of calls of encoding kernels, which is appli-

cation dependent, and (2) the time spent in each kernel,

which depends on the hardware platform. The resulting

metric herein proposed is named AC, presented in the

equation below:

ACðsÞ ¼ TDISTORTIONðsÞ þ TINTERPOLATIONðsÞ þ TTRANSFORMSðsÞ
ACðsÞ ¼ NSAD � tSAD þ NSSE � tSSE þ NSATD � tSATDð Þ

þ NHI � tHI þ NQI � tQIð Þ þ NT � tTð Þ
ð1Þ

In (1), Nhopi and thopi, respectively, represent the amount

of occurrences of an operation and the time spent on it,

whereas HI, QI and T stand for half-/quarter-pel interpo-

lation and transforms. The Nhopi and thopi values must be

accounted for each block size s (32 9 32-4 9 4 for

64x64 32x32

16x16 8x8

2Nx2N 2NxN Nx2N NxN

2NxnU 2NxnD nLx2N nRx2N

(a) CTU Quadtree (b) PU Partitions

Fig. 2 a A CTU and its correspondent decision quadtree and b symmetric (top) and asymmetric (bottom) PU partitions inside each CU
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transforms and 64 9 64 - 8 9 8 for others), because

analysis showed that these values do not scale linearly with

size.

The main advantage of the AC metric is that it is

possible to run the HM encoder a single time on any

platform and use the acquired Nhopi values to estimate the

encoding time on different scenarios. One must simply

adjust the time required for each operation involved in the

computation kernels in order to obtain the corresponding

complexity estimation. The results presented herein will

make use of this feature to provide results for three case

studies.

3.3 Methodology and test setup

Figure 3 details the methodology (left side of Fig. 3) and

resources (right side) applied in this work to compute the

AC on different platforms.

In Fig. 3, RDTSC stands for Read Time Stamp Counter.

This tool is an assembly implementation that is able to

monitor CPU cycles at nanosecond accuracy, which is more

accurate than standard C library timers [24]. The three case

studies considered in step 3 are detailed in Table 1.

The SIMD instructions were disabled in all cases, as it

would reduce the measurement accuracy (some kernels

were computed in less than 1 ns with SIMD). Case Studies

1 and 2 are modeled to resemble desktop and embedded

platforms, whereas Case Study 3 represents an embedded

device that contains dedicated hardware accelerators for

some kernels. These accelerators were modeled from

published results of hardware architectures for HEVC. In

[25], a parallel 64 9 64 SAD architecture is proposed that

is capable of processing a 64 9 64 CU in 64 cycles

operating at 171.8 MHz. In [26], an N-Point DCT archi-

tecture for HEVC encoders is presented. The authors pro-

posed a solution that is capable of processing a 32 9 32

TU in 136 cycles at 150 MHz frequency. Lastly, [27]

presents an interpolation filter accelerator that achieves a

12-pel/cycle throughput operating at 312 MHz, adding up

to 1 and 2 k cycles for 64 9 64 half- and quarter-pel

interpolations.

Table 2 lists the sequences encoded with the HM soft-

ware, as well as the frame count for each. The simulations

were executed for QP values of 22, 27, 32 and 37, as

recommended in the Common Test Conditions (CTC)

document [28].

The coding configurations used in the complexity sen-

sitivity analysis are listed in Table 3. The default config-

uration (c0 in Table 3) was used as reference, and the

others were defined by varying a single parameter from c0.

The parameter that is altered in each case is displayed in

bold. This was done in order to accurately define the

relation between each coding parameter and its coding

efficiency.

3.4 AC analysis

Table 4 shows the acquired timing results for each block

size, considering the platforms of each case study. These

were the values combined with the number of calls of each

kernel to calculate the AC.

The following charts present encoding time estimations

for the three case studies, measured with the AC metric, as

well as the actual processing time extracted by running the

HM software on an Intel i7 host with the same specs from

Case Study 1. Figure 4 displays the time to encode 64

frames of sequences with different video resolutions under

the HM default configuration.

2- extract the source code of kernels 
and compile standalone binaries

4- compute AC of each case study 
using (1)

Python script

1- run HEVC encoder with 
configuration ‘c’ and get N<op>

HEVC Model v16.2

3- get t<op>of each kernel for 8x8 up 
to 64x64 blocks for each case study*

RDTSC
Gem5

Published Literature

*4x4-32x32 for transforms

gcc
arm-linux-eabi-gcc

Fig. 3 Methodology used to extract the arithmetic complexity of

each case study

Table 1 Specifications of the

three case studies
Case Study 1 Case Study 2 Case Study 3

Processors Intel i7-4770 ARM (ARMv7 ISA) ARM ? Accelerators

Measurement RDSTC [24] Gem5 Gem5 ? Python

Max. Freq. 3.4 GHz 2.2 GHz 2.2 Ghz (ARM CPU)

RAM 4 GB 2 GB 4 GB

L1i/d Cache 32 kB 16 kB 16 kB

L2 Cache 256 kB 1 MB 1 MB

L3 Cache 8 MB N/A N/A

J Real-Time Image Proc (2017) 13:5–24 9
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The first conclusion from Fig. 4 is that the AC metric

presents a very high correlation (0.99) with the actual

processing time on a host with the same specifications,

proving that this model is extremely accurate. The ratio

between both curves shows that the AC kernels alone

consume 57 % of the processing time. The remaining 43 %

is spent on other kernels, memory traffic, data structures,

stack management and control overhead, etc. However, this

ratio becomes smaller as resolution increases, showing that

the time spent on memory traffic is more important for

larger resolutions. Following this trend, more than 50 % of

the encoding time is expected to be spent on memory traffic

for 4 K UHD (3840 9 2160 pixels) sequences. Still in

Fig. 4, one can notice the importance of dedicated accel-

erators for real-time encoding applications, as Case Study 3

presented an average speedup of 12.9 against its CPU-only

counterpart. Note, however, that this gain is only in pro-

cessing and real implementations should also consider the

overhead of data transfers.

Since the AC measurements proved to be accurate, this

metric was used in the control scheme later presented in

this manuscript.

3.5 Encoder sensitivity analysis

The goal of this analysis is to identify the parameters that

reduce complexity and use this knowledge in the control

scheme design. Quality is another important factor, so the

Bjontegaard-Delta Bitrate (BD-BR) [4] results were

included in the analysis. The time savings results were

measured with processing time. The AC savings were

omitted, as they were very similar (average deviation of

0.7 %).

Figure 5 shows the time savings of each test with

respect to the default HM configuration (c0 in Table 3).

This configuration is taken as a baseline for all the com-

parisons discussed in this section.

Table 2 Input sequences and specifications

Class Resolution Sequences Frame count

A 2560 9 1600 PeopleOnStreet 64

B 1920 9 1080 BasketballDrive 64

C 832 9 480 BQMall 64

D 416 9 240 BlowingBubbles 64

E 1280 9 720 Johnny 64

F 1024 9 768 ChinaSpeed 64

Table 3 Configurations used in the analysis

AMP FME HadME CUD REF SR TUD

c0a 1 2 1 4 4 64 3

c1 0 2 1 4 4 64 3

c2 1 0 1 4 4 64 3

c3 1 1 1 4 4 64 3

c4 1 2 0 4 4 64 3

c5 1 2 1 1 4 64 3

c6 1 2 1 2 4 64 3

c7 1 2 1 3 4 64 3

c8 1 2 1 4 2 64 3

c9 1 2 1 4 1 64 3

c10 1 2 1 4 4 16 3

c11 1 2 1 4 4 4 3

c12 1 2 1 4 4 0 3

c13 1 2 1 4 4 64 1

c14 1 2 1 4 4 64 2

a Default/reference configuration

Table 4 Time per call of each

kernel for all case studies
Block sizea Platform SAD SATD SSE Transf. Half Int. Quarter Int.

8 9 8 Intel 0.05 0.22 0.16 0.04 0.95 1.78

ARM 0.11 0.44 0.08 0.11 4.72 8.41

ARM ? Acc. 0.01 0.44 0.08 0.04 0.06 0.12

16 9 16 Intel 0.09 0.88 0.52 0.17 2.47 4.64

ARM 0.20 1.71 0.31 0.55 15.55 31.70

ARM ? Acc. 0.02 1.71 0.31 0.17 0.22 0.44

32 9 32 Intel 0.36 4.26 2.16 1.19 7.67 14.42

ARM 0.73 6.77 1.28 3.73 59.55 128.19

ARM ? Acc. 0.09 6.77 1.28 1.19 0.85 1.71

64 9 64 Intel 1.43 14.05 8.67 7.81 27.39 50.05

ARM 3.33 38.27 11.65 29.12 230.41 510.68

ARM ? Acc. 0.37 38.27 11.65 7.81 3.35 6.70

Unit: ls
a For transforms: 4 9 4 up to 32 9 32
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As Fig. 5 shows, reducing the maximum CU Depth is by

far the most efficient way of reducing encoding complex-

ity, saving 77 % of the encoding time. The parameters

related to Motion Estimation take the second place,

achieving average savings of 47 % (reference frames = 1)

and 41 % (FME mode = 0). This shows that adding these

two parameters to the HM configuration set improved the

quality of this analysis.

The following analysis (in Fig. 6) contains the Y BD-

BR increment for the same test cases. A 1 % BD-BR

increment means that bitrate was increased by 1 % for the

same objective quality (measured in PSNR), so the goal is

to minimize this value in order to maintain coding effi-

ciency. Note that the parameter that most increased the

bitrate is also the CU depth (72 % on average). It is also

worth mentioning that limiting the number of reference

frames not only saves more time, as it is also better than

disabling the FME for coding efficiency (6.7 % against

9.3 % BD-BR increase).

With separate metrics, it is difficult to rank the param-

eters according to their performance in the rate–distortion–

complexity trade-off. Therefore, in this work, we defined a

metric that packs both complexity and BD-BR in a single

value. With the values of complexity savings (DAC) and
BD-BR increment ðDBDBRÞ, the rate–distortion–complex-

ity efficiency (RDCE) is calculated as shown in (2).

RDCEx ¼
DAC
DBDBR

¼
1� ACxð Þ= ACRef

� �

1� BDBRx
ð Þ= BDBRref

� � ð2Þ

Each RDCE unit represents how much time is reduced

per 1 % BD-BR increment. Thus, larger values of RDCE

indicate that more complexity savings were achieved with

small BD-BR increment and vice versa. The RDCE results

are displayed in Fig. 7. The ChinaSpeed sequence was left

out of this analysis, as its behavior deviated significantly

from the remaining sequences, disturbing the average. Note

that the REF parameter is now better ranked than FME due

to its smaller BD-BR increment.

Based on the RDCE results, the search range is a high-

sensitivity parameter in terms of compounded BD-BR and

complexity. The average RDCE is at its peak (31.7) at

SR = 16, denoting an efficient parameter in terms of BD-

BR and complexity. From this analysis, limiting the num-

ber of reference frames and the maximum depth in the TU

quadtree are also prominent parameters for reducing

complexity. Lastly, the parameters related to restricting the

CU quadtree depth, disabling the FME and the Hadamard

ME should be avoided at all costs, as they achieved the

smallest RDCE values.

In summary, the analysis in this section leads us to

conclude that:
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• The estimations obtained with AC model were very

similar to processing time measurements. The advan-

tage of this metric is that it can be calculated for

different architectures and it is less platform-sensitive.

This model is used in the CCS to measure frame time.

• Modifying some encoding parameters reduces com-

plexity at the cost of high BD-BR increments, so these

should be avoided. The rate–distortion–complexity

Efficiency metric helped identifying the parameters

that produce the highest savings per increment. Sec-

tion 4.1 will explain how the RDCE was employed in

the CCS designed in this work.

4 Complexity control scheme

In this section, a CCS composed of a PID-based control

feedback mechanism and a budget allocation algorithm is

presented. Two algorithms (Priority-Oblivious and Prior-

ity-Aware Allocation) were designed and implemented in

the HEVC model software. The controller is applied at

frame level, whereas budget allocation works at CTU-

level. Figure 8 depicts the concept model of the

scheme designed and tested in this work. Henceforth, the

terms set point (SP) and process variable (PV) will be used

interchangeably as the target computation effort and the

effective computation, respectively.

Each component is detailed as follows:

• Monitor this component records the encoding frame time

(measured with the AC metric) achieved by the HEVC

encoder. When a new frame is encoded, the previous

frame time (PV in Fig. 8) is sent to the controller.

• Control logic computes the frame budget (Bud-

getFRAME) based on the difference between the PV

and the SP. In this work, a PID controller was

employed (see in Sect. 4.4).

• Configuration Lookup Table (CFG-LUT) stores the

parameter presets defined in this work and their time

savings (explained in Sect. 4.1).

• CTU History Table (CTU-HT) stores the depth of each

CTU in the previous frame. This is used during

budgeting to classify CTUs that require more or less

computations.

• Budgeting algorithm this unit is responsible for dis-

tributing BudgetFRAME among the CTUs in the frame via

parameter sets. It is composed of the CTU-HT and the

CFG-LUT. This is a key component, as it tries to use as

much available computation as possible, improving

coding efficiency. Section 4.3 explains the two bud-

get allocation algorithms implemented in this work.

4.1 Parameter presets

Given the fact that some encoding parameters directly

affect the computations spent to encode a sequence, it is

possible to grant variable computations for each CTU in a

frame by assigning these parameters appropriately. Hence,

six parameter sets (PS) were defined in this work, each

targeting a specific complexity reduction.

The analysis presented in Sect. 3 was in fact of great

importance to define which parameters are going to be used.

The parameters were ranked according to their RDCE and

then assigned to each PS until the target savings is reached.

Procedure 1 shows the algorithm used to build each PS.

Budget Allocation
Initial

Config.

HEVC
encoder

CTU0 = PS20 
CTU1 = PS60…  

CTU
stats

Budget. Algorithm

depth(CTU0)
depth(CTU1)

. . .
depth(CTUN)

PS20
PS40

. . .
PS N*

CTU-HT CFG-LUT
effective
comp.

Report
Files

Computation 
Monitor

Control
Logic Set

Point Hardware
Properties

_+×

WeightFRAME

BudgetFRAME PV

Control

Compute
NDEMOTIONS

Fig. 8 Concept model of the

complexity control scheme
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The input is a list of initial configurations and their RDCE

values (from Sect. 3). The starting point is the default

parameter preset found in the HM reference (empty preset in

line 3), and a single parameter is modified in each loop (rep-

resented by the preset union in line 7). When a target is sat-

isfied, the current preset is stored. Each new preset generated

aims to achieve computation savings 20 % higher than the

previous one. Sorting the configurations according to their

RDCE (line 2 inProcedure 1) raises theoddsof finding thebest

configuration in terms ofBD-BR.The90 %savings targetwas

added in order to enable a 10–90 % savings spectrum.

Table 5 shows the final parameter sets for each target

complexity. The sequences used in the analyses presented

in Sect. 3 were also used to validate the time savings and

AC savings of each PS. The complexity and quality results

are presented in Table 6.

The target and effective savings are very similar, but not

exactly the same. This is not precisely a problem, since it is

possible to employ a mechanism that circumvents frame

budgeting errors dynamically. In this work, this task is

fulfilled with the PID controller, to be discussed in

Sect. 4.4.

Table 5 Parameter sets used in

the CTU budgeting
Name Target savings (%) AMP FME Had ME CUD REF SR TUD

PS0 0a 1 2 1 4 4 64 3

PS20 20 1 2 1 4 3 64 3

PS40 40 1 2 1 4 2 16 1

PS60 60 0 2 1 4 2 4 1

PS80 80 0 1 1 3 1 4 1

PS90 90 0 0 1 2 1 0 1

a Default configuration

Table 6 Average AC, time,

and BD-BR increment

variations of each PS with

respect to PS100 (default

configuration)

Parameter

set

Target

savings (%)

Effective

savings (AC) (%)

Effective

savings (time) (%)

Y BD-BR

increment (%)

PS20 20 22.3 21.9 1.5

PS40 40 50.2 48.9 4.8

PS60 60 70.3 66.7 9.0

PS80 80 85.5 81.1 29.8

PS90 90 93.8 90.5 88.9
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The parameters of each set and the average AC savings

shown in Table 6 were recorded in a configuration lookup

table (CFG-LUT), which is used for the complexity esti-

mation, as detailed in the next section.

4.2 Frame budget calculation

Cycle distribution is not uneven only among CTUs in a

frame, but also among frames in a group of pictures (GOP)

(as Fig. 1 clearly shows). This comes from the scene

characteristics, but also from the fact that HEVC defines a

QP offset for each frame in a GOP, and lower QP values

lead to an increase in the encoding time. Therefore, a

weighting factor was defined in this work as follows:

wi ¼
/ �QPOFFSETðiÞ

SizeGOP
ð3Þ

where QPOFFSET(i) denotes the QP increase of the ith

frame in the GOP, and a must be obtained empirically, so

that the sum of weights is equal to the size of the GOP. For

a GOP size of four, for instance, � = 6.25.

The final budget sent to this unit is the frame budget mul-

tiplied bywi (from (3)). The frame budget can be either the SP

per se or the output of a control mechanism. The following

sections describe two CTU-level budgeting algorithms

designed to distribute the frame budget among its CTUs.

4.3 CTU-level budget allocation

Budget allocation is fulfilled by assigning a suitable preset

for each CTU in the frame. All CTUs start with the default

preset (PS0), and then, they are demoted (assigned to a less

time-consuming preset) when time savings are required.

The same goes when there is time to spare, allowing some

CTUs to be promoted in order to minimize coding effi-

ciency losses. Both allocation algorithms designed in this

work initially execute the following steps:

Step 1. Compute the required savings as:

SavingsREQ ¼ 1� BudgetFRAME

PV

� �
ð4Þ

Step 2. Each consecutive preset reduces time by around

20 % (if applied to every CTU in the frame), so we cal-

culate number of required demotions as:

NDEMOTIONS ¼
SavingsREQ � NCTUsð Þ

0:2
ð5Þ

Note that when SavingsREQ is negative (signaling com-

plexity can be increased), NDEMOTIONS (also negative) will

be instead the number of promotions required.

Step 3. Assign minimum and maximum presets: This

limits the set of possible presets according to the required

savings. For instance, if the target is 40 %, the minimum

and maximum presets are PS20 and PS60. This prevents

unsuited allocations if the controller overshoots.

Promote/demote the CTUs in the frame until

NDEMOTIONS = 0 or no promotions/demotions can be done.

Two procedures were used to define which CTUs should

be promoted/demoted first. The first one is called Priority-

Oblivious Allocation (POA) and simply demotes/promotes

CTUs indiscriminately until the counter reaches zero. In

contrast, the Priority-Aware Allocation algorithm uses

knowledge of CTUs in the previous frame to demote the ones

that were encoded with a small average depth first and also to

promote first the ones with larger average depths. Procedures

2 and 3 display the pseudo-code of each procedure.
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Both algorithms have their advantages: POA is very

straightforward and does not require any additional data

structures, making it easy to implement in hardware

encoding systems, whereas PAA has a better chance of

assigning suitable presets for CTUs that require more/less

computational effort, reducing coding efficiency losses.

The effective savings and the rate–distortion performance

of both algorithms are presented in Table 7.

As expected, the coding performance of the Priority-

Aware Algorithm is far superior compared to the Priority-

Oblivious strategy, presenting a BD-BR increment 47 %

smaller. In addition, the PAA also achieved savings closer

to the set point. Thus, we decided to employ the PAA

algorithm in our control despite its extra data structure

requirements.

4.4 PID-based feedback control

The Controller calculates the budget available to encode

the next frame based on how far the achieved computation

is from the target computation. In this work, the set point is

calculated by the following equation:

SP ¼ TDefault � 1� targetSavingsð Þ ð6Þ

In (6), TDefault stands for the time required to encode a

frame with default configuration and targetSavings is the

desired reduction percentage. This percentage can repre-

sent, for instance, the reduction required to encode a

sequence in real time. One must simply divide the current

frame rate by the desired one and use it to adjust the SP.

In this work, a proportional, integral and derivative

(PID) controller [29] was implemented. A PID controller is

a control feedback loop mechanism that is widely known in

the industry due to its application in many systems. This

controller involves three separate constant parameters: the

proportional (P), integral (I) and derivative (D) values. The

proportional value P depends on the present error, whereas

I depends on the past values, and D can be considered as a

prediction of the future ones. Our first PID-based controller

for complexity control in HEVC was implemented in [30].

In this work, a more comprehensive analysis was entailed

in order to produce a more robust scheme.

Table 7 Allocation algorithm comparison (sequence: BQMall)

Algorithm Target

savings (%)

Effective

savings (%)

Y BD-BR

increment (%)

POA 40 38.8 7.1

PAA 40 39.4 3.9

POA 60 58.3 16.3

PAA 60 61.4 8.7
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The PID controller receives the difference between the

SP and the actual output (PV) of the system, which is

considered an error (e). With this, for each time instant t,

the output is computed as follows:

CPIDðtÞ ¼ Kpeþ Ki

Xt

i¼0

eðiÞDt þ Kd

eðtÞ � eðt � DtÞð Þ
Dt

ð7Þ

This controller tries to match its output up with the set

point at a certain speed, which depends upon the three

constant parameters, namely Kp, Ki and Kd. These coeffi-

cients must be finely tuned, since inefficient configurations

may cause large oscillations in the controller output (the

controller output rapidly crossing the set point) or even

cause the controller to diverge. There are different

parameter-tuning techniques for the PID controller, and the

next section describes the one used in this work.

4.4.1 PID parameters tuning

In order to employ a PID controller effectively, one must

determine the most suitable values for the Kp, Ki and Kd

parameters. There are several techniques to accomplish this,

from manual tuning to sophisticated genetic algorithms. In

this work, the widely used Ziegler–Nichols method is used

[31]. According to this method, the integral and derivative

component must be removed from the equation, and the

proportional component must be increased at small steps

until it reaches maximum gain Ku in which the output

oscillates around the set point. Figure 9 shows the analysis

performed using the Priority-Based Budgeting algorithm.

Values from 0.2 to 3.0 were employed, but only a few were

selected for a better visual analysis.

As seen in Fig. 9, some results (e.g., when KP = 0.2)

did not meet the set point, so they were easily discarded.

For KP equals 0.8 and 1.4, the set point was met. We

concluded that a KP of 0.8 was more suitable than 1.4, as it

presented ripples with smaller magnitudes and a slightly

smaller SP/PV error sum (0.96 against 1.99). Thus, we

decided to choose a KP of 0.8 as KU.

With these values, the constants are derived from simple

equations. The classic PID equations for determining the

control parameters were used in this work, because they are

known to fit most systems without causing the controller to

diverge. The classical equations for deriving the PID

parameters with the Ziegler–Nichols method are shown

below:

KP ¼ 0:6Ku;Ki ¼ 2Kp=Tu;Kd ¼ KpTu=8 ð8Þ

Figure 10 shows an execution profile of the PBB algo-

rithm with a 60 % target complexity. In the first test, the set

point was used as budget and no PID controller was used,

whereas the second profile shows the results using a PID

control loop.
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It is clear that the target computation was not achieved

in the first case due to estimation errors, because the

sequence used in this analysis was not part of the test

sequences used to build the parameter sets. Therefore, the

scheme designed in this work benefits greatly with the use

of a PID controller.

The following section evaluates the performance of

these budgeting strategies, as well as of the PID controller

against a simpler control mechanism. Afterward, a final

CCS implementation that combines the best budgeting

strategy with a PID feedback controller is proposed and

tested against related solutions found in the literature.

5 Detailed results and comparisons

This section reports a frame-by-frame comparative analysis

of the different CCSs proposed and implemented in this

work. Initially, the PID controller efficacy is put to the test.

Afterward, the CCS is compared against the HM reference

implementation and also with solutions published in related

works. The Common Test Conditions define two prediction

modes: low delay and random access. Low delay can be

used with P or B frames, whereas only B frames are rec-

ommended in the random access mode. The modes used in

this work were of low delay with P and with B frames. The

CTC also defines classes for sequences based on resolution

and content type. The class of each sequence will be shown

in the following table.

The test configurations and the specific videos used in

this analysis are detailed in Table 8. The time savings

targets consider the default HM operation as 100 %. The

total amount of simulations for this section alone added up

to 864.

5.1 Control system response to set-point

adjustments

This analysis consisted in evaluating the performance of

the CCS for different target complexities. Two sequences

from each class were tested to ensure input variability. The

complexity targets ranged from 90 to 10 %. Lower targets

are not achievable, because the results from the parameter

set analysis never went below the 10 % mark. Figure 11

shows the average GOP time for different complexity tar-

gets to encode a 2560 9 1600 sequence. The SP for each

target is represented by the dotted lines, and its value is

indicated in the right end of the chart. In some cases, it is

difficult to evaluate whether the target was achieved or not,

so the incremental average is also presented in Fig. 12. The

incremental average per frame was calculated using the

equation below.

AVGi ¼
Pi

j¼0 PVj

i
ð9Þ

In (9), the PV for Framei is the sum of previous results

averaged to the current frame count.

Table 8 Test conditions for the in-depth analysis

Spatial resolution Sequences (class)

2560 9 1600 Traffic (A), PeopleOnStreet (A)

1920 9 1080 ParkScene (B), BasketballDrive (B)

1280 9 720 FourPeople (E), Johnny (E)

1024 9 768 ChinaSpeed (F)

832 9 480 BQMall (C), RaceHorsesC (C),

BasketballDrillText (F)

416 9 240 BasketballPass (D),

BlowingBubbles (D)

Frame count 64

GOP structures (mode) IPPP (low delay), IBBB (low delay)

QP 22, 27, 32, 37, 42

Time savings 10–90 %

PID constants Kp, Ki, Kd = {0.48, 0.24, 0.24}

Budget allocation Priority-Aware Allocation
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This analysis demonstrates that the designed

scheme achieves targets as low as 10 %, showing that it is

highly flexible. This is very desirable, since in situations

when the computation constraints are very tight (e.g.,

critical battery state), lower target complexities can be used

to ensure that the sequence will be encoded for as long as

possible until battery runs out of charge.

The accuracy of the results is also worth mentioning.

The average effective complexity achieved by our CCS

never differed from the target by more than 1 %, except in

the very low effort case, i.e., 10 % target, which presented

a 2 % difference from set point and effectively achieved.

As previously stated, this great level of adaptation would

not be possible without a feedback control loop.

Similar behavior can be observed in Figs. 13 and 14. In

this case, a sequence with lower spatial resolution was

encoded (832 9 480). The remaining sequences presented

very similar results.
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The second test simulates a situation in which the target

changes over time during the video encoding runtime. This

is also very applicable to practical scenarios for embedded

applications, especially when the processing unit is shared

among other tasks, reducing the computation share of the

encoder in a given time frame. The results for two different

sequences are shown in Fig. 15.

On the left side of Fig. 15, the target complexity was

reduced by 20 % each 64 frames, whereas on the right, it was

reduced by 10 % every 32 frames. When the set-point

changes during runtime, the designed scheme resets the

controller variables for new adjustments, explaining the high

oscillations in each transition. Our CCS takes on average 6

video frames to stabilize around the set point. This is an

insignificant period considering frame rates of at least 30

frames per second. It is possible to conclude from this anal-

ysis that the designed scheme is also capable of achieving

different targets even when they change during runtime.

5.2 Comparison with the HEVC model reference

The compression performance of the designed scheme was

also tested using the default HM encoder implementation.

Tables 9 and 10 show the BD-BR results for a 40 % target

saving. In Table 9, the results were averaged for each class,

whereas Table 10 presents results for each sequence. Every

sequence was encoded with two GOP structures: IPPP and

IBBB.

The results demonstrate that significant encoding time

savings were achieved with a modest average BD-BR

increment. The best and worst results are the same for both

GOP structures, indicating that reference frame distribution

does not affect the performance of the controller. The

results show higher increments for classes C and F. Class F

contains a sequence with a sliding text box and one with

the screen capture of a racing game, which probably

explains the losses above the average.

The rate–distortion plots are displayed in Fig. 16 for

sequences of each resolution; each plot contains the default

HM (in black) and the HM with the CCS attached (in red).

Each point marked in the charts represents the Y-PSNR

and bitrate obtained by encoding these sequences with the

four QP values listed in Table 8.

These results further confirm that the achieved savings

were obtained at the cost of tolerable compression penal-

ties. For the BasketballDrive and Johnny sequences, both

curves coincide perfectly, proving how the control

scheme herein proposed can be efficient, especially for

high-resolution sequences. This is a favorable aspect for

real-time applications, for it is very likely that a control

mechanism will be required more often when encoding

sequences with higher resolutions, as they demand an

enormous amount of computations per second. Even in the

worst case (RaceHorses and ChinaSpeed), the curves are

very close.

5.3 Comparison to state of the art

This section compares our scheme with the most compet-

itive results found in the literature. The work of Correa

et al. [19] was selected, as it is the one that presented an

analysis for several complexity targets and also for
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Table 9 BD-BR increment for all tested sequences—Target Savings:

40 %

GOP structure IPPP low delay IBBB low delay

QP 27, 32, 37, 42 22, 27, 32, 37

Color channel Y (%) U (%) V (%) Y (%) U (%) V (%)

Class A 2.68 1.72 1.47 3.40 2.85 3.07

Class B 2.10 2.45 1.74 2.32 2.10 2.00

Class C 4.59 4.80 5.22 4.39 4.36 4.27

Class D 2.58 1.99 2.78 2.76 2.07 2.27

Class E 1.28 0.76 0.31 1.76 1.26 0.77

Class F 4.58 5.13 4.72 5.38 5.22 4.63

Overall 2.97 2.81 2.71 3.33 2.98 2.83

Enc time (%) 60.1 59.6
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Table 10 BD-BR increment for all tested sequences—Target Savings: 20–60 %

Sequence 20 % savings 40 % savings 60 % savings

BD-BR Inc. (%) Time savings (%) BD-BR Inc. (%) Time savings (%) BD-BR Inc. (%) Time savings (%)

BlowingBubbles 0.94 20.7 4.0 40.1 9.7 61.7

BasketballPass -0.48 19.3 1.6 39.4 3.9 61.3

RaceHorsesC 1.25 20.5 4.8 40.8 10.4 61.5

BQMall 1.03 19.5 4.0 39.4 8.7 61.4

ChinaSpeed 1.45 20.3 4.7 40.3 12.9 61.4

BasketballDrillText 1.09 20.3 6.0 40.0 9.6 61.4

Johnny 0.17 20.4 1.7 40.5 3.0 61.6

FourPeople 0.38 20.1 1.8 40.2 2.3 61.5

BasketballDrive 0.24 20.1 2.1 40.1 3.8 61.5

ParkScene 0.46 20.1 2.5 39.8 6.7 61.7

Traffic 0.72 20.2 4.4 40.2 9.4 61.7

PeopleOnStreet 0.53 20.5 2.6 40.9 5.2 61.5
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achieving the best coding performance results. Table 11

shows the coding efficiency comparison for different

complexity targets. Note that the BD-BR results differ from

the ones previously presented, since the authors in [19]

used different QP values (27, 32, 37 and 42), so new

simulations were entailed to ensure a fair comparison.

Both implementations managed to reduce the encoding

complexity, but our scheme yielded a better average

accuracy than [19]. This is explained because the compared

reference does not contain a mechanism that deals with

estimation errors dynamically. In our work, this is solved

with the PID controller. Also in Table 11, the compared

solution achieved slightly better coding efficiency results,

but it does not support interesting features such as dynamic

set-point adjustment. The BD-BR increment is consider-

ably small for all compared targets, and this is confirmed

by the negligible bitrate increment. Table 12 shows a

comparison of both solutions from a control system

perspective.

The designed scheme is capable of achieving lower

complexity targets, because the parameter sets included a

really fast preset. The compared solution is able to achieve

a 20 % target only for some cases. Secondly, no dynamic

set-point adjustments are supported, which is also a prob-

lem when estimation errors occur. This is emphasized with

the maximum error of 14 % in [19] against the 2 % gen-

erated by our scheme.

To conclude, the [19] might be more interesting for

applications that prioritize image quality, but our work is

more suited for systems that demand an accurate com-

plexity control with dynamic SP adjustment support due to

hard computation constraints. It is important to note,

however, that the best of both solutions could be jointly

implemented to produce an accurate control scheme with

improved coding efficiency. In other words, if the alloca-

tion strategy of [19] is combined with the control frame-

work implemented in this work, the resulting system is

expected to present the best of both implementations:

coding efficiency and dynamic control with minimum SP/

PV errors (although the 90 % target savings would no

longer be possible due to the limitations of [19]).

6 Conclusions

Our CCS for HEVC encoders introduced the new AC

metric, which can be easily calculated during encoding for

complexity estimation. A detailed assessment was first

presented for encoder parameters sensitivities. The com-

pound metric of rate–distortion–complexity efficiency

defined in this work was used for key parameter adaptation.

Two budget allocation algorithms that we designed were

implemented and analyzed in the control scheme, and the

one with and the Priority-Aware Allocation was elected as

the most efficient one. To solve estimation errors, a PID

control feedback loop was also implemented. The PID

parameters were tuned with the Ziegler–Nichols method,

and the results proved that the scheme benefits greatly from

this component. A detailed analysis over the best CCS

configuration was then presented in order to test the com-

plexity control accuracy and its adaptability to dynamic

set-point adjustments.

The rate–distortion (RD) results against the HM refer-

ence show that this solution can achieve 40 % time savings

with small BD-BR penalties (3.15 % Y BD-BR increase on

average). When compared against related work, our CCS

achieved better control accuracy, lower target complexities

and dynamic support for video encoding, at the cost of

small BD-BR increments and negligible bitrate increases.

As future work, more sophisticated controllers are being

investigated. The budget allocation algorithms can also be

widely explored, since there are many techniques that can

be borrowed from operating systems’ workload control

literature. Finally, designing complexity-scalable algo-

rithms for each encoding component and combining this

with the current CCS is a promising branch of research as

well.

Table 11 Related work comparison (average results)—IPPP GOP

structure

[19] This work (%)

Target: 20 %

Effective time 17.4 % 20.1

Y BD-BR increment 0.23 % 0.45

Bitrate increment N/A 0.21

Target: 40 %

Effective time 39.25 % 39.88

Y BD-BR increment 0.8 % 2.97

Bitrate increment N/A 1.84

Target: 60 %

Effective time 57.8 % 61.45

Y BD-BR increment 3.9 % 4.9

Bitrate increment N/A 3.2

Table 12 Related work comparison—Control system aspects

[19] This work

Achieved targets 20–90 % 10–90 %

Dynamic SP adjustment support No Yes

Maximum target errora 14 % 2 %

Average target errora 2.71 % 1.2 %

a Calculated for all complexity targets
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