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Abstract This paper presents a computationally efficient

technique for reduction of blur caused by handshakes in

images captured by mobile devices. This technique uses a

short-exposure or a low-exposure image that is captured at

the same time a normal or auto-exposure image is captured.

The short-exposure image is enhanced by utilizing low rank

image approximation of the auto-exposure image without

requiring any user specified parameters. Based on the three

quantitative measures of image quality, it is shown that this

technique outperforms similar techniques used for image

deblurring while it also offers computational efficiency.

A GPU implementation of this technique is also reported.

Keywords Computationally efficient image deblurring �
GPU implementation � Low rank image approximation

1 Introduction

When capturing images by mobile devices, sometimes they

appear blurred due to handshakes. Users often recapture

images to address such blurs. However, in many cases, the

moment of interest cannot be repeated. In this work, a

computationally efficient technique has been developed to

deblur such blurred images based on two images that are

captured with two different exposures or shutter speeds.

First, a normal or auto-exposure image is captured. Then, a

second image with a short-exposure or shutter speed

is captured automatically with no user intervention

immediately after the normal exposure image is taken. It is

also possible to generate the short-exposure image elec-

tronically by allocating a memory location to a shorter

duration of the exposure time of the normal or auto-ex-

posure image. This second image appears deblurred but

dark looking. The developed technique uses the informa-

tion from both of the images to generate a deblurred image.

The problem of image deblurring has been extensively

studied in the image processing literature. Most existing

techniques, e.g. [1–4], attempt to estimate the point spread

function (PSF) of the camera motion and use it to achieve

deblurring by applying deconvolution filtering. Such

techniques are not only computationally demanding, but

also they often generate undesirable deconvolution ringing

or artifacts.

In [3, 4], an inertial measurement unit (IMU), which is

now available on mobile devices, was used to estimate the

camera motion PSF. In [5, 6], handshake blur removal

techniques were reported based on a short-exposure image

and a normal exposure image. In [6], an adaptive tonal

correction (ATC) technique was introduced to enhance the

short-exposure image to obtain a deblurred image using the

statistics of the normal or auto-exposure image. In [7], it

was shown that the ATC technique achieved a better out-

come compared to the IMU estimated PSF technique since

in practice an accurate calibration between the camera and

the IMU is not easily achievable.

Inspired by the ATC technique, an alternative blur

reduction technique is presented in this paper that is

computationally more efficient than the ATC technique.

This new technique does not require any search to be

performed as required by the ATC technique, thus making

it more suitable for utilization on mobile platforms. The

first step of this technique involves a low rank image

matrix approximation using singular value decomposition

(SVD) and the use of Akaike information criterion (AIC) to
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find an appropriate number of eigenvalues from the normal

or auto-exposure but blurred image. This approximation

image remains undistorted as a result of blurring and

contains the image brightness and contrast information.

The second step consists of incorporating the eigenvalues

of the approximation image into the short-exposure image.

The rest of the paper is organized as follows: Sect. 2

presents a description of the developed technique for image

blur reduction while Sect. 3 presents the improvement

gained in computational efficiency compared with the ATC

technique. Section 4 includes the GPU implementation of

the developed technique. Finally, the results and conclu-

sion are stated in Sects. 5 and 6, respectively.

2 Low rank image approximation via singular
value decomposition

In general, an image/matrix I with size m� n can be

decomposed into three matrices via SVD, that is

I ¼ URV0

¼ ½u1 u2. . .um�

r1 0 0 � � � 0

0 r2 0 � � � 0

..

. ..
. . .

.
� � � ..

.

0 0 � � � rm 0

2
6664

3
7775 v1 v2. . .vn½ �0

ð1Þ

where U ¼ ½u1 u2. . .um� and V ¼ ½v1 v2. . .vn� denote uni-

tary matrices, R ¼ diagðr1; r2; . . .; rmÞ denotes a m� n

diagonal matrix with singular values r1 � r2 � � � � rm � 0.

2.1 Low rank approximation image

Consider a blurred image Î of size m� n where m B n.

This image can be expressed as:

Î ¼ E þ Rþ Z ð2Þ

where E represents a low rank approximation image, R the

detail content of the image and Z the blurring effect. In

general, E does not suffer from the blurring effect as it is

rank deficient:

rankðEÞ ¼ p\m ð3Þ

The SVD of E can be expressed as follows:

E ¼ ½UE1
jUE2

� RE1
0

0 0

� � V0
E1

..

.

V0
E2

2
64

3
75 ð4Þ

where

UE1
¼ ½ u1 u2 . . . up � 2 Rm�p

UE2
¼ ½ upþ1 upþ2 . . . um � 2 Rm�ðm�pÞ

V0
E1

¼ ½ v1 v2 . . . vp � 2 Rp�n

V0
E2

¼ ½ vpþ1 vpþ1 . . . vn � 2 Rðn�pÞ�n

are unitary matrices, RE1
¼ diagðr1; r2; . . .; rpÞ 2 Rp�p is a

diagonal matrix consisting of the eigenvalues of E. For

simplicity, let T ¼ Rþ Z. As a result, Î can be written as

Î ¼ E þ T . By utilizing the property of unitary matrices

(i.e., VVt ¼ I), the image Î can be rewritten as:

Î ¼ E þ TðVE1
V0

E1
Þ þ TðV0

E2V
0
E2
Þ

¼ [UE1
RE1

þ T VE1
jT VE2

�
V0
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" #
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The SVD based on Eq. (5) can be stated as

Î ¼ [UE1
RE1

þ UTRTV
0
TVE1

jUTRTV
0
TVE2

�
V0

E1

V0
E2

" #

¼ ½ ~UE1
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where

~UE1
¼ UE1

X
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þUT

X
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V0
T VE1
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 !�1
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~RE1
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In Eq. (6), there exists a gap in the eigenvalue matrix in

which the smallest eigenvalue in ~RE1
is larger than the

largest one in ~RE2
. As shown in Eqs. (3) and (4), the

eigenvalue matrix ~RE1
matrix of E has p numbers of

eigenvalues. These p eigenvalues belong to the low rank

approximation image conveying the mean, contrast and a

rough structure of the image Î. The m� p eigenvalues of
~RE2

can be interpreted as the eigenvalues of the detail and

the blurred component of the image Î .

3 Akaike information criterion

For deblurring purposes, it is first required to determine the

number of eigenvalues to represent the low rank approxi-

mation image. Several methods have been utilized for this

purpose and a comprehensive study can be found in [8].
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The eigenvalues ðr1; r2; . . .rpÞ of the low rank approxi-

mation image has this property:

r1 [ r2 [ � � � [ rp

The remaining m� p eigenvalue ðrpþ1; rpþ2; . . .rmÞ
correspond to the subspace with

rpþ1 ffi rpþ2 ffi rm

To determine the low rank value p from a set of given

eigenvalues, several measures have been considered

including the ratio rp
�
rpþ1

, the eigenvalue difference rp �
rpþ1 and the percentage of total power energy rp=

Pm
i¼1 ri

[9]. In practice, when these measures are used for the

deblurring application under consideration here, they

fluctuate when the number of eigenvalues is varied due to

different amounts of blurring effect present in an image. A

user-defined threshold thus needs to be applied.

To avoid specifying a user-defined threshold, the Akaike

information criterion (AIC) is used here [10, 11]. The

advantage of using AIC is that it does not require a prior

threshold value. AIC is defined as follows:

AICðpÞ ¼ �2log

1
ðm�pÞ

Pm
i¼pþ1

ri

Qm
i¼pþ1

r1=ðm�pÞ
i

0
BBB@

1
CCCA

m�p

þ2pðm� pÞ ð7Þ

As can be seen in Fig. 1b, the AIC value is decreasing

by considering the top first few numbers of eigenvalues in

the low rank image. This part of image usually covers

higher eigenvalues, and the lower eigenvalues in AIC

appear to be linear increasing. Thus, we select the mini-

mum of AIC function to determine the number of

eigenvalue in low rank image. The number of eigenvalues

pAIC 2 f1; 2; . . .;mg is determined here

pAIC ¼ argmin
p

fAICðpÞg ð8Þ

By replacing pAIC with the low rank approximation

image E in Eq. (4), the SVD of E can be expressed as

E ¼ UE1
RE1

V0
E1

¼
XpAIC

i¼1

riuI � v0i ð9Þ

where � denotes the outer product. A typical outcome

when using the AIC and the eigenvalue ratio measures are

shown in Fig. 1. As can be seen from this figure, the

eigenvalue ratio generates multiple similar ratios while the

AIC provides an easily identifiable minimal value.

3.1 Eigenvalue transformation

After obtaining the number of eigenvalues of the low rank

approximation image, the next step consists of adjusting

the eigenvalues to enhance the brightness and contrast of

the short-exposure image. It is important to keep the

original singular value ratio of the short-exposure image to

avoid introducing distortions. This is achieved by consid-

ering this enhancement ratio based on the eigenvalues of Is

k ¼

PpAIC
i¼1

ri

PpAIC
i¼1

rSi

ð10Þ

The enhanced image Id recovered from the short-expo-

sure image can then be written as:

Id ¼ USRS
dV

St ; RS
d ¼ kRS ð11Þ

where Us, Rs and Vst are the SVD of the short-exposure

image Is and RS
d represents the enhanced eigenvalue

matrix. As can be seen, this approach does not require any

search iterations for finding the enhancement parameters as

done in the ATC technique. In other words, the information

of the blurred image is directly used to enhance the short-

exposure image.

4 Computational efficiency

The computational complexity of performing SVD a

matrix of size m� n is Oðmn2Þ. Thus, it would be com-

putationally demanding to process high-resolution images.

To gain computational efficiency, 2D discrete wavelet

transform (DWT) [12] is used here to transform an image

to a lower resolution image. For an image of size m� n, let

the wavelet function be / and the scaling function be w for
Fig. 1 Selecting number of eigenvalues using a eigenvalue ratio and

b AIC
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a single level of two-dimensional DWT with the approxi-

mation coefficient image W/, horizontal detail image WH
w ,

vertical detail image WV
w and diagonal detail image WD

w ,

each being of size ðm=2; n=2Þ. Since the approximation

coefficient image W/ provides an approximate represen-

tation of the original image at a lower resolution level, our

blur reduction technique is first applied to the approxima-

tion image to improve the computational efficiency.

4.1 Computational complexity comparison

The computational complexity of the ATC technique is

Oð2 	 a 	 b 	 m 	 nÞ for calculating the two tonal curve

parameters a and on a single channel image of size m� n.

In [7], the parameter a was b varied from 1 through 20 in

1.0 step size, and b was varied from 1 to 5 in 0.3 step size.

This makes the computational complexity of the ATC

technique O 2000
3

mn
� �

. The computational complexity of the

introduced technique is O mn2

8r

� �
with r representing the

wavelet decomposition level. In practice, one level of

wavelet decomposition is adequate to gain computational

efficiency. However, if desired, higher levels of the wavelet

decomposition can be considered to further reduce the

computational complexity. The PSF technique in [1],

applied Gaussian–Newton method for kernel parameter

searching. Each iteration is Oðm2n2Þ. In compared with,

conventional PSF technique [2], it requires optical flow to

extract PSF function. The computational complexity is

Oðða 	 l2 þ w2Þ 	 m 	 nÞ, where a is number of iteration for

searching optical flow, l is number of warp parameters, and

w is the filter size for deconvolution. In convention, the

warp parameters setting is l[ 5, a may varied from 5 to 10

and w is selected to be 5–7. Thus, such computational

complexity is not suitable for the real-time implementation.

5 Implementation aspects

In this section, the implementation aspects of capturing two

consecutive images with two different exposures or shutter

speeds are stated. In addition, a GPU implementation of the

developed technique is reported.

5.1 Image capture pipeline

To capture two images consecutively and also with dif-

ferent exposures or shutter speed settings, the RGB raw

image data are captured noting that in a conventional

image acquisition pipeline, an image goes through several

stages to complete its data transfer through a buffer and an

encoder. This leads to delays and such delays may cause

not capturing the same scene area due to handshakes. Thus,

in our implementation, a camera with Mobile Industry

Processor Interface-Camera Serial Interface (MIPI-CSI)

was used to capture images. MIPI has become a commonly

used interface protocol on mobile devices as it provides

scalable serial interface for image data transfer to host/CPU

processor. This way, the image raw data are directly

mapped into a memory stack by enabling the camera output

port. The memory size can be pre-defined based on a user-

defined image size. This way delays caused by the data

transfer are avoided. The pre-defined memory is also syn-

chronized to the camera. The encoder and buffer are both

deactivated. When the first image is captured, the image

data are simultaneously mapped into the memory without a

time delay. Next, the camera control parameters are

updated using a different shutter speed. Meanwhile, the

camera port is connected to a second memory space. As a

result, two consecutive images get captured, each corre-

sponding to a different exposure or shutter speed setting,

while not suffering from the delay caused by the data

buffer and encoder. The above implementation steps

appear in Algorithm 1, and a timing chart comparison is

provided in Fig. 2.

Algorithm 1

Input: image size m×n  and two exposures or shutter speeds  
Output:  two RGB image raw data   
1.  Create two memory spaces 2*3* m*n  bytes 
2. Initialize two camera parameters  
3. Capture first image and store data to the first memory   

space 
4.     Update exposure or shutter speed and connect the 

camera port to the second memory space.   
5. Capture second image and store data to the memory 

space  

Fig. 2 Timing charts for conventional and our implemented image

capture
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5.2 GPU implementation

A GPU implementation was done to gain further computa-

tional efficiency due to the many matrix and vector opera-

tions involved in the developed deblurring algorithm.

Figure 3 shows the configuration of the GPU implementa-

tion. Captured image data are copied into the GPU memory

for the wavelet transformation and SVD [13] computation.

For the AIC part, only n numbers of eigenvalues are needed.

Hence, these eigenvalues are extracted and sent to the CPU

to run the AIC algorithm to avoid an extra GPU initialization

step. Since the eigenvalue matrix
P

d gets calculated and

stored from the previous stage, the eigenvalue transforma-

tion is applied by using the vector scaling operation from the

GPU. Also, the composition of
P0

d and Vt are done via

vector scaling on the shared memory to avoid matrix mul-

tiplication, and the result can be easily pushed into the

memory in a column-major ordering manner for the subse-

quent matrix multiplication and inverse wavelet transform.

6 Experimental results

In this section, sample experimental results when using the

Daubechies D4 wavelet transform with r = 1 are provided.

For the ATC algorithm, the search parameters were set

according to the ones in [7]. Five sets of 15 images were

captured with different image resolutions (width*height):

Set 1 (800*600), Set 2 (960*720), Set 3 (1024*768) Set 4

(1296*864) and Set 5 (2592*1936). The developed tech-

nique was implemented on both a CPU and a GPU. The

CPU version was implemented using C/C?? on a 2.5 GHz

PC. The GPU version was implemented using CUDA [14]

on a Geforce GT 650 GPU. All memory data were saved in

column-major ordering manner. As shown in Fig. 4, the

GPU implementation achieved higher computational

throughput. The computational improvement was about

20 % for lower resolution images, while the computational

improvement was about 50 % over that of the ATC tech-

nique for higher resolution images. Our implementation

approximately used 7 % of CPU resource. The most of

memory consumption is from the image storage on GPU

and CPU, and memory usage takes (2*3*m*n) bytes on both

GPU and CPU sides. In addition, the self-tunable transfor-

mation technique in [15] was applied using the comparison

scheme provided in [7]. The self-tunable technique was

found to be computationally very demanding taking close to

one minute of processing time; thus, its time is not included

in Fig. 4. Next, three images were consecutively captured

from 60 different scenes. The first image was captured with

a user-defined exposure or shutter speed with no handshake,

while the second and the third images were captured with a

short and a user-defined exposure or shutter speed in the

presence of handshake movements. The first image was

used as the reference. The resolution of the captured images

was 1024*768, and the two short shutter speeds were

1/100 s and 1/200 s. Table 1 shows the average SSIM [16],

PSNR [17, 18] and FSIM [19] image quality measures for

each technique. From this table, it can be seen that the

developed technique generated better outcome in both

cases. A sample outcome is shown in Fig. 5. Figure 5a, b

show the short-exposure and the handshake blurred images.

The reference image appears in Fig. 5c, and the deblurred

images by applying the ATC, self-tunable, and the intro-

duced technique are shown in Fig. 5d–f, respectively. The

cumulative histograms of the short-exposure, blurred,

deblurred images are shown in Fig. 5g. From this figure, it

is evident that the eigenvalues of the low rank approxima-

tion image provide a mean and contrast closer to the short-

exposure image resulting in a histogram shape closer to the

blurred image. In contrast, the ATC technique exhibits

over-compensation of the short-exposure image since its

parameters searching does not necessarily match the

parameters of the short-exposure image.

The results for all the images examined are provided as

supplementary materials to this paper. The deblurred

results for sample images examined can be viewed at:

http://www.utdallas.edu/*kehtar/Deblurring.html.

Finally, it is worth stating that an Android smartphone

implementation and app of the deblurring technique dis-

cussed in this paper was also reported in [20]. This app can

be downloaded from http://www.utdallas.edu/*kehtar/

DeblurApp.apk.Fig. 3 Processing pipeline of the developed blur reduction technique
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7 Conclusion

A new approach for post deblurring of handshake blurred

images captured by a mobile device was introduced in this

work. An image acquisition pipeline was provided to

capture two consecutive images with different shutter

speeds. The introduced approach uses a short-exposure

image which is captured at the same time a normal or auto-

exposure image is captured. It involves appropriately

selecting the eigenvalues of the blurred but normal

(a) (b) (c)

(d) (e) (f)

(g)

Fig. 5 Comparison results:

a auto or normal exposure but

blurred image, b short-exposure

but dark looking image,

c reference image captured with

no handshake, d deblurred

image using ATC technique,

e deblurred image using self-

tunable, f deblurred image using

introduced technique,

g cumulative histograms

Table 1 Quantitative comparison of deblurring outcomes (averaged over 60 scenes) tn: auto-exposure or shutter speed, ts: short exposure or

shutter speed

Exposures/shutter speeds: tn = 1/50 s, ts = 1/200 s tn = 1/50 s, ts = 1/100 s

Measure Technique Technique

ATC Self-tunable Introduced technique ATC Self-tunable Introduced technique

SSIM 0.78 0.82 0.90 0.87 0.84 0.93

PSNR 30.1 31.8 34.82 32.1 31.9 36.7

FSIM 0.84 0.86 0.92 0.89 0.88 0.95
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exposure image and the eigenvalues of the dark looking but

short-exposure image without requiring any search proce-

dure. A GPU implementation of the developed blur

reduction technique was also reported leading to 40 %

improvement in computational efficiency compared to the

existing techniques.
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