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Abstract In this paper, we deal with the problem of circle

tracking across an image sequence. We propose an active

contour model based on a new energy. The center and

radius of the circle is optimized in each frame by looking

for local minima of such energy. The energy estimation

does not require edge extraction, it uses the image con-

volution with a Gaussian kernel and its gradient which is

computed using a GPU–CUDA implementation. We pro-

pose a Newton–Raphson type algorithm to estimate a local

minimum of the energy. The combination of an active

contour model which does not require edge detection and a

GPU–CUDA implementation provides a fast and accurate

method for circle tracking. We present some experimental

results on synthetic data, on real images, and on medical

images in the context of aorta vessel segmentation in

computed tomography (CT) images.

Keywords Circle � Tracking � Active Contour Models �
snakes � GPU–CUDA

1 Introduction

Active contour model is a widely used technique for object

detection and tracking. Given an initial object contour

curve C, the active contour model optimizes the contour

location by minimizing an energy. A general form of such

energy is given by

EðCÞ ¼
I
C

gðrIðCðsÞÞ;C0ðsÞÞds; ð1Þ

usually, function g() is designed to attains its minima in

high image gradient contour curves. In this paper, we

assume that C is given by the contour boundary of a disk

DRðcx; cyÞ and then the above energy minimization prob-

lem is strongly simplified and can be expressed asElectronic supplementary material The online version of this
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EðR; �cÞ ¼
Z 2p

0

gðrIðCR;�cðhÞÞ;C0
R;�cðhÞÞRdh; ð2Þ

where �c ¼ ðcx; cyÞ is the circle center and

CR;�cðhÞ ¼ ðcx þ R � cosðhÞ; cy þ R � sinðhÞÞ: ð3Þ

In general, active contour models are composed of two

terms: an image fitting term which makes the curve

evolve towards high contrast object boundaries and a

regularization term which keeps the curve smooth. In our

case, as we deal with circles, the regularization term is

not required.

In this paper, we propose a new active contour model

based on a new energy to track circles in an image

sequence. The proposed energy, which is presented in

detail in Sect. 3, includes a contour integral like the one

presented in (2) as well as double integrals on contour

neighborhood domains in both sides of the circle contour to

measure the variation of the image in such domains. To

estimate the local minima of the energy we propose a

Newton–Raphson type minimization algorithm.

This paper is organized as follows: in Sect. 2, we pre-

sent briefly some related works. In Sect. 3, the proposed

active contour model is introduced. In Sect. 4, we present a

description of the associated algorithm. In Sect. 5, we show

some experimental results on synthetic and real images and

finally, in Sect. 6, we present the main conclusions.

2 Related works

Active contour model is a widely used segmentation

technique based on curve evolution, see for instance [3, 4,

6–8, 29, 32]. In the case of the curve we are interested in

has a particular shape (polygons, circles, etc..) then we can

use parametric active contour models where the model is

simplified according to the curve parametrization, see for

instance [5, 14]. Concerning the shape of function g() in

(1), several choices have been proposed in the literature.

For instance, in [9], in the context of image segmentation,

authors propose to use

gð rIrk kÞ; ð4Þ

where Ir represents a convolution of the original image

with a Gaussian kernel of standard deviation r and g() is a

decreasing function. A typical choice of g() commonly

used in the literature is

gðsÞ ¼ 1

1 þ ks2
; ð5Þ

where k� 0. In [21] authors propose the following choice

of g() in (1) to define the active contour model

gðrIðCðsÞÞ;C0ðsÞÞ ¼ rIðCðsÞÞ � �nðsÞ; ð6Þ

where �nðsÞ is the outward normal to the curve. Authors

assume that the interior region of the curve is brighter than

the exterior region of the curve. In that case, by minimizing

the energy the curve moves towards locations with high

gradient magnitude and with a gradient orientation similar

to the curve normal. We point out that if C(s) is clock-wise

oriented with respect to s then

�nðsÞ ¼
ðC0ðsÞy;�C0ðsÞxÞ

T

jC0ðsÞj : ð7Þ

In [10], authors propose to use a region based fitting energy

term given by

a�

Z
insideðCÞ

ðIð�xÞ � I�Þ2 þ aþ

Z
outsideðCÞ

ðIð�xÞ � IþÞ2; ð8Þ

where inside(C) is the interior region of the curve, out-

side(C) is the exterior region of the curve, I� is the average

of I in inside(C) and Iþ is the average of I in outside(C). In

this case, by minimizing the energy, the curve tends to

move towards locations where the image has a minimal

variance in both sides of the curve. The curve location is

optimal when the image is constant in both sides of the

curve.

In [2], authors propose to use in the above energy a local

neighborhood of the curve C as domain to evaluate the

integral. That is, for instance, inside(C) is replaced by

insideðCÞ \ f�x 2 R2 : dð�x;CÞ\dmaxg: ð9Þ

The Hough Transform (HT) was first introduced in [18] as

a method for detecting complex patterns of points in a

digital image. Because it requires that the search patterns

are described in a specific parametric form, it has been

most commonly used for the detection of regular curves

such as lines, circles, or regular shapes, see for instance

[16, 18, 23, 31, 36]. HT have many desirable features, such

as the possibility to recognize partial or slightly deformed

shapes including missing parts of an object, the possibility

to detect several instances of a particular shape occurring in

different places of the image with independence of its size/

orientation. However, HT has also some disadvantages

such as the computing and storage requirements formerly

commented or the detection of background structures from

the boundaries of shapes other than those searched for [19]

when signal to noise ratio of the image decreases [12]. In

this sense, in [20] authors focus on dealing with this type of

limitations, achieving results that improve those accom-

plished with the original algorithm. More recently, in [34],

authors propose a method to extract line segments and

elliptical arcs which is not based on the Hough transform.

The method uses a contrario validation strategy which

794 J Real-Time Image Proc (2018) 14:793–802

123



formally guarantees the control of the number of false

positives and requires no parameter tuning.

In this paper, we use a GPU-CUDA implementation

strategy to speed up the proposed method. Nowadays, GPU

implementation is a commonly used technique to paral-

lelize and speed up computer vision algorithms. For

instance, in [37] authors propose a GPU implementation of

circle Hough transform, in [15, 17, 25–27] authors propose

GPU implementation for object segmentation and detection

and in [13, 22, 38] authors propose GPU-CUDA imple-

mentations for image denoising and restoration.

3 Active contour models for circle tracking

Let lr be the convolution of the original image I with a

Gaussian kernel of standard deviation r andDRðcx; cyÞ a disk

of radius R and center �c ¼ ðcx; cyÞ. We propose to use the

following energy to track circles in the image composed of a

contour integral along the circle contour and 2 double inte-

grals on domains in both sides of the circle contour.

EðR; cx; cyÞ ¼ ð10Þ

1

2p

Z 2p

0

rIrðCR;�cðhÞÞ � �nðhÞdh ð11Þ

þa�
1

A�

Z 2p

0

Z R

R�d�R

ðIrðCr;�cðhÞÞ � I�Þ2
rdrdh

 !1
2

ð12Þ

þaþ
1

Aþ

Z 2p

0

Z RþdþR

R

ðIrðCr;�cðhÞÞ � IþÞ2
rdrdh

 !1
2

; ð13Þ

where a�; aþ; d
�
R � 0 and A�;A

þ are the areas of the

integral domains in both sides of the circle contour:

A� ¼ pd�R ð2R� d�R Þ; Aþ ¼ pdþR ð2Rþ dþR Þ; ð14Þ

dþR is fixed in order A� ¼ Aþ. Therefore,

dþR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 2d�R R� ðd�R Þ

2
q

� R; ð15Þ

I� and Iþ are the average of lr in the integral domains

I� ¼ 1

A�

Z 2p

0

Z R

R�d�R

IrðCr;�cðhÞÞrdrdh; ð16Þ

Iþ ¼ 1

Aþ

Z 2p

0

Z RþdþR

R

IrðCr;�cðhÞÞrdrdh: ð17Þ

We point out that the term (11) is similar to the one pro-

posed in [21], the main difference is that we normalize the

energy in order it be independent of the boundary circle

length and we introduce a Gaussian kernel convolution to

smooth the image and also to help to the minimization

scheme to find the proper local minimum. As in [21] we

assume that the interior area of the circle we are interested

in is brighter than the circle background. In the opposite

case, we have to just change the sign of the integral to have

the proper energy to minimize. Moreover, term (11) has the

interesting property that, using the classical divergence

theorem, it can be interpreted as

1

2p

Z 2p

0

rIrðCR;�cðhÞÞ � �nðhÞdh

¼ 1

2pR

Z
DRðcx;cyÞ

DIrðx; yÞdxdy:

Terms (12) and (13) of the energy are similar to the ones

proposed in [10]. The main difference is that in each integral

we introduce the power 1 / 2 on the integrals results. By

introducing this change, we obtain that the global energy (10)

is invariant under global contrast image variation in the sense

that given an image I, and ~I ¼ kI for any constant k[ 0, then

the associated energies EðR; cx; cyÞ and ~EðR; cx; cyÞ given by

(10) for both images satisfy:

~EðR; cx; cyÞ ¼ kEðR; cx; cyÞ; ð18Þ

in particular, the locations where ~EðR; cx; cyÞ and

EðR; cx; cyÞ attain their minima are the same, and therefore,

the proposed active contour model is invariant under global

contrast image variation. On the other hand energy

EðR; cx; cyÞ is also independent of the circle size in the

sense that term (11) is normalized with respect to circle

boundary length and terms (12) and (13) are also normal-

ized with respect to the integral domain sizes. Therefore,

actually what really matters in the proposed energy to

estimate the circle location is the quality of the circle rather

than its size or its contrast with respect to the background.

4 Algorithm design

The proposed circle tracking algorithm can be divided into

the following steps:

1. Initial circle location for the first frame.

2. For each image frame:

(a) Compute the Gaussian convolution and the

image gradient using GPU programming

techniques.

(b) Optimization of the circle location by minimiz-

ing energy (10).

The initial circle location for each frame is the one

obtained in the previous frame. In the case of the first

frame, the initial circle can be provided by hand or by any

standard circle extraction method. In the experiments we

present in this paper, we apply first the Hough transform

J Real-Time Image Proc (2018) 14:793–802 795
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and then we select by hand the circle we are interested in.

In the case of CT images, this selection can be automatic

using other circle restrictions as the circle radius or that the

circle is near to image center. In any case we point out that

in this paper, we focus on the tracking step and the pro-

posed method is independent of the initialization method

used to extract the circle location in the first frame.

4.1 Evaluation of energy (10)

To evaluate numerically part (11) of energy (10), we just

discretize the arc length taking a discretization step dL and

we fix

N ¼ round
2pR
dL

� �
ð19Þ

and then we approximate (11) using

1

2p

Z 2p

0

gðrIrðCR;�cðhÞÞ;C0
R;�cðhÞÞdh

� 1

N

XN�1

n¼0

g rIr CR;�c
n

N

� �� �
;C0

R;�c

n

N

� �� �
:

ð20Þ

We point out that in the case I be the characteristic function

of the disk DRðcx; cyÞ, if we fix r ¼ 0, then the above

expression is just the contrast value between the disk and

the background.

In order to evaluate numerically parts (12) and (13) of

energy (10), we approximate the double integrals using a

domain discretization like the one illustrated in Fig. 1. So

we take dL and N as above and we denote by M the number

of regions we use to discretize the domain in the radial

direction, then we can approximate the double integral of

any function F(x, y) in the following way :

Z 2p

0

Z R

R�d�R

FðCr;�cðhÞÞrdrdh �
XM�1

m¼0

XN�1

n¼0

FðCrm;�cðhnÞÞAm;

where

rm ¼ R� ðmþ 0:5Þ d
�
R

M

hn ¼
n

N

Am ¼
pðR� m

M
d�R Þ

2 � pðR� mþ 1

M
d�R Þ

2

N
;

8>>>>>><
>>>>>>:

ð21Þ

we point out that we can use the same strategy to evaluate

part (13) of the energy.

4.2 Energy optimization

We use a Newton–Raphson type algorithm to minimize

energy (10). We denote by u ¼ ðR; cx; cyÞ the circle

parameter vector we want to optimize. We use the fol-

lowing iterative scheme to minimize EðuÞ

unþ1 ¼ un � ðr2EðunÞ þ cIdÞ�1rEðunÞ; ð22Þ

where r2EðunÞ is the 3 9 3 Hessian matrix, Id is the

identity matrix, and rEðunÞ is the gradient vector, c is a

damping parameter used to control the convergence of the

minimization as follows: c is updated in each iteration to

ensure that Eðunþ1Þ\EðunÞ. Usually, its value is higher

when we are far from the solution and decreases when we

approach it. The idea of using a damping parameter in

optimization algorithms was introduced by Levenberg in

1944 in the context of the well-known Levenberg–Mar-

quardt optimization algorithm (see [28] for more details).

In practice, the Hessian matrix and the gradient vector are

computed using standard finite difference schemes.

5 Experimental results

In order to check the accuracy of the proposed method, we

are going to first perform two experiments on synthetic

image sequences. We have provided, as supplementary

material of this paper, in the Online Resource 1 (FAC-

TUACM_1.mpg) and the Online Resource 2 (FAC-

TUACM_2.mpg), two videos to show these image

sequences. In the first experiment, we use a sequence of

360 synthetic circles where the center location and radius

change in a smooth way across the sequence with subpixel

precision (the circle radius range in pixels is [5, 20]). In

Fig. 2, we illustrate 2 frames of this image sequence. We

compare the results of the proposed method with the ones

obtained by the Hough transform. In each frame, Hough

transform returns a collection of circles, to ensure that we

always keep the best circle, we choose the circle with the

Fig. 1 Illustration of domain discretization to compute double

integrals where R = 2, dL ¼ 2p=16, d�R ¼ dL=2, M = 16, and N = 2
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nearest center to the circle center of the previous frame and

we allow a maximum variation of 2 pixels in the circle

radius with respect to the previous circle. In this way we

adapt, in a natural way, the Hough transform to track the

evolution of a single circle and then, we can perform fair

comparison between the Hough method and the proposed

active contour model. In this paper, we use the Hough

Transform implementation of the standard 4.3.2 ITK

library using the following parameters: sweep angle 0–2p,

with intervals of p/60 and maximum and minimum radius

are equal to the radius obtained in the previous frame

incremented/decremented by 2, respectively (in the first

frame the radius is taken from the initial circle). ITK is a

cross-platform, open-source application development

framework widely used in computer vision applications.

In Table 1, we present some comparison results of the

average error through the synthetic image sequence of the

actual circle center location and radius and the ones

obtained by both methods. We point out that the proposed

method is much more accurate than the Hough transfom.

We notice that to minimize energy (10), we have to fix 4

parameters: r, the standard deviation of the Gaussian

convolution kernel; a�, aþ, the weights in the energy of the

terms (12) and (13); and d�R , which determines the sizes of

the integral domains for terms (12) and (13). In most

experiments we present in this paper we fix these param-

eters to r = 1, a� ¼ aþ ¼ 0:1; and d�R ¼ 2.

In the second synthetic experiment we present, we use

the same circle sequence but we include in each image a

white bar occluding partially the circle. In Fig. 3, we

illustrate two frames of this sequence. In this experiment,

when the size of the circle is reduced it becomes more

difficult to extract the right circle from the image. The

proposed active contour model finds the proper circle in all

frames and in a more accurate way than the Hough trans-

form as it is shown in Table 2.

The third experiment, illustrated in Fig. 4, corresponds

to a real computed tomography (CT) image sequence

composed of 416 frames. This technique is currently con-

sidered by the American College of Radiology (ACR) the

most appropriate imaging modality for the correct diag-

nosis of several diseases of the aorta [1]. Previous to the

acquisition, injection of an intravenous radiopaque contrast

medium is performed in order to enhance contrast, fol-

lowing the standard procedures for obtaining such kind of

images. The result is a pool of images stored in DICOM

format files of 512 9 512 pixels with a resolution of 0.7 9

0.7 (mm/pixel) and 4096 gray levels. In this case, we want

to track the evolution of the circle corresponding to the

aorta vessel. In Fig. 6, we present some comparison results

between the Hough method and the proposed active con-

tour model method. We can observe in the figure that when

there exist structures near the aorta vessel with high gra-

dient magnitude the circle obtained by the Hough method

can include points of such external structures which pro-

vide inaccurate results. We point out that in the context of

medical aortic disease diagnosis, the accurate estimation of

aorta diameter is a critical issue. In order to validate the

results from a medical point of view, a radiologist has

marked manually, for each frame, about 8 points in the

aorta vessel contour. To improve the accuracy of the

manual point selection, we use the image contour estimated

by the subpixel edge detector introduced in [35]. Each time

the radiologist marks a point by clicking in the image, we

also compute the nearest contour point position in subpixel

precision. In Fig. 5, we illustrate these manual marked

points as well as their nearest contour points. The radiol-

ogist can accept or not the new position proposed by the

Fig. 2 Examples of two circles of the first synthetic image sequence

we use for comparison purpose

Table 1 Comparison results obtained by the Hough method and the

proposed active contour model for the synthetic circle sequence

illustrated in Fig. 2

cx cy R

Average error Hough method 0.41 0.37 0.20

Average error proposed method 0.032 0.028 0.06

Fig. 3 Examples of two frames of the second synthetic image

sequence we use for comparison purpose
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contour detector. We point out that this manual procedure

is completely independent of the method proposed in this

paper and it is used just for medical validation purposes.

We have included, in the Online Resource 3 (FAC-

TUACM_3.mpg), a video where we show a zoom of the

CT image centered in the aorta location where the aorta

contour points selected by the radiologist are marked. To

check the accuracy of the circle estimation methods for this

sequence we compute the average through the image

sequence of the error given by the distance of the manually

marked points to the estimated circles. In Table 3, we

present such error measure for the Hough method and the

proposed active contour model. We point out that the

proposed method is significantly more accurate than the

Hough transform.

In Figs. 7, 8, and 9 we present some experiments on a

real image sequence. In this sequence, a circle moves from

a lighted to a darked area. Due to the poor light conditions,

a number of problems appear including ISO noise in the

dark areas, etc. In the Online Resource 4 (FAC-

TUACM_4.mpg), we present a video with the image

sequence where we show the results obtained with the

proposed method. In Fig. 7, we present an experiment to

show the ability of the proposed method to find out the

correct circle even if we initialize the circle far away from

Table 2 Comparison results obtained by the Hough method and the

proposed active contour model for the synthetic circle sequence

illustrated in Fig. 3

cx cy R

Average error Hough method 0.37 0.39 0.21

Average error proposed method 0.10 0.11 0.06

Fig. 4 Computed tomography (CT) image where we show the aorta

location

Fig. 5 Illustration of the manual identification of aorta contour points

(original image on the left and detailed zoom on the right). Blue

marks show the points marked by the radiologist (isolated points), and

black marks show their closest edge points

Table 3 Comparison results obtained by the Hough method and the

proposed active contour model for the CT image sequence

Average distance error for CT image sequence

Hough method 0.766

proposed method 0.551

We compare the average distance (in pixels) between the manual

marked points and the estimated circle for both methods

Fig. 6 Ilustration of the aorta circle tracking in different image

frames. On the left, we present the circle (marked with white dots)

obtained using the Hough method and on the right, the circle obtained

using the proposed active contour model
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the correct one. The choice of the Gaussian standard

deviation parameter r in energy (10) determines how far

we can initialize the circle, the larger r, the farther we can

initialize the circle because the Gaussian convolution filter

enlarges the area of attraction of the correct circle when we

minimize energy (10). In practice, the choice of r depends

on the expected circle velocity across the image sequence

because in each frame we use as initialization of the circle

the position in the previous frame. In Fig. 8, we present the

results obtained in 2 frames of the sequence. We observe

that the Hough transform is not able to detect the circles in

the dark area because in such areas the edge detector fails

to detect the circle contour. Since the proposed method

does not use an edge estimation, it can recover properly the

circle in the dark areas. In Fig. 9, we present the circle

estimation result using the method proposed in [34]. Again,

as the method uses an edge detector, it fails to recover the

circle in the dark area.

5.1 GPU-CUDA implementation

In order to optimize the circle location by minimizing

energy (10), the proposed algorithm requires the compu-

tation of a Gaussian filter and two spatial derivatives (the

Fig. 7 We present some experiments using different circle initial-

ization. In blue we present the initial circle and in green the final one

obtained by minimizing energy (10). On the left we use r = 4 as the

Gaussian standard deviation parameter in energy (10), and on the

right r = 8

Fig. 8 Circle detection in two frames of a real image sequence. In the

top, the results (in red) using the Hough transform. In the bottom (in

green), the results using the proposed method

J Real-Time Image Proc (2018) 14:793–802 799
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image gradient) for each frame of the sequence. The

computation of such filters is the most time-consuming

process of the algorithm. The CPU time for these calcu-

lations in a computer with an Intel I7 processor using a

non-parallel implementation is about 65 % of the total

runtime. This result gives us according to Amdahl’s law an

upper bound of the improvement factor equal to 1=0:35 �
2.9 by only improving the runtime of the filters. To reduce

the execution time, we use a GPU-CUDA implementation

of the filters on a NVIDIA GTX 980 board with 2048

CUDA cores, 4 GB of GDDR5 memory, and CUDA 7.0.

The implementation of the algorithm is based on [33]

adapted to use the radius of the kernel as an input variable

and the new capabilities of the GPUs. This algorithm is

mainly based on the use of the shared memory of the GPU

by the threads within a block to reduce the memory latency

of the global memory. The parameters to configure are the

block size ((BLOCKDIM_X, BLOCKDIM_Y) and the

number of elements to compute for each thread

RESULT_STEPS. These parameters can be configured

independently to horizontal and vertical convolution. We

also modified the algorithm in order to use the radius of the

kernel as a template parameter, so the compiler generated

in compile time the kernels for each radius with all

unrolled loops. We checked the code using the branch

efficiency metric provided by the NVIDIA tool nvprof,

the result was zero in all cases meaning that the code had

not any branches.

In order to tune the application, we followed the usual

recommendations (see [11, 24, 30]): keep the number of

threads per block a multiple of warp size (32), avoid small

block sizes, adjust block size up or down according to

kernel resource requirements, keep the number of blocks

much greater than the number of SMs to expose sufficient

parallelism to your device, and conduct experiments to

discover the best execution configuration and resource

usage.

We took into account the alignment of the 2D data in the

global memory of the GPU (cudaMallocPitch()) and

we also chose the horizontal dimension x of the block size

to a multiple of the warp size in order to get coalesced

access to memory. We used the command line tool

nvprof to profile the execution of the CUDA code.

Table 4 shows some results for a 512 9 512 image. The

numbers in the configuration column are the x and y

dimension of the block size and the number of results

computed by thread. The column label ‘‘Achieved Occu-

pancy’’ is the ratio of the average active warps per active

cycle to the maximum number of warps supported on a

multiprocessor. The global memory load efficiency (ratio

of requested global memory load throughput to required

global memory load throughput) was 100 % in all case.

This result is explained by the choice of the horizontal

dimension of the block size properly to get coalesced

memory accesses.

According to Table 4, the best choice for the block size

is (64, 8) where each thread compute 4 results (this con-

figuration is a balance between a better use of the shared

memory and a bigger number of blocks). When we run the

algorithm with the best configuration, we obtained a exe-

cution total time of 13 ms, this is an improvement in a

factor 2.2. The execution time can be divided in the exe-

cution time in the host (�10 ms) and the execution time in

the GPU (�3 ms). The tool nvprof reports that the 70 %

of the total GPU time is spent in transferring information

between CPU and GPU.

We can also hide the GPU latency using the Asyn-

chronous Streams features given by the CUDA API. For

Fig. 9 Illustration of the circles obtained in an image of Fig. 8 using

the method introduced in [34]

Table 4 GPU implementation results of the Gaussian filter for a 512 9

512 image using a separable implementation and different configura-

tions for the block size and number of results computed for each thread

Configuration Rows Kernel (ls) Achieved occupancy

(32, 32, 1) 19.263 0.905159

(32, 32, 2) 14.954 0.856547

(64, 8, 1) 16.705 0.899702

(64, 8, 4) 9.9470 0.897849

(32, 16, 1) 17.140 0.900978

(32, 16, 4) 12.040 0.866848

(16, 16, 1) 19.064 0.902142

(16, 16, 4) 16.754 0.845102

We show the results for the row direction convolution using a con-

volution mask of radius equals to 8. In the column direction the

results are similar
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that, the algorithm launches a task in each Asynchronous

Streams which include the transfer from CPU to GPU, the

gaussian and the gradients and the transfer from GPU to

CPU. All these tasks do not block the CPU and the tasks

happen concurrently. This optimization allow us to hide the

GPU latency and the total execution time was reduced to

10 ms, this mean a factor of 2.8 (near to the theoretical

2.9).

In Table 5, we show the computational time of the circle

tracking estimation for a 512 9 512 image using the Hough

transform (using the ITK implementation in a

Intel(R) Core(TM) i7 2.80GHz computer), a GPU imple-

mentation of Hough transform [22], and the proposed

active contour model. We point out that CPU computing

time is shown just for illustration, we do not intend in this

paper to compare CPU and GPU architectures.

6 Conclusions

In this paper, we propose an active contour model for circle

tracking across an image sequence. Some interesting

advantages of the method is that the associated energy is

invariant under global contrast image variation and it does

not depend on the circle size, moreover no edge estimation

is required, energy computation is based just on the gra-

dient of an image Gaussian kernel convolution which is

computed using a GPU-CUDA implementation. The

combination of an active contour model which does not

requiere edge detection and a GPU–CUDA implementation

provides a fast and accurate method for circle tracking. We

present some experiments on synthetic image sequences

which show that the proposed method is more accurate

than the usual Hough transform. We validate the accuracy

of the proposed method in the context of aorta vessel

segmentation in computed tomography (CT). In this case,

validation is performed by computing the average distance

of the estimated circles with aorta contour points marked

manually by a radiologist. We show that such average

distance is much smaller using the proposed model than the

Hough transform. We also present some experiments to

show the ability of the proposed method to deal with poor

light conditions. Since we do not use edge detector, the

method is able to detect circles in very dark areas.
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