
SPECIAL ISSUE PAPER

OpenCL-based optimization methods for utilizing forward DCT
and quantization of image compression on a heterogeneous
platform

Nasser Alqudami • Shin-Dug Kim

Received: 12 January 2015 / Accepted: 6 May 2015 / Published online: 22 May 2015

� Springer-Verlag Berlin Heidelberg 2015

Abstract Recent computer systems and handheld devices

are equipped with high computing capability, such as gen-

eral purpose GPUs (GPGPU) and multi-core CPUs. Utiliz-

ing such resources for computation has become a general

trend, making their availability an important issue for the

real-time aspect. Discrete cosine transform (DCT) and

quantization are two major operations in image compression

standards that require complex computations. In this paper,

we develop an efficient parallel implementation of the for-

ward DCT and quantization algorithms for JPEG image

compression using Open Computing Language (OpenCL).

This OpenCL-based parallel implementation utilizes a

multi-core CPU and a GPGPU to perform DCT and quan-

tization computations. We demonstrate the capability of this

design via two proposed working scenarios. The proposed

approach also applies certain optimization techniques to

improve the kernel execution time and data movements. We

developed an optimal OpenCL kernel for a particular device

using device-based optimization factors, such as thread

granularity, work-items mapping, workload allocation, and

vector-basedmemory access.We evaluated the performance

in a heterogeneous environment, finding that the proposed

parallel implementation was able to speed up the execution

time of the DCT and quantization by factors of 7.97 and

8.65, respectively, obtained from 1024 9 1024 and

2084 9 2048 image sizes in 4:4:4 format.

Keywords Forward DCT � Quantization � Image

compression � Parallel image processing � Heterogeneous
computing � OpenCL

1 Introduction

General-purpose computing on GPUs [1, 2] became very

popular, especially after the appearance of CUDA and Open

Computing Language (OpenCL) technologies supported by

some hardware vendors. CUDA was the first technology to

allow a CPU-based program to run on the GPU, but it works

only on NVIDIA hardware platforms. Therefore, OpenCL

[3, 4] was introduced to overcome such limitations. Cur-

rently, many vendors have released their own framework

and OpenCL implementations, such as AMD, NIVIDA, and

Intel. OpenCL is an open-standard parallel programming

language for heterogeneous architectures that supports code

portability. Therefore, an application written in OpenCL

can run on different architectures without code modification

[3]. The availability of multi-core CPUs and many-core

graphics processing units (GPUs) enables programmers to

solve computational problems efficiently in heterogeneous

environments.

In recent computer systems, heterogeneous architecture

exists not only in clusters and desktop and notebook

computers, but also goes beyond that to portable and

handheld devices such as mobile phones and tablets. The

new generation of smartphones, such as the Samsung

Galaxy S5 LTE version [5], is powered by a 2.5 GHz quad-

core CPU, Snapdragon 801 system-on-chip with Adreno

330 GPU. Low-power handheld devices will benefit from

gradual increases in multi- and many-core hardware, re-

placing the specialized embedded hardware accelerators

(such as DSP) with real-time software solutions. This can

N. Alqudami (&) � S.-D. Kim
Department of Computer Science, College of Engineering,

Yonsei University, 134 Sinchon-dong, Seodaemun-gu,

Seoul 120-749, Republic of Korea

e-mail: nasser@yonsei.ac.kr

S.-D. Kim

e-mail: sdkim@yonsei.ac.kr

123

J Real-Time Image Proc (2016) 12:219–235

DOI 10.1007/s11554-015-0507-5

http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-015-0507-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-015-0507-5&domain=pdf

be accomplished by combining GPGPUs with traditional

multi-core CPUs to achieve real-time processing for heavy

applications such as image and video codecs. Once such a

scenario is achieved, the embedded hardware coprocessors

will disappear, which will lead to reductions in power

consumption and hardware chip complexity.

Discrete cosine transform (DCT) [6] and quantization

are important parts of many image and video compression

standard methods, such as JPEG, MPEG, H.261, and

HEVC [28–32]. DCT operation is one of the main stages in

the JPEG codec and is known as a heavy and intensive task

that requires the majority of the execution time [7–10]. For

that reason, most applications are accelerated via an em-

bedded hardware codec in a low-computation device, in

order to enhance the user-response and provide real-time

processing [9–12].

Despite that this work focuses on the JPEG image

compression, the proposed methods and parallelization

approach are very promising and can be very useful for any

DCT-based image and video compression applications,

such as JPEG, MPEG-1, MPEG-2, H.261, H.263, H.264,

and most recently H.265/HEVC [28–32] as well as any

other digital signal processing methods that use the same

algorithms.

In this paper, we mainly focus on the forward DCT and

quantization parts of a JPEG encoder in a heterogeneous-

based platform. We spread the computations of the DCT

and quantization across multi- and many-core CPUs and

GPUs to accelerate the performance. Moreover, we de-

velop an efficient OpenCL-based parallel implementation

for the forward DCT and quantization algorithms through

experiments using AMD OpenCL platform drivers for both

the CPUs and GPUs.

Most of the developed parallel implementations were

CPU-based or GPU-based only. Our idea is, instead of off-

loading all work to the GPU, the CPU can participate by

doing a small portion of the work, which will keep both

devices busy and greatly reduce the cost of data move-

ments across the PCIe bus.

The objective of this work was to study the performance

issues for image compression on a heterogeneous platform

by distributing the workload among the CPUs and GPUs.

Initially, we started with the forward DCT and quantization

stages of the JPEG image compression, applied to a case

study to determine the optimal performance of each device

by applying different optimization methods. Later, this

work will be extended to involve all the other stages of the

JPEG encoder. The target of this work is the multi-core-

based low-power handheld and portable devices, in which a

real-time software image codec will replace the hardware

one in the future. The remainder of the paper is organized

as follows: Sect. 2 presents the related work, while Sect. 3

describes the background for the DCT and quantization

algorithms. Section 4 describes the design and the pro-

posed methods along with various optimization techniques.

The experimental results and performance evaluation are

presented in Sects. 5 and 6, respectively. Finally, the

conclusion and future work are described in Sect. 7.

2 Related work

The discrete cosine transforms (DCT) and quantization are

widely used in many images and video compression stan-

dards. The DCT is implemented in many ways, including

matrix-multiplication-based and FFT-based approaches.

DCT is an intensive task in digital signal processing and

multimedia compressions which has been accelerated in

hardware and software platforms. In terms of the hardware

platforms, DCT and quantization are parts of the DSP

processor for the image codec [9–12], and in the case of

software platforms, a DCT algorithm has been targeted on

the GPU via OpenGL [13], Cg [14], CUDA [15, 16], and

OpenCL [17, 18].

The majority of accelerated DCT implementations are

GPU-based, which is done by offloading the work to the

GPU and leaving the CPU to do other tasks. However, our

work is to utilize the CPU and GPU in the system to co-

operate in handling the DCT and quantization computa-

tions. This is done by assigning each device part of the data

to keep both devices busy in handling such computations,

instead of relying on one computational device.

3 Background

3.1 JPEG image compression standard

The sequential JPEG method is a DCT-based compression

algorithm. The source color image consists of three com-

ponents: red, green, and blue. Each component of the

digital image is represented as a rectangular array of

samples, arranged in x columns and y rows. The JPEG

encoder diagram contains forward discrete cosine trans-

forms (DCT) and quantization as two separated con-

secutive steps. In the encoding process, the input

components of a digital image are divided into blocks of

size 8 9 8. By applying forward DCT to each block, 64

DCT coefficients can be obtained [19–21]. These 64 co-

efficients are quantized by applying the quantization step.

The JPEG baseline is mainly divided into five steps, as

shown in Fig. 1: color conversion and optional down-

sampling, forward DCT, quantization, and entropy coding

(Huffman or Arithmetic).

In the DCT sequential-mode encoder, the JPEG diagram

shows how single-component compression works in a fair

220 J Real-Time Image Proc (2016) 12:219–235

123

way. The 8 9 8 block is input, makes its way through each

processing stage, and then yields the output in a com-

pressed data stream [22].

3.2 Discrete cosine transform (DCT)

The JPEG baseline compression algorithm is based on the

DCT of non-overlapping, 8 9 8 blocks of samples of a

component of a digital image. DCT transforms an image in

the spatial domain into another in the frequency domain.

Each pixel in the original image is assumed to represent a

value between 0 and 255. Before DCT, a level shift is done

by subtracting 128 from each pixel, making the pixel value

range from -128 to 127. Then, each image component is

partitioned into 8 9 8 blocks, and these blocks are pro-

cessed one by one from left to right and top to bottom [22].

The FDCT of an 8 9 8 block of samples, f(x, y): (y,

x = 0, 1,…, 7), is defined as follows:

F u; vð Þ ¼ Cu

2

Cv

2

X7

y¼0

X7

x¼0

f x; yð Þ

� cos
2xþ 1ð Þup

16

� �
cos

2yþ 1ð Þvp
16

� �

CuCv ¼
1=

ffiffiffi
2

p
for u; v ¼ 0

1; otherwise

(
;

ð1Þ

where f(x, y) is the pixel at position (x, y) in the block, F(u,

v) is the transformed (u, v) DCT coefficient.

The complexity of the direct 2-DCT algorithm is

O(n) = N4. It is time quadratic and intensive work to

compute a single DCT block. There is an alternative way to

compute the DCT algorithm as a one-dimensional row-

column pass instead of two dimensions to reduce the

complexity of the algorithm O(n) = N2 ? N2 = 2 N2. The

first 1D DCT is applied to the rows of the block, and the

second one is applied to the columns of the result obtained

after calculating the first DCT. The 2D DCT can be re-

duced to two 1D ones and defined by formulas (2) and (3):

F y; uð Þ ¼ Cu

2

X7

x¼0

f y; xð Þ cos 2xþ 1ð Þup
16

� �
1D row pass

ð2Þ

F u; vð Þ ¼ Cv

2

X7

y¼0

f y; uð Þ cos 2yþ 1ð Þvp
16

� �

1D column pass:

ð3Þ

The DCT-based JPEG image compression is based on

the AAN algorithm [23], which is one of the fastest DCT

algorithms. In this paper, the floating DCT implementation

was used, as it produces the highest quality images, even

though it is slower than the other DCT implementations.

However, modern computers are highly optimized to per-

form the floating point operations much faster than before,

especially on the discrete GPU. In order to speed up the 2D

DCT computations, the AAN algorithm is used to calculate

the forward DCT and applied on each 8 9 8 block.

3.3 Quantization

Computation of the DCT of each block is followed by

quantization of the DCT coefficients. The quantization

process makes the JPEG baseline a lossy algorithm [19].

Each 8 9 8 block of DCT coefficients is quantized using

uniform quantizers whose step sizes are determined based

on the human visual perception model.

Table 1 is the default Luma quantization matrix. The

corresponding Chroma (Cb and Cr) quantization matrix is

listed in Table 2. The compression ratio can be controlled

by multiplying the quantization matrices by a quantizer

scale.

The JPEG rule for quantizing the DCT coefficients is

described by the following equation:

RGB to
YCbCr

Down-
sampling

B

G

R

Cr

Cb

Y

Y Cb

Cr

Compressed
FileForward

DCT Quantization Entropy
encoding

Quantization
Tables

Huffman
Tables8 x 8 blocks

For each component Ci

Fig. 1 JPEG encoder block

diagram

J Real-Time Image Proc (2016) 12:219–235 221

123

Yq u; vð Þ ¼ Y u; vð Þ
Q u; vð Þ þ 0:5

� �
; 0� u; v � 7; ð4Þ

where Y(u, v) is the unquantized DCT coefficient, Yq(u, v)

is the corresponding uniformly quantized coefficient, Q(u,

v) is the quantization step size for the (u, v)th coefficient,

and x is the operation of rounding to the nearest integer

[21].

These are the quantization table coefficients that are

recommended in the Annex of the JPEG standard. We use

the default quantization table with a scaling factor of 75 as

the default parameters in the JPEG standard compression.

4 Design and methods

4.1 Proposed OpenCL parallel diagram

In this section, we describe the OpenCL parallel design for

forward DCT and quantization of a JPEG encoder in a

heterogeneous platform, where the computational devices

differ in their performance capabilities and characteristics.

In our system design, we targeted the OpenCL parallel

implementation on both multi-core CPU and GPU devices

because they are widely used at present in personal com-

puters, notebooks, and handheld devices.

Two working scenarios (WS1 and WS2) have been

considered with our design to perform the DCT and

quantization computations, (1) the naı̈ve way and (2) the

combined way, as shown in Fig. 2. In the first scenario,

DCT and quantization are processed separately in two

consecutive steps. In the second scenario, DCT and quan-

tization are merged and processed in a single step. Further

details about these scenarios are provided later.

In the proposed design, the computation is performed in

parallel on CPU and GPU computing devices having dif-

ferent workload sizes. The input data are a digital image

with three color components along with luminance (Y) and

chrominance (CbCr) components called YCbCr. We assume

that the color space conversion and down-sampling have

taken place in an early stage of the encoder. The image

components are partitioned between the devices: the Y

component is given to the CPU, and the CbCr components

are given to the GPU. Moving the data from/to the targeted

device is handled using two techniques: (1) memory copy

operations (write-read) and (2) memory-mapping op-

erations (zero-copy). OpenCL kernels represent the actual

code for the DCT and quantization procedures that run on a

particular device. The workflow can be summarized as

follows: A host thread dispatches Y? CPU and Cb? GPU

at the same time, and each device starts to execute the

OpenCL kernel(s) to perform computations on the input

data. As soon as the GPU finishes the first task, it imme-

diately starts to process the Cr component as the kernel

execution on Cb overlaps with Cr data transfer. The data

transfer and kernel execution are coordinated using events

to monitor the completion of each task before a new one

starts.

4.2 Overlapping OpenCL Kernel execution with data

transfer

In OpenCL, kernel execution and data transfer operations

run sequentially (write, execution, and read), as shown in

Fig. 3a. First, the program copies the data from host to

device (write: H?D). Once data transfer completes, the

kernel execution is performed, and then the output data

must be copied back from device to host (read: D?H).

Applying the sequential mechanisms on the GPU to pro-

cess the CbCr components, the six operations must run in

sequence, creating a large amount of idle time for the GPU

because it must wait for the Cb read and write operations to

be completed before beginning to process the Cr compo-

nent. Therefore, to reduce the idle time for the GPU, we

overlap the data transfer with the kernel execution by using

non-blocking call operations (asynchronous data transfer).

Figure 3b shows the overlap approach for kernel execution

and data transfer operations on the GPU. Since an OpenCL

Table 1 JPEG default quantization table for luminance

Luminance quantization table

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

Table 2 JPEG default quantization table for chrominance

Chrominance quantization table

17 18 24 47 99 99 99 99

18 21 26 66 99 99 99 99

24 26 56 99 99 99 99 99

47 66 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

222 J Real-Time Image Proc (2016) 12:219–235

123

device can run only one kernel at a time, the CbCr com-

ponents will be processed one by one on the GPU side.

The operations in the overlap approach are executed in

the following order:

T1 Execute write-1 and write Cb data from host to device

corresponding to the K-1 kernel

T2 Start K-1 kernel execution, which overlaps with

operation write-2 for the Cr (e.g., while GPU works

on Cb, the Cr write operation can be initialized)

T3 The k-2 kernel execution overlaps the read-1

operation for Cb

T4 Execute the read-2 operation for Cr

Write-1 and write-2 represent the data transfers from

CPU memory to GPU memory (H?D), while read-1and

read-2 represent the data transfers from GPU memory to

CPU memory (D?H) for the CbCr components. K-1 and

k-2 represent the OpenCL DCT and quantization kernels

execution.

4.3 Leverage multiple devices in OpenCL

To leverage multiple devices in OpenCL to work in par-

allel, we create a shared context for all computing devices

and one command queue per device. A separate thread for

each command queue is used in the AMD OpenCL im-

plementation to send tasks to the command queue associ-

ated with the target device. Therefore, each queue receives

and processes computations in parallel with other queues,

effectively achieving parallel execution. Figure 4 shows

the thread control flow in the OpenCL host program and

the commands execution order. Initially, the host thread

proceeds until the OpenCL run-time creates a thread for the

CPU and another thread for the GPU. The two threads run

(a) WS1

DCT Quantization

DCT QuantizationCb

Cr

Y

GPU

CPU

4:4:4 / 4:2:0

OpenCL Kernels on CPU

OpenCL Kernels on GPU

Image Components

DCT+Quantization

DCT+QuantizationCb

Cr

Y

GPU

CPU

H
et

er
og

en
eo

us
Pl

at
fo

rm

4:4:4 / 4:2:0

OpenCL Kernels on CPU

OpenCL Kernels on GPU

Image Components

(b) WS2

Fig. 2 Proposed structure design of OpenCL parallel implementation for DCT and quantization of JPEG encoder, using two scenarios a naı̈ve

way and b combined

Cb Cr

K-1 K-2

Cb Cr

Write
H D

Kernel
Exec.

Read
H D

T1 T2 T3 T4

Cb K-1 Cb Cr K-2 Cr

write execute read

T1 T2 T3 T4 T5 T6

write execute read

Time

(a)

(b)

Fig. 3 OpenCL data transfer

and kernel execution on the

GPU; a sequential and

b overlapped

J Real-Time Image Proc (2016) 12:219–235 223

123

in parallel, each executing the kernels and memory op-

erations in the command queue on its device. There is one

synchronization point at the application level; here, a

thread execution can stop to wait for the other thread de-

vice to join it, and then the host thread can continue to

terminate the program.

4.4 Working scenarios employing the DCT

and quantization kernels

In accordance with our previous design, we highlight two

working scenarios in which we perform the DCT and

quantization computations using either the naı̈ve way or the

combined way. We implement both scenarios using

OpenCL to study their impacts on the execution time. In

the naı̈ve way, the DCT and quantization computations are

handled in two consecutive steps. First, the DCT kernel is

invoked, followed by quantization kernel invocation, and a

barrier ensures that the second step cannot start execution

until the first step finishes. In contrast, in the combined

scenario, the DCT and quantization computations are

handled in a single step; therefore, only a single kernel

invocation is needed, followed by a barrier. The OpenCL

API, which used for both scenarios, summarized in

Table 3.

Figure 5 shows the differences between the two working

scenarios for the DCT and quantization computations in

our OpenCL parallel implementation. The main advantages

of the combined approach are (1) reducing the API calls by

half and (2) increasing the data locality and reducing the

memory access time overhead to the off-chip memory.

With only one fetch, the DCT and quantization computa-

tions are performed on the 8 9 8 data block, then writes

the results back to the global memory; this replaces the two

fetches and two writes used in the naı̈ve approach.

4.5 OpenCL work-item mapping

In this section, we introduce two types of OpenCL work-

items mapping. The mapping defines the work size given to

the OpenCL work-item. In our parallel implementation, the

work size is the relationship between the 8 9 8 blocks and

the number of OpenCL work-items because the basic unit of

processing in DCT and quantization is an 8 9 8 block. (In

other words, howmany work-items will be used to process a

single 8 9 8 block) The mapping types are (1) one work-

O
pe

nC
L

Host Thread

CPU-THREAD

GPU-THREAD

Synchroniza�on

CPU

GPU

Compute Devices

OpenCL Kernel
Invoca�ons

OpenCL Kernel
Invoca�ons

1

2 3

Fig. 4 Thread control flow in

the OpenCL host program

Table 3 OpenCL API calls for

naive and combined approaches

to working scenarios

Naı̈ve way (WS1) Combined way (WS2)

clCreateKernel(DCT_KERNEL);

clCreateKernel(QNTZ_KERNEL);

clEnqueueNDRangeKernel(DCT_KERNEL);

clFinish(DCT_KERNEL);//barrier

clEnqueueNDRangeKernel(QNTZ_KERNEL);

clFinish(QNTZ_KERNEL);//barrier

clCreateKernel(DCT_QNTZ_KERNEL);

clEnqueueNDRangeKernel(DCT_QNTZ_KERNEL);

clFinish(DCT_QNTZ_KERNEL);//barrier

224 J Real-Time Image Proc (2016) 12:219–235

123

(a) (b)

….
clEnqueueNDRangeKernel(DCT_Kernel);
clFinish(); // barrier
clEnqueueNDRangeKernel(QNTZ_Kernel);
clFinish(); // barrier
…

….
clEnqueueNDRangeKernel(DCT_QNTZ_Kernel);
clFinish(); // barrier
…

CPU GPU

DCT

QNTZ

DCT

QNTZ
Barrier

CPU GPU

DCT+
QNTZ

Barrier
DCT+
QNTZ

OpenCL
Shared Context

Kernel

Command Queue

Host Thread

OpenCL Threads

Host Thread

Fig. 5 DCT and quantization working scenarios; a naı̈ve and b combined

Width

Height

Global Size (0)

Global
Size (1)

Work-item

Workgroup

OpenCL NDRange

8x8 block

Image Component

Fig. 6 OpenCL work-item mapping-1 (one work-item processes in one 8 9 8 block)

Width

Height

Work-item

Workgroup

OpenCL NDRange

8x8 block

Global
Size (1)

Global Size (0)Image Component

Fig. 7 OpenCL work-item mapping-2 (eight work-item processes in one 8 9 8 block)

J Real-Time Image Proc (2016) 12:219–235 225

123

item per 8 9 8 block, as shown in Fig. 6, and (2) eight

work-items per 8 9 8 block, as shown in Fig. 7. Note, for

example in the second mapping, one work-item processes

one row of an 8 9 8 block, and eight work-items process an

entire 8 9 8 block. We examined two types of mapping,

because the CPU and GPU have different numbers of

hardware computing units that run work-items. Therefore,

we can adjust the granularity as is suitable on each device.

For example, the CPU has only a few cores, which represent

the computing units. Each computing unit on the CPU has

only one processing element, which runs only one work-

item at a time; therefore, a coarse-grain process is highly

preferred. In contrast to the GPU, which has many com-

puting units, each computing unit has many processing

elements that run 16–32 work-items at the same time (e.g.,

the number of work-items running in parallel is a hardware-

dependent factor); therefore, a lightweight process is highly

preferred in the GPU. Table 4 summarizes the work-items

mapping policy we applied on each device for each working

scenario performing the DCT and quantization computa-

tions in the OpenCL parallel implementation.

For OpenCL DCT and quantization kernel invoca-

tions, mapping-1 and mapping-2 are applied to the CPU

and GPU, respectively. The OpenCL DCT kernel on the

GPU uses synchronization (barrier) to ensure the correct

execution sequence of the work-items as the DCT al-

gorithm processes the 8 9 8 block (see Fig. 8). This is

done in row and column fashion: work-items process

first the rows and then the columns, as shown in Fig. 8.

Mapping-2 synchronization causes excessive overhead on

the CPU, which results in excessive context switching

between the work-items because the CPU core can run

only one work-item at a time. Therefore, we applied

mapping-1 for the DCT kernel on the CPU, where a

single work-item processes an entire 8 9 8 block, as

shown in Fig. 9.

4.6 Device-based kernel optimization

A highly useful feature in OpenCL is the kernel code

portability, enabling the same kernel code to be compiled

and run on various OpenCL-enabled devices [24–27], such

Table 4 Summary of OpenCL work-items mapping for each working scenario

Work-item mapping for working scenario-1 (two steps) Work-item mapping for working scenario-2 (one step)

Kernel CPU GPU Kernel CPU GPU

DCT 1:1 (mapping-1) 8:1 (mapping-2) DCT_QNTZ 1:1 (mapping-1) 8:1 (mapping-2)

QNTZ 1:1 (mapping-1) 8:1 (mapping-2)

Row-based Column-based

barrier

8 work-items

Fig. 8 OpenCL DCT block

processing on the GPU via

mapping-2

Row-based Column-based

1 work-item

Fig. 9 OpenCL DCT block

processing on the CPU via

mapping-1

226 J Real-Time Image Proc (2016) 12:219–235

123

as CPUs, GPUs, and DSPs. With this cross-platform

technology, a kernel code can be written once and can run

on all devices, despite their differing hardware architec-

tures. However, a kernel code does not deliver the same

performance on two computing devices with different ar-

chitectures, such as a CPU and a GPU. This is because the

OpenCL represents all of the target machines with a unified

memory and execution model. In a heterogeneous system,

the devices have different architectures and performance

capabilities; therefore, applying one particular optimized

code for a specific device, such as a GPU, will not suit

another, such as a CPU. We propose developing a specific

version of the kernel code for each device. Figure 10 shows

the differences between the naı̈ve and proposed ap-

proaches. In our OpenCL parallel design, we apply the

proposed approach to separate the kernel code into two

versions—kernel-1 for CPUs and kernel-2 for GPUs—in-

stead of one kernel for both of them. Our proposed ap-

proach, shown in Fig. 10 (b), allows us to develop a kernel

code and apply specific optimization techniques that suit

each device to achieve the optimal performance.

In our OpenCL implementation, each of the DCT,

quantization, and DCT_QNTZ kernels is developed into

two versions, the CPU and GPU kernel versions. The GPU

kernel versions for DCT and DCT_QNTZ are optimized to

use a low-latency local shared memory called an on-chip

memory (see Fig. 11). The local shared memory is visible

only to work-items within the same workgroup and is as

fast as the registers; therefore, it significantly reduces the

memory access overhead. The local shared memory is used

as a temporary buffer to hold the elements of the DCT

block during calculations of the DCT row–column-based

computations. All memory access during the DCT block

processing occurs between the private and shared mem-

ories. (For example, on-chip memory accessing takes fewer

cycles than off-chip memory accessing, which takes a few

hundred cycles). Once the computations finish, the DCT

block is flushed back to the global memory (off-chip, high-

latency memory). The default memory in the GPU is the

global memory; therefore, using the local shared memory

requires manually writing a code in the kernel. However,

the local shared memory in the CPU kernels does not

greatly benefit performance, because the OpenCL driver

maps the local shared memory into the host CPU memory.

Thus, local shared memory and global memory accesses

are achieved the same speed on the CPU. Figure 11 illus-

trates the GPU memory hierarchy according to the OpenCL

memory model, and correlations with work-items.

The chrominance quantization table coefficients are

loaded into a constant memory, which is cacheable mem-

ory and visible to all work-items on the global ND-Rage.

Constant memory is a small part of the global memory. It

supports read-only operations during the kernel executions.

4.7 Optimizing the memory accesses

The OpenCL kernels versions for the CPU and the GPU

have been optimized to use vectors; therefore, all accesses

(read/write) from/to the memory are handled based on

vectors, instead of scalars. Using vectors significantly re-

duces the memory access overhead and enhance the path

utilizations. In our OpenCL kernels, we employ vload8()

and vstore8() instructions to load and store a vector of size

eight. Only one memory transfer (of 256-bits) is required to

read/write one row (eight elements) of an 8 9 8 block.

Thus, only eight read/write operations are necessary to

load/store an 8 9 8 block from/to the global memory, in

contrast to the 64 read/write operations needed when

dealing with scalars. Figure 12 shows the OpenCL scalar

and vector data types.

5 Experimental results

In this section, we discuss the experimental results of se-

quential and parallel implementations. In the sequential

version, the forward DCT and quantization source codes

were compiled and executed in two consecutive stages

OpenCL runtime

CPU GPU

Kernel

OpenCL runtime

CPU GPU

Kernel-2
Kernel-

Program

Program

(a) (b)

Fig. 10 OpenCL kernel codes for a naı̈ve and b proposed

Private Mem.

Shared Mem.

Global Memory Constant

On-Chip

Off-Chip

Workgroup

Work-item

ND-Range

Fig. 11 Memory hierarchy in the GPU and correlations with OpenCL

work-items

J Real-Time Image Proc (2016) 12:219–235 227

123

using a single host thread on the CPU, and the results were

obtained for comparison purposes. The source codes of the

forward DCT and quantization implementations are

C-based, as given in the Turbo-JPEG library. In the JPEG

library, the forward DCT has different implementations;

we chose the float-type implementation for its accuracy and

because floating point operations are highly optimized on

modern computers, especially on the GPU. The default

JPEG standards quantization tables and image quality

values (e.g., quality = 75) are used to produce the quan-

tization coefficients.

The source code for our parallel implementation is de-

veloped using OpenCL, which consists of two parts: a host

program and kernel codes. The host CPU program is

c-based with OpenCL API calls, and the kernel codes are

the DCT and quantization implementations. Three ker-

nels—DCT-kernel, QNTZ-kernel, and DCT-QNTZ-ker-

nel—were developed in two versions (CPU-based and

GPU-based) to reflect the proposed working-scenarios and

optimization methods described early in the design section.

The inputs for our experiment are color images with

different sizes in full/down-sampled resolution formats

(e.g., 4:4:4/4:2:0). The execution times of the sequential

and parallel implementations are measured in milliseconds,

whereas the OpenCL kernels execution times and data-

transfer overheads are calculated for each device based on

the given workload. Our experiments are carried out on a

heterogeneous platform consisting of a multicore CPU and

a GPU. The specifications of the test platform are given in

Table 5.

The total execution time of an OpenCL program consists

of the kernel execution and data transfer overhead on each

device. The OpenCL kernel execution is effected by

workgroup size. Workgroup size represents the number of

work-items per workgroup and is considered to be state-of-

art in terms of the kernel execution time. To evaluate the

effect of workgroup size for the OpenCL DCT and quan-

tization kernels on both CPUs and GPUs, we conduct our

experiment by considering different workgroup sizes with

each kernel invocation (e.g., 64/128/256). We vary the

number of work-items in a workgroup by changing the

LocalWorkSize parameter before each kernel call and

maintain the same workgroup size for each kernel invo-

cation on the CPU and GPU at a time. Figure 13 shows the

performance of the OpenCL kernels’ execution times for

different workgroup sizes on the CPU and the GPU.

Each OpenCL kernel runs in two versions (CPU-based

and GPU-based) in which different work-item mappings

and workload allocations are applied. For example, a CPU-

based kernel applies mapping-1 and works on the Y

component, whereas a GPU-based kernel applies mapping-

2 and works on CbCr components. Therefore, each work-

item on the CPU and GPU has a different thread

granularity.

According to the results, shown in Fig. 13, the best

execution times for the DCT and quantization kernels are

recorded for a workgroup size of 256. This execution time

is the pure kernel execution without the data movements

overhead. The OpenCL kernels’ execution time decreases

as the workgroup size increases. The rates of decreasing are

different on the CPU and the GPU. However, the optimal

kernel execution time is achieved with 256 as the max-

imum workgroup size for both the CPU and the GPU, and

where they show their best performances.

Therefore, in our experiments, we chose 256 as the

maximum workgroup size for the optimal execution time to

calculate the DCT and quantization kernels.

Figure 14 shows the difference between the working

scenarios in the total kernel execution time without con-

sidering the data transfer overhead. The DCT and quanti-

zation kernels’ execution times on the CPU and GPU were

accumulated for each working scenario separately, with

different image sizes and formats. As shown in the results

plotted in Fig. 14, working scenario-2 (WS2) achieves

lower execution time than working scenario-1 (WS1) with

medium and large images (e.g., 1024 9 1024 and

2048 9 2048 in 4:4:4 and 4:2:0 formats). However, WS2

achieves roughly the same or larger execution times than

WS1 with an image size of 512 9 512. Therefore, working

scenario-2 improves the kernel execution time by reducing

the memory access overhead and increasing the data

Fig. 12 OpenCL kernels use vectors rather than scalars

Table 5 Test platform specifications

Hardware platform Software platform

CPU model: AMD

AthlonTM II X2 250

of compute units: 2

(dual-core)

Frequency: 3.0 GHz

CPU memory size: 3 GB

GPU model: AMD

RadeonTM HD 6850

of compute units: 12

Core frequency: 702 MHz

GPU memory size: 1 GB

Operating system: Windows 7, 32 bits

Professional Edition

Software environment: AMD APP SDK

v2.8, OpenCL API Compatibility 1.2

and Microsoft Visual Studio 2010

228 J Real-Time Image Proc (2016) 12:219–235

123

locality. Therefore, working scenario-2 is usually optimal

with large size images.

Data transfer overhead is one of the most important is-

sues in OpenCL applications. We investigate the amount of

overhead generated by data movements in host-to-device

and device-to-host transfers (e.g., H2D-write and D2H-

read, respectively) for the targeted devices. We applied

multiple mechanisms to investigate the impact of each

memory transfer from device to device and measure the

size of the generated overhead. Figure 15 shows the ap-

plied data transfer mechanisms and the amount of overhead

on each device.

The experiment used two data transfer mechanisms for

the CPU—clWriteBuffer/clReadBuffer (mem-copy) and

clMapBuffer/clUnMapBuffer—and pinned host memory

for the GPU (zero-copy). Figure 15 shows the amounts of

overhead for these mechanisms on the CPU and GPU. In

the write-read mechanism, the amount of overhead in-

creases with image size on both the CPU and GPU; how-

ever, it is larger on the GPU because the data are copied

back and forth through the PCIe bus, which has limited

bandwidth. The write-read mechanism also generates

serious overhead on the CPU because OpenCL needs to

copy the data between the buffers on the host-side. Per-

forming memory copy requires pinning and unpinning in

the buffer. To reduce the overhead in the CPU, a map/

unmap mechanism (2) is applied, which generates less

0

2

4

6

8

10

12

14

64 128 256

Ti
m

e
in

 m
s

Workgroup Size

CPU

GPU

0

2

4

6

8

10

12

14

64 128 256

T
im

e
 i

n
 m

s

Workgroup Size

CPU

GPU

(b)(a)

Fig. 13 Performance of

OpenCL kernels with different

workgroup sizes on the CPU

and the GPU; a DCT kernel

execution time and

b quantization kernel execution

time

Fig. 14 Comparison of the working scenarios (WS1 and WS2) for the total kernels execution times with images in a 4:4:4 formats and b 4:2:0

formats

Fig. 15 The data-transfer overhead on the CPU and the GPU using

different mechanisms

J Real-Time Image Proc (2016) 12:219–235 229

123

overhead than a write/read operation. Memory mapping is

very inexpensive and avoids a great deal of data copying by

mapping the OpenCL buffer into a host memory address

and thus accessing the buffer with full host memory

bandwidth. To avoid copying large amounts of data from/to

the GPU, a zero-copy mechanism is applied in which a

buffer resides in the pre-pinned host memory (pinned

memory), and the GPU kernels access the pinned buffers

through the PCIe bus with the maximum bandwidth. The

zero-copy buffer mechanism generates very minimal

overhead, although it adds some amount of overhead to the

GPU kernels’ execution time because the buffer resides on

the host’s pinned memory.

To study the execution time behavior for the proposed

working scenarios with the related data transfer mechan-

isms, execution times were calculated for different image

sizes in different formats, as shown in Figs. 16, 17, and 18.

The results reveal the execution times for OpenCL kernels

(DCT and quantization), including the associated data-

transfer overhead on both CPU and GPU devices.

H2D ? D2H represent the data-transfer overhead, and

DCT, QNTZ, and DCT ? QNTZ represent the kernels’

execution times.

Figure 16 shows the details of execution time for

working scenario-1 with the write-read data transfer

mechanism for each device with different image sizes and

formats. The execution time consists of the OpenCL ker-

nels’ (FDCT, QNTZ) execution time, in addition to the

H2D ? D2H transfer time obtained using the write-read

mechanism. As shown in the related graph, the kernels’

execution times are minimal on the GPU compared to the

CPU, due to the higher computational capability of the

GPU. However, the H2D ? D2H overhead is larger on the

GPU than the CPU because the buffers must be copied

from/to the GPU memory. Similarly, Fig. 17 shows the

execution time for our experiment with working scenario-2

and the same write-read data transfer mechanism. Obvi-

ously, the kernel (DCT ? QNTZ) execution times are

0

5

10

15

20

25

30

35

CPU GPU CPU GPU CPU GPU

512x512 1024x1024 2048x2048

Du
ra

�o
n

in
 m

s

Image Size [width x height]

H2D+D2H

QNTZ

FDCT

0

5

10

15

20

25

30

35

CPU GPU CPU GPU CPU GPU

512x512 1024x1024 2048x2048

Image Size [width x height]

H2D+D2H

QNTZ

FDCT

(a) (b)

Fig. 16 OpenCL kernels ? overhead on the CPU and the GPU using working scenario-1 with the write-read data transfer mechanism for images

in a 4:4:4 formats and b 4:2:0 formats

0

5

10

15

20

25

30

35

CPU GPU CPU GPU CPU GPU

512x512 1024x1024 2048x2048

D
ur

at
io

n
in

 m
s

Image Size

H2D+D2H

FDCT+QNTZ

0

5

10

15

20

25

30

35

CPU GPU CPU GPU CPU GPU

512x512 1024x1024 2048x2048

Image Size

H2D+D2H

FDCT+QNTZ

(a) (b)

Fig. 17 OpenCL kernels ? overhead on the CPU and the GPU using working scenario-2 with the write-read data transfer mechanism for images

in a 4:4:4 formats and b 4:2:0 formats

230 J Real-Time Image Proc (2016) 12:219–235

123

reduced on both the CPU and the GPU, whereas the

H2D ? D2H overhead remains the same as with working

scenario-1 because the same mechanism is used. As shown

in Fig. 18, the story is changed for working scenario-2 with

map-unmap for the CPU and zero-copy for the GPU

mechanism, where the overhead in both the CPU and the

GPU is greatly reduced. However, the kernels’ execution

time (FDCT ? QNTZ) increased on the GPU. These re-

sults show a reflexive relation between the kernels’

execution times and overhead on a GPU using the zero-

copy buffer mechanism. The kernels’ execution times in-

creased on the GPU due to the increased time required to

access the buffer residing on the host pinned memory

through the PCIe bus. Despite the increased kernels’

execution times on the GPU, working scenario-2 with the

zero-copy mechanism shows the optimal execution time.

According to the results plotted in Figs. 16, 17, and 18, the

optimal execution time for the OpenCL kernels is achieved

using working scenario-2, and the lowest overhead is

achieved using memory mapping on the CPU and zero-

copy buffer on the GPU.

Figure 19 summarizes the results plotted in Figs. 16, 17,

and 18, providing a clear comparison among those working

scenarios applying their related data transfer mechanisms.

The total OpenCL execution time is the accumulated

execution times of the kernels and H2D ? D2H overhead

on both the CPU and the GPU. As shown in the graph,

working scenario-2 with the map ? zero-copy mechanism

achieved the lowest execution time for all the image sizes

and formats. This scenario (WS2) achieves the optimal

0

5

10

15

20

25

30

CPU GPU CPU GPU CPU GPU

512x512 1024x1024 2048x2048

Du
ra

�o
n

in
 m

s

Image Size

H2D+D2H

FDCT+QNTZ

0

5

10

15

20

25

30

CPU GPU CPU GPU CPU GPU

512x512 1024x1024 2048x2048

Image Size

H2D+D2H

FDCT+QNTZ

(a) (b)

Fig. 18 OpenCL kernels ? overhead on the CPU and the GPU using working scenario-2 with memory map for the CPU and zero-copy on the

GPU data transfer mechanism for images in a 4:4:4 formats and b 4:2:0 formats

0

10

20

30

40

50

60

4:4:4 4:2:0 4:4:4 4:2:0 4:4:4 4:2:0

512x512 1024x1024 2048x2048

D
ur

at
io

n
in

 M
ill

is
ec

on
ds

Image Dimension [width x height]

Comparison the working scenarios with related data-transfer
mechanisam

WS1-Write/Read

WS2-Write/Read

WS2-Map+Zero-Copy

Fig. 19 Comparison of the total

OpenCL execution time

(kernels plus overhead) among

the workings scenarios and the

related data-transfer

mechanisms

J Real-Time Image Proc (2016) 12:219–235 231

123

execution time because it reduces the kernels’ (FDCT,

QNTZ) execution time by combining the kernels into a

single step instead of two separate consecutive steps. Ad-

ditionally, WS2 reduces overhead using memory mapping

on the host CPU and zero-copy on the GPU, which avoids

data copying to the GPU memory. These results are very

promising, especially for a platform that includes a CPU

and a GPU on a single die and shares the same memory,

such as an APU (application processor unit) or a mobile

platform.

6 OpenCL performance evaluation

In this section, we evaluate the results obtained for our

OpenCL parallel implementations and compare them to the

sequential implementation in terms of execution time. The

comparison involves three versions of OpenCL parallel

implementations of the proposed working scenarios (WS1

and WS2), each with a particular data transfer mechanism.

Figure 20 compares the performances of parallel and serial

executions, where a shorter execution time is a batter. It is

clear that the OpenCL parallel implementations achieve

significantly better performance than the sequential CPU-

based program. Great reductions in execution time (e.g.,

80 %) are obtained for working scenario-2 with its related

mechanism of data transfer (WS2-MAP-ZC in OpenCL)

with various image sizes in full and down-sampled

resolution formats.

Table 6 summarizes the serial and parallel execution

times. The serial execution times were obtained by running

the C-based program with a single thread. The parallel

execution times were obtained by running the OpenCL

implementations on a heterogeneous platform, consisting

of a multicore CPU and a GPU. The overall OpenCL

execution time involves the OpenCL kernels’ execution

times based on the data transfer time for a particular device

with its given workload.

0

50

100

150

200

250

300

350

4:4:4 4:2:0 4:4:4 4:2:0 4:4:4 4:2:0

512x512 1024x1024 2048x2048

To
ta

l
Ex

ec
ut

io
n

Ti
m

e
 in

 m
s

Image Size / Formats

Serial and Parallel Execution Time Comparison

Serial

OpenCL (WS1-WR)

OpenCL (WS2-WR)

OpenCL (WS2-MAP-ZC)

Fig. 20 The overall OpenCL

execution times with different

working scenarios and related

data-transfer mechanisms,

comparing parallel with serial

execution times

Table 6 Serial and parallel

execution times (in

milliseconds)

WS working scenario,WR write-

read, MAP-ZC memory map

with zero-copy buffer

Image size Image

formats

CPU-only Overall OpenCL parallel execution time on (CPU ? GPU)

Serial WS1-WR WS2-WR WS2-MAP-ZC

512 9 512 4:4:4 16 5.43 5.68 2.99

4:2:0 12 3.66 3.96 2.44

1024 9 1024 4:4:4 78 14.32 13.25 9.78

4:2:0 46 11.17 10.18 7.42

2048 9 2048 4:4:4 312 50.55 46.79 36.08

4:2:0 156 39.11 35.39 27.80

232 J Real-Time Image Proc (2016) 12:219–235

123

The OpenCL speedups were calculated based on the

overall OpenCL execution time, as described below:

Speedup ¼ Tserial

Tparallel
; ð5Þ

where Tserial is the sequential execution time for a single

thread on the CPU and Tparallel is the parallel execution

time for an OpenCL implementation on the CPU ? GPU.

Tparallel is defined by Tp ¼ Tkernel þ Toverhead; ð6Þ

where Tkernel is the total of the execution times of the

OpenCL kernels on the CPU and the GPU, and Toverhead is

the total of the data transfer overhead on the CPU and the

GPU.

The calculated speedups for the OpenCL implementa-

tions relative to the sequential program implementations are

calculated using the speedup formulas defined in (5) and

(6). These speedup results are calculated for each working

scenario, separately, along with its particular data-transfer

mechanism. Figure 21 shows the speed gains for the

OpenCL parallel program over the sequential single-thread

C-based program, which are significant in both working

scenarios, particularly working scenario-2. The maximum

speedups are 7.97 and 8.65 with large images—

1024 9 1024 and 2048 9 2048, respectively, in 4:4:4 for-

mats—which occur when using the OpenCL implementa-

tion employing working scenario-2 with the zero-copy

buffer. The speedups were 6.20 and 5.61 with images of the

same two sizes in down-sampled resolution 4:2:0 format.

Even though working scenario-2 with write-read mechan-

ism (WS2-WR) achieves relatively good speedup compared

to working scenario-1 with the same data transfer

mechanism (WS1-WR), except in one case, it achieves a

slightly lower speedup when medium-sized images (e.g.,

512 9 512 in both 4:4:4 and 4:2:0 formats) are used as

inputs. Overall all, significantly better performance and

maximum speedup gains were obtained using the second

working scenario (e.g., SW2-MAP-ZC). This study’s re-

sults demonstrate that merging the DCT and quantization

computations into a single step improves the execution time

significantly and achieves optimum performance.

7 Conclusions and future work

An efficient OpenCL parallel implementation for the for-

ward DCT and quantization of JPEG image compression is

presented in this paper. We leverage the computing capa-

bilities of modern computing systems to accelerate the

computations on a heterogeneous platform consisting of a

multicore CPU and a GPU. Two working scenarios are used

to perform the DCT and quantization computations on the

CPU and the GPU in parallel. The first scenario follows the

classical processing method, as in baseline JPEG, where a

computation is done in two consecutive steps; for example a

DCT computation is performed first, followed by quanti-

zation, sequentially. In contrast, the second scenario per-

forms the computations in a single step that merges the DCT

and quantization steps. An optimized OpenCL kernel code

has been developed for each step of the DCT and quanti-

zation computations, to reflect the working scenarios.

Therefore, three OpenCL kernel codes (DCT, QNTZ, and

DCT_QNTZ) were developed, each in two versions: CPU-

based and GPU-based kernels. In these device-based

2.95 3.28

5.45

4.12

6.17

3.99

2.
82 3.
03

5.
89

4.
52

6.
67

4.
41

5.34
4.92

7.97

6.20

8.65

5.61

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

4:4:4 4:2:0 4:4:4 4:2:0 4:4:4 4:2:0

512x512 1024x1024 2048x2048

O
pe

nC
L

sp
ee

du
p

ve
rs

us
 s

eq
ue

nt
ia

l

OpenCL (WS1-WR)

OpenCL (WS2-WR)

OpenCL (WS2-MAP-ZC)

Fig. 21 Speedup using

OpenCL parallel DCT and

quantization compared to using

the serial program

J Real-Time Image Proc (2016) 12:219–235 233

123

kernels, we easily can apply certain optimization techniques

that match the hardware architecture and assign different

work-item mappings, granularities, workload sizes, and

optimal workgroup sizes before launching each kernel on

the target device. Two data transfer mechanisms were used

in our OpenCL experiments. Analysis of the effects of these

data-transfer mechanisms showed that a memory map

mechanism is optimal for reducing the overhead on the

CPU, and the pre-pinned host resident buffer with zero copy

is the optimal choice to avoid copying data back and forth

to/from the GPU memory across the PCIe bus.

We evaluated our OpenCL parallel implementation with

various full- and down-sampled-resolution image sizes

using both the investigated working scenarios. OpenCL

implementation achieved significantly better performance

than the sequential program. The proposed OpenCL

working scenario-2 with optimal data transfer mechanism

was able to achieve speedups of 7.97 and 8.65 relative to

the sequential method, for large images of 1024 9 1024

and 2048 9 2048 in 4:4:4 format.

In this paper, we addressed a variety of factors affecting

execution time, including working scenarios, data transfer

mechanisms, workload allocation, work-items mapping,

thread granularity, workgroup size, and device-based ker-

nels, along with certain optimizations. Based on our ex-

perimental results, the key findings of our OpenCL

implementation that affect performance are as follows:

1. Combine DCT and quantization computations into one

step to increase data locality and reduce memory

access overhead.

2. Use the optimal data transfer mechanism for the least

overhead, such as memory mapping for the CPU.

3. Use a different mapping on each device, such as one

work-item for one 8 9 8 block on the CPU and eight

work-items for one block on the GPU for the DCT

computations.

4. Use large workgroups to improve the kernel execution

time.

5. Separate a kernel code into two versions, one for the

CPU and one for the GPU.

6. Avoid using a barrier in the CPU kernel to avoid

excessive context-switch overhead.

7. Optimize the kernel to write/read from/to the memory

using vectors rather than scalars, to fully utilize the

path and reduce memory accessing.

8. Optimize the GPU kernel code to take advantages of

on-chip local shared memory.

9. Assign proper granularity on each device, for example,

coarse-grain for the CPU and fine-grain for the GPU.

These highlighted issues affect OpenCL performance, as

shown by the experimental results obtained for the DCT

and quantization computations.

In this paper, we started with DCT and quantization

two-stage of JPEG image compression as a case study to

determine the optimal performance of each device in a

heterogeneous system using OpenCL. Later on, this work

will be extended to involve all other stages of the JPEG

encoder as future work by disturbing the workload between

the CPU and GPU to enhance the performance and achieve

the real-time processing. The target of this work is to de-

velop an efficient OpenCL-based parallel implementation

for the JPEG encoder that will run in different hardware as

OpenCL supports code portability. This will be very useful

for the low-power and handheld devices, where a real-time

software image codec will replace the hardware codec in

the future.

Acknowledgments This research was supported by Basic Science

Research Program through the National Research Foundation of

Korea (NRF) funded by the Ministry of Science, ICT and future

Planning (NRF-2012R1A1A2043400).

References

1. John, O., Mike, H., David, L., Simon, G., John, S., James, P.:

GPU computing. Proc. IEEE 96(5), 879–899 (2008)

2. Stephen, K., William, D., Brucek, K., Michael, G., David, G.:

GPUs and the future of parallel computing. Micro IEEE 31(5),
7–17 (2011)

3. John, S., David, G., Shi, G.: OpenCL: a parallel programming

standard for heterogeneous computing systems. Comput. Sci.

Eng. 12(3), 66–73 (2010)

4. Barak, A., Ben-Nun, T., Levy, E., Shiloh, A.: A package for

OpenCL based heterogeneous computing on clusters with many

GPU devices. In IEEE International Conference on Cluster

Computing, Heraklion, Crete (2010)

5. Samsung Galaxy S5: Samsung, (Online). http://en.wikipedia.org/

wiki/Samsung_Galaxy_S5. Accessed 2 Jan 2015

6. Yun, H.S., Shi, Q.: Image and video compression for multimedia

engineering. CRC Press, New York (2008)

7. Ruby, L., John, B., Joel, L., Kenneth, S.: Real-time software

MPEG video decoder on multimedia-enhanced PA-7100LC

processors. Hewlett-Packard J. 46(2), 60–68 (1995)

8. Furht, B.: A survey of multimedia compression techniques and

standards. Part I: JPEG standard. Real-Time Imaging 1(1), 49–67
(1995)

9. Agostini, L., Bampi, S.: Integrated digital architecture for JPEG

image compression. In: European Conference on Circuit Theory

and Design, Espoo, Finland (2001)

10. Rabadi, W., Talluri, R., Illgner, K.: Programmable DSP platform

for digital still cameras. Texas Instrutments (2000)

11. Li, S., Qu, X., Li, Q.: Implementation of the JPEG On DSP

processors. Appl. Mech. Mater. 34–35, 1536–1539 (2010)

12. Min, J., Markandey, V.: Optimizing JPEG on the TMS320C6211

2-level cache DSP. Digital Signal Processing Solutions (2000)

13. Mohanty, S.P.: GPU-CPU multi-core for real-time signal pro-

cessing. In: International Conference on Consumer Electronics

ICCE ‘09 (2009)

14. Tokdemir, S., Belkasim, S.: Parallel processing of DCT on GPU.

In: Data Compression Conference (DCC), Snowbird, UT (2011)

15. Duo, L., Ya, F.X.: Parallel program design for JPEG compres-

sion. In: 9th International Conference on Fuzzy Systems and

Knowledge Discovery (2012)

234 J Real-Time Image Proc (2016) 12:219–235

123

http://en.wikipedia.org/wiki/Samsung_Galaxy_S5
http://en.wikipedia.org/wiki/Samsung_Galaxy_S5

16. Yang, Z., Zhu, Y., Pu, Y.: Parallel image processing based on

CUDA. In: International Conference on Computer Science and

Software Engineering (2008)

17. Nvidia SDK 9.52 code samples—transform, discrete cosine

(Online). http://developer.download.nvidia.com/SDK/9.5/Sam

ples/gpgpu_samples.html. Accessed 11 Dec 2014

18. AMD APP SDK Samples—DCT, AMD (Online). http://amddev

central.com/tools/hc/AMDAPPSDK/samples/Pages/default.aspx.

Accessed 11 Dec 2014

19. Kou, W.: Digital image compression algorithms and standards.

Kluwer Academic Publishers, Dordrecht (1995)

20. Mitchell, J.L., Pennebaker, W.B.: JPEG still image data com-

pression standard. International Thomson, New York (1993)

21. Thyagrajan, K.S.: Still image and video compression with Mat-

lab. Wiley, New York (2011)

22. Wallace, G.K.: The JPEG still picture compression standard.

IEEE Trans. 38, xviii–xxxiv (1991)

23. Yukihiro, A., Takeshi, A., Nakajima, M.: A fast DCT-SQ scheme

for images. Trans. IEICE E-71(11), 1095–1097 (1988)

24. OpenCL: Khronos Group (Online). http://www.khronos.org/

opencl/. Accessed 11 Dec 2014

25. Gaster, B., Howes, L., Kaeli, D., Mistry, P., Schaa, D.: Hetero-

geneous computing with OpenCL. Elsevier, Amsterdam (2012)

26. The OpenCL Specification Version: 1.1, Khronos OpenCL

Working Group (2010)

27. Ralf Karrenberg, S.H.: Improving performance of OpenCL on

CPUs. In: The 21st international conference on Compiler Con-

struction, Berlin, Heidelberg (2012)

28. Pourazad, M., Doutre, C., Azimi, M., Nasiopoulos, P.: HEVC: the

new gold standard for video compression: how does HEVC

compare with H.264/AVC? IEEE Consum. Electron. Mag. 1,
36–46 (2012)

29. Goldman, M.: High-efficiency video coding (HEVC): the next-

generation compression technology. SMPTE Motion Imaging J.

121(5), 27–33 (2012)

30. Pastuszak, G.: Hardware architectures for the H.265/HEVC dis-

crete cosine transform. IET Image Process. (2014). doi:10.1049/

iet-ipr.2014.0277

31. Meher, P., Park, S., Mohanty, B., Lim, K., Yeo, C.: Efficient

integer DCT architectures for HEVC. IEEE Trans. Circuits Syst.

Video Technol. 24(1), 168–178 (2014)

32. Xun, C., Qunshan, G.: Improved HEVC lossless compression

using two-stage coding with sub-frame level optimal quantization

values. Image Processing (ICIP), 2014 IEEE International Con-

ference, pp. 5651–5655, 27–30 (2014)

Nasser Alqudami received his B.S. degree and M.S. degree in

computer science from Mosul University, Iraq and University Science

of Malaysia (USM), Malaysia, in 2002, and 2009, respectively. Now,

he is a Ph.D. student in the supercomputing lab., department of

computer science, Yonsei University. His research interests include

parallel and distributed computing, heterogeneous computing, and

image compression.

Shin-Dug Kim received his Ph.D. degree in electrical and computer

engineering in 1991 from Purdue University, USA. Now, he is a

professor at the department of computer science, Yonsei University,

and also head of the supercomputing laboratory. His research interests

include parallel computing, grid computing, computer architecture,

and ubiquitous computing.

J Real-Time Image Proc (2016) 12:219–235 235

123

http://developer.download.nvidia.com/SDK/9.5/Samples/gpgpu_samples.html
http://developer.download.nvidia.com/SDK/9.5/Samples/gpgpu_samples.html
http://amddevcentral.com/tools/hc/AMDAPPSDK/samples/Pages/default.aspx
http://amddevcentral.com/tools/hc/AMDAPPSDK/samples/Pages/default.aspx
http://www.khronos.org/opencl/
http://www.khronos.org/opencl/
http://dx.doi.org/10.1049/iet-ipr.2014.0277
http://dx.doi.org/10.1049/iet-ipr.2014.0277

	OpenCL-based optimization methods for utilizing forward DCT and quantization of image compression on a heterogeneous platform
	Abstract
	Introduction
	Related work
	Background
	JPEG image compression standard
	Discrete cosine transform (DCT)
	Quantization

	Design and methods
	Proposed OpenCL parallel diagram
	Overlapping OpenCL Kernel execution with data transfer
	Leverage multiple devices in OpenCL
	Working scenarios employing the DCT and quantization kernels
	OpenCL work-item mapping
	Device-based kernel optimization
	Optimizing the memory accesses

	Experimental results
	OpenCL performance evaluation
	Conclusions and future work
	Acknowledgments
	References

