
ORIGINAL RESEARCH PAPER

Parallelization strategies for markerless human motion capture

Alberto Cano • Enrique Yeguas-Bolivar •

Rafael Muñoz-Salinas • Rafael Medina-Carnicer •

Sebastián Ventura

Received: 4 November 2013 / Accepted: 16 October 2014 / Published online: 12 November 2014

� Springer-Verlag Berlin Heidelberg 2014

Abstract Markerless motion capture (MMOCAP) is the

problem of determining the pose of a person from images

captured by one or several cameras simultaneously without

using markers on the subject. Evaluation of the solutions is

frequently the most time-consuming task, making most of

the proposed methods inapplicable in real-time scenarios.

This paper presents an efficient approach to parallelize the

evaluation of the solutions in CPUs and GPUs. Our pro-

posal is experimentally compared on six sequences of the

HumanEva-I dataset using the CMAES algorithm. Multiple

algorithm’s configurations were tested to analyze the best

trade-off with regard to the accuracy and computing time.

The proposed methods obtain speedups of 8� in multi-core

CPUs, 30� in a single GPU and up to 110� using 4 GPUs.

Keywords Markerless motion capture (MMOCAP) �
GPU � Tracking

1 Introduction

MMOCAP is an emerging field with applications in areas

like the animation industry [1], medical rehabilitation [2],

and video surveillance [3], amongst others. The problem

consists in determining the joints’ angles of an articulated

body model that best matches the pose of a subject

recorded by one or several video cameras. It is a high-

dimensional problem in which the evaluation of a single

solution is a very time-consuming task. As a consequence,

most of the proposed methods either require a high number

of evaluations (leading to computing times unsuitable for

real-time applications) or rely on simple human models

(leading to suboptimal tracking results).

This paper presents an efficient approach to evaluate the

solutions in the MMOCAP problem and three strategies to

parallelize their computation. First, we propose a paral-

lelization strategy based on Streaming SIMD Extensions

(SSE),which increase the performancebyprocessingmultiple

elements simultaneously. Second, a strategy based on amulti-

threading approach which takes advantage of the parallel ca-

pabilities of multi-core CPUs is presented. Third, we propose

a parallelization strategy that delegates computation on

Graphic Processing Units (GPUs). In particular, our proposal

can be parallelized in multiple GPUs making it very scalable.

In addition, this work aims at evaluating multiple algorithm

configurations to determine the one achieving the best trade-

off between the model accuracy and the computing time. The

higher themodel accuracy, the better it fits to observations, but

also, more computing time is required. Thereby, an ex-

perimental study is conducted tomeasure theperformance and

efficiency of the model with regard to the body model

resolution and the number of evaluations of the algorithm.

The parallelization strategies have been evaluated on six

sequences of the HumanEva-I dataset [4]. The experimental

A. Cano � E. Yeguas-Bolivar � R. Muñoz-Salinas (&) �
R. Medina-Carnicer � S. Ventura
Department of Computer Science and Numerical Analysis,

University of Cordoba, Córdoba, Spain

e-mail: rmsalinas@uco.es

A. Cano

e-mail: acano@uco.es

E. Yeguas-Bolivar

e-mail: eyeguas@uco.es

R. Medina-Carnicer

e-mail: rmedina@uco.es

S. Ventura

e-mail: sventura@uco.es

E. Yeguas-Bolivar � R. Muñoz-Salinas � R. Medina-Carnicer

Maimonides Institute for Biomedical Research (IMIBIC),

Córdoba, Spain

123

J Real-Time Image Proc (2018) 14:453–467

https://doi.org/10.1007/s11554-014-0467-1

http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-014-0467-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-014-0467-1&domain=pdf
https://doi.org/10.1007/s11554-014-0467-1

results show the performance improvements of the different

parallelization approaches namely, 2� for the SSE approach,

4� for the multi-threading approach, and 8� for the multi-

threading ? SSE approach. Specifically, GPUs have

demonstrated to achieve high performance and significantly

reduce the evaluation time, up to 30� when using 1 GPU,

60� when using 2 GPUs, and 110� when using 4 GPUs.

The remainder of this paper is structured as follows.

Section 2 revises the related work. Section 3 formulates the

problem of pose estimation, and describes the body models

and the fitness function. Sections 4 and 5 present the par-

allelization strategies addressed. Section 6 shows the ex-

perimental results. Finally, Sect. 7 draws some conclusions.

2 Background

This section provides an overview of the related works. First,

we review the main optimization approaches applied to the

problem. Then, we focus on the most relevant parallelization

strategies for the MMOCAP problem found in the literature.

2.1 Optimization approaches

The first solutions for the MMOCAP problem consist in the

use of particle filters. In particular, the Condensation algo-

rithm is the most prevalent of such algorithms and has been

widely employed for the tracking task [5]. However, when

applied to this problem, it has been repeatedly shown that it

suffers from the curse of dimensionality. Therefore, Deut-

scher and Reid proposed the Annealed Particle Filter

(APF) [6], which combines the ideas of the Condensation

and the Annealed search so as to improve the tracking results.

Corazza et al. propose also a custom version of adapted fast

simulated annealing [7] for body tracking using as input data

a visual hull reconstruction and an a priori model of the

subject. Another popular approach for tracking articulated

objects is the use of Partitioned Sampling (PS) [8]. The

technique was initially employed for tracking several objects

using particle filters, but then it was successfully applied to

hand tracking. Unlike the APF, PS imposes a strong partition

of the search space. Bandouch et al. proposed the Partitioned

Sampling Annealed Particle Filter (PSAPF) [9] as an attempt

to combine the strengths of PS and the Annealed Search. To

do so, they incorporate the APF within a PS framework by

applying an appropriate weighted resampling in each sub-

space. As they report, they are able to cope up with high-

dimensional models, but at the cost of employing a very high

number of evaluations per frame.

The MMOCAP problem is a continuous optimization

problem for which Evolutionary Algorithms [10] have re-

peatedly proven to provide excellent results. John

et al. [11] applied the Particle Swarm Optimization (PSO)

algorithm with great success, reporting relevant improve-

ments over APF and PSAPF. The main advantages of the

PSO algorithm become particularly evident when tracking

fast movements, since it has demonstrated a good perfor-

mance without requiring any motion prior. Zhao and

Liu [12] proposed a Hierarchical Annealed Genetic Algo-

rithm to infer the three-dimensional pose from a single

monocular camera. Yeguas-Bolivar et al. [13] perform an

experimental comparison of three relevant evolutionary

algorithms namely Covariance Matrix Adaptation Evolu-

tionary Strategy (CMAES) [14], Differential Evolution

(DE) [15], and PSO [16], with two particle filters, namely

APF [6] and PSAPF [9]. The results obtained show that the

evolutionary algorithms evaluated performed significantly

better than particle filters. In particular, the CMAES al-

gorithm obtained the best performance.

In spite of the advances achieved over the last years,

mobility limitations often are imposed to the body models

employed so as to obtain reasonable performance in man-

ageable computing times. For instance, there are works [17,

6, 18, 11] which employ models with no more than 32

degrees of freedom (DOF) and assume no mobility in dorsal

spine, hands and feet. This simplification of the human

anatomy allows a tractable computation of the model while

achieving acceptable results for some applications. How-

ever, some other applications require a more precise mod-

eling of the human body so as to measure biomechanical

parameters [19, 20, 21, 22]. In such cases, the need of a high

number of evaluations deters from using MMOCAP in real-

time applications. Thus it would be desirable to reduce the

time employed for evaluating solutions.

2.2 Parallelization approaches

Three main sources of parallelization can be exploited in

current mass-produced hardware. First, most of the current

processors include SIMD (Single Instruction Multiple Data)

instructions, which provide a limited form of parallelism that

can be exploited to obtain relevant improvements [23]. Se-

cond, multi-core CPUs are able to solve high-performance

applications more efficiently using parallel computing [24].

Third, GPUs have gained an important role in the area of

parallel computing [25, 26]. In particular, the Compute Uni-

fiedDeviceArchitecture (CUDA) [27] is a parallel computing

architecture developed byNVIDIA. It has attracted increasing

attention over the last few years, providing massive parallel

computation for solving highly parallelizable high-dimen-

sional optimization problems and data intensive tasks.

In recent years various approaches have been proposed

for the MMOCAP problem using parallel techniques, and

these based on GPU computing have gained much of the

attention. Model-based object detection is tackled by GPU

implementations of soft computing techniques [28], where

454 J Real-Time Image Proc (2018) 14:453–467

123

CUDA is used for accelerating a tracking algorithm based

on adaptive appearance models and PSO. Based on an ar-

ticulated 3D body model, in [29] the GPU is used to im-

plement a real-time full-body tracking algorithm using a

limited number of DOF. The method is directly based on

the sequential approach presented in [11]. PSO is the most

popular algorithm in parallel implementations because of

its inherent parallel nature [30, 31, 32]. Nonetheless, some

works like [33] apply other easily parallelizable meta-

heuristics (e.g. DE) for a fast search and to reach good

results in human body pose estimation.

Other approaches incorporate a multi-layer framework for

model-based pose searching where a stochastic approach

(e.g. PSO) can be inserted. In [34, 35], two layers of search,

with an efficient GPU implementation, support robust and

accurate pose recovery: a sampling algorithm with a weak

dynamical model introducing a non-parameter niching

technique into the particle filter and a hierarchical local op-

timization to refine the estimation of sampling. Body pose

tracking is performed in 3D space using 3D data recon-

structed at every frame. Another approach is proposed in [36]

where a probabilistic filtering framework employs a highly

accurate generative model with a discriminative model and

the GPU is exploited to perform large numbers of likelihood

evaluations efficiently. In this case, the human motion cap-

ture task is approached using time-of-flight sensors.

Finally, the work of Zhang et al. [35] proposes an

evaluation strategy based on a volumetric reconstruction.

The authors design a system that employs GPUs to speedup

several steps of the evaluation process. However, the use of

volumetric reconstruction (based on foreground silhouettes)

has the problem of propagating the segmentation errors to

the 3D space. So, almost perfect segmentations or robust

methods to deal with inconsistent silhouettes [37, 38, 39]

are required to obtain correct volumetric reconstructions. In

contrast, other authors evaluate the foreground images di-

rectly [9, 17, 6] to deal with segmentation errors.

3 Problem formulation

Our problem can be formulated as estimating the pose xt of

a subject at each time step t from a set of synchronized and

calibrated video cameras. For that purpose, a body model

comprised of a skin model (triangular mesh) and a skeleton

model (internal structure of articulations) is employed. The

skeleton is modeled as a hierarchical structure where each

node represents a joint which is subject to rotations in the

three axes (Rx;Ry and Rz). It is employed to apply the body

movements to the skin model in such a way that the

transformation of a node affects all its children. Figure 1a

shows the skin and skeleton models employed in our work,

whereas Fig. 1b depicts its hierarchical structure.

As can be seen, the hierarchical model has a root node

(root joint) which defines the global rotations and transla-

tions. In total, our model is comprised of 16 joints, so that a

complete transformation of such model is defined by 3

translation components (Tx, Ty and Tz) plus 16� 3 rota-

tions, i.e., a total of 51 parameters (DOF) constituting the

dimension D of the problem.

x ¼ fTx; Ty; Tz;R1
x ;R

1
y ;R

1
z ; . . .;R

16
x ;R16

y ;R16
z g 2 R

D:

However, considering that some of these parameters cor-

respond to invalid rotations (e.g. ankles have only 2 DOF),

the final model employed in this work can be reduced to

D ¼ 39 parameters.

A fitness function f ðxÞ must be defined indicating the

likelihood of a model configuration to be correct. For each

new frame, the minimization procedure relies on the results

obtained in the previous one so as to improve the results. For

the first frame, an initial body configuration x0 is provided.

In thiswork,we propose f ðxÞ as an optimized version of the

silhouette matching function employed in most related works

[9, 17, 6, 18, 11, 13]. In short, given a model configuration x,

its projection (silhouette) in all the cameras ismatched against

the foreground information obtained by background subtrac-

tion. The degree of overlap between the real and synthetic

silhouettes is measured aiming at maximizing it. The

evaluation process can thus be divided into three main steps:

foreground estimation, model projection and fitness evalua-

tion, which are explained in detail below.

3.1 Foreground estimation

In an initial phase, a background model capturing the color

statistics of each pixel is created. This process is done prior

to the recording of the scene. Then, using background

subtraction techniques, the foreground images are obtained

indicating which pixels belong to the moving objects in the

scene. Let us denote by

F t ¼ fF t
cjc ¼ 1; . . .;Ncg; ð1Þ

the set of foreground images obtained at time instant t with

the Nc cameras available. A pixel F t
cðpÞ is 1 if it belongs to

the foreground and 0 otherwise. The foreground images are

employed for all the evaluations of the frame t, so that they

are computed only once. In this work we have employed the

background approach proposed by Horprasert et al. [40].

3.2 Model projection

The projection of the model is the most repetitive task

since it needs to be computed for each configuration x. It is

comprised of two stages. First, it is necessary to calculate

the three-dimensional position of the body meshes, ac-

cording to the configuration x. Then, it is required to render

J Real-Time Image Proc (2018) 14:453–467 455

123

the meshes in each image given that the camera parameters

are known.

In this work, we propose a simplified projection ap-

proach that reduces the computing time. Instead of drawing

the triangle meshes, we calculate the projection of its

vertices and draw a rectangular patch around it.

Let us consider the Nv vertices of the triangle meshes that

comprise the body model shown in Fig. 1(a). Each vertex

v ¼ ½x; y; z� is assigned to a joint j, so that its movement

affects all the vertices assigned to this joint (skinning). We

denote by V j the set of vertices assigned to the joint j.

A three-dimensional transformation can be easily mod-

eled in homogeneous coordinates as a 4x4 matrix multi-

plication. This notation is specially appropriated since

multiple transformations can be concatenated by multi-

plying the corresponding matrices. So, we can denote by Tj

the matrix that transforms the vertices in V j.

The previous transformation produces the location of the

model’s vertices given by the configuration x. Afterwards,

it is required to project the model onto the cameras. For

that purpose, the extrinsic and intrinsic camera parameters

are needed. These parameters are calculated prior to the

sequence recording in a process called calibration.

The camera’s extrinsics define the three-dimensional

relationship between the camera reference system (CRFS)

and a global reference system (GRFS) shared amongst all

cameras. The camera extrinsics Ec is a 4x4 matrix which

translates a three-dimensional point (in homogeneous co-

ordinates) from the GRFS to the CRFS. Once a point is

expressed in the CRFS, the camera’s intrinsics allow to

determine its projection onto the camera image (pixel co-

ordinates). Assuming a pin-hole model, the intrinsic matrix

of camera c is defined as:

Kc ¼
fx 0 qx
0 fy qy
0 0 1

0
B@

1
CA ð2Þ

where fx; fy are the focal lengths in both axes and qx; qy is
the optical center.

Real cameras are always affected by distortion making

the ideal pin-hole model invalid in realistic scenarios.

Removing the distortion of a point is an iterative process

that can be time consuming if applied to each vertex.

However, it is possible to precompute the undistortion map

for each camera, and apply it to the foreground image.

Thus, the undistortion model is applied only once and we

can assume in the following that the camera follows the

ideal pin-hole model. As a consequence, the projection of a

vertex v in the camera c can be completely expressed as:

x0

y0

w0

2
664

3
775 ¼ Kc

1 0 0 0

0 1 0 0

0 0 1 0

0
B@

1
CAEcTj

vt

1

" #
¼ vjc

vt

1

" #
ð3Þ

where vjc is the matrix that projects all the points from V j to

the camera c. The final camera coordinate is obtained as

ðx0=w0; y0=w0Þ. The main advantage of using this notation

is that a single matrix vjc is employed for all the points in

V j, making the model projection very fast.

Projecting exclusively the vertices instead of the trian-

gles would produce a sparse set of points instead of a filled

silhouette. Therefore, a small patch around each vertex

projection is drawn so as to obtain a filled silhouette. The

size of each patch is computed according to the distance of

the model to the camera. The nearer the model from the

camera, the larger the patch, and vice versa. The patch size

(a) (b)

Fig. 1 Body model employed:

a Skin and skeleton models. The

skin is a 3D model representing

the surface of the body while the

skeleton represents the internal

structure of the articulations

(joints and bones). b
Hierarchical structure of the

skeleton model. Each node

represents a joint which is

subject to rotations in the three

axes. The transformation of a

node affects all its children

456 J Real-Time Image Proc (2018) 14:453–467

123

employed is the same for all vertices in a body part to avoid

computation overhead. So, it is expected the area of the

triangles not to diverge a lot from the mean to avoid leaving

holes in the silhouette. Let lt be the average length of the

triangle sides of the body model employed. Then, a rect-

angle of similar area would have a side length lr ¼
ffiffiffiffiffiffiffiffiffi
l2t =2

p
.

Considering that the average distance of the points to the

camera is d, and that f ¼ fx ’ fy, the size in pixels of the

rectangle p is given applying the pin-hole model as:

p � fd

lr
ð4Þ

In practice, d is not computed as the average distance but

as the distance of a representative vertex of the body part.

To avoid gaps in the projection it is important to have a

mesh with vertices of similar area and vertices evenly

distributed along the surface.

Finally, the vertex normals of the meshes can be used to

determine whether they are seen from the ‘‘front’’ or the

‘‘back’’ side. These seen from the back side, can be ignored

so that only those seen from the front are projected to

generate the body silhouette. As a consequence, the num-

ber of vertices projected is reduced to half. To do that, let

us consider the normal orientation to each vertex n. Given

the configuration x, the new orientation n0 can be obtained

multiplying n by the upper 3x3 matrix of EcTj. If n
0
x [0,

the normal points towards the camera and the point must be

projected. Otherwise, the point is ignored, saving time.

3.3 Fitness evaluation

Using the above equations, the silhouettes of a body model

configuration x are computed in all cameras. Let us denote by

MðxÞ ¼ fMx
cjc ¼ 1; . . .;Ncg: ð5Þ

these silhouette images, so that a pixel Mx
cðpÞ is 1 if it

belongs to the model’s silhouette and 0 otherwise.

Using the above-defined concepts, a model can be

evaluated by matching the degree of overlap of its pro-

jected silhouette and the foreground image. Thus, let us

define the evaluation function as:

f tcðxÞ ¼
1

2jDðMx
cÞj

X
p2DðMx

cÞ
Mx

cðpÞ � F t
cðpÞ

þ 1

2jDðF t
cÞj

X
p2DðF t

cÞ
F t

cðpÞ �Mx
cðpÞ

ð6Þ

where the function Dð�Þ indicates only these pixels with

value 1. The first term of Eq. 6 accounts for these model

points that project on foreground points, i.e., it decreases as

the degree of overlap between the model and the mask in-

creases. On the other hand, the second term of the equation

accounts for the pixels of the foreground image that are not

covered by the model’s projection. Consequently, the

function behaves as the logical XOR function of the two

images, and it is evaluated f tcðxÞ ¼ 0 when the model pro-

jection fits exactly the foreground mask. On the contrary,

f tcðxÞ tends to 1 as the degree of overlap decreases.

Due to illumination changes and color similarities be-

tween the subject and the background, it is unlikely to

achieve a perfect match between the model and the fore-

ground images. The use of multiple cameras helps not only

to alleviate these problems but also to infer the three-di-

mensional configuration of the subject. The evaluations of

the model in all the camera images are fused as:

f tðxÞ ¼ 1

Nc

X
c

f tcðxÞ: ð7Þ

Therefore, values of Eq. 7 near 0 indicate that x is a good

solution and values near 1 indicate that x is a poor solution.

(a)

(b)

(c)

(d)

(e)

Fig. 2 Evaluation process: a encoding of the pose x. b 3D skeleton

modeling of the pose x. c Model silhouette after mesh projection. d
Foreground images obtained from e camera images, by background

subtraction techniques and showing in white pixels belonging to the

moving objects in the scene

J Real-Time Image Proc (2018) 14:453–467 457

123

Figure 2 helps to clarify the above explanation. Given the

pose encoding x, it summarizes the evaluation process that

comprises the skeleton modeling, the body skin projection

and the matching with the foreground images extracted

from the multiple cameras.

The high complexity of the evaluation process is caused

by the high number of operations carried out to generate the

body model pose, the projection of the silhouette and the

matching with the camera’s foreground image. This process

is repeated for every camera view and every tentative model

in the population of the evolutionary algorithm. Moreover,

the algorithm iterates to improve the fitness along a certain

number of generations until the limit of the number of

evaluations is reached. Eventually, the whole process is

repeated for every frame in the video sequence. Conse-

quently, this causes a high complexity and demands sig-

nificant computation resources. Therefore, it is necessary to

apply parallelization strategies to speedup this process.

4 CPU parallelization strategies

This section presents the parallelization strategies proposed to

speedup the evaluation of solutions using CPUs. First, the use

of CPU’s Streaming SIMD Extensions is presented. Second,

the use of multi-threading on multi-core CPUs is described.

4.1 Streaming SIMD extensions

The proper use of the SSE instructions has been shown to

yield high-performance levels [23]. The SIMD nature of the

SSE instruction set ideally suits for two major components

of the evaluation process. The former comprises the vertex

projection of the reference body model using the transfor-

mation matrix. The latter represents the XOR function of

the projected body model image and the foreground image.

4.1.1 Vertex projection

The vertex projection process involves the matrix multi-

plication between the vertices vt and the transformation

matrices vjc. The computational complexity is due to many

times this multiplication is performed. Code 1 shows the

naive matrix multiplication, and its corresponding SSE in-

struction set. These SSE instructions are capable of calcu-

lating the multiplication and sum of four values

concurrently. The _mm_load_ps function loads from

memory four single-precision floating-point values, repre-

senting a row of the transformation matrix. The _mm_-

mul_ps function multiplies each of the four values of the

transformation matrix with the vertex elements. The

_mm_hadd_ps function performs a horizontal add, meaning

that adjacent elements in the operand are added together.

Code 1: Naive and SSE matrix multiplication.

void matrixMul_naive(float* vT, float* v, float* M) {

vT[0]=v[0]*M[0] + v[1]*M[1] + v[2]*M[2] + v[3]*M[3];

vT[1]=v[0]*M[4] + v[1]*M[5] + v[2]*M[6] + v[3]*M[7];

vT[2]=v[0]*M[8] + v[1]*M[9] + v[2]*M[10] + v[3]*M[9];

vT[3]=v[0]*M[12] + v[1]*M[13] + v[2]*M[14] + v[3]*M[15];

}

void matrixMul_SSE(float* vT, float* v, float* M) {

__m128 row1,row2,row3,row4,in_out,a,b,c,d;

row1=_mm_load_ps(M);

row2=_mm_load_ps(M+4);

row3=_mm_load_ps(M+8);

row4=_mm_load_ps(M+12);

in_out=_mm_load_ps(v);

a=_mm_mul_ps(row1,in_out);

b=_mm_mul_ps(row2,in_out);

c=_mm_mul_ps(row3,in_out);

d=_mm_mul_ps(row4,in_out);

a=_mm_hadd_ps(a,b);

b=_mm_hadd_ps(c,d);

in_out=_mm_hadd_ps(a,b);

_mm_store_ps((float*) vT, in_out);

}

4.1.2 Fitness evaluation

The fitness evaluation (Eqs. 6 and 7) can be performed by a

pixelwise XOR operation that compares the body projec-

tions with the foreground images. Since image pixels are

represented by 8-bit values, the SSE instruction set can

provide an ideal speedup of 16. Code 2 shows the naive

XOR function of the images, and its parallelization using

the SSE instruction set.

The XOR function first loads 16 pixels (8-bit elements)

from the two images into two 128-bit registers using the

_mm_load_si128 function. Then, the _mm_sad_epu8

function computes the absolute difference of the 16 ele-

ments of the two registers. Since the feasible values are

8-bit integers (0 for black and 255 for white), the absolute

difference function actually behaves as a logical XOR

which indicates pixel error. Finally, we seek to count the

number of errors of the whole image. Thereby, the

_mm_sad_epu8 function also sums the XOR values pack-

ing two partial semi-sums, which are eventually added to

produce the error sum for the given 16 pixels. This process

is embedded in a loop to process the complete image, and it

is repeated for each of the camera views and each of the

body projections.

458 J Real-Time Image Proc (2018) 14:453–467

123

Code 2: Naive and SSE XOR function.

int xor_naive(char* image_1,char* image_2,int imgSize) {

int errorSum = 0;

for (int p = 0; p < imgSize; p++)

if(image_1[p] xor image_2[p]) errorSum++;

return errorSum;

}

int xor_SSE(__m128i* image_1,__m128i* image_2,

int imgSize) {

int errorSum = 0;

for (int p = 0; p< imageSize; image_1++, image_2++, p+=16) {

__m128i r1 = _mm_load_si128 (image_1);

__m128i r2 = _mm_load_si128 (image_2);

__m128i res = _mm_sad_epu8 (r1,r2);

errorSum += _mm_extract_epi16(res,0) +

_mm_extract_epi16(res,4);

}

return errorSum/255;

}

Pixels of binary images might use a 1-bit representation

to reduce the memory size. However, the time required to

convert from a 8-bit representation to a 1-bit representation

is high. Consider that mapping one bit into a 8-bit word

requires a mask operation. Therefore, mapping 8 bits re-

quires 8 mask operations on the same memory position,

i.e., atomic operations that are performed in sequential

order. Although the bitwise XOR would be faster, the

memory load/store instructions using a mask would in-

crease the total runtime.

4.2 Multi-core CPU

Microprocessor industry have moved to multi-core archi-

tectures to continue to increase the computational power of

their processors. Today, desktop CPUs are multi-core pro-

cessors usually having four cores capable of processing

multiple tasks concurrently. Taking advantage of the mul-

tiple cores of a CPU is a straightforward process usingmulti-

threading directives. Open multi-processing (OpenMP) is an

implementation of multi-threading, which forks a specified

number of slave threads and a task is divided among them.

The threads then run concurrently, with the runtime envi-

ronment allocating threads to different processors.

An efficient and commonly used parallelization strategy

using multi-core CPUs is the population parallel approach,

which operates by multiple candidate solutions being

evaluated in parallel by separate threads of execution.

Thereby, the population is divided into multiple chunks

that are evaluated in the multiple cores concurrently.

Code 3 shows the loop for the evaluation of the individuals

of the population. The #pragma omp parallel for directive

enables automatically the concurrent execution of the

evaluation of each individual using multiple threads that

take advantage of the multiple cores of the CPU.

Code 3: Population parallel approach using OpenMP.

void evaluate(float[][] population) {

#pragma omp parallel for

for(int i = 0; i < Nsolutions; i++) {

evaluate(population[i]);

}

}

5 GPU parallelization approaches

GPUs are intrinsically aimed for the parallel processing of

computer images and there are many opportunities to use

their power to speedup the evaluation of solutions. It must

be noted that using GPUs requires a certain amount of

communication and memory transfer overhead, which has

to be minimized in order to avoid delays. This is a disad-

vantage of GPU computing which in some cases causes a

CPU application to perform better than a GPU imple-

mentation even if the computation of the GPU is faster as

the memory transfer and communication overhead of some

applications cannot be hidden by the performance increase.

In this work, we propose a GPU parallelization approach

that proceeds as follows.

In an initial step, the reference body model (vertices and

joints) is copied to the GPU. Then, for each frame, the

foreground images are computed and transferred to the

GPU memory. Then, the evolutionary algorithm is run on

CPU and at some point it requires the solutions to be

evaluated. The GPU is then employed to evaluate the so-

lutions in parallel, producing the fitness values that are

passed to the evolutionary algorithm to compute the next

population set.

The work performed on the GPU is divided in the five

stages that are outlined in Code 4, where Ntb is the number

of threads per block of the grid (we employed 256 to

maximize the GPU occupancy), HtoD represents host to

device and DtoH device to host transfers. First, the set of

solutions that comprise the population are transferred to the

GPU. This small transaction is performed prior the

evaluation and comprises Ns � D � sizeof ðfloatÞ bytes,

where Ns stands for the number of solutions to be

evaluated. Second, the projection matrices vjc required for

the whole population are computed in parallel. Third, the

projections of the body vertices are computed. Fourth, the

fitness is evaluated using the XOR. Fifth, the fitness values

J Real-Time Image Proc (2018) 14:453–467 459

123

are transferred to CPU. This transaction comprises Ns �
sizeof ðfloatÞ bytes.

Due to space limitations, the kernel functions cannot be

displayed in the article document, and the reader is referred

to this website for further details.1

Code 4: GPU kernel calls.

// Copy population to GPU

cudaMemcpy(d_pop, h_pop, sizePopBytes, HtoD);

dim3 gridMatrix(Njoints,Ncameras);

matrix_computation <<< Nsolutions, gridMatrix >>>

(d_tmatrix, d_pop, ...);

dim3 gridProjection(Nvertices/Ntb,Ncameras,Nsolutions);

vertex_projection <<< gridProjection, Ntb >>>

(d_proj, d_vertices, d_tmatrix, ...);

dim3 gridFitness(Nsolutions, Ncameras);

fitness_evaluation <<< gridFitness, Ntb >>>

(d_fitness, d_proj, d_img, ...);

// Retrieve fitness values from GPU

cudaMemcpy(h_fitness,d_fitness, sizeFitnessBytes, DtoH);

5.1 Computation of the vjc matrices

As denoted in Sect. 3, a solution x encodes a translation

and a set of rotations which produce a transformation

matrix Tj for each of the body joints. These matrices are

multiplied by the camera extrinsics Ec and intrinsics Kc to

consider the cameras position and angles. The outcome is

the vjc matrices that projects all the points from V j to the

camera c. This process is implemented on the GPU in a 3D

kernel to compute the transformation matrices for each

body joint, solution, and camera view.

5.2 Vertex projection

Next, each vertex of the reference body model is multiplied

with the transformation matrix vjc of its body joint to pro-

duce the motion effect and camera projection. This process

is repeated for all the solutions encoded in the population

of the algorithm. The computational cost of this function is

given by the high number of vertices of the reference

model that are multiplied with the transformation matrices

for each camera view and solution. Fortunately, these

multiplications can be computed concurrently for every

vertex, camera view and solution on the GPU. A GPU

kernel function computes the vertex projections by means

of a 3D grid of threads. The first dimension is devoted to

represent every vertex of the skin, the second dimension

handles the projection for each of the camera views, and

the third dimension represents each of the solutions of the

population. Thereby, the kernel handles Nv � Nc � Ns com-

pute threads to project all the vertices for all the cameras

and all the solutions. Eventually, each vertex projection

results in a (x, y) point which is filled around with a small

patch to obtain a closed silhouette projection, as described

in Sect. 3.2. This kernel is time consuming since it com-

prises a very high number of threads, with multiple global

memory loads and stores.

According to the CUDA programming guide [27], it is

essential to guarantee the coalescing of global memory

accesses to achieve maximum performance. Global

memory loads and stores by threads are coalesced by the

device into as few transactions as possible. Therefore, we

guarantee that parallel threads running the same instruc-

tion access to consecutive locations in the global memory,

which is the most favorable access pattern. This happens

when loading the vertices from the reference pose V,
since consecutive threads compute consecutive vertices

projections. Moreover, it is also more efficient to repre-

sent vertices in V using a structure of arrays rather than

using an array of structures, to improve the memory ac-

cess pattern. Consequently, the vertices are stored as

½x1; x2; :::; xn�; ½y1; y2; :::; yn�; ½z1; z2; :::; zn� rather than

½x1; y1; z1�; ½x2; y2; z2�; :::; ½xn; yn; zn�.

5.3 Fitness evaluation

The fitness function measures the degree of overlap be-

tween the projected model and the foreground images us-

ing the pixelwise XOR operation (see Eqs. 6 and 7). The

GPU can be used to compute this process in parallel by

means of a 2D grid of threads whose dimension depends on

the image size (W � H) and the number of cameras Nc.

Thereby, the kernel handles W � H � Nc � Ns compute

threads. This kernel computes a very simple XOR function

among pixels but it comprises a massive number of threads.

Furthermore, there are SIMD instructions available in

CUDA that allow us to process multiple pixels at once.

Specifically, the __vabsdiff4() function allows for

evaluating the XOR on four pixels simultaneously, be-

having similar to the SSE instructions.

Memory coalescing is achieved by consecutive threads

computing consecutive pixels of the images, both when

loading pixels from the foreground and projection images

and when storing the XOR result. Finally, the results of the

XOR function are summed in parallel, which is known as a

1 Detailed information about the MMOCAP implementation, the

GPU kernels source code and experimental results is available at:

http://www.uco.es/grupos/kdis/wiki/MMOCAP.

460 J Real-Time Image Proc (2018) 14:453–467

123

http://www.uco.es/grupos/kdis/wiki/MMOCAP

reduction operation, to determine the error in the overlap-

ping of the images.

5.4 Multi-GPU

Similarly to the multi-core CPU approach presented in

Sect. 4.2, we can take advantage of the presence of mul-

tiple GPU devices. The population of solutions to be

evaluated can be divided into multiple chunks that are

delegated to several GPUs. Therefore, each GPU is re-

sponsible for the evaluation of (Ns=NGPUs) solutions.

Switching the compute context associated to the GPU

device is as simple as using the instruction

cudaSetDevice(deviceID).

Moreover, the process of computing the evaluation us-

ing multiple GPUs is completely independent one from

another. Therefore, there is no interdependency and com-

munications between the GPUs during the evaluation

process.

6 Results

The goal of our experimentation is two fold. On the one

hand, we aim at analyzing the speedup obtained by each

parallelization strategy. On the other hand, we examine

different parameter configurations to determine the one

with the most appropriate trade-off between accuracy and

runtime.

The rest of this Section is structured as follows. First, the

experimental setup and settings of the experiments are

presented. Then, the experiments conducted to determine

the speedup of the proposed parallelization strategies are

presented. Finally, a trade-off evaluation of the method

performance is analyzed and discussed.

6.1 Experimental setup

The experiments were run on a machine equipped with an

Intel Core i7-3820 quad-core processor running at 3.6 GHz

and 32 GB of DDR3-1600 host memory. The video cards

used were two dual-GPU NVIDIA GTX 690 equipped each

one with 4 GB of GDDR5 video RAM and 3,072 CUDA

cores. The host operating system was GNU/Linux Ubuntu

12.10–64 bit along with CUDA 5.5, NVIDIA drivers

310.40, and GCC compiler 4.6.3.

The experimental study has been carried out using the

HumanEva-I dataset [4], which has been actively used in

the community in the last years [41, 42, 43]. It contains 7

calibrated video streams recorded at 60 FPS of 4 subjects

performing different common actions (e.g. walking, jog-

ging, gesturing, etc.). During the recordings, the subjects

wore reflective markers placed at key positions of the

anatomy that were captured by a motion capture system.

We have selected the walking and gesturing sequences of

subjects S1, S2 and S3 for our evaluation.

A three-dimensional model of each subject has been

created using the makehuman software [44]. For each

video sequence, the model has been manually initialized to

fit the subject in the first frame. Given the model in its

initial position, we added points to the skin model corre-

sponding to the locations of the reflective markers.

Therefore, the error in subsequent frames can be obtained

as the distance from these points to their ground-truth po-

sitions. As proposed by the creators of HumanEva, the

error metric employed is the averaged absolute distance

between the real positions of the n markers being tracked

X, and their estimated positions X̂:

dðX; X̂Þ ¼ 1

n

Xn
i¼1

jjxi � x̂ijj: ð8Þ

Equation 8 provides an error measure in a single frame of

the sequence. It is employed to calculate the tracking error

of a complete sequence as the average of all its frames.

Finally, we have employed the CMAES algorithm,

which has recently been reported to obtain the best re-

sults [13] for the MMOCAP problem.

6.2 Speedup analysis

The purpose of this experimentation is to analyze the

performance, accuracy and scalability of the parallelization

strategies. In addition, we analyze the performance of each

strategy with regard to the body mesh resolution. The

higher the number of model vertices, the more accurate its

projection is, but also, more computing time is required.

So, we are interested in determining the number of vertices

to achieve an appropriate trade-off between accuracy and

performance.

For that purpose, each parallelization strategy has been

tested in each one of the selected HumanEva sequences 10

times, using 500, 1500, 3000 and 5000 fitness evaluations,

and body meshes with 27393, 20544 and 13695 vertices.

The CMAES algorithm has been run using the parameters

indicated in [13].

Table 1 shows the average runtime (in milliseconds) of

each strategy in evaluating a video frame, i.e., the time

employed in evaluating all the solutions plus the time

employed by the CMAES algorithm. Additionally, the

table shows the average runtime employed exclusively in

evaluating the solutions, and the speedups achieved as

compared with the CPU naive approach. Each column

represents a computation strategy whereas each row rep-

resents a configuration of the evolutionary algorithm re-

garding the number of evaluations to compute. Results are

grouped by each of the three mesh resolution sizes.

J Real-Time Image Proc (2018) 14:453–467 461

123

The first column shows the times of the CPU naive

approach, which demanded a minimum of 1.7 seconds for

the simplest scenario: 500 evaluations and 13695 vertices.

On the other hand, the most complex scenario (5000

evaluations and the highest number of vertices) demanded

more than 20 seconds to process a single frame. It is shown

that most of the frame evaluation time is devoted to the

evaluation of the solutions. The second column shows the

CPU times using the SSE instruction set to compute in

parallel the vertex projection and the XOR function of the

projected and captured images. The SSE instruction set

enabled to approximately double the performance of the

CPU naive code in all scenarios. The third column shows

the CPU times using the multi-threading strategy and the

population parallel approach. The multi-core CPU we used

in the experimentation is comprised by four cores. There-

by, the performance obtained is nearly 4 times the CPU

naive sequential approach (small overhead is introduced

due to thread creation/join procedure). The fourth column

shows the performance of both CPU parallel approaches

combined, resulting in significantly better performance.

The frame evaluation time is reduced to 210 ms and 3.1

seconds, respectively, to the previous configuration sce-

narios. It is important to highlight that CMAES runtime is

negligible when using CPU approaches, since the solu-

tions’ evaluation times are much higher in magnitude.

The remaining columns evaluate the performance of the

GPU-based approach using one, two, and four GPU de-

vices. The single GPU performance significantly reduces

the computation time in all scenarios, and performs faster

than the best CPU-based approach. The performance when

using two and four GPU devices is increased and allows for

reducing even further the evaluation time. At this point, it

is essential to differentiate between the frame and

Table 1 Computing times (in ms) employed by each strategy in evaluating a frame, the fraction of that time employed in evaluating the

solutions, and the speedup as compared with the CPU naive approach

Number of

evaluations

Evaluation

scope

Configuration setup

CPU

naive

CPU SSE CPU threads CPU threads

SSE

1 GPU 2 GPUs 4 GPUs

27,393 vertices

500 Frame 2,061 1,080 (1.9 9) 638 (3.29) 332 (6.29) 90 (22.99) 56 (36.89) 37 (55.79)

Solutions 2,046 1,065 (1.99) 623 (3.39) 318 (6.49) 80 (25.69) 45 (45.59) 26 (78.79)

1,500 Frame 6,195 3,228 (1.99) 1,840 (3.49) 941 (6.69) 258 (24.09) 148 (41.99) 92 (67.39)

Solutions 6,141 3,173 (1.99) 1,787 (3.49) 887 (6.99) 235 (26.19) 125 (49.19) 69 (89.09)

3,000 Frame 12,188 6,293 (1.99) 3,667 (3.39) 1,869 (6.59) 514 (23.79) 293 (41.69) 179 (68.19)

Solutions 12,076 6,184 (2.09) 3556 (3.49) 1767 (6.89) 470 (25.79) 249 (48.59) 135 (89.59)

5,000 Frame 20569 1,0491 (2.09) 6174 (3.39) 3119 (6.69) 852 (24.19) 484 (42.59) 294 (70.09)

Solutions 20,387 10,292 (2.09) 5979 (3.49) 2941 (6.99) 782 (26.19) 414 (49.29) 224 (91.09)

20,544 vertices

500 Frame 2,011 1,011 (2.09) 562 (3.69) 283 (7.19) 81 (24.89) 49 (41.09) 33 (60.99)

Solutions 1,996 9,96 (2.09) 547 (3.69) 268 (7.49) 70 (28.59) 38 (52.59) 22 (90.79)

1,500 Frame 5,995 2,982 (2.09) 1,702 (3.59) 858 (7.09) 235 (25.59) 134 (44.79) 84 (71.49)

Solutions 5,943 2,930 (2.09) 1,649 (3.69) 801 (7.49) 212 (28.09) 111 (53.59) 61 (97.49)

3,000 Frame 11,984 5,909 (2.09) 3,391 (3.59) 1,690 (7.19) 452 (26.59) 254 (47.29) 158 (75.89)

Solutions 11,883 5,795 (2.19) 3,272 (3.69) 1,586 (7.59) 408 (29.19) 210 (56.69) 114 (104.29)

5,000 Frame 20,051 9,870 (2.09) 5,647 (3.69) 2,799 (7.29) 747 (26.89) 419 (47.99) 259 (77.49)

Solutions 19,857 9,687 (2.09) 5,450 (3.69) 2,614 (7.69) 678 (29.39) 350 (56.79) 190 (104.59)

13,695 vertices

500 Frame 1,706 825 (2.19) 475 (3.69) 226 (7.59) 71 (24.09) 42 (40.69) 29 (58.89)

Solutions 1,692 810 (2.19) 461 (3.79) 210 (8.19) 60 (28.29) 31 (54.69) 18 (94.09)

1,500 Frame 5,128 2,441 (2.19) 1,419 (3.69) 672 (7.69) 210 (24.49) 118 (43.59) 75 (68.49)

Solutions 5,072 2,386 (2.19) 1,366 (3.79) 621 (8.29) 187 (27.19) 95 (53.49) 53 (95.79)

3,000 Frame 10,150 4,826 (2.19) 2,832 (3.69) 1,341 (7.69) 413 (24.69) 230 (44.19) 145 (70.09)

Solutions 10,032 4,711 (2.19) 2,721 (3.79) 1,224 (8.29) 369 (27.29) 186 (53.99) 101 (99.39)

5,000 Frame 17,002 8,029 (2.19) 4,713 (3.69) 2,203 (7.79) 637 (26.79) 351 (48.49) 222 (76.69)

Solutions 16,810 78,34 (2.19) 4,536 (3.79) 2,006 (8.49) 561 (30.09) 280 (60.09) 152 (110.69)

462 J Real-Time Image Proc (2018) 14:453–467

123

solutions’ evaluation times. After parallelization, the so-

lutions’ evaluation times have been significantly reduced,

but CMAES represents now a high percentage of the total

runtime. Therefore, we focus specifically on the solutions’

evaluation times. It is shown that the 500 evaluations’

scenarios are reduced to 80, 45, and 26 ms when using 1, 2

and 4 GPUs, respectively. These results define multiple

speedups as we relate CPU and GPU times. For instance,

the single GPU performance as compared with the CPU

parallel ? SSE is as low as 3.3� faster and as high as 4.0�.

On the other hand, the 4-GPUs performance as compared

with the naive CPU is as low as 78� faster and as high as

110�.

As for the GPU kernels computing time, the application

was profiled using the NVIDIA Visual Profiler software. It

reported that 3 % of the duration was devoted to the

computation of the vjc matrices, 77 % to the vertex pro-

jection, 12 % to the fitness evaluation, 6 % to memory

initialization and 2 % to the memory transfers between host

and devices memories.

As can be seen, the efficiency increases as the number of

evaluations increase, which means the better performance

of the GPU-based solutions on high demanding and com-

plex configurations. However, we should also note the

limitations of the GPUs configuration. The scalability to

multiple GPUs is appropriate when splitting computation

from one to two GPUs, but efficiency is reduced after using

four GPUs. This decrease in the efficiency is due to the

overhead and synchronization times among the multiple

GPUs. Similar behavior is shown in computer games when

using multiple GPUs.

Performance on video rendering and analysis is usually

measured as the number of frames per second (FPS) that

the system is capable of processing. Therefore, we should

also report results in such terms. FPS values are obtained

by means of the inverse of the total frame evaluation time.

Figure 3 shows the FPS for the different number of

evaluations using a mesh size with 27393 vertices. Paral-

lelization using GPUs is shown to perform as fast as 27.3

FPS, which is significantly faster than the naive CPU

performance at 0.5 FPS, or the multi-threading CPU with

SSE at 3.0 FPS for the same scenario when using 500

evaluations. Thereby, GPUs state a major step on in-

creasing computation efficiency of the frame evaluation.

However, computation power of GPUs is still not

enough to achieve real-time performance. Video sequences

were originally recorded at 60 FPS, and therefore we

should expect a compute system capable of processing at

such high speeds. Nevertheless, advances on hardware

manufacturing industry make us believe that the goal of

real-time performance may be achieved within few years.

Moreover, real-time performance may be also achieved

using more GPU devices and by distributing computation.

However, this would impact in the economic costs of the

system as it would require to buy additional hardware de-

vices. Therefore, we provide readers an idea on the best

option to choose according to their computing time re-

quirements and available budget.

6.2.1 Comparison with OpenGL

OpenGL is a widely used general purpose rendering engine

that has been employed in the MMOCAP problem for

rendering the models [45, 46, 47]. Thus, it is important to

compare the performance of the proposed method with an

OpenGL implementation for the same task.

In an initial step, the proposed OpenGL approach

uploads the foreground images as textures to the GPU and

creates vertex buffer objects for the vertices constituting

the model. This reduces to minimum the CPU–GPU in-

tercommunication. For each model to be evaluated, we first

render the body model (as triangle meshes) in a texture

buffer. Then, the texture buffer and the foreground texture

are both applied to a quad covering the whole image. When

applying the texture, a fragment shader computing the

XOR function is employed. The fragment shader uses an

Fig. 3 FPS performance for different number of evaluations

Table 2 Computing times employed for rendering a model and

computing the XOR once

Method Proj. (ms) XOR (ms) Total (ms) Speedup

CPU 0.27533 0.27129 0.54662 –

CPUSSE 0.23171 0.02872 0.26043 2.10�
OpenGL 0.17992 0.05925 0.23917 2.29�
CPUthrds 0.07024 0.07010 0.14034 3.90�
CPUthrdsþSSE 0.06487 0.00820 0.07307 7.48�
1 GPU 0.01796 0.00269 0.02065 26.47�
2 GPUs 0.00908 0.00136 0.01044 52.38�
4 GPUs 0.00458 0.00068 0.00526 103.91�

J Real-Time Image Proc (2018) 14:453–467 463

123

atomic counter (option added in OpenGL 4.2) to count the

number of pixels in both images that are different. Finally,

the only value to be passed from GPU to CPU is the atomic

counter (4 bytes). To take advantage of the parallelization

capabilities of the GPU, our GPU implementation renders

multiple models simultaneously. The code employed is

publicly available from http://www.uco.es/grupos/kdis/

wiki/MMOCAP.

Table 2 shows the computing times required to project

and computes the XOR function once (in one view) for all

the methods (including the CPU–GPU memory transfer

times). In particular, for the OpenGL approach, the total

time is divided into 75 % for rendering the texture and the

rest for computing the XOR. As can be seen, the OpenGL

approach is, in general, less competitive than the other

approaches. Moreover, it is also interesting to highlight the

performance of the SSE instructions when applied to the

XOR.

An alternative OpenGL implementation employing

points instead of triangles (using the same number of points

than triangle vertices) has been also tested. The result is

that the point-based implementation is significantly slower

than the triangle-based one. A possible explanation is that

the point primitive is less optimized than the triangle pri-

mitive in modern graphic cards. With regards to quality of

the generated silhouettes with both methods, it is worth to

mention that tests were run using the maximum resolution

(27393 vertices), which implies small triangles since the

vertices are very close to each other. So, the quality of the

point-based silhouette is very similar to the triangle-based

one. An example of the silhouettes obtained with our

method can be seen in Fig. 2(c). The code available online

lets the user to test both implementations.

Finally, it must be mentioned that it is possible to use

multiple GPUs via SLI. However, this option was tested

obtaining worse performance when enabled. Also, while

some cards allow specific vendor extensions for OpenGL

parallelization, this feature is limited to specific high end

cards (e.g. the NVIDIA Quadro cards), whereas our GPUs

are regular ones.

6.3 Error analysis

Accuracy and runtime of frame evaluation is a conflicting

problem. To obtain more accurate models, the complexity

and resolution of the 3D body model, and the number of

evaluations of the algorithm are increased. However, this

involves a higher number of calculations that conduct to

longer runtime. Therefore, it is necessary to achieve a

trade-off between the accuracy and the frame evaluation

time.

Table 3 shows the error rate obtained on the six se-

quences of the HumanEva-I dataset. Errors are measured as

indicated in Eq. 8 as the averaged absolute distance (in

meters) between the real positions of the markers being

tracked and their estimated positions. All experiments were

repeated 10 times with different seeds and the mean error is

provided. Each column belongs to a given configuration

regarding the mesh size and the number of evaluations.

These results correspond to the evaluation times shown in

Table 1. Results clearly indicate that increasing the number

of evaluations reduces the error, whereas decreasing the

resolution of the mesh increases the error rate. The bottom

rows show the average error for the six sequences and the

ranks for each configuration. Rank values are obtained

according to the Friedman’s statistical test [48, 49], which

allow to perform a direct comparison of performance. The

lower the rank value, the better the performance of the

configuration. The best-ranked solution, which also obtains

the lowest average error is the 5000 evaluations solution

with the highest mesh size. However, this configuration is

also the slowest according to Table 1 since it involves a

very high number of evaluations. Therefore, we should find

other configurations that provide a better trade-off.

The conflicting problem of obtaining the best accuracy

at the lower computational cost can be addressed as a

Table 3 Error rate (in meters) for multiple configurations: number of evaluations and number of vertices

Video 27393 vertices 20544 vertices 13695 vertices

Sequence 500 1,500 3,000 5,000 500 1,500 3,000 5,000 500 1,500 3,000 5,000

s1_gestures 0.0323 0.0317 0.0318 0.0310 0.0377 0.0390 0.0371 0.0381 0.0387 0.0386 0.0392 0.0394

s1_walking 0.0830 0.0486 0.0447 0.0428 0.0742 0.0541 0.0428 0.0467 0.0642 0.0550 0.0437 0.0442

s2_gestures 0.0784 0.0571 0.0498 0.0500 0.0833 0.0750 0.0669 0.0673 0.0828 0.0714 0.0730 0.0599

s2_walking 0.0696 0.0508 0.0376 0.0372 0.0716 0.0437 0.0383 0.0354 0.0640 0.0479 0.0504 0.0378

s3_gestures 0.0468 0.0379 0.0373 0.0372 0.0609 0.0393 0.0412 0.0393 0.0613 0.0400 0.0400 0.0397

s3_walking 0.1118 0.0730 0.0682 0.0665 0.1179 0.0799 0.0690 0.0675 0.1125 0.0981 0.0811 0.0787

Avg. Error 0.0703 0.0499 0.0449 0.0441 0.0743 0.0552 0.0492 0.0490 0.0706 0.0585 0.0546 0.0500

Ranks 9.50 4.83 2.83 1.50 10.67 7.33 4.83 4.50 10.50 8.00 7.50 6.00

464 J Real-Time Image Proc (2018) 14:453–467

123

http://www.uco.es/grupos/kdis/wiki/MMOCAP
http://www.uco.es/grupos/kdis/wiki/MMOCAP

multi-objective problem. Multi-objective optimization is

concerned with the simultaneous optimization of more than

one objective function [50]. Therefore, there is no single

best solution to the problem, but a set of non-dominated

solutions known as Pareto optimal front. Given a set of

objective functions F ¼ ff1; f2; f3; :::; fng, a solution s be-

longs to the front if there is no other solution s0 that

dominates it. A solution s0 dominates s if and only if fiðs0Þ
is equal or better than fiðsÞ8 f 2 F and fiðs0Þ is strictly better
than fiðsÞ for at least one objective.

Figure 4 shows the multiple configurations evaluated,

located according to their ranking with regard to the run-

time and the error rate. Solutions belonging to the Pareto

front are linked together. All solutions belonging to the

Pareto front are said to be equally good. However, it is

known that extreme solutions are fast and inaccurate or

slow and very accurate. Eventually, a single configuration

with good trade-off should be provided by default. Thus,

we would recommend the one having 1500 evaluations and

27393 vertices because it provides both accurate results

and relatively fast runtime. This configuration agrees with

the proposed in [13] as the best performance solution.

A visual example of the results obtained by the algo-

rithm is presented in Fig. 5. It shows the tracking results

obtained for two frames of the walking sequence of the

subject S1 when employing the recommended configura-

tion with 1500 evaluations. The body joints are linked with

a white line and the vertices of the mesh are shown colored.

7 Conclusions

This paper presented an efficient and parallelizable ap-

proach to evaluate the solutions in the MMOCAP problem.

Our approach consists in approximating the triangle body

meshes by rectangular patches that are easily drawn and

computed. In addition, strategies to parallelize the com-

putation both in CPUs and GPUs were proposed. First, we

proposed a strategy based on the CPU’s Streaming SIMD

Extensions (SSE) instruction set, which demonstrated

double performance. Second, we proposed an strategy us-

ing multi-threading on multi-core CPUs, which showed to

speedup model evaluation up to 4 times. Third, we pre-

sented a GPU strategy scalable to multiple devices. A total

of 4 GPUs were used to collaborate, providing a speedup of

up to 110� faster than the naive CPU code. The paral-

lelization approaches proposed also demonstrated better

performance than an efficient OpenGL implementation.

Moreover, we experimented multiple algorithm’s con-

figuration and body mesh resolution sizes, which allowed

for analyzing the performance impact of varying the

number of evaluations and the number of body model

vertices. Accuracy and runtime were two conflicting ob-

jectives for the MMOCAP problem, and we established a

Pareto front of solutions offering different levels of trade-

off. Eventually, the user is allowed for selecting the con-

figuration setup which best matches his needs in terms of

obtaining accurate but slow solutions, or fast and less ac-

curate solutions. A trade-off solution producing both ac-

curate and fast results is proposed as recommended

configuration.

As for the future work, it would be interesting to com-

pare the performance of the proposal with FPGA-based

implementations that allow for efficient single-bit

operations.

Acknowledgments This research was supported by the Spanish

Ministry of Science and Technology, projects TIN-2011-22408 and

Fig. 4 Time vs. error plot of configurations. Solutions from/to the

optimal Pareto front are linked together

Fig. 5 Tracking results obtained in the walking sequence S1

J Real-Time Image Proc (2018) 14:453–467 465

123

TIN-2012-32952, and by FEDER funds. This research was also

supported by the Spanish Ministry of Education under FPU grant

AP2010-0042.

References

1. Multon, F., Kulpa, R., Hoyet, L., Komura, T.: Interactive

animation of virtual humans based on motion capture data. J. Vis.

Comput. Animat. 20(5–6), 491–500 (2009)

2. Zhou, H., Huosheng, H.: Human motion tracking for rehabilita-

tion-a survey. Biomed. Signal Process. Control. 3(1), 1–18 (2008)
3. Moeslund, T.B., Hilton, A., Krüger, V.: A survey of advances in

vision-based human motion capture and analysis. Comput. Vis.

Image Underst. 104, 90–126 (2006)

4. Sigal, L., Balan, A.O., Black, M.J.: Humaneva: synchronized

video and motion capture dataset and baseline algorithm for

evaluation of articulated human motion. Int. J. Comput. Vis. 87,
4–27 (2010)

5. Isard, M., Blake, A.: Condensation—conditional density propaga-

tion for visual tracking. Int. J. Comput. Vis. 29, 5–28 (1998)

6. Deutscher, J., Reid, I.: Articulated body motion capture by

stochastic search. Int. J. Comput. Vis. 61(2), 185–205 (2005)

7. Corazza, S., Mündermann, L., Chaudhari, A., Demattio, T., Co-

belli, C., Andriacchi, T.: A markerless motion capture system to

study musculoskeletal biomechanics: visual hull and simulated

annealing approach. Ann. Biomed. Eng. 34(6), 1019–1029 (2006)
8. John, M., Michael I.: Partitioned sampling, articulated objects,

and interface-quality hand tracking. In: Proceedings of the 6th

European Conference on Computer Vision-Part II, ECCV ’00,

pp 3–19. Springer, London (2000)

9. Jan, B., Florian, E., Michael B.: Evaluation of hierarchical sam-

pling strategies in 3D human pose estimation. In: Proceedings of

the 19th British Machine Vision Conference, pp. 1–10 (2008)

10. Lozano, M., Molina, D., Herrera, F. (eds.): Special issue on

scalability of evolutionary algorithms and other metaheuristics

for large-scale continuous optimization problems. Soft comput-

ing, vol. 15. Springer, Berlin/Heidelberg (2011)

11. John, V., Trucco, E., Ivekovic, S.: Markerless human articulated

tracking using hierarchical particle swarm optimisation. Image

Vis. Comput. 28(11), 1530–1547 (2010)

12. Zhao, X., Liu, Y.: Generative tracking of 3D human motion by

hierarchical annealed genetic algorithm. Pattern Recognit. 41(8),
2470–2483 (2008)

13. Yeguas-Bolivar, E., Muñnoz-Salinas, R., Medina-Carnicer, R.,

Carmona-Poyato, A.: Comparing evolutionary algorithms and

particle filters for markerless human motion capture. Appl. Soft

Comput. 17, 153–166 (2014)

14. Hansen, N.: The CMA evolution strategy: a comparing review. In:

Lozano, J.A., Larranaga, P., Inza, I., Bengoetxea, E., (eds.) Towards

a new evolutionary computation. Advances on Estimation of

Distribution Algorithms, pp. 75–102. Springer, Berlin (2006)

15. Kenneth, V., Price, R.M.S., Jouni A.L.: Differential evolution a

practical approach to global optimization. In: The Differential

Evolution Algorithm, pp. 37–134. Natural Computing Series.

Springer, Berlin (2005)

16. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Pro-

ceedings IEEE International Conference on Neural Networks,

vol. 4, pp. 1942–1948 (1995)

17. Chang, I.-C., Lin, S.-Y.: 3D human motion tracking based on a

progressive particle filter. Pattern Recognit. 43(10), 3621–3635
(2010)

18. Gall, J., Rosenhahn, B., Brox, T., Seidel, H.-P.: Optimization and

filtering for human motion capture. Int. J. Comput. Vis. 87(1–2),
75–92 (2010)

19. Cappozzo, A., Ugo D.C., Alberto L., Lorenzo C.: Human

movement analysis using stereophotogrammetry: Part 1: theore-

tical background. Gait Posture. 21(2), 186–196 (2005)

20. Chiari, L., Ugo D.C., Alberto L., Aurelio C.: Human movement

analysis using stereophotogrammetry: Part 2: Instrumental errors.

Gait Posture. 21(2), 197–211 (2005)

21. Ugo, D.C, Alberto, L., Lorenzo, C., Aurelio, C.: Alberto Leardini,

Lorenzo Chiari, and Aurelio Cappozzo. Human movement ana-

lysis using stereophotogrammetry: Part 4: assessment of anato-

mical landmark misplacement and its effects on joint kinematics.

Gait Posture. 21(2), 226–237 (2005)

22. Leardini, A., Chiari, L., Ugo D.C., Aurelio C.: Human movement

analysis using stereophotogrammetry: Part 3. soft tissue artifact

assessment and compensation. Gait Posture. 21(2), 212–225

(2005)

23. Chitty, D.M.: Fast parallel genetic programming: Multi-core cpu

versus many-core gpu. Soft Comput. 16(10), 1795–1814 (2012)

24. Creel, M., Goffe, W.L.: Multi-core CPUs, clusters, and grid

computing: a tutorial. Comput. Eco. 32(4), 353–382 (2008)

25. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Skadron,

K.: A performance study of general-purpose applications on

graphics processors using CUDA. J. Parallel Dist. Comput.

68(10), 1370–1380 (2008)

26. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krger, J.,

Lefohn, A.E., Purcell, T.J.: A survey of general-purpose computa-

tion ongraphics hardware. Comput.Gr. Forum 26(1), 80–113 (2007)
27. NVIDIA Corporation. NVIDIA CUDA Programming and Best

Practices Guide. http://www.nvidia.com/cuda (2014)

28. Rymut, B., Kwolek, B.: GPU-supported object tracking using

adaptive appearance models and particle swarm optimization. In:

Proceedings of the 2010 international conference on Computer

vision and graphics: Part II, ICCVG’10, pp. 227–234 (2010)

29. Krzeszowski, T., Kwolek, B., Wojciechowski, K.: GPU-acceler-

ated tracking of the motion of 3D articulated figure. Comput. Vis.

Gr. pp. 155–162 (2010)

30. Luca, M., Spela, I., Stefano, C.: Markerless articulated human

body tracking from multi-view video with GPU-PSO. In: Gian-

luca, T., Andy, M.T., Julian F.M., (eds.) Evolvable systems: from

biology to hardware, vol. 6274, Lecture Notes in Computer

Science, pp. 97–108 (2010)

31. Rymut, B., Kwolek, B., Krzeszowski, T.: GPU-accelerated hu-

man motion tracking using particle filter combined with PSO.

Advanced concepts for intelligent vision systems. Lect. Notes

Comput. Sci. 8192, pp. 426–437 (2013)

32. Zhou, Y., Tan, Y.: GPU-based parallel particle swarm opti-

mization. In: IEEE Congress on Evolutionary Computation,

pp. 1493–1500 (2009)

33. Ugolotti, R., Youssef S.G.N., Pablo M., Lvekovi, P., Luca M.,

Stefano C.: Particle swarm optimization and differential evolu-

tion for model-based object detection. Appl. Soft Comput. 13(6),
3092–3105 (2013)

34. Zheng, Z., Hock, S.S.: Cuda acceleration of 3D dynamic scene

reconstruction and 3D motion estimation for motion capture. In:

IEEE 18th International Conference on Parallel and Distributed

Systems (ICPADS), pp. 284–291 (2012)

35. Zhang, Z., Hock, S.S, Chee K.Q., Jixiang, S.: GPU-accelerated

real-time tracking of full-body motion with multi-layer search.

IEEE Trans. Multimed. 15, 106–119 (2013)

36. Ganapathi, V., Plagemann, C., Koller, D., Thrun, S.: Real time

motion capture using a single time-of-flight camera. In: IEEE

Conference on Computer Vision and Pattern Recognition,

pp. 755–762 (2010)

37. Diaz-Mas, L., Madrid-Cuevas, F.J., Muñoz-Salinas, R., Carmona-

Poyato, A., Medina-Carnicer, R.: An octree-based method for

shape from inconsistent silhouettes. Pattern Recognit. 45(9),
3245–3255 (2012)

466 J Real-Time Image Proc (2018) 14:453–467

123

http://www.nvidia.com/cuda

38. Diaz-Mas, L., Muñoz-Salinas, R., Medina-Carnicer, R., Madrid-

Cuevas, F.J.: Shape from silhouette using dempster-shafer theory.

Pattern Recognit. 43(6), 2119–2131 (2010)

39. Muñoz-Salinas, R., Yeguas-Bolivar, E., Diaz-Mas, L., Medina-

Carnicer, R.: Shape from pairwise silhouettes for plan-view map

generation. Image Vis. Comput. 30(2), 122–133 (2012)

40. Horprasert, T., Harwood, D., Davis, L.S.: A statistical approach

for real-time robust background subtraction and shadow detec-

tion. In: 7th IEEE International Conference on Computer Vision,

Frame Rate Workshop (ICCV ’99), pp. 1–19 (1999)

41. Grégory, R., Carlos O.-U., Martı́nez-del Rincón, J.: A spatio-

temporal 2D-models framework for human pose recovery in

monocular sequences. Pattern Recognit. 41, 2926–2944 (2008)

42. Sundaresan, A., Chellappa, R.: Model driven segmentation of

articulating humans in laplacian eigenspace. IEEE Trans. Pattern

Anal. Mach. Intell. 30, 1771–1785 (2008)

43. Zhao, X., Liu, Y.: Generative tracking of 3d human motion by

hierarchical annealed genetic algorithm. Pattern Recognit. 41,
2470–2483 (2008)

44. Manuel, B., Marc F., Jose C.: Makehuman Team. http://www.

makehuman.org/ (2014)

45. Maeda, T., Yamasaki, T., Aizawa, K.: Model-based analysis and

synthesis of time-varying mesh. Lect. Notes Comput. Sci. 5098,
112–121 (2008)

46. Schmaltz, C., Rosenhahn, B., Brox, T., Weickert, J., Wietzke, L.,

Sommer, G.: Dealing with self-occlusion in region based motion

capture by means of internal regions. Lect. Notes Comput. Sci.

5098, 102–111 (2008)

47. Shaheen, M., Gall, J., Strzodka, R., Van G.L., Seidel, H.P.: A

comparison of 3D model-based tracking approaches for human

motion capture in uncontrolled environments. Appl. Comput. Vis.

pp. 1–8 (2009)

48. Demšar, J.: Statistical comparisons of classifiers over multiple

data sets. J. Mach. Learn Res. 7, 1–30 (2006)

49. Garcı́a, S., Fernández, A., Luengo, J., Herrera, F.: Advanced

nonparametric tests for multiple comparisons in the design of

experiments in computational intelligence and data mining: ex-

perimental analysis of power. Inf. Sci. 180(10), 2044–2064

(2010)

50. Kalyanmoy D.: Multi-objective optimization. In: Edmund, K.B.,

Graham, K., (eds.) Search methodologies, pp. 273–316. Springer,

Berlin (2005)

J Real-Time Image Proc (2018) 14:453–467 467

123

http://www.makehuman.org/
http://www.makehuman.org/

	Parallelization strategies for markerless human motion capture
	Abstract
	Introduction
	Background
	Optimization approaches
	Parallelization approaches

	Problem formulation
	Foreground estimation
	Model projection
	Fitness evaluation

	CPU parallelization strategies
	Streaming SIMD extensions
	Vertex projection
	Fitness evaluation

	Multi-core CPU

	GPU parallelization approaches
	Computation of the \chi _c^j matrices
	 Vertex projection
	Fitness evaluation
	Multi-GPU

	Results
	Experimental setup
	Speedup analysis
	Comparison with OpenGL

	Error analysis

	Conclusions
	Acknowledgments
	References

