
ORIGINAL RESEARCH PAPER

Accelerated hyperspectral image recursive hierarchical
segmentation using GPUs, multicore CPUs, and hybrid
CPU/GPU cluster

M. A. Hossam • H. M. Ebied • M. H. Abdel-Aziz •

M. F. Tolba

Received: 6 March 2014 / Accepted: 14 October 2014 / Published online: 2 November 2014

� Springer-Verlag Berlin Heidelberg 2014

Abstract Rescue missions, military target detection,

hazard prevention, and other time-critical remote-sensing

applications require real-time or autonomous decision

making and onboard processing capabilities. Thus, light-

weight, small size, and low-power-consumption hardware

is essential for onboard real-time processing systems. With

the increasing need for dimensionality, size, and resolution

of hyperspectral sensors, additional challenges are posed

upon remote-sensing processing systems, and more capable

computing architectures are needed. Graphical processing

units (GPUs) emerged as promising architecture for light-

weight high-performance computing. In this paper, we

propose accelerated parallel solutions for the well-known

recursive hierarchical segmentation (RHSEG) analysis

algorithm, using a GPU, hybrid multicore CPU with GPU

and hybrid multicore CPU/GPU clusters. RHSEG is a

method developed by the National Aeronautics and Space

Administration, which is designed to provide more useful

classification information with related objects and regions

across the hierarchy of output levels. The proposed

solutions are built using the NVidia’s compute unified

device architecture and Microsoft’s C?? Accelerated

Massive Parallelism (C?? AMP) and are tested using

NVidia GeForce hardware and Amazon Elastic Compute

Cluster (EC2). The achieved speedups by parallel solutions

compared with CPU sequential implementations are 219

for parallel single GPU and 2409 for hybrid multinode

computer clusters with 16 computing nodes. The energy

consumption is reduced to 74 % when using a single GPU,

compared to that for the equivalent parallel CPU cluster.

Keywords Multicore � GPU � RHSEG algorithm �
Clustering � Onboard processing

1 Introduction

Remote-sensing applications whether airborne or space

borne provide huge benefits for important missions in a

wide spectrum of fields ranging from scientific research,

security and defense, agriculture, civil services, environ-

mental studies, and exploration. Some of these applications

are time critical and require real-time or autonomous

decision making, such as search and rescue missions, target

detection of military and defense deployment, risk or

hazard prevention, wild land fire tracking, biological threat

detection, and the monitoring of chemical contamination

such as oil spills.

Therefore, onboard processing is needed such that a

significant portion of remote-sensing data analysis is car-

ried out on the vehicle, allowing for optional autonomous

actions before sending data and feedback to the ground

control station. The goal of the remote-sensing mission is

always toward achieving smaller size, lower cost, flexible,

and high computational power onboard processing. Instead

M. A. Hossam � M. H. Abdel-Aziz

Basic Sciences Department, Faculty of Computer and

Information Sciences, Ain Shams University, Abbasia,

Cairo 11566, Egypt

e-mail: mahmoud.hossam@gmail.com

M. H. Abdel-Aziz

e-mail: mhaziz67@gmail.com

H. M. Ebied (&) � M. F. Tolba

Scientific Computing Department, Faculty of Computer and

Information Sciences, Ain Shams University, Abbasia,

Cairo 11566, Egypt

e-mail: hala_mousher@hotmail.com; halam@fcis.asu.edu.eg

M. F. Tolba

e-mail: fahmytolba@cis.asu.edu.eg

123

J Real-Time Image Proc (2018) 14:413–432

https://doi.org/10.1007/s11554-014-0464-4

http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-014-0464-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-014-0464-4&domain=pdf
https://doi.org/10.1007/s11554-014-0464-4

of storing and forwarding all the captured images from

onboard sensors, data processing can be performed

onboard prior to downlink, resulting in the reduction of a

communication bandwidth with simpler subsequent com-

putations to be performed at the ground stations [1].

A recent development in remote sensing is the intro-

duction of hyperspectral imaging [2], in which images

contain a large number, usually hundreds of measured

wavelength bands, so that they provide plenty of spectral

information to identify spectrally unique materials. Thus,

image analysis algorithms can benefit from the wealth of

spatial and spectral information leading to more accurate

analysis of remote-sensing images. In turn, this wealth of

data posed new challenges of high-dimensional data and

intensive time-consuming computations. These high com-

putational requirements, plus the fact that these systems

will continue toward increasing their spatial and spectral

resolutions, compelled researchers to investigate powerful

computing platforms, which can efficiently handle high

computational demands.

High-performance computing (HPC) can be achieved

using high clock speed sequential processors or by using

parallel computing platforms. However, the manufacturers

of CPU chips are now faced by the clock wall of processing

units, and the researchers found that the future of HPC

depends on parallel computing rather than increasing the

clock speed of single processing units [3].

Graphical processing units (GPUs) have emerged

recently as a promising platform for HPC and captured the

attention of researchers in a lot of research areas [4]; the

computational power in (GFLOPS) of GPUs has grown

much faster than the CPUs power over the last decade. The

important benefits besides the computational power of

GPUs are the small size, lightweight, and low-power

consumption. This makes GPUs a highly desired platform

for remote-sensing applications like satellite imaging and

aerial reconnaissance [5]. Many hyperspectral analysis

techniques have been implemented on parallel platforms,

either on computer clusters or GPUs as we will discuss

later.

Remote-sensing digital image analysis is a rich and vast

research field that contains many kinds of pattern recog-

nitions and statistical analysis methods. The choice of a

suitable analysis method for a certain task is largely

dependent on the nature of the desired scenario and

domain. Hyperspectral analysis methods can use the

spectral information only or both the spatial and the

spectral information of the image. The spectral methods

treat pixel values as individual unrelated sets of spectral

intensities with no particular spatial arrangement. The

spatial–spectral methods take into account the pixel

arrangement and the contextual entities in the image. The

research of hyperspectral image analysis is increasingly

moving toward spatial–spectral methods because of the

importance of incorporating spatial and spectral aspects of

data simultaneously, which has been recognized by many

researchers in the field [6–8].

Hyperspectral analysis methods can be grouped under

three main approaches [6]: per-pixel analysis, mixed-pixel

analysis, and object-based image analysis (OBIA) [9]. Of

these major approaches, there exist many classification/

segmentation algorithms [10, 11] including spectral mix-

ture analysis algorithms [12]. With the increase of spatial

resolutions of new sensors, OBIA has emerged as a

promising approach to image analysis due to its efficiency

with high spatial resolution images and the production of

useful information about image classes and objects.

In the light of the above mentioned findings, it is logical

to focus on spatial–spectral and OBIA methods for better

and more useful analysis and classification results. In

addition, unsupervised analysis is encouraged because of

the limited training samples, the difficulty of obtaining

ground truth data in remote sensing, and the need for

automated responses for onboard processing [11]. There-

fore, this work is concerned with unsupervised classifica-

tion and clustering/segmentation approaches with spatial–

spectral and object-based analysis. Recursive hierarchical

segmentation (RHSEG) [13] is a well-known hyperspectral

spatial–spectral OBIA method developed and used by the

National Aeronautics and Space Administration (NASA).

Hierarchial segmentation (HSEG) [13] has two main

advantages: (1) it provides more accurate region bound-

aries; and (2) it produces a hierarchical set of image seg-

mentations with different detail levels, i.e., from fine to

coarse grain. However, hierarchical clustering methods are

computationally intensive, especially when used with high-

dimensional data. In order to meet these computational

challenges and provide suitable solutions for onboard

processing, suitable parallel solutions are needed.

In [14], a parallel/distributed implementation of the

RHSEG is presented using GPUs, multicore CPUs, and

network clusters; thus, shared memory architecture and

distributed memory architectures are combined coopera-

tively and seamlessly. The RHSEG algorithm is imple-

mented on both GPU clusters and hybrid CPU/GPU

clusters. The speedup results were compared with the

execution of an RHSEG algorithm on a single node hybrid

CPU/GPU and on a parallel GPU. The fundamental idea of

parallelizing and accelerating the RHSEG is to distribute

the most intensive dissimilarity calculation part among

GPU threads and partitioning the input image into sections,

sending each section into multicore CPU threads and

cluster computing nodes. The GPU platform used for the

proposed solution was NVidia’s Compute Device Unified

Architecture (CUDA) [15]. In this paper, a new two-

dimensional GPU kernel is introduced, which achieves

414 J Real-Time Image Proc (2018) 14:413–432

123

higher speedups over [14], and a new GPU platform

implementation using Microsoft C?? Accelerated Mas-

sive Parallelism (C?? AMP) [16] is introduced. Also in

this paper, power and energy consumptions for the pro-

posed solutions are investigated. The software platforms

that are used for multicore CPUs and distributed clusters

are the QtConcurrent and the QtNetwork libraries by Digia

[17], and the proposed cluster solution is executed by

means of Amazon Elastic Compute Cloud cluster [18].

The remainder of the paper is organized as follows:

Sect. 2 surveys the research work of related hyperspectral

analysis methods and approaches. Section 3 explains the

RHSEG algorithm. The hybrid GPU/CPU implementation

of the RHSEG algorithm is described for the single com-

puting node in Sects. 4 and 5 and for cluster implementa-

tions in Sects. 6. Section 7 shows experimental results and

discussions. Finally, Sect. 8 concludes the results of this

paper and mentions suggested future work.

2 Related work

There are many kinds of methods in the literature for

unsupervised hyperspectral image analysis based on clus-

tering or segmentation. These methods can be categorized

under several main approaches [19]: partitional clustering,

Watershed transformation for segmentation, Graph meth-

ods for segmentation, and hierarchical clustering. Part-

itional clustering is a classical approach which is based on

dividing the input image to arbitrary clusters and iteratively

assigning the data points to these clusters using an error

criterion measurement like the squared error. The Water-

shed transformation for segmentation [20] uses the water-

shed contours that are generated from the input image as a

boundary map for the segmentation process. The input

image is considered as a topographic height map of pixels

of intensity values, and the output watershed image rep-

resents the high boundaries around low points (or local

minima areas) of the height map. The Watershed algorithm

is originally calculated for gray scale single band images,

but in [21, 22] it was adapted for multichannel images.

Graph clustering methods [23] represent the image as a

weighted undirected graph, where the pixels or the groups

of pixels are the graph nodes and the weighted edges are

the dissimilarity between adjacent pixels. Afterward, the

graph is partitioned into smaller sub-graphs or trees that

represent separate clusters. The partitioning process is

carried out based on different criteria, like deleting edges

with the largest dissimilarity. Finally, the hierarchical

clustering method starts by assigning clusters to individual

pixels, and then merges these pixels iteratively based on

similarity measures until the desired number of clusters are

reached. This approach generates multiple levels of

classifications from fine grain close to individual pixels, to

coarse grain at the final clusters.

Many methods exist in the literature for each of these

four classification approaches. The segmentation tech-

niques can be grouped into three classes working in a

spatial domain, spectral domain, or combination of spatial–

spectral domains [24]. A well-known example of part-

itional clustering is the Iterative Self-Organizing Data

Analysis Algorithm (ISODATA) [25]. ISODATA is a

spectral clustering method that does not incorporate spatial

information. The advantage of ISODATA is the low

computational complexity; however, these methods are

sensitive to initial cluster-generation methods. The

Watershed algorithm was used as a pre-segmentation step

for enhancing the classification output [25]. In [26], Plaza

developed unsupervised image classification/segmentation

methodology by extending the watershed transformation to

hyperspectral image processing. He compared this tech-

nique to a standard hyperspectral unsupervised classifica-

tion algorithm; the ISODATA algorithm. Watershed

transformation has low computation complexity compared

to other segmentation techniques. However, Watershed

transformation is known for over-segmentation of output

regions and sensitivity to image noise [27]. Beucher [28]

introduced a new algorithm called the waterfall algorithm

to overcome the over-segmentation problem that usually

comes with the watershed transformation.

An example of the graph clustering method is the

minimum spanning forest (MSF) [29]. In this method, a

graph G representing the initial classification of the image

is generated by assigning each pixel to a graph vertex, and

each edge connects couple of vertices and a given weight.

This weight indicates the dissimilarity between these two

vertices. A MSF is then calculated using the graph, and the

resulting subtrees are used as regions for the final classi-

fication map. This method in combination with appropriate

segmentation algorithms produces highly accurate results.

However, depending on the initial classification method, if

some regions are missed due to inappropriate classification

parameters, these regions will be lost in the final classifi-

cation map. The hierarchical segmentation (HSEG) [13] is

a hierarchical clustering method in which each pixel is

considered as a separate region, and iteratively HSEG

merges these regions until the desired number of clusters is

reached. Each HSEG contains two possible merges; adja-

cent and non-adjacent regions merge. HSEG produces

accurate region boundaries and high classification accuracy

but has high complexity and memory requirements. To

address these challenges, a recursive approximation called

the Recursive HSEG (RHSEG) [13] was developed. Plaza

et al. [11] used the RHSEG clustering for unsupervised

classification, which produced highly accurate classifica-

tion results.

J Real-Time Image Proc (2018) 14:413–432 415

123

Several comparative studies have been conducted to

compare the analysis methods and techniques to each

other in the literature. For instance, Fauvel et al. [24]

studied and compared the Watershed, HSEG, and MSF

classifications for different hyperspectral datasets. HSEG-

based classification produced better overall classification

results compared to the Watershed-based method in all

datasets—the best overall accuracy in one of the datasets

compared to the MSF-based method and then the second

best in the other dataset. A multiple classifier incorpo-

rating all three methods achieved the best overall accu-

racy for all datasets.

Hyperspectral clustering methods are computationally

intensive due to the high data dimensionality. Therefore,

suitable parallel solutions are needed to overcome com-

putational and memory requirement challenges. Hyper-

spectral image analysis algorithms have been implemented

on various and different parallel architectures, parallel

multiprocessors, heterogeneous and homogeneous net-

works of distributed computers, and specialized hardware

such as field-programmable gate arrays (FPGAs) and GPU

hardware architecture. For example, ISODATA was par-

allelized using a Thunderhead CPU cluster [30] with 99

speedup using 16 processing nodes and also parallelized

using hybrid CPUs and GPUs [31] using a Kenneland

supercomputer [32] with hybrid nodes of Intel Xeon E5

8-core CPUs and NVidia M2090 GPUs. They achieved a

speedup of 2.39 for distributed parallel GPUs versus dis-

tributed parallel CPUs using 36 nodes. ISODATA was also

parallelized on a single NVidia Kepler K20 GPU in [33]

achieving 459 versus sequential CPU implementation for

50 clusters of an output image. The Watershed-based

classification [26] was parallelized using a Thunderhead

cluster achieving 139 speedup using 16 nodes and 1709

speedup using 256 nodes.

The RHSEG was parallelized using cluster CPUs and

GPUs in [11] and [14], respectively. In [11] a homoge-

nous Thunderhead Beowulf cluster at NASA’s Goddard

Space Flight Center is used to accelerate the RSHEG. The

Beowulf cluster [34] is composed of dual 2.4-GHz Intel

Pentium 4 Xeon nodes, 256-GB DDR memory (with

1.0 GB of main memory available per CPU) and con-

nected with 2.2-GB/s fiber interconnection system. The

speedups achieved for these algorithms were 139 using

16 CPU nodes and 829 using 256 CPU nodes. In [14], the

GPU/RHSEG is implemented by means of a 1-D dis-

similarity calculation kernel that processes every region’s

dissimilarity calculation with all other regions within a

single thread per region. In addition, a hybrid multicore

CPU/GPU cluster was used for cooperative processing

between CPU cores and the GPU for different image

sections. Using a single NVidia GeForce 550 Ti board, an

average speedup of 3.59 was achieved over sequential

Intel Core i5 CPU implementations. With the use of a

hybrid 8-core Intel Xeon X5570 operator and a NVidia

Tesla M2050 GPU, additional average speedup of up to

69 was achieved, using multicores cooperatively besides

the GPU. Finally, using 16 node hybrid CPU/GPU clus-

ters, each having a single GPU, resulted in a total of 1129

speedup.

3 RHSEG method

Hierarchical image segmentation is a set of several seg-

mentations of the same image at different levels of detail,

in which the segmentations at coarser levels can be pro-

duced from simple merges of regions at the finer levels

[35]. Tilton [13] has developed a hierarchical segmentation

and region growing (HSEG) method that is a combination

of region growing and spectral clustering. The HSEG

algorithm adds a new feature to the hierarchical step-wise

optimal segmentation algorithm [36] that involves the

addition of a spectral clustering step, which allows for the

merger of non-adjacent regions controlled by the ‘‘spectral

clustering weight’’ input parameter. HSEG can be sum-

marized in four steps:

1. Initialize the segmentation by assigning each image

pixel to a region label. If a pre-segmentation is

provided, then label each image pixel according to

the pre-segmentation. Otherwise, label each image

pixel as a separate region.

2. Calculate the dissimilarity value between all pairs of

spatially adjacent regions, find the pair of spatially

adjacent regions with the least dissimilarity value, and

merge those pairs of regions.

3. Calculate the dissimilarity value between all pairs of

spatially non-adjacent regions and find the pair with

the least dissimilarity value, that is less than the

minimum dissimilarity value found in (2). If found so,

then merge that pair of regions. If not, just go to step

(4).

4. Stop if no more merges are required (once the

minimum number of regions is reached); otherwise,

return to step (2).

The HSEG is an iterative region-merging process, ini-

tialized with every pixel as a region. Figure 1 shows an

outline of its main procedures. At each step, the dissimi-

larity value is calculated for each pair of spatially adjacent

regions. The pair of regions with the least dissimilarity

value is chosen for merging, and then the new merged

region replaces them. The same step is repeated for non-

adjacent regions. This process continues until the desired

numbers of regions (segments or classes) are reached.

HSEG is very computationally intensive, because it

416 J Real-Time Image Proc (2018) 14:413–432

123

requires the calculation of the dissimilarity criterion value

between each region and every other region in the image.

Tilton [13] described a recursive implementation of this

segmentation approach on a cluster called the RHSEG.

Figure 2 shows a flowchart of divide-and-conquer, a

recursive approach for implementing the HSEG method.

The square root of the band sum means squared error

(square root of BSMSE) and is used for the dissimilarity

measurement which is given between any two regions i and

j in an image of B bands by

Square root of BSMSE ði; jÞ ¼

ffi

ninj

ðni þ njÞ
X

B

b¼1

lib � ljb
� �2

v

u

u

t

ð1Þ

where lib and ljb are the mean values for regions i and j in

spectral band b, respectively; ni and nj are the numbers of

pixels in regions i and j, respectively.

4 Different approaches to parallelize RHSEG using

GPUs

This section presents a parallelization technique proposed

for a RHSEG algorithm using GPUs. The main idea of

parallelizing the RHSEG algorithm is to distribute the

computation of a pair of regions for a dissimilarity mea-

surement to the massive number of GPU threads in par-

allel. This is the most computationally intensive task of

the whole algorithm, and it takes over 95 % of the whole

execution time. We propose two different approaches to

distribute the dissimilarity measurement between regions

among GPU threads: the first approach is to make each

GPU thread responsible for all dissimilarity calculations

of a single region toward all its spatially adjacent regions

or all non-spatially adjacent regions in the image. The

second approach is to make each GPU thread responsible

for the calculation of dissimilarity between only two

regions, either spatially or non-spatially adjacent. The first

approach takes a sequential behavior for the calculation of

all dissimilarities for a specific region to its adjacent and

non-adjacent regions, while other regions calculations are

done in parallel. Thus, the first approach does not take full

advantage of the parallel GPU threads. However, the

second approach results in a much broader parallelism

because it allows all dissimilarities of any region’s pairs

to be computed in parallel, and at the same time, making

use of the complete independence of region-pair mea-

surements, and no sequential calculation is needed. Fig-

ures 3 and 4 show the difference between the two

approaches.

For GPU implementations, many development plat-

forms were considered such as OpenCL [37], NVidia

Compute Unified Device Architecture (CUDA) [15], and

Microsoft C?? Accelerated Massive Parallelism (C??

AMP) [16]. The main factors that were given the highest

priority for selecting the desired platforms were platform

maturity and performance. Thus, two of these platforms

were selected: NVidia CUDA and Microsoft C?? AMP,

which were the two most mature and advanced GPU

platforms that also provided top computation performance.

GPU/RHSEG is implemented using these two platforms for

both the approaches 1 and 2.

Fig. 1 Outline of HSEG method

Fig. 2 Flowchart of RHSEG method

J Real-Time Image Proc (2018) 14:413–432 417

123

The RHSEG dissimilarity calculation is carried out in

two stages in each iteration step. The first stage is the

dissimilarity between every region and their spatially

adjacent regions; this stage is called the spatial stage. Then,

the second stage is the dissimilarity measure between every

region and all other non-adjacent regions, which is called

the spectral stage. Figure 1 shows both stages in RHSEG

flow chart. In both GPU approaches, each stage has a

separate kernel—the spatial kernel and the spectral kernel.

The spectral stage is the most computationally demanding

task contributing to more than 95 % of total running time.

To give a comprehensive overview of the GPU kernel

implementation details, Fig. 5 illustrates in detail how the

GPU approach 2 spectral kernel works and how regions are

represented in the GPU memory.

In Fig. 5, a sample image of size 6 9 6 pixels is passed

to the spectral kernel. Before the kernel starts working,

every pixel is considered a separate region, which gives

6 9 6 = 36 regions (this is only done once at the start of

RHSEG; the next iteration uses the produced regions

instead of image pixels). Then, every region gets a unique

ID from 1 to 36, and information of all the

regions(adjacent regions, spectral values of bands and

number of pixels) is transferred to the GPU. The spectral

kernel uses three arrays. First, the ‘‘Adjacencies’’ 2-D

array that is (number of regions) 9 (max_adjacencies)

matrix is of type integer. It stores the adjacent region IDs

of all regions and allows each region to know its adjacent

regions by their regional ID. Second, the ‘‘Pixels_Count’’

is an array of the number of regions of type integer. And

it stores the number of pixels for every region. Finally, the

‘‘Bands_Sum’’ is a matrix of (number of regions) 9

(bands) and stores the sum of the region’s pixel values at

every band for all regions. The first two arrays reside in

the GPU global memory, and the last one resides com-

pletely in the global memory and partially in the shared

memory (for faster memory access). Finally, a fourth

array is needed and is called ‘‘Best_Dissim.’’ It stores the

best dissimilarity value found for every region against all

other regions.

For optimizing memory access bandwidths, a GPU on-

chip shared memory is used. A small part of the

‘‘Bands_Sums’’ array is stored in every block’s shared

memory, and the rest are accessed from the global memory.

With the increase of GPU numbers of streaming multi-

processors and shared memory size, more speedup can be

achieved by means of more shared memory. Figure 6

shows the detailed GPU code for approach 2 spectral

kernel as illustrated in Fig. 5 and is called the ‘‘ker-

nel_compute_spectral_dissims.’’ The details about shared

memory size, kernel registers size, and the achieved

threads’ occupancy are reported in Sect. 7.

Fig. 3 GPU Approach 1 (first

GPU parallelization approach).

Each GPU thread is responsible

for calculations of all

dissimilarities for certain

regions

418 J Real-Time Image Proc (2018) 14:413–432

123

In GPU, each block is composed of a group of threads.

The spectral kernel starts traversing all N 9 N regions

using blocks of K 9 K threads in parallel; therefore, the

total number of blocks = N/K 9 N/K. In each block,

dissimilarity between all regions inside the block is cal-

culated as shown in Fig. 5. The spectral kernel checks for

every regional pair (Ri, Rj) if they are not-adjacent; if

true, it calculates the band sum mean square error value

(BSMSE) over all the bands of the two regions, and then

the final dissimilarity is the square root of BSMSE. After

calculating the dissimilarity, the kernel needs to update

the ‘‘Best_Dissim’’ array if it finds that the calculated

dissimilarity is the smallest one so far for region Ri.

Updating the ‘‘Best_dissim’’ array needs to be done

‘‘atomically,’’ using a spin lock critical section to be

carried out correctly. After the kernel is finished with all

dissimilarity calculations for all regions in the input

image, a GPU reduction step over the ‘‘Best_Dissim’’

array is executed to find the pair or regions with mini-

mum dissimilarity to be merged into one region. The two

kernels (spatial then spectral) are then launched again

after the merge is done to find new regional pairs to

merge. The process continues further until the number of

regions reaches the desired number of classes for the

input image.

Several optimization techniques are taken into account

in the design of either the sequential CPU or parallel GPU

implementation. All proposed implementations are mem-

ory access optimized to improve the data locality and the

cache memory hits. For example, all arrays are accessed in

row-major order, which is the sequential order of the byte

arrangement in the CPU and GPU memory, and all arrays

that reside in the GPU global memory have coalescent

memory access. In addition, all the proposed implementa-

tions are accessed in blocks of K 9 K elements to improve

the data locality. The proposed parallelized parts of

RHSEG, which are calculating dissimilarities for each step

and choosing the minimum pair to merge, contribute to

more than 95 % of the total execution time for both

sequential and parallels of RHSEG. Other parts of the

algorithm represent less than 5 % of the execution time and

are not suitable for parallel implementation, like merging a

pair of regions after each step and stitching image sections

for every recursive level.

In the following two sections, the proposed solutions for

executing RHSEG algorithms using both multicore CPUs

Fig. 4 GPU Approach 2

(second GPU parallelization

approach). Each GPU thread is

responsible for the calculation

of dissimilarity of only one pair

of regions

J Real-Time Image Proc (2018) 14:413–432 419

123

and GPUs cooperatively is presented and is called Hybrid

RHSEG. Section 5 describes the implementation of

RHSEG using a single multicore CPU and a single GPU,

while Sect. 6 describes the Hybrid RHSEG execution on a

multinode computer cluster of multicore CPUs and GPUs.

For a multinode hybrid cluster RHSEG algorithm, an

Amazon Elastic Compute Cloud (EC2) service is used [18].

However, C?? AMP is not currently capable of running

on an Amazon network cluster because EC2 compute

instances do not support running DirectX. Thus, the

implementation of both parallel approaches of RHSEG

algorithms on network clusters is implemented using a

CUDA platform.

5 Hybrid CPU/GPU parallel implementation

using a single computing node

In the RHSEG, for each recursive level, the image is par-

titioned into four sections, and this partitioning is repeated

again for each quarter recursively till the deepest recursive

level is reached. This means that for a 3-level RHSEG,

there will be 42 = 16 image sections. The hybrid CPU/

GPU implementation of RHSEG is based on distributing

different image sections being processed at any level to the

GPU and CPU cores. Therefore, different image section

computations are executed in parallel on either a GPU or a

CPU core. Besides, as the algorithm is designed to work

cooperatively; a CPU core can pass its image section to a

GPU if it is free, and thus GPU can help in finishing the

computation faster and achieving the best utilization. Fig-

ure 7 shows the parallel execution of RHSEG on a hybrid

CPU/GPU with a 4-core CPU and single GPU.

From Fig. 7, the execution starts with the deepest level

of recursion, where we have four indivisible image sections

ready for HSEG computation. The four image sections are

distributed to GPU and CPU as follows: image section one

goes to the GPU and one CPU core (thread); image sec-

tions 2, 3, and 4 go to the other three CPU cores (as

threads). In this way, the computation of the four sections

is executed in parallel. The GPU thread is already faster

than any CPU thread; therefore, when the GPU has finished

its own image section, it is considered free to conduct

future computations of any other image sections. This

allows RHSEG to assign a computation of any other image

sections to the GPU. Therefore, the GPU picks up any

remaining image section that has not been processed. If all

image sections are being processed, then it picks up an

image section from any running CPU thread to finish it

faster. On the other hand, if the GPU finishes the current

Fig. 5 Example of a spectral stage dissimilarities calculation for

Approach 2 using GPU. The spectral kernel operates on N 9 N image

using blocks of size K 9 K. GPU arrays that hold the required

information for all regions. Dissimilarity equals square root of Band

Sum Mean Square Error (MSE)

420 J Real-Time Image Proc (2018) 14:413–432

123

Fig. 6 RHSEG GPU Approach 2 spectral kernel

Fig. 7 Step by step Hybrid CPU/GPU RHSEG with 3 recursive levels using 4 cores CPU; computation starts at the deepest third level

J Real-Time Image Proc (2018) 14:413–432 421

123

image section, then it repeats the same technique by finding

another image section to compute, until all images sections

are finished. A control thread always looks for every four

image sections finished in a certain level, then it combines

their results, and the algorithm terminates when the control

thread combines the results for the first level (level 1).

Algorithm 1 illustrates a Hybrid CPU/GPU RHSEG

implementation.

The implementation of RHSEG on GPU is based on

distributing the process of a dissimilarity calculation among

the GPU threads as described previously, either using the

GPU Approach 1 or 2. For GPU Approach 1, each GPU

thread is responsible for a corresponding region from the

image section. For example, if the image section has 1,024

regions, then 1,024 GPU threads will be initialized, and

each thread will calculate the dissimilarity values between

its own region and all other adjacent regions. However, for

GPU Approach 2, each GPU thread is responsible only for

two regions (single region pair), and so if the image section

has 1,024 regions, there will be 1,024 9 1,024 GPU

threads, where each one of them calculates dissimilarity for

the assigned region pair and terminates. After the dissimi-

larity calculation step is finished (either using Approach 1

or 2), a parallel reduction step is used to find the minimum

regional pair and merges them. Then, RHSEG calculates the

dissimilarity values for all non-adjacent regions using the

GPU again. Next, the reduction step is used again to

determine the minimum non-adjacent pair and merges them

if found. Finally, RHSEG terminates.

To guarantee the scalability by increasing the number of

CPU cores, the algorithm is designed to dynamically use

any free available cores for the requisite image section

computations. For example, if an 8-core CPU is used, then

each core of the eight cores receives an image section from

the control thread. Then, the computation is carried out for

each section. After that, the results return to the control

422 J Real-Time Image Proc (2018) 14:413–432

123

thread, and the eight cores will be free to process any other

image sections. The control thread is responsible for dis-

patching image sections to threads and receiving results

from different threads for combining at different levels.

Figure 8 illustrates the execution process of RHSEG on

eight CPU cores and one GPU.

6 Cluster parallel implementation

This section proposes multinode cluster parallel imple-

mentations of the RHSEG algorithm; Hybrid CPU/GPU

cluster, GPU cluster, Multicore CPU cluster, and CPU

cluster. The distributed cluster technique of the hybrid

RHSEG is similar to the technique described earlier for

multicore machines but uses network nodes as the dis-

tributed computing element. Image sections are distributed

to network nodes instead of CPU cores (threads), and the

control thread of the master node receives section results

and stitches them for any recursive level. The master node

itself is also used as a computing node. For example, in

Fig. 9, four cluster nodes are used; each node in the cluster

has eight CPU cores and one GPU. The eight CPU cores in

each node are used for the computation of the dedicated

image sections sent to this node.

The GPU cluster implementation of RHSEG is similar

to the technique described earlier for hybrid CPU/GPU

clusters but without the cooperation of multicore CPUs.

The control thread allows the GPU only to process the

images sections from the queue. Therefore, at each node,

the GPU alone is working, and no CPU core is used for

computation.

Similarly, the Multicore CPU Cluster implementation of

RHSEG works just as the hybrid CPU/GPU cluster tech-

nique but the GPUs are not allowed to work or process any

image sections. Finally, the CPU cluster implementation

works just as the hybrid cluster but with only a single CPU

core and a single GPU in each network node allowed to

process image sections.

7 Experimental results

To study the different proposed parallelized versions of the

RHSEG algorithm, three categories of experiments were

carried out; accuracy assessment, execution time, and

energy-consumption experiments. First, the accuracy

assessment shows the classification accuracy of selected

data set against the ground truth information for both

parallel and sequential CPU and GPU solutions. Second,

several execution time experiments are conducted to study

the speedup of the proposed GPU solutions compared to

sequential CPU solutions under different parameters and

data configurations that affect the execution time such as

Fig. 8 Hybrid RHSEG using 8 CPU cores and one GPU

J Real-Time Image Proc (2018) 14:413–432 423

123

image size, image depth (number of bands), image details,

and number and the dimensions of GPU threads. Finally,

energy consumption experiments show the power/energy-

consumption rates of GPU solutions compared to both

sequential and parallel CPU solutions.

For execution time experiments, three sets of experi-

ments were conducted. First, parallel RHSEG on a single

GPU without a multicore CPU is carried out using both

CUDA and C?? AMP technologies. Second, parallel

RHSEG using a Hybrid CPU/GPU single computing node

is carried out. Finally, parallel RHSEG using different

multinode clusters are carried out: GPU cluster, hybrid

CPU/GPU cluster, CPU cluster, and Multicore CPU clus-

ter. The performance of the parallel implementation is

measured by calculating the speedup, which is the number

of times a parallel implementation is faster than the

sequential one on a single CPU core.

7.1 The dataset

The experiments are performed using five different images:

three real hyperspectral images, and two manually syn-

thetic images. The three hyperspectral images are the

Indian Pines AVIRIS hyperspectral data,1 the Pavia Center

data, and Pavia University data. Figure 10 shows portions

of these hyperspectral images. The Indian Pines scene was

gathered by the AVIRIS instrument; it consists of 16

ground truth classes. It was acquired over a mixed agri-

cultural/forested region in NW Indiana. Four noisy bands

were removed, and the rest of the 220 spectral bands are

used. Pavia data in Italy was collected by the ROSIS [38]

sensor. The first image was collected over Pavia city cen-

ter, Italy. It contains 102 spectral channels and nine ground

Fig. 9 Example of cluster

Hybrid RHSEG, 4 cluster nodes

(each one consists of 8 CPU

cores and single GPU)

Fig. 10 a Indian Pines data set, b Pavia Center data set and c Pavia university data set

1 NASA JPL (http://www.jpl.nasa.gov).

424 J Real-Time Image Proc (2018) 14:413–432

123

http://www.jpl.nasa.gov

truth classes. The second image was collected over the

University of Pavia with nine ground-truth classes and 103

spectral bands.

Experiments are carried out using different hyperspec-

tral image sizes of 128 9 128, 256 9 256, and 512 9 512

pixels. For each image size, data were cropped from the

large image, not scaled. The number of bands for Indian

Pines is 220, and for Pavia Center and the University they

are 102 and 103, respectively. The spectral clustering

weight parameter used in all the experiments is 0.25; thus,

for every four adjacent region merges, one non-adjacent

merge is attempted by RHSEG, and this is an acceptable

value that produces clear shaped classification results,

while not losing the recognition of the non-adjacent regions

of image classes.

7.2 Hardware architectures

The execution of the RHSEG algorithm on a single GPU is

tested using NVidia GeForce 550 Ti and NVidia Tesla

M2050 devices. GeForce 550 Ti consists of 192 processing

cores, each operating at 1,940 MHz, with 1,024 MB

GDDR5 192-bit memory interface, which operates at

2,050 MHz that is capable of 98.4-GB/s memory band-

width. Tesla M2050 contains 448 processing cores each

operating at 1,147 MHz, with 384-bit memory operating at

1,546-MHz clock The CPU used is Intel Core i5 with

3,100 MHz, 256 KB L1, 1 MB L2, and 6 MB L3 cache

memories.

For the multinode hybrid cluster RHSEG algorithm, an

Amazon Elastic Compute Cloud (EC2) [18] service is used.

Each EC2 node used dual quad core (total 8 cores) Intel

Xeon X5570 operating at 2.93 GHz, and the GPU used the

NVidia Tesla M2050 device. EC2 Cluster nodes are con-

nected to each other by a 10 Gb/s Ethernet network. All

implemented codes were compiled using Microsoft Visual

C?? 2012 with compiler flag/O2 for speed optimization.

To ensure the consistency of the square root floating point

calculation across all different parallel and sequential

architectures, appropriate compiler flags were used in all

implementations to force accurate calculations based on the

IEEE 754 floating point standard; For Visual C?? 2012

CPU sequential code, the flag/fp:precise was used; for all

CUDA parallel implementations, the flags –prec-

sqrt = true, –gpu-architecture = compute_20 and –gpu-

code = sm_21 are used; finally for C?? AMP parallel

implementation, the precise math library namespace

‘‘Concurrency::precise_math’’ was used.

7.3 Results

The classification accuracy assessment of proposed par-

allelized versions of the RHSEG algorithm is carried out

using a Pavia Center dataset. The image was cropped to

size 490 9 490 pixels with 97 bands after removing first

five noisy bands. Figure 11 shows a section of the Pavia

center image and the corresponding ground truth image of

nine classes. The classification result is compared with the

provided ground truth information. Classification is carried

out using GPU, hybrid CPU/GPU, and sequential CPU

solutions. In all three cases, the classification results were

identical. Figure 12 shows the RHSEG segmentation result

using the square root of BSMSE dissimilarity criterion with

four levels of recursion, and the spectral clustering weight

equals 0.15. The coarsest segmentation result is selected,

which separates most of the nine classes. Each segmenta-

tion class was assigned to a specific ground truth class that

covered the plurality of their pixels. Accuracy scores for all

nine materials are shown in Table 1 with an overall accu-

racy of 76 %.

For execution time and speedup, three sets of experi-

ments are carried out. The first set is carried out to study

the parallelized implementation of RHSEG using a single a

GPU. First, the next experiment was performed to deter-

mine the impact of varying the image sizes on the execu-

tion time of the RHSEG with Approaches 1 and 2 using a

single GPU. The results are compared with sequential CPU

execution. Figure 13 shows the execution times (in sec-

onds) of the RHSEG algorithm using different image sizes

for both approaches implemented by CUDA and

C?? AMP. For the 128 9 128 image size, the RHSEG

CPU sequential execution time is around 7,920 s, while the

CUDA GPU Approach 1 execution time is around 2,486 s,

C?? AMP Approach 1 is 2,180 s, CUDA Approach 2 is

640 s, and finally C?? AMP Approach 2 is 930 s. One can

see from Fig. 13 that the proposed approaches to imple-

ment RHSEG using a single GPU have far less execution

time than sequential implementations on a CPU.

The GPU running time includes the memory copy time

between the main memory and the GPU memory. Table 2

shows the speedups of RHSEG parallel Approaches 1 and 2

on a single node GPU with respect to sequential imple-

mentation on a CPU using CUDA and C?? AMP plat-

forms. A 3.19 and 3.59 average speedup is achieved for

Approach 1 for CUDA and C?? AMP, respectively; and

129, 89 and 219 average speedup for CUDA and

C?? AMP Approach 2 over the sequential CPU

implementation.

In this experiment, Approach 2 kernels were launched

using a block size of 16 9 16 threads, and the maximum

size of on-chip shared memory used is 2 KB per block. The

spectral kernel in Fig. 6 uses 24 registers in each thread, so

that for a 16 9 16 block, a total of 6,144 registers are used.

The current implementation for Approach 2 using the

described algorithm in CUDA results in 78 % occupancy,

which means that every streaming multiprocessor in the

J Real-Time Image Proc (2018) 14:413–432 425

123

GPU runs 1,200 threads at a time, out of the maximum

available 1,536 per streaming multiprocessor (with Ge-

Force 550 Ti device).

The next experimentwas performed to study the impact of

changing the image details on the execution time of the

RHSEG using a single GPU. Figure 14 shows three images

that differ in spectral details. Figure 14a, b are synthetic

images generated manually for the sake of the experiment.

Figure 14c is a portion of the Indian Pines image. The images

are differing in the number of classes/regions. Each image

size is 50 9 50 pixels 9220 bands. Table 3 shows the

speedup of RHSEG on single GPU using different images

with different details. One can see from Table 3 that the

speedup is almost not affected by the increasing number of

region/classes. Then, changing the complexity and details of

the image also does not affect the speedup significantly.

The next experiment was performed to study the impact

of changing the image depth (number of bands) on the

execution time of the RHSEG using a single GPU. For an

image size of 32 9 32 pixels, the experiments are carried

out using 3, 10, 50, 100, 150, and 220 bands. Table 4

shows the performance of the GPU implementation for the

different numbers of bands. For the GPU Approach 1, the

speedup increases slightly by increasing the number of

bands. On the other hand, with GPU Approach 2, the

speedup increases significantly with increase in the number

of bands. GPU Approach 2 with three bands achieves 29

speedup, while using 220 bands achieves 129 speedup

with respect to sequential CPU. Hence, it is clear that both

the CPU approaches are significantly sensitive to the

changes in the number of bands.

The next experiment was performed to study the effect

of changing the number of threads per block for a single

GPU for both GPU Approaches 1 and 2. For an image size

of 32 9 32 pixels 9220 bands, the experiments are carried

out using 4 9 4, 8 9 8, and 16 9 16 threads per block for

Approach 2 (CUDA and C?? AMP). Table 5 shows the

performance of the GPU implementation for the different

numbers of threads per block. It is noticeable that changing

the block size affects the speedups. For example, speedups

increased significantly by increasing the block size from

4 9 4 to 16 9 16. The optimal block size for given inputs

was 16 9 16 threads per block.

The second set of execution time experiments were

performed for parallelized implementation of the RHSEG

Approach 2 on a single-node hybrid CPU/GPU using

CUDA. For 64 9 64 9 220 image size, the RHSEG CPU

sequential execution time is around 2,033 s, while the

RHSEG GPU execution time is around 94 s, and the hybrid

parallel execution time was about 89 s. Table 6 shows

speedup results for a GPU node and a single hybrid CPU/

GPU node against sequential implementation on a CPU.

21.6 and 22.89 average speedups are achieved for a single

GPU and hybrid CPU/GPU implementation, respectively,

versus the sequential CPU implementation.

The third set of experiments was performed for a par-

allelized RHSEG on different multinode cluster types: GPU

cluster, hybrid CPU/GPU multinode cluster, CPU cluster,

and multicore CPU cluster. Execution times are recorded

and compared to the CPU sequential execution time. Also

the execution time is compared with the single GPU

implementation. In this experiment, NVidia Tesla M2050 is

used for both single and multinode GPU clusters and hybrid

clusters. For the Indian Pines image, the experiments are

carried out using 256 9 256 9 220 and 512 9 512 9 220

pixels 9 bands. Table 7 shows the results for 4, 8, and 16

cluster nodes. Figure 15 shows the speedup expressed as a

function of the number of nodes for the Indian Pines image

(a) (b)

Water

Trees

Asphalt

Self-Blocking
Bricks

Bitumen

Tiles

Shadow

Meadows

Bare Soil

Fig. 11 a Pavia Center image section of 490 9 490 pixels containing all nine classes provided with the dataset, and b Pavia Center ground truth

classes with a color key for each class

426 J Real-Time Image Proc (2018) 14:413–432

123

of size 512 9 512 pixels. One can observe from Fig. 15 that

the speedup increases by increasing the number of nodes.

Furthermore, one can observe from Table 7 that speedups

of 15, 55, 249, and 259 times on a CPU cluster, multicore

CPU cluster, GPU cluster, and hybrid CPU/GPU multinode

cluster, respectively, are achieved versus the sequential

CPU implementation.

Finally, the last experiment was performed to study the

power/energy consumption of the proposed parallel GPU/

CPU solutions against the sequential CPU solution. A

power meter device is used to read the watts consumed by

the CPU unit from the wall socket; thus, the samples from

the power meter are collected externally and separately

from the experiment system, in order to prevent the mea-

surements from affecting the accuracy of the experiments

results. Power and energy consumed by the system in an

idle state (i.e., disks, fans, and idle CPU/GPU processing)

are measured separately and subtracted from the compu-

tation measurement results. During experiment execution,

power readings decrease over time, and so the power

readings from the meter are collected over the executions

duration, and the average power and energy values are

calculated and used for the comparison.

The power and total energy consumed are measured

during the computing period of both CUDA and

C?? AMP Approach 2 computations on 128 9 128 9

220 image size. The average power and energy consump-

tion values are calculated by taking the mathematical

average of five repetitive power and energy measurements

for every experiment. Table 8 shows the power and energy

consumption measurements for both CUDA and

C?? AMP on a single NVidia GeForce 550 Ti GPU;

columns four and six show the relative energy consumption

ratios of the different parallel GPU platforms to both serial

and parallel CPU.

From Table 8, it is noticeable that Approach 2 clearly

achieves less energy consumption than the sequential

CPU solution. It is more useful to also compare the

Table 1 Classification

accuracy for each ground truth

class of the Pavia Center dataset

Class Accuracy

(%)

Water 100

Trees 62.7

Asphalt 59.9

Self-blocking

bricks

68.2

Bitumen 84.3

Tiles 56.1

Shadow 99.7

Meadows 61.4

Bare soil 92.3

Overall 76

Fig. 12 Classification map for Pavia Center image section showing

all nine ground truth classes

Fig. 13 Execution times (in

seconds) of RHSEG parellel

Approaches 1 and 2 using

CUDA and C?? AMP on a

single GPU, for different image

sizes

J Real-Time Image Proc (2018) 14:413–432 427

123

energy consumptions of the proposed parallel GPU solu-

tions against the parallel CPU solution and not only the

sequential one, so that we can decide if it is beneficial in

terms of energy consumption to use the GPU parallel

system instead of the parallel CPU system. The last col-

umn in Table 8 shows the ratio of energy consumption of

the GPU platforms to the equivalent parallel CPU clusters.

The ‘‘Equivalent parallel CPU cluster’’ means that for a

certain GPU platform speedup, a parallel CPU cluster is

configured to achieve the same speedup, and then the

power consumption of the two systems is compared. For

example, for both CUDA and C?? AMP, a parallel CPU

clusters of 4 and 3 computing nodes, each with four CPU

cores achieving up to 12.89 and 9.69 speedups, respec-

tively, are used and their energy consumptions are cal-

culated (excluding the idle power). Then the ratio of

Approach 2 (CUDA/C?? AMP) to the CPU cluster

energy consumption is calculated. It is found that

Approach 2 CUDA and C?? AMP energy consumption

is lower than the equivalent parallel CPU cluster by 12

and 26 %, respectively, a reduction from 100 to 88 % and

74 %, respectively.

Table 2 Speedups of RHSEG

parallel Approaches 1 and 2 on

a single node GPU with respect

to sequential implementation on

CPU

Image

dimensions

CUDA GPU

Approach 1

speedup

C?? AMP

Approach 1

speedup

CUDA GPU

Approach 2 speedup

(GeForce 550 Ti)

CUDA GPU

Approach 2 speedup

(Tesla M2050)

C?? AMP

Approach 2

speedup

64 9 64 3.29 3.79 12.69 21.89 8.99

128 9 128 3.19 3.69 12.39 21.79 8.59

256 9 256 3.19 3.59 12.19 21.69 8.09

512 9 512 3.09 3.49 11.89 21.59 7.69

Table 3 Speedups of RHSEG on a single GPU (CUDA and AMP for

Approaches 1 and 2, respectivley) using different image details with

respect to sequential implementation on CPU

Image details Single GPU speedup

(CUDA/C?? AMP

Approach 1)

Single GPU speedup

(CUDA/C?? AMP

Approach 2)

Image a (4

classes/4

regions)

3.19/3.89 12.79/9.59

Image b (8

classes/12

regions)

3.19/3.89 12.79/9.59

Image c (16

classes/25

regions)

3.39/3.99 12.89/9.69

Table 4 Speedups of RHSEG on a single GPU (CUDA and

C?? AMP for Approaches 1 and 2, respectivley) using different

image depths with respect to sequential implementation on CPU

Image depth (# of bands) Single GPU

speedup (CUDA/

C?? AMP)

Approach 1

Single GPU

speedup (CUDA/

C?? AMP)

Approach 2

3 1.39 0.19 29 0.099

10 2.89 0.49 6.59 0.39

50 3.09 2.29 11.49 1.59

100 3.39 3.09 12.59 2.89

150 3.39 3.59 139 7.39

220 3.39 3.99 12.89 9.69

Fig. 14 a Detail image 1: synthetic image with 4 classes/4 regions, b detail image 2: synthetic image with 8 classes/12 regions and c detail

image 3: portion Indian Pines image with 16 classes/25 regions

428 J Real-Time Image Proc (2018) 14:413–432

123

8 Conclusions and future work

This paper proposed a parallelized RHSEG algorithm using

GPUs with the cooperation of multicore CPUs and com-

puter clusters for onboard processing scenarios. RHSEG is

a well- known OBIA technique that was developed by

NASA for effectively analyzing hyperspectral images with

high spatial resolutions. The proposed parallel implemen-

tations are focused toward onboard processing by both

accelerating execution times and reducing the power con-

sumption by using GPUs that are lightweight computation

devices with a low-power consumption potential for certain

tasks.

Three parallel solutions are proposed: parallel RHSEG

using a single GPU without a multicore CPU and imple-

mented using both CUDA and C?? AMP technologies;

parallel RHSEG using a Hybrid multicore CPU/GPU single

computing node; and parallel RHSEG using multinode

clusters—a GPU cluster, hybrid CPU/GPU clusters, CPU

clusters, and aMulticore CPU cluster. The fundamental idea

of the solution is the parallelization of the dissimilarity cal-

culation step in the RHSEG algorithm because of the natural

suitability of parallelization in these calculations. Other parts

of the algorithm are executed on the main CPU thread.

The single GPU implementation was tested using the

NVIDIA GeForce board. In the hybrid parallel CPU/GPU

RHSEG, multicore CPUs were used in cooperation with

GPU hardware for the parallel implementation of the

RHSEG algorithm. Hybrid RHSEG works by distributing

the workload of partitioned quad image sections among

different CPU cores which run in parallel and coopera-

tively with the GPU. For the execution of the RHSEG

algorithm on a single GPU and CPU/GPU (8 CPU cores)

using a CUDA platform speedups of 21.6 and 22.8 times

sequential CPU are achieved, respectively. The achieved

speedups by parallel GPU solutions compared with a CPU

sequential implementation using CUDA and C?? AMP

platforms are 21.69 and 9.69, respectively.

For cluster implementation of the RHSEG algorithm,

multinodes of both GPU and hybrid CPU/GPU clusters are

used. The network cluster is implemented using the

Amazon Elastic Compute Cloud (EC2), with a number of

computing nodes that range from 4 to 16. Cluster RHSEG

distributes the partitioned image sections to computing

nodes to process them in parallel and collects the results

returning them to the main node. For a single node hybrid

multicore CPU/GPU and multinode computer cluster with

Table 5 Speedups of RHSEG on a single GPU (CUDA and

C?? AMP for Approaches 1 and 2, respectivley) using different

threads per block sizes with respect to sequential implementation on

CPU

GPU threads per block Single GPU speedup

(CUDA/C?? AMP)

4 9 4 Threads NA/5.39

8 9 8 Threads 8.49/8.99

16 9 16 Threads 12.8/9.69

Table 6 Speedups of RHSEG algorithm on a single node using GPU

or Hybrid CPU/GPU with respect to sequential implementation on

CPU

Image dimensions GPU Hybrid CPU/GPU

(8 CPU cores)

64 9 64 21.89 22.89

128 9 128 21.79 22.99

256 9 256 21.69 22.89

512 9 512 21.59 22.79

Table 7 Speedups of RHSEG

on a multinode Hybrid CPU/

GPU cluster with respect to

sequential implementation on

CPU, CPU clusters, and

multicore CPU clusters

Image size No. of

nodes

CPU

cluster

Multicore CPU

cluster (8 cores)

GPU cluster

(NVidia tesla

M2050)

Hybrid CPU/

GPU cluster

Single GPU

(GeForce 550

Ti)

256 9 256 4 3.99 299 809 849 21.69

8 7.89 559 1469 1539

16 15.49 559 2499 2599

512 9 512 4 3.99 309 789 829 21.59

8 7.79 579 1409 1469

16 15.19 1069 2329 2419

Fig. 15 Hybrid CPU/GPU RHSEG cluster speedups of different

cluster sizes: 4, 8, and 16 nodes

J Real-Time Image Proc (2018) 14:413–432 429

123

16 nodes for 256x256 image, speedups of 22 and 259 times

the sequential CPU are achieved, respectively. Power

consumption is reduced to 74 % using a single GPU

C?? AMP solution. The achievements reported in this

work represent a step forward for faster, efficient time-

critical processing for onboard remote sensing.

In future, a number of optimizations are planned to

achieve higher speedups. These optimizations include

significantly optimizing RHSEG using dynamic pro-

gramming by eliminating the re-computation of unchan-

ged regions in each step, changing the RHSEG to make

multiple region merges per step instead of a single merge

per step to reduce the execution time for the first step, and

reducing the number of steps needed for merging identical

regions. CUDA and C?? AMP GPU implementations

can be further tweaked by using loop-unrolling techniques

and using global constant memory for parts of a regions

data that are constant during the computation. For CPUs

with a high number of cores, more than eight, parallel

platforms like OpenMP or OpenACC can be introduced

and compared with existing GPU and Hybrid CPU/GPU

parallel implementations. Also for each core, instruction

vectorization can be utilized using an enhanced instruc-

tion set as in streaming SIMD extensions to further

achieve higher CPU resource usage for parallel CPU

solutions.

References

1. Plaza, A.J., Chang, C.: High performance computing in remote

sensing. Taylor & Francis Group, BocaRaton (FL) (2007)

2. Shippert, P.: Introduction to hyperspectral image analysis. Online

J. Space Commun. 3 (2003)

3. Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands,

P., Keutzer, K., Patterson, D.A., Plishker, W.L., Shalf, J., Wil-

liams S.W., Yelick, K.A.: The landscape of parallel computing

research: a view from Berkeley. In: Technical report No. UCB/

EECS-2006-183, EECS Department. University of California,

Berkeley (2006)

4. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J.,

Lefohn, A.E., Purcell, T.J.: A Survey of general-purpose com-

putation on graphics hardware. Comput. Graph. Forum 26(1),
80–113 (2007)

5. Setoain, J., Prieto, M., Tenllado, C., Tirado, F.: GPU for parallel

on-board hyperspectral image processing. Int. J. High Perform.

Comput. Appl. 22(4), 424–437 (2008)

6. Lu, D., Weng, Q.: A survey of image classification methods and

techniques for improving classification performance. Int. J. of

Remote Sens. 28(5), 823–870 (2007)

7. Li, J., Bioucas-Dias, J.M., Plaza, A.: Spectral-spatial classifica-

tion of hyperspectral data using loopy belief propagation and

active learning. IEEE Trans. Geosci. Remote Sens. 51(2),
844–856 (2013)

8. Xu, L., Li, J.: Bayesian classification of hyperspectral imagery

based on probabilistic sparse representation and Markov Random

Field. IEEE Geosci. Remote Sens. Lett. 11(4), 823–827 (2014)

9. Blaschke, T.: Object based image analysis for remote sensing.

ISPRS J. Photogramm. Remote Sens. 65(1), 2–16 (2010)

10. Camps-Valls, G., Tuia, D., Bruzzone, L., Atli Benediktsson, J.:

Advances in hyperspectral image classification: earth monitoring

with statistical learning methods. IEEE Signal Process. Mag.

31(1), 45–54 (2014)

11. Plaza, A., Benediktsson, J.A., Boardman, J.W., Brazile, J., Bru-

zzone, L., Camps-Valls, G., Chanussot, J., Fauvel, M., Gamba, P.,

Gualtieri, A., Marconcini, M., Tilton, J.C., Trianni, G.: Recent

advances in techniques for hyperspectral image processing.

Remote Sens. Environ. 113, 110–122 (2009)

12. Bioucas-Dias, J.M., Plaza, A., Dobigeon, N., Parente, M., Du, Q.,

Gader, P., Chanussot, J.: Hyperspectral unmixing overview:

geometrical, statistical, and sparse regression-based approaches.

IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 5(2),
354–379 (2012)

13. Tilton, J.C.: Method for recursive hierarchical segmentation by

region growing and spectral clustering with a natural convergence

criterion. Discl. Invent. New Technol. NASA Case No. GSC 14,
328–331 (2000)

14. Hossam, M. A., Ebied, H. M., Abdel-Aziz, M. H.: Hybrid cluster

of multicore CPUs and GPUs for accelerating hyperspectral

image hierarchical segmentation. In: 8th International conference

on computer engineering and systems (ICCES’13), 262–267

(2013)

15. Kirk, D.: NVIDIA CUDA software and GPU parallel computing

architecture. In: 6th International symposium on memory man-

agement (ISMM ‘07), 103–104 (2007)

16. Gregory, K., Miller, A.: C?? Amp: accelerated massive paral-

lelism with Microsoft Visual C??. Microsoft Press Series,

Microsoft GmbH (2012)

Table 8 Single GPU energy consumption for CUDA and C?? AMP Approach 2 compared to sequential and parallel CPU energy

consumptions

Image size

(width 9

height 9 bands)

Average

power

consumption

(W)

Average energy

consumption

(J) (power 9

time)

GPU energy

consumption

compared to

sequential CPU

(%)

Equivalent parallel

CPU energy

consumption (J) (same

GPU speedup)

GPU energy

consumption compared

to equivalent parallel

CPU cluster (%)

CPU

sequential

RHSEG

128 9 128 9 220 15 117,600 NA NA NA

Approach 2

(CUDA)

128 9 128 9 220 115 69,920 59 80,260 88

Approach 2

(C?? AMP)

128 9 128 9 220 75 60,000 52 81,600 74

430 J Real-Time Image Proc (2018) 14:413–432

123

17. Qt Project Documentation. http://www.qt-project.org/doc/qt-4.8/

18. Amazon Elastic Compute cloud EC2. http://www.aws.amazon.

com/ec2/

19. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review.

ACM Comput. Surv. (CSUR) J. 31(3), 264–323 (1999)

20. Beucher, S., Lantuéjoul, C.: Use of watersheds in contour

detection. International Workshop on Image Processing, Real-

Time edge and motion detection/estimation, CCETT/INSA/IR-

ISA, IRISA Report no. 132, 2.1–2.12 (1979)

21. Tarabalka, Y., Chanussot, J., Benediktsson, J.A.: Segmentation

and Classification of hyperspectral images using watershed

transformation. Pattern Recognit. J. 43(7), 2367–2379 (2010)

22. Moreno, R., Graña, M.: Segmentation of hyperspectral images by

tuned chromatic watershed, recent advances in knowledge-based

paradigms and applications. Springer Int. Publ. 234, 103–113
(2014)

23. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based

image segmentation. Int. J. Comput. Vision 59(2), 167–181

(2004)

24. Fauvel, M., Tarabalka, Y., Benediktsson, J.A., Chanussot, J.,

Tilton, J.C.: Advances in spectral-spatial classification of hyper-

spectral images. Proc. IEEE 101(3), 652–675 (2013)

25. Ball, G.H., Hall, D.J.: ISODATA: a novel method of data ana-

lysis and classification, Tech. Rep. Stanford University, Stanford

CA (1965)

26. Plaza, A.J.: Parallel spatial-spectral processing of hyperspectral

images. Comput. Intel. Remote Sens. SCI 133, 163–192 (2008)

27. Deb, S., Sinha, S.: Comparative improvement of image seg-

mentation performance with graph based method over watershed

transform image segmentation, distributed computing and inter-

net technology. Springer Int. Publ. 8337, 322–332 (2014)

28. Beucher, S.: Watershed, hierarchical segmentation and waterfall

algorithm. The second international conference on Mathematical

Morphology and its Applications to Image Processing, 69–76

(1994)

29. Tarabalka, Y., Chanussot, J., Benediktsson, J.A.: Segmentation

and classification of hyperspectral images using minimum span-

ning forest grown from automatically selected markers. IEEE

Trans. Syst. Man Cybern. B Cybern. 40(5), 1267–1279 (2010)

30. Plaza, A., Valencia, D., Plaza, J., Martinez, P.: Commodity

cluster-based parallel processing of hyperspectral imagery, plaza,

valencia. J. Parallel Distrib. Comput. 66, 345–358 (2006)

31. Lai, C., Huang, M., Shi, X., You H.: Accelerating geospatial

applications on hybrid architectures. In: Proceedings of 15th

IEEE International Conference on High Performance Computing

and Communications (HPCC 2013), 1545–1552 (2013)

32. Kenneland supercomputer. http://www.keeneland.gatech.edu/

33. Yang, S., Dong J., Yuan, B.: An efficient parallel ISODATA

algorithm based on Kepler GPUs. In: International Joint Con-

ference on Neural Networks (2014)

34. Becker, D.J., Sterling, T., Savarese, D., Dorband, J.E., Ranawake,

U.A., Packer, C.V.: BEOWULF: a parallel workstation for sci-

entific computation. In: Proceedings of International Conference

on Parallel Processing (ICPP) (1995)

35. Tilton, J.C.: Image segmentation by region growing and spectral

clustering with a natural convergence criterion. In: International

Geoscience and Remote Sensing Symposium (IGARSS 98),

pp 1766–1768. Seattle, WA (1998)

36. Beaulieu, J.M., Goldberg, M.: Hierarchy in picture segmentation:

a stepwise optimization approach. IEEE Trans. Pattern Anal.

Mach. Intell. 11(2), 150–163 (1989)

37. Khronos Group OpenCL. Available: http://www.khronos.org/

opencl/

38. Reflective Optics System Imaging Spectrometer, ROSIS. http://

www.opairs.aero/rosis_en.html

Mahmoud A. Hossam is a

research assistant at the Uni-

versity of Ain Shams, Egypt,

where he currently pursues his

M.Sc. degree in Computer Sci-

ence. His research interests are

high-performance computing,

parallel architectures, and oper-

ating systems. His current work

focus is on building parallel

algorithms for hyperspectral

data analysis using commodity

graphics processing units.

Hala M. Ebied is an Associate

Professor at the Faculty of

Computer and Information Sci-

ences (FCIS), Ain Shams Uni-

versity, Egypt since 2014. From

2006 to 2008, she was a Ph.D.

student at Heinz Nixdorf Insti-

tute at the University of Pader-

born, Germany. She received

her M.Sc. and Ph.D. degrees in

Computer and Information Sci-

ences from Ain Shams Univer-

sity, Egypt in 2002 and 2009,

respectively. She received her

B.Sc. degree in Pure Math. and

Computer Science from the Faculty of Science, Ain Shams Univer-

sity. Her research interests include Image Processing, Computer

vision, Computational Intelligence, and Robotics.

M. H. Abdel-Aziz from 2007

till date is working as a tenure

Assistant Professor at the Basic

Science department in the Fac-

ulty of Computer and Informa-

tion Sciences, Ain Shams

University, Cairo-Egypt. In

2005, he got his Ph.D. from

Wayne State University, MI,

USA in High-energy Theoreti-

cal Nuclear Physics. In 2006, he

got a Post Doc. He is a Visiting

Scientist at the Institute for

Theoretical Physics, Goethe

University, Frankfurt, Germany.

His main research interests are in the field of image processing, sto-

chastic modeling, high-performance computing, and high-energy

nuclear physics phenomenology. He coauthored about 39 research

papers in refereed journals and international conferences. Since 2013,

he is working as the Director of Scientific Computing Center at Ain

Shams University. He served as a coordinator of the bioinformatics

program in the Faculty of Computer and Information Sciences, Ain

Shams University, from 2007 to 2013.

J Real-Time Image Proc (2018) 14:413–432 431

123

http://www.qt-project.org/doc/qt-4.8/
http://www.aws.amazon.com/ec2/
http://www.aws.amazon.com/ec2/
http://www.keeneland.gatech.edu/
http://www.khronos.org/opencl/
http://www.khronos.org/opencl/
http://www.opairs.aero/rosis_en.html
http://www.opairs.aero/rosis_en.html

Mohamed F. Tolba is a Pro-

fessor of Scientific Computing

(from 1984 till date). He was the

Vice President of Ain Shams

University (2002–2006) and the

Dean of the Faculty of Com-

puters and Information Sciences

(1996–2002). Dr. Tolba has

more than 150 publications in

the fields of AI, Image Pro-

cessing, Pattern Recognition,

OCR, Scientific Computing,

Simulation, and Modeling. Also

Dr. Tolba has supervised more

than 50 M.Sc. and 25 Ph.D.

degrees in Ain Shams University and other Egyptian Universities. He

is a consultant to different local and international organizations for IT.

Dr. Tolba is the Senior Member of the Institute of Electrical and

Electronics Engineers (IEEE), USA. He is also the Chairman of the IT

sector committee of the Supreme Council of Egyptian Universities,

and the Chairman of the Scientific Committee of the Supreme Council

for Professorship Promotion in the field of Information Sciences.

432 J Real-Time Image Proc (2018) 14:413–432

123

	Accelerated hyperspectral image recursive hierarchical segmentation using GPUs, multicore CPUs, and hybrid CPU/GPU cluster
	Abstract
	Introduction
	Related work
	RHSEG method
	Different approaches to parallelize RHSEG using GPUs
	Hybrid CPU/GPU parallel implementation using a single computing node
	Cluster parallel implementation
	Experimental results
	The dataset
	Hardware architectures
	Results

	Conclusions and future work
	References

