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Abstract Scale-Invariant Feature Transform (SIFT) is

one of the widely used interest point features. It has been

successfully applied in various computer vision algorithms

like object detection, object tracking, robotic mapping and

large-scale image retrieval. Although SIFT descriptors are

highly robust towards scale and rotation variations, the

high computational complexity of the SIFT algorithm

inhibits its use in applications demanding real-time

response, and in algorithms dealing with very large-scale

databases. This paper presents a parallel implementation of

SIFT on a GPU, where we obtain a speed of around 55 fps

for a 640 9 480 image. One of the main contributions of

our work is the novel combined kernel optimization that

has led to a significant improvement of 12.2 % in the

execution speed. We compare our results with the existing

SIFT implementations in the literature, and find that our

implementation has better speedup than most of them.

Keywords SIFT � GPU � CUDA � Combined kernel

1 Introduction

Many computer vision algorithms involve the process of

image feature extraction. Image features are interest points

or regions of an image, which are invariant to translation,

rotation, or scale changes of objects in the image. The need

for image features is twofold. One is to convert the high-

dimensional raw images to the better manageable lower

dimensional signals, and the other is to achieve signals that

can be relied upon for tasks that follow in the image pro-

cessing pipeline. There are a huge number and a variety of

image feature descriptors in the literature. Some of the

well-known interest point detectors are: Harris corners [5],

Shi Tomasi corners [11], SIFT [7] and SURF [2]. There are

many other image features extracted from image structures

such as edges, gradients and regional properties such as

color. Of the many feature extraction algorithms, Scale-

Invariant Feature Transform (SIFT) [7] is one of the most

widely used point features that are scale, rotation and to

some extent illumination invariant.

Although SIFT is known to be a good image feature, its

computational complexity limits its use in real-time applica-

tions as well as in applications that process large-scale image

and video databases. For a video-based human–computer

interaction application, it is necessary that the video analysis

happens at least at the frame rate of the input video, which is

typically more than 15 fps. And the feature extraction step

being only a part of the video analysis, must be faster than

15 fps. Large-scale image and video processing algorithms

have to deal with huge databases. Hence a slow feature

extraction step is not suitable, as it may take several days or

weeks of computation time. Sequential implementations of

SIFT are known to havehigh execution times.The open source

sequential implementationSIFT?? [13] takes around3.3 s on

a 2.4 GHz processor for a 640 9 480 image. This can allow a

maximum frame rate of around 0.31 fps, which is much less

than the minimum frame rate expected.

Graphics processing units (GPUs) are processors that

were traditionally meant for image rendering in graphics
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applications. As compared to the typical CPUs which have

4–16 cores, GPUs have a huge number of processor cores,

160–400, while each core has computational capability

lower than that of the CPU cores. The motivation for

building such a system was to maximize the throughput of

the system, i.e., the number of operations or tasks com-

pleted per unit time rather than minimizing the latency of

each task, which is the aim of the traditional CPUs. In the

recent years, GPUs are also being used for general-purpose

computing (GPGPUs). The huge parallel processing capa-

bility of the GPUs is being harnessed for accelerating

computation for various non-graphics algorithms too [4].

Image processing, being the inverse process of computer

graphics, is also suitable for execution on GPUs as can be

seen in [3]. This paper presents a parallel implementation

of SIFT on GPU and describes some of the techniques that

have led to the speedup of its execution.

The aim of our work is to accelerate the execution of the

SIFT feature extraction and feature description algorithms.

We also aim at scalability of our implementation with

respect to the image size. We have used GPU in this work

to parallelize because of its potential of obtaining huge

speedups as compared to the traditional multi-core parallel

strategies. One of the main contributions of our work is the

novel combined kernel optimization explained in Sect. 5.

Our results show significant improvement in the SIFT

execution time for all the image resolutions considered. A

preliminary version of this work can be found in [1].

The paper is organized as follows. Section 2 briefly

describes the SIFT algorithm. Section 3 describes other

GPU implementations of SIFT. Section 4 gives an over-

view of CUDA and GPU. Section 5 describes the meth-

odology adopted in our implementation. Section 6

describes the experiments conducted. Section 7 discusses

the results obtained and Sect. 8 concludes the paper.

2 SIFT

This section will briefly describe the various steps of the

SIFT [7] algorithm.

2.1 Scale space construction

This stage involves (1) construction of multiple Gauss-

ian convolved images, and (2) computing the difference of

Gaussian images. The input image is repeatedly convolved

with Gaussian kernels of different variances to form a set of

O� ðSþ 3Þ Gaussian blurred images, where O and S are the

number of octaves and the number of levels in each octave,

respectively, in the output scale space. Each octave has an

image dimension of half that of the previous octave. For

creating the base image of the initial octave (-1st octave), the

input image is super-sampled by a factor of two using linear

interpolation. The difference of successive Gaussian con-

volved images is computed to produce O� ðSþ 2Þ differ-

ence of Gaussian (DoG) images, forming the scale space.

2.2 Keypoint detection and localization

This stage involves finding the scale space extrema. For the

central S images in each of the octaves, and for each of the

pixels in them, values of 26 neighbors (8 in the same level,

9 in the next higher level and 9 in the next lower level) are

inspected to detect local minima or maxima. Of the

extrema points, only the high contrast pixels are retained.

This is done by imposing a minimum threshold on the

absolute value of the DoG image pixels. Among the

retained pixels, those having a high edge response are

eliminated, and the remaining ones form the set of SIFT

keypoints. The Gaussian standard deviation corresponding

to the scale in which the keypoint was obtained is regarded

as the scale of the keypoint. For obtaining accurate posi-

tions of the keypoints, quadratics are fit using the samples

of DoG scale space near the keypoints and the locations of

the local maxima or minima of the quadratics are used as

the locations of the keypoints.

2.3 Keypoint orientation computation

Each SIFT keypoint has an orientation associated with it.

This step requires gradients of images near the keypoints.

For each of the SIFT keypoints, a patch of 16 9 16 pixels

around the keypoint is considered from the gradient image

with a scale closest to the scale of the keypoint. A histo-

gram of gradient orientations of pixels in the patch is

constructed with 36 equally spaced orientation bins. The

orientation with highest histogram value is considered as

the orientation of the keypoint.

2.4 Keypoint description

SIFT keypoints are associated with 128 dimensional SIFT

descriptors. A 16 9 16 patch is considered around the

keypoint and rotated to point along the orientation of the

keypoint to make the descriptor rotation invariant. The

patch is divided into four 4 9 4 sub-patches, and individ-

ual 8-bin histograms are computed for each of the sub-

patches. All the 16 8-bin histograms are concatenated to

form the 128-dimensional keypoint descriptor.

3 Related work

The problem of speeding up the SIFT algorithm has been

worked on by researchers in the past and few have
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implemented SIFT on GPU [12]. They have ported the

scale space construction, difference of Gaussian, keypoint

detection and orientation assignment steps of SIFT to GPU,

but have retained the step of descriptor creation to the

CPU. Sinha et al. [12] have used OpenGL/CG for their

implementation on NVIDIA Geforce 7900 GTX card and

reported a speed of 10 fps for a 640 9 480 video.

Heymann et al. [6] have presented an implementation of

SIFT on GPUs that have the capabilities of dynamic

branching and multiple render targets (MRTs) in the

fragment processor. All the steps of SIFT that have been

implemented were executed on GPU. Dynamic branching

has been used for detecting feature points from the dif-

ference of Gaussian images, and MRTs have been used for

gradient calculation. The authors have used NVIDIA

QuadroFX 3400 GPU and reported an execution speed of

17.24 fps for a 640 9 480 video.

Zhang et al. [16] use multi-core CPU systems for

speeding up the execution of SIFT. They use data level

parallelism and task level parallelism on the major time

consuming steps of SIFT. The sequence of the steps in the

original SIFT algorithm has been changed to decrease load

imbalance among the cores. The orientation assignment

and feature description steps for all the scales of an octave

are merged and done only once at the end of keypoint

detection of all scales in an octave. Implementation has

been done using OpenMP on a dual-socket quad-core

system with total 8 cores, each core running at 2.33 GHz.

The execution time reported is 45 fps for a 640 9 480

image.

Wu [15] has implemented two versions of SIFT on

GPU, one using GLSL and the other using CUDA. These

implementations execute at 23.0 and 27.1 fps, respectively,

for a 640 9 480 image on the NVIDIA 8800 GTX GPU.

Warn et al. [14] explored and compared acceleration of

SIFT using OpenMP and GPU. They have focused on very

large images obtained from aerial and satellite photography

to reduce the time taken to extract information from large

image databases. In the GPU version, only the convolution

step of SIFT was offloaded to GPU. System used was

NVIDIA FX 5800 and the implementation was done using

CUDA. A speedup of 1.99 is reported for a 4,136 9 1,424

image as compared to execution on a 2.33 GHz core.

4 CUDA programming model for GPU

Compute Unified Device Architecture (CUDA) is a

programming model for modern NVIDIA GPUs and

provides a simplified programmers view of the GPU for

general purpose programming. From the programmers

point of view, a GPU consists of a number of thread

blocks which in turn contain multiple threads capable of

running in parallel. Threads within the same thread

block have better capabilities of synchronization and

cooperation among each other than threads from differ-

ent blocks. Computations can be offloaded to GPU by

means of invoking a CUDA kernel. During every kernel

invocation, the programmer must specify the number of

blocks (thread blocks) and the number of threads per

block to be used, and a function that must be run on all

the threads. The maximum number of thread blocks and

threads is much more than the actual number of inde-

pendent parallel cores in the system. In fact, there is

large scope for performance improvement if the number

of blocks and threads used is more than the number of

cores. A scheduler does context switching among dif-

ferent blocks to optimize the use of the processing

elements.

5 Methodology

This section describes the method and techniques used by

the proposed implementation of SIFT. We have used

CUDA for programming the GPU. Our implementation

offloads all the steps of SIFT to GPU.

5.1 Scale space construction

2D Gaussian kernels are known to be separable kernels.

That is, a 2D convolution by a Gaussian kernel is equiva-

lent to two consecutive 1D convolutions, one across the

rows and one across the columns. It has been found that the

use of this separable property results in large improvements

in performance for convolutions in GPUs [10]. We have

adapted the NVIDIA kernel for 2D separable convolution

[10] for parallelizing construction of each of the scale

space Gaussian convolved images.

Combined kernel optimization The original sequential

SIFT algorithm proceeds by computing the Gaussian con-

volved images from the base octave till the highest octave,

while sequentially computing all of the scales in each octave.

Thus, the natural sequence of kernel calls during Gaussian

scale space construction would be as shown in Algorithm 1.

J Real-Time Image Proc (2018) 14:267–277 269

123



This sequence is maintained in all of the GPU imple-

mentations of SIFT in the literature known to us. We

achieve further parallelism here by altering this order.

In case, all the sub-sampling steps are done just after the

super-sampling, the base level Gaussian convolved images

of all octaves are available before the start of the outer loop

in Algorithm 1, and we are only left with a sequence of

convolutions that are independent of each other, but which

deal with different-sized images. We replace all of these

convolution kernels by a single combined kernel. This is

illustrated in Algorithm 2.

The top portion of Fig. 1 depicts the individual kernel

grids for the convolutions, if Algorithm 1 is used. Initially,

all the levels of octave -1 are convolved one by one using

GPU. For each of these convolutions, a unique kernel call

has to be made, with the right number of blocks to cover

the entire image of the particular scale. When each of the

kernels is invoked, the code corresponding to the kernel

function is transferred to GPU. The requested number of

thread blocks are initialized, and the convolution of the

particular level of octave -1 gets initiated. Each of the

thread blocks has access to a unique variable called

blockIdx that identifies the block. The input to the kernel is

the base image of the octave that is considered, and the

output of the kernel is the convolved image corresponding

to the particular scale under consideration. The parallel

convolution algorithm uses blockIdx and the input image

and produces the output. After completion of the kernel

execution, the next level is considered. The three largest

grids of Fig. 1 represents the kernel grids of octave -1 that

are sequentially executed on the GPU. This process is then

sequentially repeated for higher octaves.

In the above-explained process, parallelism is exploited

only within the convolution of each scale. On the other

hand, Algorithm 2 exploits parallelism among the scales as

well using the combined kernel. One of the main chal-

lenges in the design of such a combined kernel is fixing of

the grid size in such a way that all scale convolutions take

place with the right input and output. Identification of the

virtual individual grids within the combined grid is crucial,

and must be accomplished without much code overhead.

All the thread blocks of convolution in Algorithm 1,

irrespective of the octave and level of the scale space they

populate, execute the same piece of convolution code, but

with different inputs, outputs and parameters. We use this

property to assimilate the thread blocks of all octaves and

levels in a single combined kernel. We also observe that by

keeping the number of threads per block a constant, there is

a simple pattern in the number of blocks required for dif-

ferent scales:

If the number of thread blocks required per convolution

kernel of each level of the -1st octave is ðW ;HÞ, i.e.

N�1 ¼ ðW ;HÞ (N stands for Number of Blocks), then

N0 ¼ ðW=2;H=2Þ, for the 0th octave, and

N1 ¼ ðW=4;H=4Þ, for the 1st octave, since we maintain the

number of threads per block (16 9 16) across all scales.

The bottom part of Fig. 1 depicts the process of merging

individual thread blocks. The total number of blocks

NCOMBINED of new combined kernel depends on the way

the individual kernels are laid out. It can be seen from

Fig. 1 that there are multiple ways of placing the thread

blocks on the grid. The bottom left layout uses 4:5WH

thread blocks and is better than the bottom right layout,

which uses 6WH thread blocks. The best placement strat-

egy is the one that minimizes the area of the rectangle that

is needed to enclose all the thread blocks, as CUDA kernels

can be invoked only using a rectangular grid.

Maintaining the structure and shape of the individual

kernel grid inside the combined kernel is important. This is

because the kernel code must be able to identify the correct

original kernel it belonged to, so that it can identify the

correct IO (input, output) parameters, define and use a

modified version of the blockIdx variable to compensate for

the offset arise due to combining of kernels. For doing the

initial selections of IO parameters, the combined kernel

function must have some additional code in the beginning.

And during the kernel call, IO parameters required by all of

the original kernels must be passed.

Ideally, the combined kernel must complete execu-

tion within the time required for executing one instance

of the -1st octave kernel. This is so because, ideally

all the thread blocks in a grid execute in parallel, and

the time required by the levels of other octaves is

lesser than that required by the base octave, due to the

reduced image dimensions in the higher octaves.

Hence, ideally this optimization results in huge

speedup of computations.

However, practically it is not true that all the blocks

execute completely in parallel. The number of processing

elements is usually lesser than the number of threads asked

for by the kernel call. The thread blocks are kept in a queue

and are scheduled by a scheduler for execution on the

processors, in a time shared manner. Due to this practical

limitation, the huge speedup expected in the ideal case is

not possible. But, we obtain considerable performance

boost due to this optimization, the details are shown in the
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experiments section. By invocating thread blocks of all the

kernels at once, we impart a larger flexibility for the

scheduler to optimize the utilization of the processors. This

is one of the reasons for the increased performance.

There is another cause for the success of this optimi-

zation. The number of kernel calls is decreased from O�
ðSþ 2Þ to 1. Hence we save on the kernel invocation time,

in which the kernel code is copied to the device memory

and, SMs and SPs (hardware elements) are initialized. In

addition, there is only a small quantity of code overhead in

the combined kernel function.

DoG computation involves subtracting images and is

straightforward to implement in CUDA. Fine-grained par-

allelism is exploited by assigning one thread per DoG

pixel. It can be observed that the subtraction kernels for

each of the scales in the scale space are independent of

each other. The combined kernel optimization is used for

this step also, and we reduce O� ðSþ 2Þ kernels to a

single kernel.

5.2 Keypoint detection

In this step, local extrema of the central S DoG images of

all of the octaves are to be detected. A total of O� S

kernels are used, in which each thread checks for extre-

mum at a single pixel in the DoG image. The challenge

involved in this step is the method for storing the detected

keypoints. The number of keypoints generated by the

kernel and the order in which points are generated are

uncertain before the execution of the kernels. A global

Fig. 1 Top individual kernel

grids for convolution, bottom

left combined kernel grid,

bottom right alternate placement

strategy
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array in the device memory to store the keypoints and a

global index variable to keep track of the number of key-

points found is the usual method in most of the sequential

implementations. But this method cannot be directly

applied on GPU because of the synchronization problem.

There is no defined order in which keypoints get detected.

Hence, we use atomic add instructions to enforce seriali-

zation of keypoint storage among all the thread blocks.

Due to the use of atomic instructions, increasing the

number of parallel elements increases the contention for

accessing the shared variable. Using a combined kernel for

this stage increases the number of thread blocks that can

potentially simultaneously contend for the shared index

variable. In fact, we have observed that using combined

kernel here has increased the execution time of this stage,

due to the increased serialization.

Another method for storing the keypoints is to have a 2D

array of the same size as the input image and make each

thread write into the array at the location that the thread is

responsible for, if a keypoint is detected. But this would not

result in an array that has keypoints in consecutive loca-

tions. And the kernels that are executed after this stage

require the keypoints to be sequentially placed. Hence, we

chose not to use this data structure.

5.3 Keypoint orientation and description

A single kernel function is used for both orientation

assignment and descriptor construction. This is done

because both the steps require the same gradient informa-

tion around the keypoint. Unlike the sequential SIFT, we

do not pre-compute gradient image for the entire scale

space. The gradient of only a 16 9 16 patch around the

keypoint is computed. The number of thread blocks used

for the kernel is the number of keypoints detected in the

previous stage. Each thread block is responsible for one

keypoint.

Each thread block has 17 9 17 threads. Initially, threads

in a block load the 17 9 17 patch around the keypoint into

the shared memory. This is done as a caching mechanism

to decrease the latency of memory accesses. A synchro-

nization point is used to ensure all threads have completed

loading. Then the gradient is computed for 16 9 16 pixels.

Histogram creation is not trivial to implement on GPU.

This is because all the threads update the shared histogram

simultaneously, and hence we have the synchronization

problem. Use of atomic instructions significantly reduces

the performance in this case, because of the small number

of bins and large contention among threads. There is a

technique for parallel histogram creation in the literature

that uses multiple histogram copies which are updated by

different parallel elements and merges the different partial

histograms to form the final histogram [9]. We have

adapted this technique for computing histogram of orien-

tations. To find the maximum of histogram, we adopt the

well-known GPU reduce algorithm, with the MAX

operator.

6 Experiments

All the experiments are done using a single GPU of the

NVIDIA S1070 device. The GPU is connected to a

2.4 GHz AMD Opteron 8378 processor. The GPU operates

at 1.296 GHz and has 4 GB RAM and a total of 240 cores.

Pinned memory usage: cudaMemcpy function works

much faster with pinned CPU memory blocks than the

usual memory blocks [8]. Pinned memory is characterized

by the property that it is never swapped out of main

memory by the operating system. This avoids the process

of duplicating the source memory block on CPU memory

before memory transfer. Our implementation uses pinned

memory to store the image on CPU. Although pinned

memory is attractive for a fast implementation, it cannot be

used in abundance, as it is a scarce resource. We tackle this

problem by adopting tiling of the input image.

If the input image has dimensions larger than a threshold

t, it is split into multiple smaller image tiles, and each of

the tiles is processed sequentially. This also lets our code to

be executed on GPUs with much lesser RAM capacity, as

the amount of GPU memory allocated only depends on the

size of the tile, and not on the size of the input image.

Use of CPU: While the GPU works on one tile of the

image, the CPU copies the next tile of the image to the

pinned CPU memory. Our experiments have shown that the

time required for this transfer is only slightly less than the

time required for the GPU to process one tile. Hence the

GPU waiting time (idle time) is almost zero. We have used

the pthreads library for the parallel execution on CPU.

We have executed our SIFT code for images of different

dimensions ranging from 320 9 240 (CIF) to

2,048 9 1,536 (3M). The number of octaves is fixed to 6,

and the number of levels within each octave is 3. We

compare the execution time of our implementation with

that of the open source CPU implementation by [13]. We

compare [13] code with two versions of our GPU imple-

mentation, namely with and without the combined kernel

optimization. Figure 2 shows the speedup of the proposed

method with and without the combined kernel. Speedup us

defined as the ratio of timevedaldi and timeGPU. It is seen

from the figure that the speedup factor is quite high in

general for all image sizes. It can be observed that the

version with combined kernel has enhanced speedup for

most of the image sizes.

One characteristic feature of both the plots in Fig. 2 is

that the speedup shoots up for 640 9 480 image size, then
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drops down, and then shows a monotonic increasing

behavior. This happens because, for images larger than

640 9 480, we introduce tiling of images. It may seem

from the graph that the speedup would be much higher

without tiling, and it is a better option to avoid tiling. But

tiling is inevitable for a scalable implementation that

should be able to run on GPUs with low device memory.

We store the entire scale space, DoG scale space, the

detected keypoints along with their descriptors in the

device memory.

One other observation that can be made from Fig. 2 is

that the code without combined kernel preforms slightly

better than the one with the combined kernel for the

640 9 480 case. It was mentioned in the Sect. 5.1 that with

increase in the number of thread blocks in the combined

kernel, the scheduler gets larger flexibility to optimize the

GPU resource usage. But there is an upper limit on the

number of blocks that can be easily handled by the

scheduler, which depends on various factors like memory

access patterns of the kernel code, number of synchroni-

zation points, atomic operations and so on. For the

640 9 480 case, the number of blocks reached the satu-

ration level, because of which it was not possible to gain

speed using the combined kernel. However, we have

observed in our experiments that combined kernel when

applied only to DoG computation, which has much simpler

kernel code than convolution, results in speedups even for

the 640 9 480 case.

Table 1 shows the effectiveness of the combined kernel

optimization for different image sizes. For an average-sized

image, the time advantage due to the combined kernel is

12.2 %.

Table 2 shows the execution times of our code, and that

of Vedaldi [13] for versions with and without the use of up-

sampling in the base octave. It can be observed that the

version with up-sampling requires significantly more time

for the sequential code, but the GPU implementation scales

well, with manageable speeds even for HD images.

For an image of dimensions 640 9 480, our imple-

mentation runs in 17.861 ms (55.98 fps) for the version

without up-sampling of the base octave, and in 51.643 ms

(19.36 fps) for the version with up-sampling of the base

octave, which is more than real time and better than all of

the GPU implementations discussed in the Sect. 3.

The accuracy of our output SIFT points are found by

comparing their positions with that obtained by the SIFT

executable of David Lowe (author of the SIFT paper Lowe

[7]) and with the keypoints obtained from the code given

by Vedaldi [13]. As compared to keypoints of Lowe [7],

there are some additional points and some missing points in

our implementations output, but 85.6 % of the points are

sub-pixel accurate; i.e., the location error is less than

1 pixel. This is because we have not implemented the

accurate keypoint localization step of the SIFT algorithm,

which fits a quadratic in the scale space and localizes the

keypoints to a more accurate scale space extrema. Figure 3

shows the keypoints of the proposed implementation

(marked by red plus) and those of Vedaldi [13] without the

accurate keypoint localization step (marked by green

squares).

The effectiveness of descriptor can be seen in Fig. 5

which shows matches between two images of the same

scene but obtained from different viewpoints. 108 keypoint

matches were obtained among the 147 and 163 keypoints

in the two images.

6.1 Application to object tracking

We further test our GPU implementation by considering

the object tracking application of SIFT. Object tracking is a

popular computer vision problem, in which the location of

the object of interest is given in the first frame of a video,

and the object location is to be found out for the rest of the

video. Among the various approaches to object tracking,

there are approaches that use SIFT features. Some of them

combine other techniques with SIFT to produce accurate

output, robust towards noise and occlusion. In this paper,

320x240 640x480 800x600 1024x768 1280x1024 2048x1536
30
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Image Size

Speed−up w.r.t Vedaldi implementation

Speed−up with Combined kernel
Speed−up without Combined kernel

Fig. 2 Speedup of our code w.r.t Vedali [13] vs. image size. Speedup

= timeVedaldi
timeGPU

Table 1 Effect of combined kernel optimization

Execution time

without combined

kernel (ms)

Execution time

with combined

kernel (ms)

Percentage

decrease in

time (%)

320 9 240 7.197 5.361 25.51

640 9 480 17.638 17.861 -1.26

800 9 600 34.975 29.403 15.93

1,024 9 768 51.074 44.116 13.62

1,280 9 1,024 83.432 74.932 10.19

2,048 9 1,536 178.565 162.149 9.19
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we have considered a naive approach, as our objective is to

only compare our implementation with Lowe’s

implementation.

SIFT features are extracted from all the frames of the

video. For every frame, SIFT feature correspondences are

found between the previous frame and the current frame.

This gives a set of location pairs ðxPreviousi; yPreviousiÞ
and ðxCurrenti; yCurrentiÞ. The difference between the

corresponding location vectors gives an estimate of the

motion vector of the object. Since we have multiple motion

vectors, median of the x and y components are chosen as

the object’s motion vector MV ¼ ðmvx;mvyÞ. The object

Table 2 Comparison of execution time (in ms) of the proposed implementation with that of Vedaldi [13] sequential implementation

Image size 320 9 240 640 9 480 800 9 600 1,024 9 768 1,280 9 1,024 2,048 9 1,536

Proposed (with up-sampling) 16.145 51.643 85.674 141.247 217.553 487.233

Vedalai [13] (with up-sampling) 895.971 3,367.579 5,190.937 8,766.560 15,658.585 41,482.853

Proposed (without up-sampling) 5.361 17.861 29.403 44.116 74.932 162.149

Vedalai [13] (without up-sampling) 241.206 873.572 1,283.937 2,114.593 3,523.696 8,514.868

100 200 300 400 500 600 700 800

100

200

300

400

500

600

Fig. 3 Comparison of our

keypoints (red plus) with

keypoints of Vedaldi [13]

(green squares)

Fig. 4 Tracking results for jump, cup and pktest videos. The dotted red boxes represent GPU implementation result and the cyan boxes represent

Lowe’s implementation result
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location in the previous frame is propagated to the current

frame using

objx;current ¼ objx;previous þmvx

and

objy;current ¼ objy;previous þmvy:

We have implemented the above-mentioned method to

object tracking using both Lowe’s SIFT and our GPU-

SIFT. Experiments were done using three standard tracking

videos publicly available, namely ‘jump’, ‘cup’ (obtained

from http://www.votchallenge.net/), and ‘pktest’. Figure 4

shows the estimated object locations for three videos. The

cyan bounding boxes represent the results of Lowe’s SIFT

implementation and the dotted red boxes represent the

results of our GPU-SIFT implementation. It can be seen

that the boxes closely match each other.

Figure 6 shows the root mean squared error (RMSE)

between the object center locations estimated by the two

implementations for each frame considered. It can be noted

that the error is below 5 pixels for most of the cases, and is

much less than the dimensions of the object. Figure 7

shows RMSE of object location with respect to the ground

truth for the ‘jump’ video. The error pattern in the output of

both implementations closely matches each other.

7 Discussion

The characteristics and effects of the combined kernel can be

inferred from Table 3. Table 3 shows the speed gains

obtained due to the difference of Gaussian combined kernel.

The total execution timeof a kernel includes twoparts, namely

the GPU time and the time required to invoke the kernel

(referred to as CPU time), which involves copying the kernel

code to GPU and initializing the GPU. It can be seen from the

table that the reduction in GPU time is not consistently good

across various image sizes. In fact there is appreciable

reduction in GPU time only for smaller grid sizes (320 9 240

and 800 9 600).We believe that this can improve with GPUs

with larger number of cores. However, reduction in total

kernel time (GPU time ? CPU time) is consistently high

across all image sizes. This is because each combined kernel

replaces 30 ordinary kernels, and requires kernel code transfer

and GPU initialization only once, as compared to 30 kernel

code transfers for the equivalent ordinary kernels.

By introducing the combined kernel optimization, we

only add a sequence of simple ‘if–else’ statements in the

kernel code. As for the execution time, this modification

does not affect much, but the code becomes slightly com-

plex. The number of conditions may be quite large (e.g., 18)

for easy maintainability of code. The conditions have to be

derived manually using the layout of the combined grid.

This process of generating the ‘if–else’ code section of the

kernel code from the layout can be automated, but is cur-

rently done manually in our implementation.

The maximum number of arguments allowed in the

kernel function call is usually less than the number of

arguments required to be passed to a combined kernel, if

the arguments are passed in the traditional method of using

Fig. 5 Keypoint matching by descriptor comparison
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Fig. 6 RMSE in object centers obtained by GPU-SIFT w.r.t SIFT
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Fig. 7 RMSE in object center w.r.t ground truth for ‘JUMP’ video
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pointers to images. This is because each combined kernel

will have to access the entire scale space. To circumvent

this problem, we allocate octaves 9 levels number of

pointers in the device memory of GPU and copy the

location of scale space images to these pointers. With this,

we only send one double pointer in each combined kernel,

instead of several pointers. There is only a slight memory

overhead of storing octaves� levels number of pointers.

As for the memory bandwidth, the combined kernel

turns out to be advantageous. It avoids unnecessary repe-

ated transfer of the kernel code from CPU memory to the

GPU device memory. Virtually, several individual kernels

use the code that is transferred only once, bringing about

enhanced memory bandwidth.

8 Conclusions and future work

We have presented an implementation of SIFT on GPU

which has a significant advantage in the execution perfor-

mance as compared to the CPU-based implementations.

Additionally, our solution is highly scalable with respect to

the image size because of the use of image tiling. The

uniqueness of our work as compared to the other GPU

implementations in the literature is that we have a well

defined optimization technique—the combined kernel

optimization which results in around 12 % increase in the

execution speed. Moreover, the applicability of combined

kernel optimization is not restricted to SIFT; it is a general

technique that can be used wherever there are similar

independent kernels that are to be applied to different

inputs of the same/different sizes. Many of the algorithms

that deal with the scale space have the potential to be

accelerated using this optimization.

Our optimization is similar to the task level parallelism

used in the standard multi-core parallel programming.

Typically, GPUs are considered to harness only the data

level parallelism, using a large number of threads. This

paper has shown the use of a variant of task level paral-

lelism on GPUs, where each of the thread blocks is con-

sidered to undertake a separate task.

Extending the SIFT implementation to include matching

of SIFT descriptors onGPU is one of our plans for the future.

Wewill be identifying other algorithms that can benefit from

the proposed optimization and implement them.
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