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Abstract This paper addresses the problem of 3D

tracking of human gesture for buying behavior estimation.

The top view of the customers, which has been little treated

for human tracking, is exploited in this particular context.

This point of view avoids occlusion except for those of the

arms. We propose an hybrid 3D–2D tracking method based

on the particle filtering framework, which uses the exclu-

sion principle to separate the observation related to each

customer and deals with multi-person tracking. The head

and shoulders are tracked in the 2D space, while the arms

are tracked in the 3D space: these are the spaces where they

are the most descriptive. We validate our method both

experimentally, so as to obtain qualitative results, and on-

site. We demonstrated that it makes a good estimation for

various cases and situations in real-time (�40 fps).

Keywords Human tracking � Particle filtering � Multi-

target tracking � Buying behavior analysis � Xtion Pro-Live

1 Introduction

The 3D human pose estimation is a theoretically interesting

and challenging problem. Indeed this is an essential part in

a wide range of modern industries, animation for games

and movie, video surveillance and marketing issue. More

and more areas use computer vision and image analysis to

find a solution to their problems and develop methods that

process data streams automatically and in real-time. This is

the case in particular in marketing. This paper presents the

works supported by the ANR project ORIGAMI2. The aim

of the project was to develop real-time and non-intrusive

tools for analyzing the shoppers’ buying act decisions. The

approach is in the first time based on extracting and fol-

lowing the shoppers’ gaze and gesture positions with

computer vision algorithmic. It is then based on statisti-

cally analyzing the extracted data: the goal of this cognitive

analysis was to measure the interaction between the

shopper and his environment. This technology will provide

consumer goods producers with non-biased and exhaustive

information on shoppers’ behaviors during their buying

acts within the shelves. The work presented here is focused

on the tracking of the customers posture.

We analyze the behavior of customers moving between

cheese self-service shelves of a supermarket. As for the

video surveillance, the top view of the person is studied.

Indeed, it improves the visibility of the movement of the

person and better separates the persons moving along the

scene. However, in the video surveillance, the camera is

traditionally far from the scene and the ground so as to

have a wider viewing angle and simultaneously monitor a

larger area. But the higher the camera is placed, the smaller

the size of the persons in the recorded images is. The

resolution is sufficient for the person localization but not

for the posture estimation. This is why many approaches

have been proposed for position tracking on the top view

but not for the pose tracking. On the contrary, in our

context, we are looking for the pose. The camera is placed

fairly close to the ground so as to correctly view the cus-

tomers. In the installation project, several cameras are

placed in series to follow the customer along the shelves.

For a relevant behavior analysis, the 3D pose of the

person is required. But this pose is hardly estimated from a
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traditional color image. To acquire more informative data,

the camera that is placed over the customers is a Xtion

PRO-LIVE [44] produced by Asus. It has sensors that

simultaneously provide the color and the depth informa-

tion. Hence a 3D model is fitted to 3D data. This camera is

affordable and space-saving for the incorporation in the

shelves. As the kinect of Microsoft, it is not suited for

outdoor acquisition and has a distance of use for the depth

computing between 0.8 and 3.5 m. It is also suitable for our

context in a supermarket. On our experiments, the Xtion

PRO-LIVE is installed 2.9 m from the floor that corre-

sponds to the top of the shelves.

In human tracking, the images given by the acquisition

equipment are the observation that is fitted to an articulated

model that embodies the possible human movements. The

great majority of the methods in the literature use a model

adapted to a front view of the person because the shape of a

person is much more discriminative on this view. Fur-

thermore, the color of the skin and the elements of the face

are seldom available in a top view but often used. The well-

known Viola–Jones face detector [41] provides for exam-

ple an accurate estimation of faces localization in the front

view. Nevertheless, in this paper, we present a method of

posture tracking using a top view.

The second main difficulty of the work is the environment

of the customers. First they interact with many elements of the

supermarket (the shelves, the goods, etc.). Then several cus-

tomers often appear in the image and their shape can overlap.

Finally, they could be attached with moving elements as

shopping trolleys, basket of products or a backpack. We have

also cluttered image with disruptive elements and significant

occlusions. In order to cope with these difficulties, the

observation relative to each target and element of the scene

must be separated. In this way each tracker is independent

(with no complexity upgrading) and pose of hidden parts

could be estimated from the dynamics of the movement.

This paper makes the following contributions:

1. We introduce a hybrid 3D–2D model specially adapted

to the top view. The separation of the model allows us

to study each part of the body in the space where its

shape is the more descriptive and to reduce the

computing time.

2. We propose a likelihood function with 2D chamfer

distance [40] for the head and shoulders pose estima-

tion and with 3D Euclidean distance for the arms pose

estimation.

3. To handle with inter-person occlusion of the arms

(head and torso cannot have inter-person occlusion in a

top view), we realize multi-person tracking with a

tracker per target. To reduce the influence of elements

of the environment, we exploit the exclusion principle

and separate the observation.

4. The proposed method is validated on more that 25 min

of on-site sequences and the estimations are qualita-

tively and quantitatively evaluated under experimental

conditions. We verify particularly the real-time behav-

ior of our algorithm.

The remainder of the paper is organized as follows: after

briefly discussing the theoretical background of human

gesture tracking in Sect. 2, Sect. 3 provides detailed

information related to our hybrid 3D/2D particle filtering.

To deal with the data acquired in the supermarket, the

exclusion principle is applied and allows multi-person

tracking in Sect. 6. A confidence measure that detects

wrong estimations is introduced in Sect. 5. Experimental

results and analysis are presented in Sect. 6. Finally, we

draw our conclusions and provide some future work in

Sect. 7.

2 Related works

The multi-target tracking has been studied extensively in

the literature for position but not for gesture. Several

techniques use the target detection and data association

module. The data association procedure matches each

detection to the current tracks and chooses the best

according to the shape and the color correspondence (with

the Bhattacharrya distance [9, 19, 25, 30] or the trajectories

of interest points [14]. Brendel [8] built a graph from the

detections and solved the data association problem by

finding the maximum-weight independent set of the graph.

Yang [45] built his graph with an online learned condition

random field. They realized their treatments on the com-

plete sequence so as to handle the long occlusions as An-

driyenko [1] who minimized an energy function defined on

the whole sequence. A shortest path algorithm processed

on a graph can separate in each frame the detection of each

target [3, 4, 33]. Benfold [2] comparably used a Markov-

Chain Monte-Carlo (MCMC) data association within a

temporal sliding window. Sometimes, certain parts of the

tracking, named tracklets, are linked on a data association

process [43] or in a graph [38].

General optical flow based systems [5, 47] infer the

successive positions from motion estimation. Sch-

wartz [35] uses it in 3D data for differentiation of body

parts that occlude each other. Optical flow is nevertheless

less efficient for articulated object tracking.

Object tracking that usually deals with targets of iden-

tical appearance can be ranged by learning individual target

models: Breitenstein [6] learned target-specific classifiers

at run-time to distinguish between the tracking targets; an

online boosting is used by Luber [26] on the RGB-D data.

A part-based detection and tracking [25, 37, 42] offers
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many advantages: it is more tolerant to view point changes

and pose variations and it can deal with partial occlusions.

A dynamic occlusion handling predicts partial occlusions

and selects the visible parts of the body. In [37], if only the

head can be seen, it is tracked by a Kalman filter instead of

a particle filter in the other cases. In crowded scenarios,

Pellegrini [31] modeled people social behavior to more

accurately predict their movement.

A body-part learning associated with a random forest

allows joints detection used for human pose estimation.

This process is more relevant for detection than for track-

ing: Dantone [11] announced a running of few seconds per

image. Shotton [36] realized a local body-part detection to

infer joints detection from a huge synthetic dataset.

Hu [17] improved by MCMC a first estimation of the joints

position computed from face, torso and skin detection. The

cue and dataset used for these methods are incompatible

with a top view.

Using classifiers is time-consuming. Mitzel [30] used a

statistical Poisson process to select the relevant 3D ROI

and reduced the detection field. But for a real-time pro-

cessing, a Kalman or particle filtering is suitable.

The state of all the targets can be modeled in a single

particle [20]. The interaction between the targets is con-

sidered in the particle formation. Choi’s method [10]

works with a moving camera. A MCMC solves the joint

camera estimation and multi-target problem. Nevertheless,

a joint particle filter suffers from exponential complexity in

the number of tracked targets. That is inconsistent with a

real-time processing. To prevent this, a set of trackers

could be associated with each target. To avoid the problem

produced by the overlapping of different targets, Gonza-

les [13] used the exclusion principle introduced by Mac-

Cormick and Blake [27]. At each step, the observation (the

pixels of the recorded image) is split between the targets.

Xing [43] selected the best subset of current observations

which corresponds to visible parts to update particle

weights. The blocking methods penalize particles that

overlap zones with other targets [9]. Hence each tracker is

associated with the relevant observation part and can be

performed almost independently. We use too the segmen-

tation of the observation because of its low level of com-

plexity and its speed of execution. We have to remain real-

time in multi-target operating.

The human tracking in the top view is seldom explored,

although it has numerous applications in video surveil-

lance. Heath [14] estimated the 3D trajectories of salient

feature points (primarily at the shoulders level) that he used

as the observation for the particle filtering. Canton-Fer-

rer [9] defined the exclusion zone for the blocking by an

ellipsoid. For the tracking, he separated 3D blobs and used

a particle filter where each particle represents a voxel of the

blob. It estimates the centroid of the blob that models the

person. These methods only track the position of the person

and not its pose.

To obtain a behavior analysis, the estimation of the

gesture is required. Nevertheless, a lot of researches have

been devoted to develop articulated body pose tracking

methods for a single target. To do this, the particle fil-

ter [18] has been mostly used. It is a Bayesian sequential

importance sampling technique, which recursively

approximates the posterior distribution using a finite set of

weighted samples. The samples are selected to correspond

to the observation and propagated according to the

dynamic of the system. In practice the observation is fitted

to a model that embodies the possible states. A skeleton

defines the states of the model. It comprises of a set of

appropriately assembled geometric primitives [12, 15, 16]

to introduce the volume occupied by the body in the 3D

space. Stoll [39] distributed points of interest along the

skeleton and included 3D Gaussians centered on the points

of interest to provide the volume. We use a similar model

but adapted for the top view.

To describe the human class, various features are used:

skin color, shape of the silhouette, movement, etc. Deut-

scher [12] selected points along the surface of its model

that he matched to the observation. The X-like shape

formed by the head and the shoulders is particularly well

descriptive of the human shape [24, 28].

In the buying behavior analysis context, post treatment

is not assessed and real-time processing is also appreciated.

In the particle filtering, the most expensive operation is the

evaluation of the likelihood function because it has to be

done once at every time step for every particle. Some

adaptations are needed to obtain a real-time processing.

Gonzales [13] realized a tracking for each sub-part of the

body so as to use only simple models. A hierarchical par-

ticle filter [46] simplifies the likelihood function. The

annealed particle filtering [12] (APF) reduces the required

number of particles. Finally Kjellström [22] considered

interaction with objects in the environment to constrain the

pose of body and remove degrees of freedom.

All poses of the skeleton are not possible in practice. For

example, the head cannot rotate over 360�. The sampling

can be constrained by a projection on the feasible config-

uration space [15]. As [13] we decompose the model so as

to treat each part in its best representation and to reduce the

complexity of the state space.

Finally, transformation can be applied to provide an

unimodal likelihood model that allows using a Kalman

filter. Larsen [23] used stereo data to disambiguate depth

and Brox [7] tracked interest points provided by SIFT.

Data association means post-processing and learning is

time-consuming, which is incompatible with a real-time

context. In our method, we estimate the pose of the person

from a particle filter with an articulated model. We reduce

J Real-Time Image Proc (2016) 11:769–784 771

123



the computing time by decomposing the model in two

parts: the head and shoulders are tracked in the 2D space

and the arms are tracked in the 3D space. Indeed, the model

is not complex enough to use a layered particle filter as

AFP. In order to obtain a suitable result with multiple

customers (multiple targets) we use the exclusion principle.

A sharing of the observation between the persons is done

from their predicted positions.

3 Hybrid 3D–2D human gesture tracking

3.1 The particle filtering

Particle filtering has been a successful numerical approxi-

mation technique for Bayesian sequential estimation with

non-linear, non-Gaussian models. At moment k, let xk be

the state of the model and yk be the observation. In our

case, the state of the model represents the pose of the

person and the observation is the data acquired by the

Xtion PRO-LIVE camera. Particle filter recursively

approximates the posterior probability density pðxkjyk) of

the current state xk evaluating observation likelihood based

on a weighted particle sample set fxik;xi
kg. Each of the N

particles xik corresponds to a random state propagated by

the dynamic model of the system and weighted by xi
k.

There are 4 basic steps:

– Resampling: N particles fx0ik ; 1
N
g� pðxkjykÞ from sample

fxik;xi
kg are resampled. Particles are selected by their

weight: large-weight particles are duplicated while

low-weight particles are deleted. Hence the particle

sample is always located around the expected pose. To

automatically define what are the large and the low

weights, we use the SIS systematic resampling algo-

rithm [21] resumed in [34].

– Propagation: particles are propagated using the

dynamic model of the system pðxkþ1jxkÞ to obtain

fxikþ1;
1
N
g� pðxkþ1jykÞ. This step aims to guess the next

state. We chose a constant speed propagation followed

by a Gaussian centered on the estimated pose and with

a standard variation depending of the variation of the

related feature.

– Weighting: particles are weighted by a likelihood

function related to the correspondence between the

model and the new observation. The new weights xi
kþ1

are normalized so that :
PN

i¼1 x
i
kþ1 ¼ 1. It provides the

new sample fxikþ1;x
i
kþ1g� pðxkþ1jykþ1Þ. The unsuit-

able tested state are hence detected and deleted in the

next resampling step.

– Estimation: the new pose is approximated by the

weighted mean of the particle: xkþ1 ¼
PN

i¼1 x
i
kþ1x

i
kþ1.

This step is only used to provide a single state rather

than a probability density. It is independent of the

particle sample evolution.

The main variation of the method to be adapted to a par-

ticular problem is the definition of the model and the

likelihood function. In the following, we explain the choice

we have done for each of these points and each tracking

process.

3.2 The 2D head-shoulders tracking

In a first time, the head and the shoulders are the only

tracked parts. This choice is explained by our assumption

that the head and the shoulders are more descriptive in the

2D space of the recorded image while the arms are more

descriptive in the 3D space. Indeed, the shapes of the head

and the shoulders are fairly constant and they are mainly

described by their displacement on the scene. The rele-

vance of this choice will be proved by experimental tests in

the Sect. 6.2.

The 2D observation is composed of the color and the

depth images recorded by the camera (Figs. 1, 2, 3). On

the depth image, the shapes of the head and the shoul-

ders are easily identifiable and fairly constants: it makes

two ellipses. Moreover, the X-like shape of the top of

the body used by Micilotta [28] on the front view leads

to sharp depth edges between the two parts. Depending

on the distance to the camera (given by the top of the

head depth), the distance between the two shoulders is

fairly constant. The radius of the ellipse related to the

shoulders is only dependent on the person’s stoutness.

The fitting between the ellipses and the observation must

allow some variation of the model: we use a 2D chamfer

matching.

The 2D model We use an association of two ellipses

corresponding to the usual human anatomic feature to

model the head and the shoulders (Figs. 4, 5). Each ellipse

is defined by its position in the image and by its orientation:

there are 3 degrees of freedom per ellipse. It provides the

main information about the person’s position for the

behavior analysis: the ellipse of shoulders gives the body

position in the aisles of the supermarket and the ellipse of

head gives the relative orientation that could infer the

direction of the gaze. The pose of the arms is estimated

after. For a better description, the weighting of each ellipse

is realized separately. The two parts are linked by con-

straints in the propagation step. The pose of the person is

constrained by human biomechanics: the head cannot

rotate 360� around the neck and the neck is not expandable.

The spatial distance between the two centers and the dif-

ference of orientation are limited. The particles must not

belong to these impossible states.
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The likelihood function The elliptical shapes done by the

head and the shoulders on the top view are fitted to the two

ellipses of the model. To do this we use a 2D chamfer

distance that provides an efficient comparison between

shapes robust to slightly incomplete or occluded edges.

First the top of the head is defined as the highest part of the

body; thus the element of the candidate blob with the

minimal depth value. According to this depth value, the

depth image is thresholded on the middle of the head and

the end of the shoulder level. Hence we obtain a mask

where each pixel is assigned either to the head or the

shoulders or the background. The edges of this mask pro-

vide an estimation of the interesting shapes of the depth

array. The chamfer mask is computed so that the chamfer

distance is not computed again for each particle. The

chamfer mask provides the shortest distance from each

pixel to the edges [40].

The weight assigned to a particle is the mean value of

the chamfer mask for the pixel of the ellipses related to the

particle. Let Dell
i be the set of pixels of the ellipses provided

by the state vector of the particle i and the chamfer mask

Mch. The weight of the particle i is given by

dch
i ¼ mean

p2Dell
i

ðMchðpÞÞ ð1Þ

x2D
i ¼ e�dch

i ð2Þ

3.3 The 3D arms tracking

Contrary to the head and the shoulders, the arms are much

more descriptive in a 3D configuration. Indeed, instead the

top of the head and the shoulders, that are approximatively

at a depth level, the arms are large depth variation and their

shape are so distorted by the camera viewscape in the 2D

space. The depth array provides a set of 3D points. This set

is incomplete and non-continuous. It represents the data

visible from the top view that gives a partial representation

of the 3D scene (Fig. 6).

The 3D model We introduce a model that is a skeleton

whose rigid parts represent the arms and the forearms with

the hands. There are, for each arm, 2 separated parts and 2

articulations (Figs. 7, 8). We hypothesise that each shoul-

der has 3 degrees of freedom and each elbow has 2 degrees

of freedom. In the literature, a single degree of freedom is

sometime assigned to the elbow but we are experimentally

noticed that 2 degrees favorite the transition between arms

poses. To represent the volume, geometrical primitives are

added: arms and forearms are modeled by truncated cyl-

inders and the hands by rectangular planes.

This model is hardly constrained by the previous one:

the 2D position of the shoulders, computed in the previous

Fig. 1 The data are acquired in a supermarket. The difficulties are numerous: cluttered image, occlusions, multi-targets and various goods and

shopping trolleys

Fig. 2 Overview of the method: the particle filtering is executed

independently for each target thanks to the observation sharing
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part for the 2D tracking, gives the location and the orien-

tation of the person in the scene. The tracking studies the

movement of the arms in relation to the torso. These rel-

ative movements are more descriptive of the person’s

actions.

All the movements of this articulated model are not

possible in practice: for example, the wide angle of flexion

at the elbow is almost 180� because of the olecranon

Fig. 3 The Xtion PRO-LIVE provides a color and a depth image. For the head–shoulders tracking this data makes the observation

Fig. 4 The 2D model is made of two ellipses

Fig. 5 The depth image is thresholded at the head and the shoulder levels computing from the top of the head position to realize the chamfer

mask

Fig. 6 The Xtion PRO-LIVE camera provides simultaneously a color

and the depth images. A set of 3D points of visible part of the scene

from the top view is computed from the depth image

Fig. 7 The arms pose is defined by a 3D model constrained by the

location of the shoulders computed by the 2D tracking (in the left).

This model (in the right) is made of an articulated skeleton (in red)

that comprises of a set of appropriately assembled geometric

primitives (in blue). The degrees of freedom correspond to the angles

at the shoulder and elbow levels
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presence. Hence the state space is limited by anatomical

constraints. As bones of the skeleton are rigid, the esti-

mation of the hand (and elbow) position can be directly

computed from the values of angles of the articulations.

The likelihood function The goal is that the set of 3D

points of the observation be the closest of the 3D model

defined by the particle. As we have 3D data, evaluated data

are expressed in an unit that corresponds to physical

information: the distance in meter. Moreover, the 3D space

has the advantage of keeping the distance constraints.

Indeed, in the recorded 2D image, an object is bigger if it is

close to the camera than that if it is far. The arm part length

can also lead the processing.

As the 3D process is addressed to the arms, we reduce the

observation to this part. First, a depth threshold deletes the

elements too low to belong to the upper part of a body: that

provides some regions of interest (ROI). Then, the elements of

the body in the ROI are spatially continuous. We only select

the continuous ROI that corresponds to the tracked person (we

know its location thanks to the previous 2D tracking) and that

we named blob. Finally, we delete the set of pixels that cor-

responds to the head, the torso and the shoulders from the

estimation given by the previous 2D pose estimation. LetDarm

be this new set of 3D points. This pre-processing is summa-

rized in the left part of the diagram in Fig. 9.

The model describes well the person pose if the ele-

ments of the observation are closed to the model in the 3D

space. The weighting of the particle i is given by

d3D
i ¼ mean

p2Darm
ðD3Dðp;MiÞÞ ð3Þ

x3D
i ¼ e�d3D

i ; ð4Þ

where Mi is the 3D model pose defined by the particle i

and D3D is the 3D distance from a point to a 3D volume

defined by

D3Dðp;MÞ ¼ min
i2M

ðd3Dðp; iÞÞ; ð5Þ

where d3D is the Euclidean distance between two points in

3D space.

4 Exclusion principle inclusion

Concatenating the data of the all targets in a single-state

vector increases dramatically the complexity of the system

and the computing time. Applying the exclusion principle

to track each target independently is relevant to obtain a

real-time processing. Instead of sharing the impact of each

element in the state vector, it is the observation that is

shared. Indeed, this is the observation that provides the

interaction between the various elements of the scene. If

the influence of other objects is deleted from the observa-

tion, a tracking can be executed independently.

For each moment k and target t, a prediction of the

model state x̂t;k is computed from the previous estimation

xt;k�1 and the dynamic of the system (a constant speed

model in our case). Each prediction defines a 3D shape

related to a model state. Let T be the set of tracked targets.

We assign each pixel of the observation (ROI) to the target

whose model state is the nearest in the 3D space. The

assignation aðpÞ of the pixel p is defined by

aðpÞ ¼ argmin
t2T

ðD3Dðp; x̂t;kÞÞ ð6Þ

Some examples of observation sharing are shown in

Fig. 17.

5 A confidence measure

Sometimes, some particular poses are difficult to estimate.

It is the case when the fist is held high because the visible

part of the forearm in the top view is hidden by the hand. In

our method, the model is matched to the observation but

the observation is not matched to the model. Consequently,

if the observation does not provide enough information, the

estimation is degraded. Let Dskeleton be the pixels of the

skeleton of the estimated model projected in the 2D space

of the recorded images. The measure C evaluates the

matching of the observation to the model. It is defined by

the average distance in the 2D image from pixels in Dskeleton

to the nearest element of the ROI. It is expressed in number

of pixels. With a good correspondence, it is set to 0.

This variable is much less descriptive than our likeli-

hood function. Moreover, combining it with our likelihood

function is time-consuming and does not improve the

tracking quality. Nevertheless, C effectively detects the

cases where our estimation, in exceptional circumstances,

Fig. 8 Overview of the 3D observation pre-processing: the blob

corresponding to the studied person is extracted from the depth array;

then the head and the shoulder parts are deleted and finally the pixels

corresponding to each arm are separated according to the shoulders

ellipse orientation

Fig. 9 Overview of the observation segmentation: thresholding of the

depth array and spatial continuity limit the studied observation; the

exclusion principle separates it in case of multi-target tracking

J Real-Time Image Proc (2016) 11:769–784 775

123



is defective. Thus we use C as a confidence measure. If for

a frame it is higher a threshold (10 pixels), the user knows

that the estimation of this frame is not taken into consid-

eration. It could be important in future work for an action

recognition process.

6 Performances

6.1 Experimental device

To demonstrate the effectiveness and robustness of the

proposed method, we performed simulation of the behavior

of customers under experimental conditions. We have

installed the Xtion PRO-LIVE camera produced by Asus

[44] at 2.9 m of the ground. The dimension of a frame is

320 � 240 pixels. Xtion PRO-LIVE has a frame rate of 30

frames per second. One of our main objectives is to obtain

a real-time algorithm. That is why we propose in the fol-

lowing the accuracy performances in correspondence with

the processing time it requires. The processing times given

in the following are the average time required for a frame

and obtained with a non-optimized C?? implementation

running on a 3.1 GHz processor. In the particle filtering,

increasing the number of particles improves the accuracy

but increases the computing time. We present, therefore,

criteria that represent a data relative to the accuracy of the

tracking and that is easily understandable by the user. We

promote the distance in meter in the real space between our

estimations and the true position as for example in Eq. 7.

Thus we display qualitative criteria as a function of the

processing time to evaluate the tracking quality. The

number of particles is an internal parameter. It is not a

criterion to select the best method.

To evaluate various positions and configurations, our

tests are realized on 4 sequences (Fig. 10):

– S1 ([1 min) contains little displacements of the person

but large and various movements of the arms.

– S2 (�43 s) is similar to the first one but with flashy

colors.

– S3 (�54 s) where the left arm realizes various move-

ments, is recorded with the ART protocol which will be

presented later.

– S4 (�32 s) contains two persons with frequent occlu-

sion of the arms.

These sequences are available for comparison in https://

evra.ibisc.univ-evry.fr/origami/.

Ground-truth To quantitatively evaluate our algorithm

efficiency, we need a ground truth to compare to our

results. First, for 2D evaluation, we have manually

annotated the position of the center of the shoulders on

the frames of sequences S1 and S2. Then, for the

evaluation of the observation segmentation with multi

target, we have manually annotated the pixels of the

frames of the sequence S3 that belong to each target. The

quantitative evaluation of the 3D estimation focuses on

the arms. The set of pixels of the arms Darms are manually

annotated in the 2D space for all the frames of the

sequences S1 and S2.

We propose an other mean of comparison for the 3D

evaluation. To check that our estimation of the arms pose is

a good description of the movement, we want to compare

the trajectories of the articulations. Thanks to the software

DTRACK, the 3D positions of reflecting balls can be fol-

lowed by an association of two cameras ARTTRACK1.

Reflecting balls are placed on the shoulder, the elbow and

the wrist of the left arm of a person. Then the balls’

positions are recorded by this ART process simultaneously

to the Xtion PRO-LIVE acquisition in the sequence S3.

The ART recorded positions cannot be strictly considered

as a ground-truth since the captors cannot be placed on the

Fig. 10 Set of experimental sequences used for the qualitative and

quantitative evaluation of our algorithm
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centers of the articulations. But we use it as a reference to

evaluate the trajectories.

Complexity and time processing The parameter that

induces the complexity of our algorithm is the number of

particles N. Each of the 3 steps of the particle filtering is

realized one time per particle and frame. The complexity

is, therefore, defined as OðNÞ. Chamfer mask computing,

preprocessing and estimation are processed one time per

frame. Their processing times are negligible in comparison

with the processing time of the particle filtering steps. As

the particles of different targets are independent, the pro-

cessing time is proportional to the number of target cur-

rently tracked.

The required number of particles is defined by the

number of degrees of freedom of the state vector. Indeed,

the particles must be enough to be distributed properly in

the state space. In our method, the model is separated in

two parts in particular to decrease the number of degrees of

freedom. We have compared our algorithm with two full

3D methods [29] with a model of 17 degrees of freedom.

The second one is a part-based processing where the state

vector is shared for the sampling and the propagation step.

Their large state space induces a bigger required processing

time. Therefore, a real-time processing requires to mini-

mize the number of degrees of freedom. That has influ-

enced our choice to separate our model in two parts. In the

following, these two methods are referred as (3D) and (3D–

PB) and our method is referred as (3D–2D).

For an efficient functioning of our algorithm we have

experimentally noted a processing time of approximately

25 ms per frame. This corresponds to a frame rate of 40 fps

and a throughput of 3.85 Mpps. This value increases with

the number of current tracked targets. Nevertheless, our

algorithm could be optimized, for example with a parall-

elization of the process for each target.

6.2 Head and shoulders tracking

The 2D shapes well describe the human class for the head and

the shoulders. We check that, on these body parts, our 2D

tracking is more effective that a basic 3D tracking. To do this,

we compare our results with the two 3D tracking meth-

ods [29]. Our method provides a MOTP less than 20 mm

while the full 3D methods provide a MOTP of around

50 mm. Separating the model increases the 2D accuracy.

The tracking from a top view is less studied. Canton-

Ferrer [9] and Heath [14] realized a person location track-

ing from color image on a top view. They obtained a MOTP

of around 150 mm while we obtain less than 20 mm. The

use of the depth array leads to more robustness.

In Fig. 11, we have compared our 2D tracking with the

ellipse fitting of Pilu [32] processed on the depth array

and with a chamfer fitting processed on the edge

(obtained by a Canny processing). We notice that our

method provides a much more accurate tracking in a

smaller processing time.

6.3 Arms tracking

The shape of the arms is not descriptive in the 2D space

where the articulated aspect is not represented. The arms

likelihood function must be defined in the 3D space. In

Fig. 12, the models estimated by our method are projected

in the 2D recorded image and in the 3D space. Our esti-

mation is qualitatively well fitted to the observation for

various positions.

Let e be the average 3D Euclidean distance between the

points of Darms and the estimated model. A low value of e
indicates a good correspondence between the model and

the observation and so a good estimation.

e ¼ mean
p2Darms

ðD3Dðp;Mxkþ1
ÞÞ ð7Þ

The evolution of the accuracy/processing time curves

contains 3 parts (Fig. 13). First a low time processing

comes from a reduction of the number of particles. Under a

certain number, the spread of the state space is inappro-

priate and the accuracy falls rapidly. In the contrary, over a

certain number, adding particles does not substantially

improve the tracking. The time processing so increases for

no improvement. Between these two parts is the operating

area where the system works properly. The compromise

between accuracy (to optimize the tracking) and time-

processing (to obtain real-time) may be correct if it is taken

in this range. For our 3D–2D method, the operating area is

Fig. 11 Variation Dd of the 2D position of the shoulder ellipse from

the ground-truth to our method or to an ellipse fitting [32] on the

depth array or to a chamfer fitting on the edges: our 2D tracking is

more efficient and using only color array significantly reduces the

accuracy
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in a tight range providing good tracking in a very com-

petitive processing time.

As we can seen in the Fig. 14 and in Table 1, our hybrid

3D–2D process explicitly provides the best tracking qual-

ity. Then, studying the body parts has a real influence. For

our 3D–2D processing, there is no meaningful improve-

ment over 50 particles (processed in approximately 25 ms).

In this configuration, the average distance between a point

of the observation and the estimated model is less than

Fig. 12 The tracking provides the pose of the person: on the left the model in the color image and on the right the model in the 3D space (the

pixels in white correspond to the points given by the depth image)

Fig. 13 Zoom in the performances of the 3D–2D tracking methods in

average for the sequences S1 and S2. There are 3 main areas: if the

number of particles is too small, their spread on the state space is

insufficient; but increasing it over a certain number does not improve

the accuracy; the last area is the operating area where the compromise

accuracy/processing time should be chosen

Fig. 14 Performances of the 3D tracking methods in sequences S1

and S2: the 3D–2D method we propose is substantially better. We

obtained an operating area for a smaller processing time and with an

accuracy 4–6 times better

Table 1 The average best compromise for S1 and S2 that corre-

sponds to the inflexion point of the curves in Fig. 14. Our hybrid 3D–

2D method is faster and more accurate

Method Processing time (ms) e (mm)

3D 80 130

3D–PB 80 75

3D–2D 25 25
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2.5 cm. The processing is thus efficient in real-time. Our

method is less time-consuming than the full 3D tracking

because the number of degrees of freedom is smaller. The

sampling step requires a smaller number of particles and

the likelihood function is computed fewer times. The

tracking is more accurate because it is more robust to sharp

movements and to small ROI.

Body parts trajectories Fig. 15 shows that our trajecto-

ries of the parts of the arm are well fitted to the ART ones.

Then the difficult cases where the person bends down (the

sharp peak on the z coordinate) are much better estimated

by our method. This movement is scarce and the dynamic

of the system penalizes it in a state space with a high

number of degrees of freedom. Separating the model

allows to be more robust to these particular cases because

more attention is given to important feature as the height of

the person. Finally, our tracking is more robust when the

movements are sharp (z coordinate of the wrist). This

experiment confirms our results.

The confidence measure We focus on the arms move-

ment. We computed a confidence measure C for each arm

with the estimation for all the frame of the sequences

S1;S2 and S3. Figure 16 shows that the wrong estimations

are evident with this criterion. We notice that there is a

very small number of wrong estimations: for the 3

sequences, there are 1.52 % of wrong estimation.

The major problems have to do with the brandished fists

(sequence S1). There are also difficulties with the too sud-

den movements (sequence S3) at the propagation step. But

it provides generally a wrong estimation for only one frame.

6.4 Multi-person tracking

To evaluate the accuracy of the observation segmenta-

tion between the two targets of the sequence S3, we have

computed the mean number of correctly assigned pixels for

each frame. The overlapping rate is more than 99 %. Thus

Fig. 15 Trajectories of the 3D coordinates (in row) of the shoulder,

the elbow and the wrist (in column) of the left arm in the sequence S3.

Shoulders are attached to the torso and have a slower movement. The

full 3D model has more difficulties to follow this movement. That

proves that the shoulders deserve to be tracked separately (in the 2D

space). On the contrary, the wrist has the sharpest movements because

it cumulates the movements of the arm and the forearm. We notice

that these large displacements are well tracked by our method
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very few wrong pixels are considered as observation.

Moreover, they are spatially very close to the well-assigned

pixels so the estimation is not much affected. We are in a

situation very close to the single target one.

6.5 On-site tracking

In experimental conditions, we have the control of what

happens and we can simulate the situation we want. It is

more convenient to realize quantitative evaluation. Nev-

ertheless, our method has to be used in a supermarket. We

have thus realized too tests on-site. Many new difficulties

appear: in practice the position where the arms are along

the body represents the great majority of cases. In this

position the arms are hardly discernible in the top view.

But this case is not relevant in the buying action recogni-

tion step. Then, to not enter in collision, persons can adopt

a strange movement. Moreover, all the shelf corridor can-

not be recorded by a single camera. Several cameras have

to be placed and synchronized to follow the displacement

of a customer on the whole corridor.

We tested approximately 25 min of on-site recording

with various customers and behaviors. These sequences

contain multi-person view, interaction with trolley and

other objects, fast movement, etc. Figures 17, 18, 19 show

Fig. 16 The confidence measure detects the wrong estimations: when the fist is held high (a, b) or when the movement is too fast (c–e). The

wrong estimations represent only 1.5 % of the frames

Fig. 17 Segmentation of the observation for several frames of the

sequence S4 obtained with the exclusion principle presented in

Sect. 4

Fig. 18 Multi-person tracking obtained on the sequence S4
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Fig. 19 Tracking on sequences recorded on site in a supermarket
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that our method provides a correct pose estimation in all

these hard situations. These sequences are not available

because we are awaiting regulatory approval for CNIL.

The processing is real-time when the number of cus-

tomers is not too high (that represents the most of the

cases). Otherwise, the tracking of each target could be

parallelized. Moreover, we have noticed experimentally

that the pose of the person is well estimated with a process

on only 7 frames per second.

6.6 Perspective for the action recognition

The ultimate aim of the project is to obtain a behavior

analysis. The buying acts have to be recognized. That is

the mean perspective of our work and it will be developed

later. However, to validate our work, we have started

considering how it could be used to recognize buying

acts.

We have isolated some particular buying acts: catching

an object in the shelves and looking at handhold goods (to

read the label or research the cost). Then we have studied

the evolution of the tracking obtained by our method on

these acts so as to find the most well-descriptive configu-

ration for each of them.

For the object catching, the 3D trajectories of the wrist

and the elbow are the most descriptive features (Fig. 20).

Indeed the regular curves of these body parts are always

noticed for this action. The velocity of the movement

provides clues to recognize impulse and reasoned

purchase.

For the goods looked at, the space given by the 10

angles of the arms are the most descriptive feature

(Fig. 21). Generally, it corresponds to a pose and is roughly

constant over time even if the person keep walking when

he looks at the goods. The duration of the this pose

determines the time the customer has studied the goods and

could infer doubts.

The definition of the various behaviors to recognize and

the way to use our results are in progress.

Fig. 20 Examples of trajectories of the elbow and the wrist in the YZ

space relatively to the shoulder for action of catching a good in the

on-site sequences. The trajectories of the articulation points in the 3D

space are well descriptive of this buying act

Fig. 21 Evolution of the angles of the arm model for various goods watching action in the on-site sequences: the space of the degrees of freedom

of the arm is the best to describe this buying act
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7 Conclusion

In this paper we have proposed a method for gesture

tracking by particle filtering using the Xtion PRO-LIVE.

We consider the particular case of the top view. The depth

cue is hence needed in our process. To be efficient in real-

time, we separate the body into two parts. The head and the

shoulders are tracked in the 2D space of the recorded

images and the arms are tracked in the 3D space. Experi-

ments show that it is in these spaces that the tracking is

actually the best for each of the two parts. They also

confirm the effectiveness of our method in a real-time

processing. Moreover, a confidence measure is associated

with each frame so as to detect the possible wrong esti-

mations. Finally, applying the exclusion principle makes

possible the multi-person tracking process with no addi-

tional complexity.

Our algorithm is run efficiently in 25 ms per frame (i.e.

at the frame rate of 40 fps and a throughput of 3.85 Mpps).

That is suitable with a real-time operation and on-line

applications.

In the future, the tracking will be inserted in an action

recognition application. As we have seen in the Sect. 6.6,

our method provides relevant information that has to be

used for the complete buying act recognition process. The

definition of the behaviors of interest will be the first step.

Then descriptor should research how to best describe each

of the action from our results. Finally, a classification will

realize the recognition.
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